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Abstract

Given a set of line segments in the plane, not necessarily finite, what is a convex region of smallest
area that contains a translate of each input segment? This question can be seen as a generalization
of Kakeya’s problem of finding a convex region of smallest area such that a needle can be rotated
through 360 degrees within this region. We show that there is always an optimal region that is a
triangle, and we give an optimal Θ(n log n)-time algorithm to compute such a triangle for a given
set of n segments. We also show that, if the goal is to minimize the perimeter of the region instead
of its area, then placing the segments with their midpoint at the origin and taking their convex hull
results in an optimal solution. Finally, we show that for any compact convex figure G, the smallest
enclosing disk of G is a smallest-perimeter region containing a translate of every rotated copy of G.

1 Introduction

Let F be a family of objects in the plane. A translation cover for F is a set K such that any object in F

is contained in a translate of K [28]. We are interested in determining a convex translation cover for F
of smallest possible area or perimeter.

Since the convex hull of a set of objects is the smallest convex figure that contains them, this problem
can be reformulated as translating the objects in F such that the perimeter or the area of their convex
hull is minimized. When F consists of n objects, we can fix one object and translate the remaining
n − 1 objects. Therefore we can use a vector in R

2(n−1) to represent the translations of n − 1 objects.
Consider the functions R

2(n−1) → R that take a vector in R
2(n−1) and return the perimeter and the

area of the convex hull of the fixed object and the translated copies of the n− 1 other objects. Ahn and
Cheong [1] showed that for the perimeter case, this function is convex. They also showed that for the
area case, the function is convex if n = 2. However, this is no longer true when n > 2, as the following
example shows. Let s1 be a vertical segment of length one, and let s2 and s3 be copies of s1 rotated
by 60◦ and 120◦. Then the area of their convex hull is minimized when they form an equilateral triangle,
so there are two isolated local minima, as shown in Figure 1. This explains why minimizing the perimeter
appears to be a much easier problem than minimizing the area of a translation cover.

As a special case of translation covers, we can consider the situation where the family F consists of
copies of a given compact convex figure G, rotated by all angles in [0, 2π). In other words, we are asking
for a smallest possible convex set K such that G can be placed in K in every possible orientation. We
will call such a translation cover a keyhole for G (since a key can be turned fully in a keyhole, it can
certainly be placed in every possible orientation).

A classical keyhole or translation cover problem is the Kakeya needle problem. It asks for a minimum
area region in the plane, a so-called Kakeya set, in which a needle of length 1 can be rotated through
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Figure 1: The area function ω : R2(n−1) → R of the convex hull of n > 3 segments is not necessarily
convex.

360◦ continuously, and return to its initial position. (See Figure 2.) This question was first posed, for
convex regions, by Soichi Kakeya in 1917 [14]. Pàl [17] showed that the solution of Kakeya’s problem
for convex sets is the equilateral triangle of height one, having area 1/

√
3. With our terminology, he

characterized the smallest-area keyhole for a line segment.

Figure 2: Within a Kakeya set (shaded), a needle can be rotated through 360◦.

For the general case, when the Kakeya set is not necessarily convex or even simply connected, the
answer was thought to be a deltoid with area π/8. However, Besicovitch gave the surprising answer that
one could rotate a needle using an arbitrary small area [3, 4].

Besicovitch’s solution builds upon two basic observations [24]. The first observation is that one can
translate any needle to any location using arbitrarily small area. The idea is to slide the needle, rotate
it, slide it back and then rotate it back, as illustrated in Fig. 3(a). The area can be made arbitrarily

(a) (b)

Figure 3: (a) A needle can be translated to any location using arbitrarily small area. (b) There is an
open subset of the plane of arbitrary small area which contain a unit line segment in every direction.

small by sliding the needle over a large distance. The second observation is that one can construct an
open subset of the plane of arbitrary small area, which contains a unit line segment in every direction, as
illustrated in Fig. 3(b). The original construction by Besicovitch [3, 4] has been simplified by Perron [18],
Rademacher [19], Schoenberg [21, 22], Besicovitch [5, 6] and Fisher [12].

Bezdek and Connelly [7] surveyed results on minimum-perimeter and minimum-area translation cov-
ers. For the family of closed curves of length at most one, they proved that smallest-perimeter translation
covers are exactly the convex sets of constant width 1/2. The corresponding problem for minimizing the
area, known as Wetzel’s problem, is still open, with upper and lower bounds known [7, 28]. For the family
of sets of diameter at most one, Bezdek and Connelly [8] proved that the unique minimum-perimeter
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translation cover is the circle of radius 1/
√
3. More precisely, they proved that this circle is the unique

smallest-perimeter keyhole for the equilateral triangle of side length one. By Jung’s theorem [13], this
circle contains any set of diameter one, and so the translation cover result follows.

Recently, Kakeya-type problems have received considerable attention due to their many applications.
There are strong connections between Kakeya-type problems and problems in number theory [9], geomet-
ric combinatorics [29], arithmetic combinatorics [15], oscillatory integrals, and the analysis of dispersive
and wave equations [24].

In this paper, we first generalize Pál’s result [17] in the following way: For any family F of line
segments in the plane, there is a triangle that is a minimum-area translation cover for F.

Theorem 1. Let F be a set of line segments in the plane, and let P be a convex translation cover for F.
Then there is a translation cover T for F which is a triangle, and such that the area of T is less than or
equal to the area of P .

With this characterization in hand, we can efficiently compute a smallest area translation cover for a
given family of n line segments. Our algorithm runs in time O(n log n), which we prove to be optimal in
the algebraic computation tree model. It is based on the problem of finding a smallest-area affine-regular
hexagon containing a given centrally symmetric polygon, a problem that is interesting in its own right.
As far as we know, except for some trivial cases such as n disks or n axis-aligned squares, previously
known algorithms for finding smallest-area translation covers have a running time exponential in n, the
number of input objects [1, 27].

As observed above, minimizing the perimeter of a translation cover is much easier. Let F be a family
of centrally symmetric convex figures. We prove that if we translate each figure such that its center of
symmetry is the origin, then the convex hull of their union is a smallest-perimeter translation cover for F.

This immediately implies that a circle with diameter 1 is a smallest-perimeter keyhole for the unit-
length segment. For figures G that are not centrally symmetric, this argument no longer works. We
generalize the result by Bezdek and Connelly [8] mentioned above and prove the following theorem
(Bezdek and Connelly’s result is the special case where G is an equilateral triangle):

Theorem 2. Let G be a compact convex set in the plane, and let G be the family of all the rotated copies
of G by angles in [0, 2π). Then the smallest enclosing disk of G is a smallest-perimeter translation cover
for G.

2 Preliminaries

An oval is a compact convex figure in the plane. For an oval P , let wP : [0, π] → R denote the width
function of P . The value wP (θ) is the length of the projection of P on a line with slope θ (that is, a line
that makes angle θ with the x-axis). Let |P | denote the area of P .

For two ovals P and Q, we write wP > wQ or wQ 6 wP to mean pointwise domination, that is for
every θ ∈ [0, π) we have wP (θ) > wQ(θ). We also write wP = wQ if and only if both wP 6 wQ and
wQ 6 wP hold.

The Minkowski symmetrization of an oval P is the oval P̄ = 1
2 (P − P ) = { 1

2 (x− y) | x, y ∈ P}. It is
well known and easy to show that P̄ is centrally symmetric around the origin, and that wP̄ = wP .

An ovalD is a trigonal disk if there is a centrally symmetric hexagon AUBVCW such that D contains
the triangle ABC and is contained in the hexagon AUBVCW , as illustrated in Figure 4(a). Trigonal
disks were called “relative Reuleaux triangles” by Ohmann [16] and Chakerian [10], the term “trigonal
disk” being due to Fejes Tóth [25] who used it in the context of packings by convex disks. A trigonal
disk has three “main” vertices and three arcs connecting these main vertices. For example, the trigonal
disk D in Figure 4(a) consists of three vertices A,B, and C, and three arcs connecting them.

Ohmann [16] and Chakerian [10] studied sets with a given fixed width function, and obtained the
following result (see for instance Theorem 3′ in [10] for a proof):

Fact 3. Given an oval P , there is a trigonal disk D with |D| 6 |P | such that wD = wP .

3 Minimum area for a family of segments

In this section we will prove Theorem 1. The proof contains two parts. First we prove that for every oval
P there exists a triangle T with |T | 6 |P | and wT > wP (Theorem 4). The second part is to prove that
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Figure 4: (a) A trigonal disk D that is contained in the centrally symmetric hexagon AUBV CW and
contains the triangle ABC. (b) The hexagon AU ′BV C′W is centrally symmetric and contains D′. Since
D′ contains the triangle ABC′, it is also a trigonal disk.

for an oval P and a closed segment s, if ws 6 wP then P contains a translated copy of s (Lemma 5).

Theorem 4. Given an oval P , there exists a triangle T with |T | 6 |P | and wT > wP .

Proof. Let D be the set of trigonal disks D such that we have |D| 6 |P | and wD = wP . The set D is
nonempty by Fact 3. Consider three arcs connecting the main vertices of a trigonal disk in D. Each arc
can be straight, or not. We choose a trigonal disk D ∈ D with a maximum number of straight arcs. We
show that D is a triangle.

Let AUBVCW be the hexagon from the definition of the trigonal disk D, and assume for a con-
tradiction that D is not a triangle, that is, there is at least one non-straight arc among the three arcs
connecting A,B, and C. See Figure 4(a). Without loss of generality, we assume that the arc connecting A
and B is not straight.

Let the sides AW and BV be vertical, with C above the line AB. Let X be the point of D below AB
with the largest vertical distance d from the line AB. Let C′ be the point vertically above C at distance d
from C. Let D′ be the convex hull of the part of D above the line AB and the point C′. It is not difficult
to see that D′ is also a trigonal disk: Let U ′ be the point vertically below U at distance d from U .
Then the hexagon AU ′BV C′W is centrally symmetric and contains D′. Clearly D′ contains the triangle
ABC′. See Figure 4(b).

We show next that |D′| 6 |D|. The area of D′ \D is bounded by the area of the two triangles A′C′C
and B′C′C, where A′ and B′ are points on D such that A′C′ and B′C′ are tangent to D. This area is
equal to d/2 times the horizontal distance between A′ and B′. But the horizontal distance between A′

and B′ is at most the horizontal distance between A and B, so the area of D′ \D is bounded by the area
of the triangle AXB, and we have |D′| 6 |D|.

We also need to argue that wD′ > wD. Consider a minimal strip containing D. If this strip does not
touch D from below between A and B, then the corresponding strip for D′ is at least as wide. Otherwise,
it touches D from below in a point Y between A and B, and touches from above in C, as C is the only
antipodal point of D for Y . A strip with the same direction will be determined either by A and C′, or
by B and C′, and in both cases its width is not less than the width of the original strip.

Since wD′ > wD > wP and |D′| 6 |D| 6 |P | the trigonal diskD′ must be a member ofD. However,D′

has at least one straight arc more than D, contradicting our choice of D. It follows that our assumption
that D is not a triangle must be false.

This finishes the first part. We need the following lemma, which shows that whether or not an oval P
contains a translated copy of a given segment s can be determined by looking at the width functions
of P and s alone:

Lemma 5. Let s be a segment in the plane, and let P be an oval such that ws 6 wP . Then P contains
a translated copy of s.
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Proof. Without loss of generality, let s be a horizontal segment. Let pq be a horizontal segment of
maximal length contained in P . Then P has a pair of parallel tangents ℓ1 and ℓ2 through p and q. By
the assumption, the distance between ℓ1 and ℓ2 must be large enough to place s in between the two lines.
But this implies that the segment pq is at least as long as s, and s can be placed on the segment pq
in P .

To prove Theorem 1, let P be an oval of minimum area that contains a translated copy of every s ∈ F.
By Theorem 4 there is a triangle T such that |T | 6 |P | and wT > wP . Let s ∈ F. Since there is a
translated copy of s contained in P , we must have ws 6 wP 6 wT . By Lemma 5 there is then a translated
copy of s contained in T .

4 From triangles to hexagons

We now turn to the computational problem: Given a family F of line segments, find a smallest-area
convex set that contains a translated copy of every s ∈ F.

By Theorem 1 we can choose the answer to be a triangle. In this section we show that this problem
is equivalent to finding a smallest-area affine-regular hexagon enclosing some centrally symmetric convex
figure. An affine-regular hexagon is the image of a regular hexagon under a non-singular affine trans-
formation. In this paper, we only consider affine-regular hexagons that are centrally symmetric about
the origin, so by abuse of terminology, we will write affine-regular hexagon for an affine-regular hexagon
that is centrally symmetric about the origin.

In the next section we will then show how to solve that problem, using the tools of computational
geometry.

The basic insight is that for centrally symmetric figures, comparing width-functions is equivalent to
inclusion:

Lemma 6. Let P and Q be ovals centrally symmetric about the origin. Then wP 6 wQ if and only if
P ⊂ Q.

Proof. One direction is trivial, so consider for a contradiction the case where wP 6 wQ and P 6⊂ Q.
Then there is a point p ∈ P \Q. Since Q is convex, there is a line ℓ that separates p from Q. Since P and
Q are centrally symmetric, this means that Q is contained in the strip bounded by the lines ℓ and −ℓ,
while P contains the points p and −p lying outside this strip. This implies that for the orientation θ
orthogonal to ℓ we have wP (θ) > wQ(θ), a contradiction.

Recall that P̄ denotes the Minkowski symmetrization of an oval P .

Lemma 7. Let T be a non-degenerate triangle. Then T̄ is an affine-regular hexagon, and |T̄ | = 3
2 |T |.

Every affine-regular hexagon H can be expressed in this form.

Proof. Since every non-degenerate triangle is the affine image of an equilateral triangle, it suffices to
observe this relationship for the equilateral triangle and the regular hexagon.

Since wP = wP̄ , wT = wT̄ , and by Lemmas 6 and 7, we immediately have

Lemma 8. Given an oval P , a triangle T is a smallest-area triangle with wT > wP if and only if T̄ is
a smallest-area affine regular hexagon with P̄ ⊂ T̄ .

This leads us to the following algorithm. In Section 6, we will show that the time bound is tight.

Theorem 9. Let F be a set of n line segments in the plane. Then we can find a triangle T in O(n log n)
time which is a minimum-area convex translation cover for F.

Proof. Given a family F of n line segments, place every s ∈ F with its center at the origin. Let P be
the convex hull of these translated copies. P can be computed in O(n log n) time, and is a centrally
symmetric convex polygon with at most 2n vertices. We then compute a smallest area affine-regular
hexagon H containing P . In the next section we will show that this can be done in time O(n). Finally,
we return a triangle T with T̄ = H . The correctness of the algorithm follows from wP (θ) = maxs∈F ws(θ)
and Lemma 8.
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5 Algorithm for computing the smallest enclosing affine-regular hexagon

In this section we discuss the following problem: Given a convex polygon P , centrally symmetric about
the origin, find a smallest-area affine-regular hexagon H such that P ⊂ H .

Let us first sketch a simple quadratic-time algorithm: The affine-regular hexagons centered at the
origin are exactly the images of a regular hexagon centered at the origin under a non-singular linear
transformation. Instead of minimizing the hexagon, we can fix a regular hexagon H with center at the
origin, and find a linear transformation σ such that σP ⊂ H and such that the determinant of σ is
maximized. The transformation σ can be expressed as a 2 × 2 matrix with coefficients a, b, c, d. The
condition σP ⊂ H can then be written as a set of 6n linear inequalities in the four unknowns a, b, c, d.
We want to find a feasible solution that maximizes the determinant ad− bc, a quadratic expression. This
can be done by computing the 4-dimensional polytope of feasible solutions, and considering every facet
of this polytope in turn. We triangulate each facet, and solve the maximization problem on each simplex
of the triangulation.

In the following, we show that the problem can in fact be solved in linear time.
For a set S ⊂ R

2, let S◦ = −S denote the mirror image with respect to the origin. A strip is the
area bounded by a line ℓ and its mirror image ℓ◦.

An affine-regular hexagon H is the intersection of three strips S1, S2, and S3, as in Figure 5, where
the sides of H are supported by S1, S2, S3, S1, S2, and S3 in counter-clockwise order. The intersection

o
S1

S2S3

H

AB

A◦

B◦

U

V

U◦

V ◦

q

p

Figure 5: The hexagon H is defined by three strips.

S1 ∩ S2 is a parallelogram Q = ABA◦B◦. Since H is affine-regular, the sides supported by S3 must
be parallel to and half the length of BB◦, and so S3 is uniquely defined by S1 and S2: It supports the
sides UV and U◦V ◦ of H , where U is the midpoint of BA◦ and V is the midpoint of A◦B◦. Note that
|H | = 3|Q|/4.

It is easy to see that if H is a minimum-area affine-regular hexagon containing P , then two of the
three strips must be touching P . Without loss of generality, we can assume these to be strips S1 and S2,
so there is a vertex p of P on the side V ◦B, and a vertex q ∈ P on the side BU .

For convenience of presentation, let us choose a coordinate system where S1 is horizontal. If we now
rotate S2 counter-clockwise while remaining in contact with P , then one side rotates about the point q,
while the opposite side rotates about q◦, see Figure 6. The triangles qBB′ and qA◦A′◦ are similar,
and since q lies above or on the x-axis, we have |qA◦A′◦| > |qBB′|. This implies that the area of Q is
nonincreasing during this rotation. Since |H | = 3|Q|/4, the area of H decreases or remains constant as
well.

Furthermore, the point U moves horizontally along the x-axis to the right. The point A◦ moves
horizontally to the right with at least twice the speed of point U . As V is the midpoint of A◦ and B◦,
this implies that V moves horizontally to the right with at least the speed of U , and so the line UV is
rotating counter-clockwise.

It follows that while strip S2 rotates counter-clockwise, the part of H lying below the x-axis and to
the left of the line pp◦ is strictly shrinking. It follows that there is a unique orientation of S2 where the
side UV touches P , and the area of Q is minimized.
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o

P

q

q◦

p

p◦

S1

AA′BB′

A◦ A′◦ B′◦B◦

U U ′

V V ′

Figure 6: Rotating strip S2 counter-clockwise.

Let us say that a polygon S is circumscribed to another polygon R if and only if R ⊂ S and every
side of S contains a point of R. Then we have shown

Lemma 10. There is a minimum-area affine-regular hexagon H such that H is circumscribed to P .

In fact, we have shown that for every S1 there is a unique S2 such that H is circumscribed to P .
We have

Lemma 11. When S1 rotates counter-clockwise, then the corresponding S2 also rotates counter-clockwise.

Proof. Consider a configuration where H is circumscribed to P , and rotate S1 slightly around p in
counter-clockwise direction, keeping S2 fixed. Then B and A◦ move downwards along the line BA◦, see
Figure 7.

o

P

q

q◦

p

p◦

S1

AB

A◦

B◦

U

V

U
′

V ′A′◦

B′

Figure 7: Rotating S1 counter-clockwise.

The point V moves downwards along the line oV , parallel to BA◦. It follows that the new edge U ′V ′

now lies strictly outside the old hexagon H , and so U ′V ′ cannot possibly touch or intersect P . By the
arguments above, this implies that strip S2 now needs to rotate counter-clockwise as well to let H be
circumscribed to P .

Furthermore, similar to the arguments above, we observe that A◦ moves with speed at least twice
the speed of V . Since U is the midpoint of BA◦, it moves with at least half the speed of A◦, so U moves
with speed at least equal to the speed of V . Since U and V move on parallel lines, it follows that the
line UV is rotating counter-clockwise during the rotation of S1.

We can now show that we can in fact choose H such that one of its sides contains an edge of P :

Lemma 12. There exists a minimum-area affine-regular hexagon H containing P such that a side of H
contains an edge of P . In addition, if no minimum-area affine-regular hexagon containing P shares a
vertex with P , then each such minimum-area affine-regular hexagon has a side containing a side of P .

Proof. By Lemma 10, there exists a minimum-area affine-regular hexagon H such that every side of H
contains a point of P . If a side of H contains an edge of P , then we are done. In the following, we
thus assume that every side of H intersects P in a single point. Also, we assume the vertices of H are
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(1, 0)

(1, 1)(0, 1)

(−1, 0)

(−1,−1) (0,−1)

H
P

a = (1, s)

b = (t, 1)

c

x

y

o

Figure 8: The hexagon H , and the convex polygon P (shaded).

(1, 0), (1, 1), (0, 1) and their antipodal points (−1, 0), (−1,−1), (0,−1). This can be done by applying a
nonsingular linear transformation, see Figure 8.

First, we consider the case where no vertex of H coincides with a vertex of P . We claim that in
this case, there exists a nonsingular linear transformation σ such that σP ⊂ H and |σP | > |P | hold,
implying that the inverse image σ−1H of H also contains P and its area |σ−1H | is strictly smaller than
|H |, a contradiction. We denote by a, b, c the three contact points as in Figure 8. The point c is a linear
combination c = αa + βb of a and b, so we have c = (α + βt, αs + β). Since c does not lie in the same
quadrant as a and b, nor the opposite quadrant, then αβ 6= 0 and α/β < 0. As the point c lies on the
line with equation y = x+ 1, we have t = α

β s+
β−α−1

β . Then the area of the triangle oab is given by

2|oab| = 1− α

β
s2 − β − α− 1

β
s. (1)

Assume we apply a linear transformation σ to P such that each point in a, b, c moves along the side
of H that currently contains it. Thus, s changes, and t changes in such a way that c remains on the
same side of H . Then the area of P is proportional to the area |oab|. As we observed that α/β < 0,
then the coefficient of s2 in Equation (1) is positive, so the area |oab| cannot be at a local maximum, a
contradiction.

Consider now the case where at least one of the contact points a, b, c lies at a vertex of H . Since
each side of H has a single-point intersection with P , two of a, b, c are identical. Using a suitable linear
transformation, we can assume b = c in Figure 8. Any linear transformation σ that keeps b = c fixed and
moves a along the vertical side of H keeps areas unchanged, and so |σP | = |P | and thus |σ−1H | = |H |.
Hence, there exists a linear transformation σ′ such that σ′P ⊂ H , |σ′P | = |P |, and σ′P has one more
contact point with the sides of H .

We can therefore assume that the minimum-area affine-regular hexagon is defined by two strips S1

and S2, where S1 supports an edge of P , and S2 is the unique strip such that the resulting hexagon is
circumscribed to P . We now give a linear-time algorithm to enumerate these hexagons, over all edges
of P .

Theorem 13. Given a centrally-symmetric convex 2n-gon P , a smallest-area affine-regular hexagon
enclosing P can be found in time O(n).

Proof. We use a rotating calipers [26] type algorithm. It maintains an edge e of P defining S1, a second
strip S2 and the vertex q of P where S2 touches P , and a vertex r of P . Let H = BUV B◦U◦V ◦ be the
hexagon defined by S1 and S2, as in Figure 5.

The algorithm proceeds by rotating S2 around q as in Figure 6, and maintains the invariant that P
has a supporting line in r that is parallel to UV .

We initialize e to an arbitrary edge of P . Let e be horizontal for ease of presentation, with P below e,
let q be the left endpoint of e, and let r be the leftmost vertex of P . In the initial configuration, S2 is
obtained from S1 by a counter-clockwise rotation around q by an infinitely small amount.
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We then rotate S2 counter-clockwise, until one of the following events occurs:

• If r no longer supports a tangent to P parallel to UV , replace r by the counter-clockwise next
vertex of P , and continue rotating S2.

• If S2 supports an edge of P , then replace q by the counter-clockwise next vertex of P , and continue
rotating S2.

• If UV touches r, then we have found the unique S2 such that H is circumscribed to P . We compute
its area and update a running minimum. Then replace e by the counter-clockwise next edge of P .
As long as r does not support a tangent to P parallel to UV , we replace r by the counter-clockwise
next vertex of P . Then continue rotating S2.

The algorithm ends when n edges have been considered. Its running time is clearly linear.

6 Lower bound for computing a translation cover

In this section, we prove an Ω(n logn) lower bound for the problem of computing a minimum-area
translation cover for a set of n line segments. We first need the following result on regular 6n-gons (see
Figure 9(a).):

Lemma 14. Let R denote a regular 6n-gon centered at the origin, for some integer n > 1. Then
any minimum-area affine-regular hexagon enclosing R is a regular hexagon such that every edge of this
hexagon contains an edge of R.

(c)(a)

o x

y

o x

y

(d)

e

R
H∗

H H ′

e

V V ◦

(b)

H

o x

y

Figure 9: Proof of Lemma 14. (a) An optimal enclosing hexagon H∗ and the regular 18-gon R. (b)
When H and R share two vertices, the area of H is larger than the area of H∗. (c) An affine-regular
enclosing hexagon H . (d) The hexagon H ′.

Proof. The statement is trivial for n = 1, so assume n > 2. Let H∗ denote a regular hexagon enclosing
R, and such that each side of H∗ contains a side of R. Let H denote another smallest affine-regular
hexagon enclosing R. We will argue that H is also a regular hexagon whose sides contain sides of R.

We first rule out the case where H shares a vertex with R. For sake of contradiction, assume that
H shares two opposite vertices V and V ◦ of R. Without loss of generality, we assume that V, V ◦ are on
the x-axis. The edges e, e◦ of H that are not adjacent to V, V ◦ are parallel to V V ◦ and have half the
length of V V ◦. In addition, the edges of H that are adjacent to V and V ◦ make an angle at most π/12
with the y-axis. (See Figure 9(b).) Then a direct calculation shows that |H | > |H∗|, a contradiction.

Thus, by Lemma 12, we know that an edge e of H contains an edge of R. Without loss of generality
we assume that this edge is parallel to the x-axis. (See Figure 9(c).) For sake of contradiction, assume
that e is not symmetric with respect to the y-axis. Consider the hexagon H ′ that is obtained from H
by a horizontal shear transformation that moves e and the opposite edge parallel to the x-axis, until
they are centered at the y-axis. Then H ′ (see Figure 9(d)) is an affine-regular hexagon containing R
that is symmetric with respect to the y-axis and that only touches R along its top and bottom edges.
This implies that H ′ strictly contains a regular hexagon H∗ enclosing R, and hence |H | = |H ′| > |H∗|,
a contradiction.
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Therefore, e is symmetric with respect to the y-axis, and thus H is symmetric with respect to the
y-axis. Only one such affine-regular hexagon is circumscribed to R, so H = H∗.

We are now able to prove our lower bound.

Theorem 15. In the algebraic computation tree model, and in the worst case, it takes Ω(n logn) time
to compute a minimum-area translation cover for a family F of n line segments in the plane.

Proof. For an interval I ⊂ R, we denote by CI the arc of the unit circle corresponding with polar angles
in the interval I, that is CI = {(cos θ, sin θ) | θ ∈ I}. As CI is the intersection of a circle and a cone, a
node of an algebraic computation tree can decide whether a point lies in CI .

We use a reduction from the following problem. The input is a set of points p1, . . . , pn ∈ C[0,π/3).
The goal is to decide whether there exists an integer 0 6 k < n such that C(kπ/3n,(k+1)π/3n) is empty,
that is, this arc does not contain any point pi. It follows from Ben-Or’s bound [2] that any algebraic
computation tree that decides this problem has depth Ω(n logn). (The set of negative instances has at
least n! connected component: To each permutation σ of 1, . . . , n , we associate a negative instance where
each pi lies in the σi’s arc. In order to move continuously from one of these configuration to another, we
must have a crossing pi = pj , which implies that one interval is empty by the pigeonhole principle, and
thus the instance is positive.)

Our construction is as follows. Consider the (fixed) regular 6n-gon R, whose vertices are rk =
(cos(kπ/3n), sin(kπ/3n)) for k = 1, . . . , 6n. Let P denote the convex 12n-gon whose vertices are the
vertices of R and all the rotated copies of the points p1, . . . , pn by angles 0, π/3, . . . , 5π/3 around the
origin.

If there is an integer k = 0, . . . , n − 1 such that C(kπ/3n,(k+1)π/3n) is empty, then by Lemma 12,
the regular hexagon containing R whose edges contain the edge rkrk+1 and its rotated copies by angles
0, π/3, . . . , 5π/3 is a minimum area affine-regular hexagon containing P .

If on the other hand, for every integer k ∈ {0, . . . , n− 1} the arc C(kπ/3n,(k+1)π/3n) is nonempty, then
by Lemma 12, any minimum-area affine hexagon containing R is a regular hexagon whose edges contain
edges of R, and thus it cannot contain P .

So we have proved that, when some arc C(kπ/3n,(k+1)π/3n) is empty, then a minimum-area hexagon
containing P has area |H∗|, where H∗ is a minimum-area hexagon containing R. Otherwise, if all these
arcs are non-empty, then the minimum area is larger than |H∗|.

Thus, if we could compute in o(n logn) time a minimum-area convex translation cover for the di-
agonals of P , then by Lemma 8 we would also get in o(n logn) time the area of a smallest enclosing
affine-regular hexagon containing P , and then we would be able to decide in o(n logn) time whether
there exists an empty arc C(kπ/3n,(k+1)π/3n), a contradiction.

7 Minimizing the perimeter

If we wish to minimize the perimeter instead of the area, the problem becomes much easier: it suffices to
translate all segments so that their midpoints are at the origin, and take the convex hull of the translated
segments. This follows from the following more general result.

Theorem 16. Let C be a family of centrally symmetric convex figures. Under translations, the perimeter
of the convex hull of their union is minimized when the centers coincide.

Proof. By the Cauchy-Crofton formula [11], the perimeter is the integral of the width of the projection
over all directions. We argue that the width is minimized when the centers coincide, for all directions
simultaneously, implying the claim.

Assume the objects are placed with their center at the origin. Let p be a leftmost point of the convex
hull. It belongs to one of the objects C ∈ C. By symmetry, the mirror image of p is then a rightmost
point of the convex hull. But this implies that the horizontal width of the convex hull is equal to the
width of C, and therefore as small as possible.

When the figures are not symmetric, our proof of Theorem 16 breaks down. However, we are able to
solve the problem for a family consisting of all the rotated copies of a given oval. (Remember that an
oval is a compact convex set.) The following theorem was already stated in the introduction.
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Theorem 2. Let G be an oval, and let G be the family of all the rotated copies of G by angles in [0, 2π).
Then the smallest enclosing disk of G is a smallest-perimeter translation cover for G.
Proof. We observe first that, if G is a segment, then by Theorem 16, the smallest enclosing disk of G is
a smallest-perimeter translation cover for G.

Consider next the case where G is an acute triangle. Choose a coordinate system with origin at the
center of the circumcircle of G, and such that the circumcircle has radius one. We wish to prove that
any translation cover for G must have perimeter at least 2π, implying that the circumcircle is optimal.

We borrow an idea of Bezdek and Connelly [8]. Let v1, v2, v3 be the three vertices of G. By our
assumptions, the origin lies in the interior of their convex hull, and the three vectors have length one.
The origin can be expressed as a convex combination 0 =

∑3
i=1 αivi with αi > 0 and

∑3
i=1 αi = 1.

Let δi, for i = 1, 2, 3, be the angle formed by vi and the positive x-axis.
Let K be a translation cover for G and let h be the support function [20] of K. That is, h(u) =

sup{〈x, u〉 | x ∈ K} for any unit vector u. We denote by uθ = (cos θ, sin θ) the unit vector making angle θ
with the positive x-axis, so that vi = uδi .

The length λ of the perimeter of K is equal to the integral over the support function [23]

λ =

∫ 2π

0

h(uθ)dθ.

Since θ 7→ h(uθ) is a periodic function with period 2π, we have

λ =

∫ 2π

0

h(uθ)dθ =

∫ 2π+δi

δi

h(uθ)dθ =

∫ 2π

0

h(uθ+δi)dθ.

It follows that

λ =

3
∑

i=1

αiλ =

3
∑

i=1

αi

∫ 2π

0

h(uθ+δi)dθ =

∫ 2π

0

(

3
∑

i=1

αih(uθ+δi)
)

dθ. (2)

Consider now a fixed orientation θ. The translation cover K must contain a rotated copy G(θ) of G
such that, for some translation vector c(θ), the vertices of G(θ) are the points vi(θ) = c(θ) + uθ+δi for
i = 1, 2, 3.

Since vi(θ) lies in K, the value of the support function h(uθ+δi) is lower bounded by

h(uθ+δi) > 〈vi(θ), uθ+δi〉 = 〈c(θ) + uθ+δi , uθ+δi〉 = 〈c(θ), uθ+δi〉+ 1 (3)

and thus
3

∑

i=1

αih(uθ+δi) > 1 + 〈c(θ),
3

∑

i=1

αiuθ+δi〉 = 1 + 〈c(θ), 0〉 = 1.

Plugging this into Eq. (2) gives λ > 2π.
Consider finally the general case where G is an arbitrary compact convex figure, and let D be the

smallest enclosing disk of G. Either D touches G in two points that form a diameter of D, or D touches
G in three points that form an acute triangle. In both cases, our previous results imply that D is a
smallest-perimeter translation cover for either the segment or the triangle, and therefore for G.

The minimum enclosing circle is not always the unique minimum-perimeter keyhole: For instance,
when G is a unit line segment, then any set of constant width is a solution. In the theorem below, we
show that when G is an acute triangle, then its circumcircle is the unique solution. This generalizes
directly to any figure G that touches its circumcircle at 3 points.

Theorem 17. If G is an acute triangle, then its smallest enclosing disk is the unique smallest-perimeter
translation cover for the family of all rotated copies of G.

Proof. We use the same notations as in the proof of Theorem 2: K is a smallest-perimeter translation
cover for G. For any θ, it contains a copy G(θ) of G rotated by angle θ. The vertices of G(θ) are the
points vi(θ) = c(θ) + uθ+δi , for i = 1, 2, 3.

We will prove that all the triangles G(θ) have the same circumcircle. Our strategy is to show that
the function θ 7→ c(θ) is differentiable and its derivative is 0. Without loss of generality, we only prove
that c′(0) = 0, and we assume that c(0) = 0.
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For sake of contradiction, assume that c is not differentiable at 0, or it is differentiable at 0 and its
derivative is nonzero. This means that we do not have limθ→0 c(θ)/θ = 0. Hence, there exists an ε > 0
such that for any integer n, there exists θn ∈ (−1/n, 0) ∪ (0, 1/n) with ‖c(θn)/θn‖ > ε. This implies
c(θn) 6= 0, and so c(θn)/‖c(θn)‖ is a sequence of unit vectors. Since the set of unit vectors is compact,
there is a subsequence (θnk

) such that c(θnk
)/‖c(θnk

)‖ converges to a unit vector c0. We denote this
subsequence again as (θn).

Since uδ1 , uδ2 , uδ3 span R
2, there exists i ∈ {1, 2, 3} such that 〈c0, uδi〉 > 0. So

lim
n→∞

1

‖c(θn)‖
〈c(θn), uδi〉 = 〈c0, uδi〉 > 0.

As ‖c(θn)‖ > ε‖θn‖ for all n, this implies that for n large enough,

〈c(θn), uδi〉 >
ε‖θn‖
2

〈c0, uδi〉,

hence

〈vi(θn), uδi〉 = 〈c(θn) + uθn+δi , uδi〉

>
ε‖θn‖
2

〈c0, uδi〉+ cos(θn)

= 1 +
ε‖θn‖
2

〈c0, uδi〉 −
θ2n
2

+ o(θ3n).

Thus, for large enough n, we have 〈vi(θn), uδi〉 > 1. Since vi(θn) ∈ K for all n, this implies h(uδi) > 1.
But since c(0) = 0, this means h(uδi) > 1+ 〈c(0), uδi〉, and so Inequality (3) in the proof of Theorem 2 is
not tight. Since the support function h is continuous [20], this implies that λ > 2π, a contradiction.

8 Conclusions

In practice, it is an important question to find the smallest convex container into which a family of ovals
can be translated. For the perimeter, this is answered by the previous lemma for centrally symmetric
ovals. For general ovals, it is still not difficult, as the perimeter of the convex hull is a convex function
under translations [1]. This means that the problem can be solved in practice by numerical methods.

For minimizing the area, the problem appears much harder, as there can be multiple local minima.
The following lemma solves a very special case.

Lemma 18. Let R be a family of axis-parallel rectangles. The area of their convex hull is minimized if
their bottom left corners coincide (or equivalently if their centers coincide).

Proof. Let C be the convex hull of some placement of the rectangles. For any x, let ℓ(x) be the length
of the intersection of the vertical line at coordinate x with C. The function x 7→ ℓ(x) is concave (by the
Brunn-Minkowski theorem in two dimensions). For any z > 0, we define w(z) to be the length of the
interval of all x where ℓ(x) > z.

We observe that the area of C is equal to
∫

ℓ(x)dx, which is again equal to
∫

∞

0 w(z)dz. We will
now argue that w(z) is minimized for every z when the bottom left corners of the rectangles coincide,
implying the claim.

To see this, consider the placement with coinciding bottom left corners at the origin, and the line
y = z. It intersects the convex hull at x = 0 and at some convex hull edge defined by two rectangles R1

and R2. w(z) is equal to the length of this intersection. It remains to observe that for any placement of
R1 and R2, the convex hull of these two rectangle already enforces this value of w(z).
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