
ar
X

iv
:1

10
4.

40
81

v2
 [

cs
.D

S]
 1

1
D

ec
 2

01
1

On Variants of the Matroid Secretary Problem

Shayan Oveis Gharan∗ Jan Vondrák†

Abstract

We present a number of positive and negative results for variants of the matroid secretary
problem. Most notably, we design a constant-factor competitive algorithm for the “random as-
signment” model where the weights are assigned randomly to the elements of a matroid, and then
the elements arrive on-line in an adversarial order (extending a result of Soto [21]). This is under
the assumption that the matroid is known in advance. If the matroid is unknown in advance,
we present an O(log r logn)-approximation, and prove that a better than O(log n/ log logn)
approximation is impossible. This resolves an open question posed by Babaioff et al. [3].

As a natural special case, we also consider the classical secretary problem where the number
of candidates n is unknown in advance. If n is chosen by an adversary from {1, . . . , N}, we
provide a nearly tight answer, by providing an algorithm that chooses the best candidate with
probability at least 1/(HN−1 + 1) and prove that a probability better than 1/HN cannot be
achieved (where HN is the N -th harmonic number).

1 Introduction

The secretary problem is a classical problem in probability theory, with obscure origins in the 1950’s
and early 60’s ([12, 18, 9]; see also [11]). The goal in this problem is to select the best candidate
out of a sequence revealed one-by-one, where the ranking is uniformly random. A classical solution
finds the best candidate with probability at least 1/e [11]. Over the years a number of variants
have been studied, starting with [13] where multiple choices and various measures of success were
considered for the first time.

Recent interest in variants of the secretary problem has been motivated by applications in
on-line mechanism design [15, 19, 3], where items are being sold to agents arriving on-line, and
there are certain constraints on which agents can be simultaneously satisfied. Equivalently, one can
consider a setting where we want to hire several candidates under certain constraints. Babaioff,
Immorlica and Kleinberg [3] formalized thematroid secretary problem and presented constant-factor
competitive algorithms for several interesting cases. The general problem formulated in [3] is the
following.

Matroid secretary problem. Given a matroidM = (E,I) with non-negative weights assigned
to E; the only information known up-front is the number of elements n := |E|. The elements of E
arrive in a random order, with their weights revealed as they arrive. When an element arrives, it
can be selected or rejected. The selected elements must always form an independent set inM, and

∗Stanford University, Stanford, CA; shayan@stanford.edu; this work was done while the author was at IBM

Almaden Research Center, San Jose, CA.
†IBM Almaden Research Center, San Jose, CA; jvondrak@us.ibm.com

1

http://arxiv.org/abs/1104.4081v2

a rejected element cannot be considered again. The goal is to maximize the expected weight of the
selected elements.

Additional variants of the matroid secretary problem have been proposed and studied, depend-
ing on how the input ordering is generated, how the weights are assigned and what is known in
advance. In all variants, elements with their weights arrive in an on-line fashion and an algorithm
must decide irrevocably whether to accept or reject an element once it has arrived. We attempt
to bring some order to the multitude of models and we classify the various proposed variants as
follows.

Ordering of matroid elements on the input:
• AO = Adversarial Order: the ordering of elements of the matroid on the input is chosen by

an adversary.
• RO = Random Order: the elements of the matroid arrive in a random order.

Assignment of weights:
• AA = Adversarial Assignment: weights are assigned to elements of the matroid by an adver-

sary.
• RA = Random Assignment: the weights are assigned to elements by a random permutation

of an adversarial set of weights (independent of the input order, if that is also random).

Prior information:
• MK = Matroid Known: the matroid is known beforehand (by means of an independence

oracle).
• MN = Matroid - n known: the matroid is unknown but the cardinality of the ground set is

known beforehand.
• MU = Matroid - Unknown: nothing about the matroid is known in advance; only subsets of

the elements that arrived already can be queried for independence.

For example, the original variant of the matroid secretary problem [3], where the only informa-
tion known beforehand is the total number of elements, can be described as RO-AA-MN in this
classification. We view this as the primary variant of the matroid secretary problem.

We also consider variants of the classical secretary problem; here, only 1 element should be
chosen and the goal is to maximize the probability of selecting the best element.

Classical secretary problems:
• CK = Classical - Known n: the classical secretary problem where the number of elements in

known in advance.
• CN = Classical - known upper bound N : the classical secretary problem where the number

of elements is chosen adversarially from {1, . . . , N}, and N is known in advance.
• CU = Classical - Unknown n: the classical secretary problem where no information on the

number of elements is known in advance.

Since the independent sets of the underlying matroid in this model are independent of the particular
labeling of the ground set (i.e., RO-AA-CK, AO-RA-CK and RA-RO-CK models are equivalent),
we just use the weight assignment function to characterize different variants of this model. The
classical variant of the secretary problem which allows a 1/e-approximation would be described
as RA-CK. The variant where the number of elements n is not known in advance is very natural
— and has been considered under different stochastic models where n is drawn from a particular

2

distribution [23, 1] — but the worst-case scenario does not seem to have received attention. We
denote this model RA-CU, or RA-CN if an upper bound on the number of candidates is given.
In the model where the input ordering of weights is adversarial (AA-CK), it is easy to see that
no algorithm achieves probability better than 1/n [5]. We remark that variants of the secretary
problem with other objective functions have been also proposed, such as discounted profits [2], and
submodular objective functions [4, 14]. We do not discuss these variants here.

1.1 Recent related work

The primary variant of matroid secretary problem (RO-AA-MN model) was introduced in [3].
In the following, let n denote the total number of elements and r the rank of the matroid. An
O(log r)-approximation for the RO-AA-MN model was given in [3]. It was also conjectured that a
constant-factor approximation should exist for this problem and this question is still open. Very re-
cently, Chakraborty and Lachish [7] improved [3] by giving an O(

√
log r)-approximation algorithm.

Constant-factor approximations were given in [3] for some special cases such as partition matroids
and graphic matroids with a given explicit representation. Further, constant-factor approximations
were given for transversal matroids [8, 20] and laminar matroids [17]. However, even for graphic
matroids in the RO-AA-MK model when the graphic matroid is given by an oracle, no constant
factor is known.

Babaioff et al. in [3] also posed as an open problem whether there is a constant-factor ap-
proximation algorithm for the following two models: Assume that a set of n numerical values are
assigned to the matroid elements using a random one-to-one correspondence but that the elements
are presented in an adversarial order (AO-RA in our notation). Or, assume that both the assign-
ment of values and the ordering of the elements in the input are random (RO-RA in our notation).
The issue of whether the matroid is known beforehand is left somewhat ambiguous in [3].

In a recent work [21], José Soto partially answered the second question, by designing a constant-
factor approximation algorithm in the RO-RA-MK model: An adversary chooses a list of non-
negative weights, which are then assigned to the elements using a random permutation, which is
independent of the random order at which the elements are revealed. The matroid is known in
advance here.

1.2 Our results

Matroid secretary. We resolve the question from [3] concerning adversarial order and random
assignment, by providing a constant-factor approximation algorithm in the AO-RA-MK model, and
showing that no constant-factor approximation exists in the AO-RA-MN model. More precisely, we
prove that there is a 40/(1−1/e)-approximation in the AO-RA-MK model, i.e. in the model where
weights are assigned to the elements of a matroid randomly, the elements arrive in an adversarial
order, and the matroid is known in advance. We provide a simple thresholding algorithm, which
gives a constant-factor approximation for the AO-RA-MK model when the matroidM is uniformly
dense. Then we use the principal sequence of a matroid to design a constant-factor approximation
for any matroid using the machinery developed by Soto [21]. (Subsequently to our work, Soto [22]
improved our approximation factor in the AO-RA-MK model to 16/(1 − 1/e).)

On the other hand, if the matroid is not known in advance (AO-RA-MN model), we prove that
the problem cannot be approximated better than within Ω(log n/ log log n). This holds even in
the special case of rank 1 matroids; see below. On the positive side, we show an O(log r log n)-

3

approximation for this model. We achieve this by providing an O(log r)-approximation thresholding
algorithm for the AO-AA-MU model (when both the input ordering and the assignment of weights
to the elements the matroid are adversarial), when an estimate on the weight of the largest non-loop
element is given. Here, the novel technique is to employ a dynamic threshold depending on the
rank of the elements seen so far.

Classical secretary with unknown n. A very natural question that arises in this context is
the following. Consider the classical secretary problem, where we want to select 1 candidate out
of n. The classical solution relies on the fact that n is known in advance. However, what if we do
not know n in advance, which would be the case in many practical situations? We show that if an
upper bound N on the possible number of candidates n is given (RA-CN model: i.e., n is chosen
by an adversary from {1, . . . , N}), the best candidate can be found with probability 1/(HN−1+1),
while there is no algorithm which achieves probability better than 1/HN (where HN =

∑N
i=1

1
i is

the N -th harmonic number).
In the model where we maximize the expected value of the selected candidate, and n is

chosen adversarially from {1, . . . , N}, we prove we cannot achieve approximation better than
Ω(logN/ log logN). On the positive side, even if no upper bound on n is given, the maximum-
weight element can be found with probability ǫ/ log1+ǫ n for any fixed ǫ > 0. We remark that
similar results follow from [16] and [10] where an equivalent problem was considered in the context
of online auctions. More generally, for the matroid secretary problem where no information at all
is given in advance (RO-AA-MU), we achieve an O(1ǫ log r log

1+ǫ n) approximation for any ǫ > 0.
See Table 1 for an overview of our results.

Problem New approximation New hardness

RA-CN HN−1 + 1 HN

RA-CU O(1ǫ log
1+ǫ n) Ω(log n)

AO-RA-MK 40/(1 − 1/e) -

AO-RA-MN O(log r log n) Ω(log n/ log log n)

AO-RA-MU O(1ǫ log r log
1+ǫ n) Ω(log n/ log log n)

RO-AA-MU O(1ǫ log r log
1+ǫ n) Ω(log n/ log log n)

Table 1: Summary of results

Organization. In section 2 we provide a 40/(1− 1/e) approximation algorithm for the AO-RA-
MK model. In section 3 we provide an O(log n log r) approximation algorithm for the AO-RA-MN
model, and an O(1ǫ log r log

1+ǫ n) approximation for the RO-AA-MU model. Finally, in section 4
we provide a (HN−1 + 1)-approximation and HN -hardness for the RA-CN model.

2 Approximation for adversarial order and random assignment

In this section, we derive a constant-factor approximation algorithm for the AO-RA-MK model, i.e.
assuming that the ordering of the elements of the matroid is adversarial but weights are assigned to
the elements by a random permutation, and the matroid is known in advance. We build on Soto’s
algorithm [21], in particular on his use of the principal sequence of a matroid which effectively

4

reduces the problem to the case of a uniformly-dense matroid while losing only a constant factor
(1 − 1/e). Interestingly, his reduction only requires the randomness in the assignment of weights
to the elements but not a random ordering of the matroid on the input. Hence, it is sufficient
to obtain a constant factor for uniformly dense matroids. Recall that the density of a set in a
matroidM = (E,I) is the quantity γ(S) = |S|

rank(S) . A matroid is uniformly dense, if γ(S) ≤ γ(E)
for all S ⊆ E. We present a simple thresholding algorithm which works in the AO-RA-MK model
(i.e. even for an adversarial ordering of the elements) for any uniformly dense matroid. Combining
our algorithm with Sotos reduction [21, Lemma 4.4], we obtain a constant-factor approximation
algorithm for the matroid secretary problem in AO-RA-MK model.

Throughout this section we use the following notation. LetM = (E, I) be a uniformly dense
matroid of rank r. This also means that M contains no loops. Let |E| = n and let e1, e2, . . . , en
denote the ordering of the elements on the input, which is chosen by an adversary (i.e. we consider
the worst case). Furthermore, the adversary also chooses W = {w1 > w2 > . . . > wn}, a set
of non-negative weights. The weights are assigned to the elements of M via a random bijection
ω : E → W . For a weight assignment ω, we denote by w(S) =

∑

e∈S ω(e) the weight of a set
S, and by ω(S) = {ω(e) : e ∈ S} the set of weights assigned to S. We also let OPT(ω) be the
maximum-weight independent set inM.

2.1 Approximation for uniformly dense matroids

We show that there is a simple thresholding algorithm which includes each of the topmost ⌊r/4⌋
weights (i.e. w1, . . . , w⌊r/4⌋) with a constant probability. This will give us a constant factor approx-
imation algorithm, as w(OPT(ω)) ≤∑r

i=1 wi, where w1 > w2 > . . . > wr are the r largest weights
in W . It is actually important that we compare our algorithm to the quantity

∑r
i=1wi, because

this is needed in the reduction to the uniformly dense case.
The main idea is that the randomization of the weight assignment makes it very likely that the

optimum solution contains many of the top weights in W . Therefore, instead of trying to compute
the optimal solution with respect to ω, we can just focus on catching a constant fraction of the top
weights in W . Let A = {e1, . . . , en/2} denote the first half of the input and B = {en/2+1, . . . , en}
the second half of the input. Note that the partition into A and B is determined by the adversary
and not random. Our solution is to use the ⌊r/4⌋+1-st topmost weight in the ”sampling stage” A
as a threshold and then include every element in B that is above the threshold and independent of
the previously selected elements. Details are described in Algorithm 1.

Theorem 2.1. LetM be a uniformly dense matroid of rank r, and ALG(ω) be the set returned by
Algorithm 1 when the weights are defined by a uniformly random bijection ω : E → W . Then

Eω [w(ALG(ω))] ≥ 1

40

r
∑

i=1

wi

where {w1 > w2 > . . . > wr} are the r largest weights in W .

If r < 12, the algorithm finds and returns the largest weight w1 with probability 1/e (step
2; the optimal algorithm for the classical secretary problem). Therefore, for r < 12, we have
Eω [w(ALG(ω))] ≥ 1

11e

∑r
i=1 wi >

1
40

∑r
i=1 wi.

5

Algorithm 1 Thresholding algorithm for uniformly dense matroids in AO-RA-MK model

Input: A uniformly dense matroidM = (E,I) of rank r.
Output: An independent set ALG ⊆ E.
1: if r < 12 then

2: run the optimal algorithm for the classical secretary problem, and return the resulting sin-
gleton.

3: end if

4: ALG← ∅
5: Observe a half of the input (elements of A) and let w∗ be the (⌊r/4⌋+1)st largest weight among

them.
6: for each element e ∈ B arriving afterwards do
7: if ω(e) > w∗ and ALG ∪ {e} is independent then
8: ALG← ALG ∪ {e}
9: end if

10: end for

11: return ALG

For r ≥ 12, we prove that each of the topmost ⌊r/4⌋ weights will be included in ALG(ω) with
probability at least 1/8. Hence, we will obtain

Eω [w(ALG(ω))] ≥ 1

8

⌊r/4⌋
∑

i=1

wi ≥
1

40

r
∑

i=1

wi. (1)

Let t = 2⌊r/4⌋ + 2. Define C ′(ω) = {ej : ω(ej) ≥ wt} to be the set of elements of M which
get one of the top t weights. Also let A′(ω) = C ′(ω) ∩ A and B′(ω) = C ′(ω) ∩ B. Moreover,
for each 1 ≤ i ≤ t we define C ′

i(ω) = {ej : ω(ej) ≥ wt & ω(ej) 6= wi}, A′
i(ω) = C ′

i(ω) ∩ A and
B′

i(ω) = C ′
i(ω) ∩B, i.e. the same sets with the element of weight wi removed.

First, we fix i ≤ ⌊r/4⌋ and argue that the size of B′
i(ω) is smaller than A′

i(ω) with probability
1/2. Then we will use the uniformly dense property of M to show that the span of B′

i(ω) is
also quite small with probability 1/2 and consequently wi has a good chance of being included in
ALG(ω).

Claim 2.2. Let M be a uniformly dense matroid of rank r, t = 2⌊r/4⌋ + 2, 1 ≤ i ≤ ⌊r/4⌋, and
B′

i(ω) defined as above. Then we have

Pω

[

|B′
i(ω)| ≤ ⌊r/4⌋

]

= 1/2. (2)

Proof. Consider C ′
i(ω), the set of elements receiving the top t weights except for wi. This is a

uniformly random set of odd size t− 1 = 2⌊r/4⌋ + 1. By symmetry, with probability exactly 1/2,
a majority of these elements are in A, and hence at most ⌊r/4⌋ of these elements are in B, i.e.
|B′

i(ω)| ≤ ⌊r/4⌋.

Now we consider the element receiving weight wi. We claim that this element will be included
in ALG(ω) with a constant probability.

Claim 2.3. LetM be a uniformly dense matroid of rank r, and i ≤ ⌊r/4⌋. Then

Pω

[

ω−1(wi) ∈ ALG(ω)
]

≥ 1/8.

6

Proof. Condition on C ′
i(ω) = S for some particular set S of size t−1 such that |B′

i(ω)| = |S∩B| ≤
⌊r/4⌋. This fixes the assignment of the top t weights except for wi. Under this conditioning, weight
wi is still assigned uniformly to one of the remaining n− t+ 1 elements.

Since we have |A′
i(ω)| = |S ∩ A| ≥ ⌊r/4⌋ + 1, the threshold w∗ in this case is one of the top t

weights and the algorithm will never include any weight outside of the top t. Therefore, we have
ALG(ω) ⊆ B′(ω). The weight wi is certainly above w∗ because it is one of the top ⌊r/4⌋ weights. It
will be added to ALG(ω) whenever it appears in B and it is not in the span of previously selected
elements. Since all the previously included elements must be in B′

i(ω) = S ∩ B, it is sufficient to
avoid being in the span of S ∩B. To summarize, we have

ω−1(wi) ∈ B \ span(S ∩B) ⇒ ω−1(wi) ∈ ALG(ω).

What is the probability that this happens? Similar to the proof of [21, Lemma 3.1], since M is
uniformly dense, we have

|span(S ∩B)|
|S ∩B| ≤ |span(S ∩B)|

rank(span(S ∩B))
≤ n

r
=⇒ |span(S ∩B)| ≤ n

r
|S ∩B| ≤ n

4

using |S ∩B| ≤ ⌊r/4⌋. Therefore, there are at least n/4 elements in B \ span(S ∩ B). Given that
the weight wi is assigned uniformly at random among n− t possible elements, we get

Pω

[

ω−1(wi) ∈ B \ span(S ∩B) | C ′
i(ω) = S

]

≥ n/4

n− t
≥ 1

4
.

Since this holds for any S such that |S ∩ B| ≤ ⌊r/4⌋, and S ∩ B = C ′
i ∩ B = B′

i(ω), it also holds
that

Pω

[

ω−1(wi) ∈ B \ span(B′
i(ω)) | |B′

i(ω)| ≤ ⌊r/4⌋
]

≥ 1

4
.

Using Claim 2.2, we get Pω

[

ω−1(wi) ∈ B \ span(B′
i(ω))

]

≥ 1/8.

This finishes the proof of Theorem 2.1.

2.2 Extension to general matroids

In this section we describe the final 40/(1−1/e) approximation algorithm for AO-RA-MK model for
general matroids. The algorithm is based on Soto’s algorithm [21], by decomposing the underlying
matroid into a sequence of principal minors and then running Algorithm 1 in parallel on each of
them separately.

Algorithm 2 Thresholding algorithm for matroid secretary problem in AO-RA-MK model

Input: A matroidM = (E,I).
Output: An independent set ALG ⊆ E.
1: Compute the sequence of principal minors (Mi)

k
i=1: Initialize k = 0. While

⋃k
i=1Ei 6= E, let

Ek+1 be the densest set in the matroid M/
⋃k

i=1 Ei, defineMk+1 = (M/
⋃k

i=1 Ei)|Ek+1, and
increment k.

2: Run Algorithm 1 in parallel on eachMi to get a solution Ii, and return ALG =
⋃k

i=1 Ii.

7

We use Soto’s lemma to argue that if the weights are assigned randomly to the elements, and
we achieve an α-fraction of the sum of the ri topmost weights in each principal minorMi, then we
obtain an α/(1 − 1/e) approximation overall.

Interestingly, it is necessary to know the matroid in advance, in order to discriminate the dense
parts of the matroid from the sparse parts (by computing the principal minors), and try to handle
them separately. Otherwise, as we prove later, no algorithm can do better than anO(log n/ log log n)
approximation.

Corollary 2.4. Algorithm 2 gives a 40
1−1/e -approximation in the AO-RA-MK model.

Proof. Similar to the proof of Theorem 2.1, let e1, . . . , en be the sequence of elements of M designed
by the adversary and W = w1 > . . . > wn be the hidden list of weights. LetMi, 1 ≤ i ≤ k, be the
sequence of principal minors of M, with ground set Ei and rank ri, and let P denote a partition
matroid as defined in [21, Section 4], with ground set E and independent sets

I(P) =
{

k
⋃

i=1

Ii : Ii ⊆ Ei, |Ii| ≤ ri

}

.

For a uniformly random bijection ω : E → W , let OPTP(ω) be the maximum weight of an
independent set in matroid P, and ALG(ω) be the set returned by Algorithm 2. Conditioning on
the set of weights assigned to the elements of each block Ei, the elements in Ei receive a random
permutation of this set of weights. Since eachMi is uniformly dense, By Theorem 2.1, Algorithm
2 recovers in expectation a 1/40-fraction of the sum of the heaviest ri weights assigned to elements
in Ei. However, the union of the heaviest ri elements in each Ei is indeed the optimum solution in
the partition matroid P. By removing the conditioning we get

Eω [w(ALG(ω))] ≥ 1

40
Eω [OPTP(ω)] . (3)

Moreover, Soto in [21] proved that Eω [OPTP] is only a constant factor away from the optimum of
Eω [OPTM].

Lemma 2.5 (Soto [21]). Eω [w(OPTP)(ω))] ≥ (1− 1/e)Eω [w(OPTM(ω))] .

This proves the corollary.

3 Approximation algorithms for unknown matroids

In this section we will be focusing mainly on the AO-RA-MN model. i.e. assuming that the ordering
of the elements of the matroid is adversarial, weights are assigned randomly, but the matroid is
unknown, and the algorithm only knows n in advance. We present an O(log n log r) approximation
algorithm for the AO-RA-MN model, where n is the number of elements in the ground set and r
is the rank of the matroid. It is worth noting that in these models the adversary may set some of
the elements of the matroid to be loops, and the algorithm does not know the number of loops in
advance. For example it might be the case that after observing the first 10 elements, the rest are all
loops and thus the algorithm should select at least one of the first 10 elements with some non-zero

8

probability. This is the idea of the counterexample in section 4 (Corollary 4.4), where we reduce AO-
RA-MN, AO-RA-MU models to RA-CN, RA-CU models respectively, and thus we show that there
is no constant-factor approximation for either of the models. In fact, no algorithm can do better
than Ω(log n/ log log n). Therefore, our algorithms are tight within a factor of O(log r log log n) or
O(log r logǫ n).

At the end of this section we also give a general framework that can turn any α approximation
algorithm for the RO-AA-MN model, (i.e. the primary variant of the matroid secretary problem)
into an O(α log1+ǫ n/ǫ) approximation algorithm in the RO-AA-MU model (see subsection 3.2).

We use the same notation as section 2: M = (E, I) is a matroid of rank r (which is not known
to the algorithm), and e1, e2, . . . , en is the the adversarial ordering of the elements of M, and
W = {w1 > w2 > . . . > wn} is the set of hidden weights chosen by the adversary that are assigned
to the elements ofM via a random bijection ω : E →W .

3.1 Approximation for AO-RA-MN models

We start by deriving an O(log n log r) approximation algorithm for the AO-RA-MN model. Our
algorithm basically tries to ignore the the loops and only focuses on the non-loop elements. We
design our algorithm in two phases. In the first phase we design a randomized algorithm that
works even in the AO-AA-MU model assuming that it has a good estimate on the weight of the
largest non-loop element. In particular, fix bijection ω : W → E, and let e∗1 be the largest non-
loop element with respect to ω, and e∗2 be the second largest one. We assume that the algorithm
knows a bound ω(e∗2) < L < ω(e∗1) on the largest non-loop element in advance. We show there
is a thresholding algorithm, with a non-fixed threshold, that achieves an O(log r) fraction of the
optimum (see subsection 3.1.1).

In order to solve the original problem, in the second phase we divide the non-loop elements into
a set of blocks B1, B2, . . . , Blogn, and we use the previous algorithm as a module to get an O(log r)
of optimum within each block (see subsection 3.1.2).

3.1.1 Approximation for AO-RA-MN model, with an estimate on the largest weight

Let us start by the first phase. Since our algorithm works in a more general model, here we assume
that we are in the AO-AA-MU model, i.e. assuming that both the ordering of the elements and
assignments of the weights are chosen adversarially, and the algorithm knows nothing except a
bound ω(e∗2) < L < ω(e∗1) on the largest non-loop element. We design a randomized O(log r)
approximation algorithm for this model.

Note that if r is also known in advance then a simple variant of the thresholding algorithm
of Babaioff et al. [3, ThresholdPrice Algorithm] would be a O(log r) approximation. Indeed it is
sufficient to select a threshold L/2i, for 0 ≤ i ≤ log r uniformly at random, and then include all the
elements above the threshold that are independent of the elements chosen so far. Here, since we do
not know r, our algorithm keeps track of the rank of the elements seen so far, and tries to update
the threshold according to it. In particular, once the rank of the elements seen so far reaches 2i, the
algorithm inserts a new threshold dynamically and works with it as if it exists since the beginning
of the algorithm. The details are described in Algorithm 3:

Let E1 be the event the algorithm chooses the option in step 1. Also let r∗(t) and w∗(t) be the
value of r∗ and w∗, respectively, after observing the first t elements of the input. In particular, r∗(n)

9

Algorithm 3 Algorithm for AO-AA-MU model, when an estimate of the largest non-loop element
is known
Input: The bound L such that ω(e∗2) < L < ω(e∗1).
Output: An independent set ALG ⊆ E.
1: with probability 1/2, pick a non-loop element with weight above L and return it.
2: ALG← ∅ and r∗ ← 2.
3: set threshold w∗ ← L/2.
4: for each arriving element ei do
5: if ω(ei) > w∗ and ALG ∪ {ei} is independent then
6: ALG← ALG ∪ {ei}
7: end if

8: if rank({e1, . . . , ei}) ≥ r∗ then

9: with probability 1
log 2r∗ set w∗ ← L/2r∗.

10: r∗ ← 2r∗.
11: end if

12: end for

13: return ALG

will be the rank ofM, and w∗(n) will be the final value of the threshold chosen by the algorithm.
The following observation describes some properties of the algorithm:

Observation 3.1. Assuming ¬E1, for any matroid of rank r, observe that r∗(n) in the algorithm
will be the smallest power of 2 greater than r (i.e. r∗(n) ≤ 2r). Therefore, the algorithm will choose
between at most log (2r) different thresholds, where for each i, the threshold w∗(t) will be decreased
to L/2i at the first time t(i) where rank(e1, . . . , et(i)) = 2i−1, with probability 1/i.

Hence, by applying a simple induction it is not hard to see that at any time t in the execution
of the algorithm,

1 ≤ i ≤ log r∗(t), P

[

w∗(t) =
L

2i

∣

∣

∣
¬E1

]

= 1/ log r∗(t), (4)

where the probability is over all of the randomization in the algorithm.

Theorem 3.2. For any matroid M = (E,I) of rank r, and any bijection ω : E → W , given the
bound ω(e∗2) < L < ω(e∗1), Algorithm 3 is a 16 log r approximation in the AO-AA-MU model. i.e.

E [w(ALG(ω))] ≥ 1

16 log r
w(OPT(ω)),

where the expectation is over all of the randomization in the algorithm.

Let us partition the elements of OPT(ω) according to their weights, where

1 ≤ i ≤ log 2r : Pi =

{

e ∈ OPT(ω) :
L

2i
< ω(e) ≤ L

2i−1

}

. (5)

First in the next claim, we show that conditioned on w∗(n) = L/2i (and ¬E1), the expected
weight of ALG(ω), is a constant fraction of w(Pi), unless the size of |Pi| is very small. In the
latter case as we will show in equation (7), we may charge w(Pi) by a 1/ log r fraction of ω(e∗1).
Since E1 occurs with constant probability, the algorithm achieves a constant fraction of ω(e∗1) which
completes the proof.

10

Claim 3.3. For any 1 ≤ i ≤ log r, if |Pi| ≥ 2i, then

E

[

w(ALG(ω))|w∗(n) =
L

2i
∧ ¬E1

]

≥ 1

4
w(Pi).

Proof. Let Ei = {e1, . . . , ei} be the set of the first i elements. Recall that t(i) is the first time t
where rank(Et) = 2i−1. Since Pi ⊆ OPT(ω) is an independent set ofM, we have |Pi∩Et(i)| ≤ 2i−1.
In other words, we must have seen at most 2i−1 elements of the set Pi by the time t(i).

Suppose w∗(n) = L/2i; since w∗(t) is a non-increasing function of t (with probability 1), we get
w∗(t) ≥ L/2i. Since Pi \Et(i) is an independent set and all its elements will come after t(i), we get
|ALG(ω)| ≥ |Pi \Et(i)| ≥ |Pi|−2i−1 by the end of the algorithm. But all these elements are greater
than w∗(n) = L/2i, thus:

E

[

w(ALG(ω))|w∗(n) =
L

2i
∧ ¬E1

]

≥ |Pi \ Et(i)|
L

2i
≥ |Pi|L

2i+1
≥ 1

4
w(Pi),

where the last inequality follows from equation (5).

Now we are ready to prove Theorem 3.2
Proof of Theorem 3.2. Using the above claim we may simply compute the overall performance of
the algorithm:

E [w(ALG(ω))] =
1

2
E [w(ALG(ω))|E1] +

1

2
E [w(ALG(ω))|¬E1]

≥ 1

2
ω(e∗1) +

1

2

∑

i:|Pi|≥2i

E

[

w(ALG(ω))
∣

∣

∣w∗(n) =
L

2i
∧ ¬E1

]

P

[

w∗(n) =
L

2i

∣

∣

∣¬E1
]

≥ ω(e∗1)

2
+

1

2

∑

i:|Pi|≥2i

w(Pi)

4

1

log 2r
(6)

≥ ω(e∗1)

4
+

log 2r
∑

i=1

2L

8 log 2r
+

1

2

∑

i:|Pi|≥2i

w(Pi)

4

1

log 2r
(7)

≥ ω(e∗1)

4
+

log 2r
∑

i=1

w(Pi)

8 log 2r
, (8)

where inequality (6) follows from equation (4) and Claim 3.3, inequality (7) follows from the
assumption ω(e∗1) ≥ L, and inequality (8) follows from w(Pi) ≤ |Pi| L

2i−1 ≤ 2L for |Pi| ≤ 2i.
The theorem simply follows from the fact that w(OPT(ω)) ≤ 2(ω(e∗1) +

∑

w(Pi)).
Before describing our algorithm for the AO-RA-MN model, we prove a bound on the per-

formance of algorithm 3 when the bound L can be much larger than the maximum weight (i.e.
ω(e∗1) ≪ L). This may happen as a special case when we want to apply Algorithm 3 as a subrou-
tine.

Corollary 3.4. For any matroid M = (E,I) of rank r, and any bijection ω : E → W , given any
bound L > ω(e∗2) we have

E [w(ALG(ω))] ≥ max

(

0,
w(OPT(ω))

16 log r
− 2L

)

. (9)

11

If in addition L < ω(e∗1), then

E [w(ALG(ω))] ≥ ω(e∗1)

2
. (10)

Proof. To prove the first inequality, note that if L < ω(e∗1), then we are done, otherwise suppose
that we increase the weight of e∗1 to L + ω(e∗1). Define ω′ = ω on all elements, except ω′(e∗1) =
L+ ω(e∗1) ≤ 2L. Then by Theorem 3.2, we have

E
[

w(ALG(ω′))
]

≥ w(OPT(ω′))

16 log r
=

w(OPT(ω)) + L

16 log r

On the other hand, since in the worst case ALG(ω) does not have e∗1, while ALG(ω′) has it, we
have E [w(ALG(ω))] ≥ E [w(ALG(ω′))]− 2L. Therefore

E [w(ALG(ω))] ≥ w(OPT(ω)) + L

16 log r
− 2L ≥ max

(

0,
w(OPT(ω))

16 log r
− 2L

)

.

The second inequality can be proved simply by noting that the algorithm picks e∗1 in step 1 with
probability 1/2.

3.1.2 Approximation for AO-RA-MN by a general reduction

Now we are ready to describe our final algorithm for AO-RA-MN model without knowing L in
advance (here, unlike the previous algorithm we will use the random assignment of weights). The
idea is to only consider the non-loop elements and divide them into a set of blocks B1, B2, . . . , Blog 2n

such that |Bi| = 2i (note that the number of non-loop elements can be quite smaller than n, but
we do not know it in advance). After observing the first i blocks, we would have a good guess on
the largest weight of the next block. Using that guess as a bound L, with probability 1/ log (2n),
we run Algorithm 3 on block i+ 1 and return its solution as the final answer. The details are
described in Algorithm 4.

Algorithm 4 Algorithm for AO-RA-MN model

Input: n, the number of elements.
Output: An independent set ALG ⊆ E.
1: Choose a number 0 ≤ b ≤ log n uniformly at random.
2: Observe the first 2b − 1 non-loop elements without picking any of them, and let L(b) be the

largest weight among these non-loop elements.
3: Run Algorithm 3 only on the next 2b non-loop elements (ignore loops), with parameters n = 2b

and L = L(b), and return its output.

The next theorem proves the correctness of the algorithm

Theorem 3.5. For any matroidM = (E,I) of rank r, Algorithm 4 is a O(log r log n) approxima-
tion in the AO-RA-MN model.

Let F be the set of non-loop elements, m := |F |, and let Fi ⊂ F be the set of first 2i+1 − 1
non-loop elements (as a special case Flogm = F . We divide the elements of F into a set of blocks

12

B0, B1, . . . , B⌊logm⌋, where B0 := F0, and for each i > 0, Bi := Fi \ Fi−1. Note that the size of the

last block |Blogm| = m+ 1− 2⌊logm⌋ can be much smaller than 2⌊logm⌋.
For a set of weights W ′ ⊂ W and E′ ⊂ E of elements such that |W ′| = |E′|, let EW ′(E′) be

the event ω(E′) = W ′). Fix a set W ′ ⊂ W of size |W ′| = |F |. Throughout the proof we always
condition on EW ′(F). Define

0 ≤ i ≤ ⌊logm⌋ : Oi = Eω [w(OPT(ω) ∩Bi)|EW ′(F)] , (11)

to be the expected value of the optimum set in each of the blocks. We will show that

Eω [w(ALG(ω))|EW ′(F)] ≥ 1

2500 log r log n

logm
∑

i=1

Bi.

In the next claim we show that conditioned on algorithm chooses b = i in the step 1, it will get an
Ω(1/ log r) fraction of Oi. Note that in this claim we do not analyze the special case of b = ⌊logm⌋.
Claim 3.6. If the algorithm chooses b = i < ⌊logm⌋ in step 1, it will get an Ω(1/ log r) fraction
of Oi:

Eω [w(ALG(ω))|b = i, EW ′(F)] ≥ 1

128 log r
Oi.

Proof. Fix a set of weights S = {s1 > s2 > . . . > s2i+1−1} ⊂ W ′. Conditioned on ES(Fi), there is
a constant probability that s1 ∈ ω(Bi) and s2 /∈ ω(Bi); thus L(b) = s2 will be a feasible bound for
Algorithm 3. Therefore, we may apply Theorem 3.2 and obtain Ω(log r) fraction of Oi. Thus

Eω [w(ALG(ω))|ES(Fi), b = i, EW ′(F)] ≥

≥ 1

4
Eω [w(ALG(ω))|s1 ∈ Bi, s2 /∈ Bi, ES(Fi), b = i, EW ′(F)]

≥ 1

64 log r
Eω [w(OPT(ω) ∩Bi)|s1 ∈ Bi, s2 /∈ Bi, ES(Fi), EW ′(F)] (12)

≥ 1

128 log r
Eω [w(OPT(ω) ∩Bi)|ES(Fi), EW ′(F)] . (13)

Here inequality (12) follows from Theorem 3.2, and inequality (13) holds by noting that removing
the condition s2 /∈ Bi can only double the expectation of OPT, while removing s1 /∈ Bi may only
decrease its expectation. The claim simply follows by summing up inequality (13) over all events
ES(Fi), for any S ⊂W ′, |S| = 2i+1 − 1.

Now we are ready to Prove Theorem 3.5
Proof of Theorem 3.5. We use Claim 3.6 to lower bound the expected gain of the algorithm from
all except the last block. We need to analyze b = ⌊logm⌋ differently. Indeed if B⌊logm⌋ ≪ m/2, the
bound L(b) will be much larger than the largest weight in ω(B⌊logm⌋) w.h.p. Therefore, we apply
Corollary 3.4 for this special case. Intuitively, the loss incurs by misreporting the bound L(⌊logm⌋)
is no more than the largest weight in W ′, and this can be compensated simply by selecting the
largest weight with constant probability.

Let L′ be the largest weight in W ′. By Corollary 3.4 (equation (9)), we obtain

Eω [w(ALG(ω))|b = ⌊logm⌋, EW ′(F)] ≥ max

(

0,
O⌊logm⌋

16 log r
− 2L′

)

.

13

Therefore, by Claim 3.6 and the above inequality we get:

Eω [w(ALG(ω))] =

⌊logm⌋
∑

i=0

Eω [w(ALG(ω))|b = i, EW ′(F)]Pω [b = i|EW ′(F)]

≥ 1

log 2n





⌊logm⌋−1
∑

i=0

Oi

128 log r
+max{0, O⌊logm⌋

16 log r
− 2L′}



 . (14)

In order to lower bound the RHS it suffices to show that Eω [w(ALG(ω))|EW ′] = Ω(L′/ log n).
This simply follows from the second part of Corollary 3.4. For any block Bi, conditioned on
L′ ∈ ω(Bi), with probability 1/2, the second largest weight in ω(Fi), is not assigned to Bi, in which
case algorithm achieves L′ with probability 1/2, once it chooses b = i:

Eω [w(ALG(ω))|EW ′(F)] =

logm
∑

i=0

|Bi|
logm

Eω

[

w(ALG(ω))|L′ ∈ ω(Bi), EW ′(F)
]

=

logm
∑

i=0

|Bi|
logm

Eω [w(ALG(ω))|b = i, L′ ∈ ω(Bi), EW ′(F)]

log 2n

≥
logm
∑

i=0

|Bi|L′

4 logm log 2n
=

L′

4 log 2n
. (15)

Therefore, by adding up equation (14) and 8 times equation (15) we obtain

9Eω [w(ALG(ω))|EW ′] ≥ 1

log 2n





⌊logm⌋−1
∑

i=0

Oi

128 log r
+max{0, O⌊logm⌋

16 log r
− 2L′}+ 2L′





≥
⌊logm⌋
∑

i=0

Oi

128 log r log 2n
= Ω

(

1

log r log n

)

Eω [w(OPT(ω))|EW ′] .

Summing both sides of the inequality over all events EW ′ completes the proof.

3.2 Matroid secretary with unknown n

In this subsection we consider the primary variant of the matroid secretary problem.When the total
number of elements n is known in advance (RO-AA-MN model), there is an O(log r)-approximation
which was designed in [3] and is still the best known approximation for this problem.

Here we show a simple reduction which implies that if we do not have any information about the
matroid or the number of elements (the RO-AA-MU model), we can achieve an O(1ǫ log

1+ǫ n log r)-
approximation for any fixed ǫ > 0.

Theorem 3.7. Let M be a matroid of rank r on n elements. If there is an α approximation
algorithm for the matroid secretary problem on M in the RO-AA-MN model, then for any fixed
ǫ > 0, there is also an O(αǫ log

1+ǫ n)-approximation for the matroid secretary problem on M with
no information given in advance (the RO-AA-MU model).

14

Proof. We guess a number n′ according to a probability distribution with a polynomial tail, as
follows: let n′ = 2i where i ≥ 0 is chosen with probability

pi =
ǫ

1 + ǫ
· 1

(1 + i)1+ǫ
.

This distribution is chosen so that
∑∞

i=1 pi ≤ 1 (with the remaining probability, we do nothing);
this can be verified as follows:

∞
∑

i=0

1

(1 + i)1+ǫ
= 1 +

∞
∑

i=1

1

(1 + i)1+ǫ
≤ 1 +

∫ ∞

0

dx

(1 + x)1+ǫ
= 1 +

[

− 1/ǫ

(1 + x)ǫ

]∞

0

= 1 +
1

ǫ
.

Then we run the α-approximation algorithm as a black box, under the assumption that the number
of elements is n′.

Assume that the actual number of elements is n ∈ [2i, 2i+1). With probability pi, our guess of
the number of elements is n′ = 2i. If this happens, we retrieve 1/α of the expected value of the
optimal solution on the first n′ elements. Since the elements arrive in a random order, the expected
optimum on the first n′ elements is at least 1/2 of the actual optimum. Hence, in expectation we
obtain at least

pi
OPT

2α
≥ ǫ

1 + ǫ
· 1

(1 + i)1+ǫ
· OPT

2α
≥ ǫ

4α

1

(1 + log n)1+ǫ
OPT.

Therefore, if we run the O(log r) approximation of Babaioff et al. [3] as a black box we achieve
an O(1ǫ log

1+ǫ n log r) for the RO-AA-MN model:

Corollary 3.8. For any fixed ǫ > 0, there is an O(1ǫ log
1+ǫ n log r)-approximation for the matroid

secretary problem for a matroid M of rank r on n elements, with no information given in advance
(the RO-AA-MU model). In particular, assuming thatM is a partition matroid matroid of rank 1,
we obtain an O(log1+ǫ n/ǫ) approximation for the classical secretary problem, with no information
given in advance(the CU model).

We shall see in Section 4.2 that even in the case of r = 1 (expectation-maximizing classical
secretary problem) where n is chosen adversarially from {1, . . . , N}, we cannot achieve a factor
better than O(logN/ log logN).

4 Classical secretary with unknown n

In this section, we consider a variant of the classical secretary problem where we want to select
exactly one element (i.e. in matroid language, we consider a uniform matroid of rank 1). However,
here we assume that the total number of elements n (which is crucial in the classical 1/e-competitive
algorithm) is not known in advance - it is chosen by an adversary who can effectively terminate
the input at any point. We consider the worst case, i.e. we want to achieve a certain probability of
success regardless of when the input is terminated. We show that there is no algorithm achieving
a constant probability of success in this case. However, we can achieve logarithmic guarantees and
also prove closely matching lower bounds (see subsection 4.1).

15

In subsection 4.2 we show that even if we want to maximize the expected weight of the selected
element, and n is known to be upper bounded by N , still no algorithm can achieve a better than
Ω(logN/ log logN) approximation factor in expectation. Consequently, we obtain that no algorithm
can achieve an approximation factor better than Ω(logN/ log logN) in the AO-RA-MN model.

4.1 Known upper bound on n

First, let us consider the following scenario: an upper boundN is given such that the actual number
of elements on the input is guaranteed to be n ∈ {1, 2, . . . , N}. The adversary can choose any n
in this range and we do not learn n until we process the n-th element. (e.g., we are interviewing
candidates for a position and we know that the total number of candidates is certainly not going
to be more than 1000. But, we might run out of candidates at any point.) The goal is to select the
highest-ranking element with a certain probability. Assuming the comparison model (i.e., where
only the relative ranks of elements are known to the algorithm), we show that there is no algorithm
achieving a constant probability of success in this case.

Theorem 4.1. Given that the number of elements is chosen by an adversary in {1, . . . , N} and N
is given in advance, there is a randomized algorithm which selects the best element out of the first
n with probability at least 1/(HN−1 + 1).

On the other hand, there is no algorithm in this setting which returns the best element with
probability more than 1/HN . Here, HN =

∑n
i=1

1
i is the N -th harmonic number.

Our proof is based on the method of Buchbinder et al. [6] which bounds the optimal achievable
probability by a linear program. In fact the optimum of the linear program is exactly the optimal
probability that can be achieved.

Lemma 4.2. Given the classical secretary problem where the number of elements is chosen by an
adversary from {1, 2, . . . , N} and N is known in advance, the best possible probability with which
an algorithm can find the optimal element is given by

max α :

∀n ≤ N ; 1
n

∑n
i=1 ipi ≥ α, (16)

∀i ≤ N ;
∑i−1

j=1 pj + ipi ≤ 1, (17)

∀i ≤ N ; pi ≥ 0.

The only difference between this LP and the one in [6] is that we have multiple constraints (16)
instead of what is the objective function in [6]. We use essentially the same proof to argue that this
LP captures exactly the optimal probability of success α that an algorithm can achieve. We give
the proof for completeness; understanding the validity of this LP will be also useful for us later.
Proof. Consider any (randomized) algorithm which finds the best element with probability at least
α, for every possible number of incoming elements n ∈ {1, . . . , N}. It is convenient to assume that
the algorithm never learns n and possibly continues running beyond the first n elements (in which
case it has failed). Let us define

pi = P [algorithm skips the first i− 1 candidates and chooses candidate i] .

The probability here is over both the randomness on the input and the randomness of the algorithm
itself. Recall that the actual number of candidates n is not known beforehand. All that the

16

algorithm knows at time i are the relative ranks of the first i candidates, which are also independent
of n. So the probabilities pi cannot depend on n.

Note that these are probabilities of disjoint events, so we have
∑n

i=1 pi ≤ 1. The LP actually
contains stronger inequalities (17). The reason why these inequalities are valid is as follows: We
can assume w.l.o.g. that the algorithm never selects an element which is not the best so far. (Any
algorithm can be converted to this form and perform at least as well.) The probability (over random
permutations of the input) that the i-th candidate is the best so far is 1/i. Therefore,

P [algorithm skips the first i− 1 and chooses i | candidate i is the best out of the first i] =

=
P [algorithm skips the first i− 1 and chooses candidate i]

P [candidate i is the best out of the first i]
= ipi.

On the other hand, the probability that the algorithm skips the first i− 1 elements is 1−∑i−1
j=1 pj .

This event is independent of whether the i-th element is the best among the first i, because all the
algorithm learns about the first i− 1 elements are their relative ranks. This proves the constraint
(17):

1−
i−1
∑

j=1

pj = P [algorithm skips the first i− 1 | candidate i is the best among the first i] ≤ ipi.

The probability that the i-th candidate is the actual best candidate among the first n is 1/n.
Conditioned on this event, candidate i is also the best among the first i candidates (and that is the
only information available to the algorithm at that moment), so the algorithm selects candidate i
with conditional probability exactly ipi. The total probability that the algorithm selects the best
candidate out of the first n elements is

P [success] =

n
∑

i=1

P [element i is optimal & algorithm selects i] =

n
∑

i=1

1

n
· ipi.

We assume that the algorithm achieves success probability α for any number of candidates n ∈
{1, . . . , N} chosen by an adversary. This proves the constraint (16).

Conversely, given a feasible solution to this LP, an algorithm can proceed as follows (see
[6]): If it comes to the i-th element and this is the best element so far, take it with probability
ipi/(1−

∑i−1
j=1 pj) (which is at most 1 by (17). It can be verified by induction that the probability

of skipping the first i− 1 elements and finding that element i is the best so far is (1−∑i
j=1 pj)/i,

and hence the total probability of taking element i is exactly pi. Conditioned on element i being
the actual optimum (which happens with probability 1/n), we take it with probability ipi. By (16),
the success probability is at least α for any input length n.

For a given N , an algorithm can explicitly solve the LP given by Lemma 4.2 and thus achieve
the optimal probability. Theorem 4.1 can be proved by estimating the value of this LP.
Proof of Theorem 4.1. First, we show a feasible solution with α = 1

HN−1+1 . We define pi =
1

i(HN−1+1) for each i = 1, . . . , N . This induces an algorithm as described above: if it comes to the

i-the element and it is the best so far, we take it with probability

ipi

1−∑i−1
j=1 pj

=
1

HN−1 + 1−Hi−1
.

17

By Lemma 4.2, it is sufficient to verify that (pi, α) is a feasible solution:

1

n

n
∑

i=1

ipi =
1

HN−1 + 1
= α

implies (16), and

ipi +
i−1
∑

j=1

pj =
1

HN−1 + 1
(1 +

i−1
∑

j=1

1

j
) =

1

HN−1 + 1
(1 +Hi−1) ≤ 1

implies (17). This proves that there is an algorithm with probability of success 1/(HN−1 + 1).
Conversely, we prove that for any feasible solution, we have α ≤ 1/HN . For this, we in fact

consider a weaker LP:

max α :

∀n ≤ N ; 1
n

∑n
i=1 ipi ≥ α, (18)

∑N
i=1 pi ≤ 1, (19)

∀i ≤ N ; pi ≥ 0.

Obviously, any feasible solution to (16-17) is also feasible for (18-19). Fixing α, consider a
feasible solution to (18-19) which minimizes

∑N
i=1 pi. We claim that ipi ≥ α for each i. If not, take

the first index j such that jpj < α. By (18) for n = j, there must be a smaller index j′ < j such
that j′pj′ > α. Then we can decrease pj′ by δ/j′ and increase pj by δ/j for some small δ > 0, so
that j′pj′ + jpj is preserved. We can make sure that no inequality (18) is violated, because the
left-hand side is preserved for all n ≥ j, and the inequality was not tight for j′ ≤ n < j. On the
other hand,

∑N
i=1 pi decreases by δ/j′ − δ/j. This is a contradiction.

Therefore, we have pi ≥ α/i for all i. By summing up over all i and using
∑N

i=1 pi ≤ 1, we get

1 ≥
N
∑

i=1

pi ≥ α
N
∑

i=1

1

i
= αHN .

4.2 Maximizing the expected weight

A slightly different model arises when elements arrive with (random) weights and we want to
maximize the expected weight of the selected element. This model is somewhat easier for an
algorithm; any algorithm that selects the best element with probability at least α certainly achieves
an α-approximation in this model, but not the other way around. Given an upper bound N on the
number of elements (and under a more stringent assumption that weights are chosen i.i.d. from
a known distribution), by a careful choice of a probability distribution for the weights, we prove
that still no algorithm can achieve an approximation factor better than an Ω(logN/ log logN)-
approximation.

Theorem 4.3. For the classical secretary problem with random nonnegative weights drawn i.i.d. from
a known distribution and the number of candidates chosen adversarially in the range {1, . . . , N},
no algorithm achieves a better than logN

32 log logN -approximation in expectation.

18

The hard examples are constructed based on a particular exponentially distributed probability
distribution. Similar constructions have been used in related contexts [16, 10]. Proof. We define a
probability distribution over weights as follows. For a parameter γ ∈ (0, 13) (possibly depending on
N), let the weight of each element be (independently)

• wj = 2γj with probability 1/2j , for each j ≥ 1.

Note that although the weights are unbounded, the expected weight of each element is finite.
Consider blocks of elements where the i-th block Bi has size 2i. The adversary will choose

arbitrarily a number of blocks ℓ ≤ logN , and a stopping point n =
∑ℓ

i=1 2
i = 2ℓ+1 − 1. Note that

given ℓ, the expected optimum is

OPTℓ ≥
∞
∑

j=1

wjP
[

wj is the largest weight among 2ℓ elements
]

.

The probability that no weight larger than wj appears among 2ℓ elements is (1− 1/2j)2
ℓ
. So,

P
[

wj is the largest weight among 2ℓ elements
]

= (1− 1/2j)2
ℓ − (1− 1/2j−1)2

ℓ

= Θ(min{2ℓ−j , 1}).

Therefore, since wj = 2γj and γ ∈ (0, 13), the expected contribution from elements of weight wj

is roughly 2γj min{2ℓ−j , 1}, which is maximized for j = ℓ. (Note also that the distribution decays
exponentially both for j > ℓ and j < ℓ.) So the largest contribution comes from elements of weight
roughly wℓ. We can estimate:

OPTℓ ≥ wℓP
[

wℓ appears among 2ℓ elements
]

= 2γℓ(1− (1− 1/2ℓ)2
ℓ

) ≥ (1− 1/e)2γℓ.

Now consider any algorithm (which does not know ℓ beforehand). Let pi denote the probability
that the algorithm skips the first i−1 blocks and then chooses some element in block Bi. Note that
this event might be correlated with the random weights that appear in blocks B1, . . . , Bi. However,
we have a bound on the probability that weight wj appears in block Bi:

P [wj appears in block Bi] = 1− (1− 1/2j)2
i ≤ min{2i−j , 1}.

Let pij denote the probability that the algorithm gets an element of weight wj from block Bi. By the
above we have pij ≤ min{2i−j , 1}. Also, by definition of the probabilities,

∑∞
j=1 pij = pi. Given pij ,

the expected weight that the algorithm obtains from block Bi is E [profit from Bi] =
∑∞

j=1wjpij

and the total profit over the first ℓ blocks is
∑ℓ

i=1

∑∞
j=1wjpij. Thus the expected profit of any

algorithm can be bounded by the following LP.

max α :

∀ℓ ≤ logN ;
∑ℓ

i=1

∑∞
j=1wjpij ≥ αOPTℓ;

∀i, j; pij ≤ min{2i−j , 1};
∀i; ∑∞

j=1 pij = pi;
∑ℓ

i=1 pi ≤ 1;

pi ≥ 0.

19

We estimate the value of this LP as follows. Subject to the condition
∑∞

j=1 pij = pi, the quantity
∑∞

j=1wjpij will be maximized if we make pij for large j as large as possible. However, note that

2γjpij ≤ 2γj2i−j , so the tail for j →∞ decays exponentially and we might as well concentrate only
on the first term. Assuming that pi = 2i−k, the best choice is to set pij = 0 for j ≤ k and pij = 2i−j

for all j ≥ k + 1, which gives

∞
∑

j=1

wjpij ≤
∞
∑

j=k+1

2γj2i−j ≤ 1

1− 2γ−1
2(γ−1)(k+1)+i ≤ 2 · (2i−k)1−γ2γi

where we used γ ∈ (0, 13). Note that for any value of pi, we can apply this argument to the power
of 2 nearest to pi; hence,

∞
∑

j=1

wjpij ≤ 4 · p1−γ
i 2γi.

Now suppose the adversary stops the game after ℓ blocks. The expected optimum is OPTℓ ≥
(1− 1/e)2γℓ (see above), while the algorithm gets

ℓ
∑

i=1

∞
∑

j=1

wjpij ≤ 4 ·
ℓ

∑

i=1

p1−γ
i 2γi.

This should be at least αOPTℓ ≥ α(1 − 1/e)2γℓ; therefore, we get

ℓ
∑

i=1

p1−γ
i 2γ(i−ℓ) ≥ 1

4
(1− 1/e)α ≥ 1

8
α.

We sum up these inequalities for ℓ = 1, . . . , logN :

logN
∑

ℓ=1

ℓ
∑

i=1

p1−γ
i 2γ(i−ℓ) =

logN
∑

i=1

p1−γ
i

logN
∑

ℓ=i

2γ(i−ℓ) ≥ 1

8
α logN.

The sum
∑logN

ℓ=i 2γ(i−ℓ) is bounded by
∑∞

ℓ=i 2
γ(i−ℓ) = 1

1−2−γ ≤ 2
γ . Therefore, we get

α ≤ 16

γ logN

logN
∑

i=1

p1−γ
i .

Given that
∑logN

i=1 pi = 1 and the function x1−γ is concave, the best value of α can be achieved if
we set pi = 1/ logN for all i. Then, we have

α ≤ 16

γ(logN)1−γ
.

Finally, we set γ = 1/ log logN which gives

α ≤ 32 log logN

logN
.

Consequently, we obtain that no algorithm can achieve an approximation factor better than
Ω(logN/ log logN) in the AO-RA-MN model.

20

Corollary 4.4. For the matroid secretary problem in the AO-RA-MN (and AO-RA-MU, RO-AA-
MU) models, no algorithm can achieve a better than Ω(logN

log logN)-approximation in expectation.

Proof. It is not hard to convert the example of Theorem 4.3 into a hard example for the AO-RA-
MN model. It suffices to let M to be a partition matroid of rank 1, and let the first n elements
of the inputs to be non-loop while the rest of the input contains only loops. Since the algorithm
does not know n in advance (it only knows n ≤ N), it essentially has to choose one of the first
n elements without knowing n, which is a secretary problem where the number of candidates is
chosen adversarially in the range {1, . . . , N}. Therefore, no algorithm can achieve an approxima-
tion factor better than Ω(logN/ log logN) (the same is also true for the AO-RA-MU, RO-AA-MU
model, where nothing is known about n in advance).

5 Conclusion and open questions

We presented a number of positive and negative results for variants of the matroid secretary prob-
lem. The main open question is if there is a constant-factor approximation in the RO-AA-MN
model, where weights are assigned to elements adversarially and the input ordering of elements
is random. An easier question might be whether this is possible in the RO-RA-MN model where
both the input order and weight assignment are random, but only the total number of elements
n is known in advance (as opposed to the full matroid structure, as in [21]). Note that under an
adversarial assignment of weights, knowing the matroid beforehand (RO-AA-MK) does not seem
to be easier than the RO-AA-MN model; the true input could be embedded in a much larger ma-
troid with most weights set to zero. A similar question arises for the AO-RA-MN model: whether
it is possible to improve the O(log n log r) factor, thus closing the gap with the lower-bound of
Ω(log n/ log log n).

References

[1] A. R. Abdel-Hamid, J.A. Bather and G. B. Trustrum. The secretary problem with an unknown
number of candidates. J. Appl. Prob. 19, 619–630, 1982.

[2] M. Babaioff, M. Dinitz, A. Gupta, N. Immorlica and K. Talwar. Secretary problems: weights
and discounts. In SODA 2009, 1245–1254.

[3] M. Babaioff, N. Immorlica and R. Kleinberg. Matroids, secretary problems, and online mech-
anisms. In SODA 2007, 434–443.

[4] M. H. Bateni, M. T. Hajiaghayi and M. Zadimoghaddam. Submodular secretary problem and
extensions. In APPROX 2010, 39–52.

[5] P. Borosan and M. Shabbir. A survey of secretary problem
and its extensions. unpublished manuscript, 2009, available at
http://paul.rutgers.edu/~mudassir/Secretary/paper.pdf.

[6] N. Buchbinder, K. Jain and M. Singh. Secretary problems via linear programming. In IPCO
2010, 163–176.

21

http://paul.rutgers.edu/~mudassir/Secretary/paper.pdf

[7] S. Chakraborty and O. Lachish. Improved competitive ratio for the matroid secretary problem.
To appear in SODA 2012.

[8] N. B. Dimitrov and C. G. Plaxton. Competitive weighted matching in transversal matroids.
In ICALP 2008, 397–408.

[9] E. B. Dynkin. The optimum choice of the instant for stopping a markov process. Soviet Math-
ematics, Doklady 4, 1963.

[10] J. Feldman, M. Henzinger, N. Korula, V. S. Mirrokni and C. Stein. Online stochastic packing
applied to display ad allocation. In ESA 2010, 182–194.

[11] T.S. Ferguson. Who solved the secretary problem? Statistical Science, 4:3, 282–289, 1989.

[12] M. Gardner. Mathematical Games column, Scientific American, February 1960.

[13] J. Gilbert and F. Mosteller. Recognizing the maximum of a sequence. J. Amer. Statist. Assoc.
61:35–73, 1966.

[14] A. Gupta, A. Roth, G. Schoenebeck and K. Talwar. Constrained non-monotone submodular
maximization: Offline and secretary algorithms. In WINE 2010, 246–257.

[15] M. T. Hajiaghayi, R. Kleinberg and D. Parkes. Adaptive limited-supply online auctions. In
EC 2004, 71–80.

[16] M. T. Hajiaghayi, R. Kleinberg and T. Sandholm. Automated online mechanism design and
prophet inequalities. In International Conference on Artificial Intelligence 2007, 58–65, 2007.

[17] S. Im and Y. Wang. Secretary problems: Laminar matroid and interval scheduling. In SODA
2011, 1265-1274.

[18] D. V. Lindley. Dynamic programming and decision theory. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 10:1, 39–51, 1961.

[19] R. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions. In
SODA 2005, 630–631.

[20] N. Korula and M. Pál. Algorithms for secretary problems on graphs and hypergraphs. In
ICALP 2009, 508–520.

[21] J. A. Soto. Matroid secretary problem in the random assignment model. In SODA 2011, 1275-
1284.

[22] J. Soto. Contributions on secretary problems, independent sets of rectangles and related prob-
lems. PhD Thesis, Department of Mathematics, Massachusetts Institute of Technology, 2011.

[23] T. J. Stewart. The secretary problem with an unknown number of options. Operations Research
29:1, 130–145, 1981.

22

	1 Introduction
	1.1 Recent related work
	1.2 Our results

	2 Approximation for adversarial order and random assignment
	2.1 Approximation for uniformly dense matroids
	2.2 Extension to general matroids

	3 Approximation algorithms for unknown matroids
	3.1 Approximation for AO-RA-MN models
	3.1.1 Approximation for AO-RA-MN model, with an estimate on the largest weight
	3.1.2 Approximation for AO-RA-MN by a general reduction

	3.2 Matroid secretary with unknown n

	4 Classical secretary with unknown n
	4.1 Known upper bound on n
	4.2 Maximizing the expected weight

	5 Conclusion and open questions

