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Abstract. We investigate the behavior of data structures when the in-
put and operations are generated by an event graph. This model is in-
spired by Markov chains. We are given a fixed graph G, whose nodes are
annotated with operations of the type insert, delete, and query. The al-
gorithm responds to the requests as it encounters them during a (random
or adversarial) walk in G. We study the limit behavior of such a walk
and give an efficient algorithm for recognizing which structures can be
generated. We also give a near-optimal algorithm for successor searching
if the event graph is a cycle and the walk is adversarial. For a random
walk, the algorithm becomes optimal.

1 Introduction

In contrast with the traditional adversarial assumption of worst-case analysis,
many data sources are modeled by Markov chains (e.g., in queuing, speech, ges-
ture, protein homology, web searching, etc.). These models are very appealing
because they are widely applicable and simple to generate. Indeed, locality of
reference, an essential pillar in the design of efficient computing systems, is often
captured by a Markov chain modeling the access distribution. Hence, it does not
come as a surprise that this connection has motivated and guided much of the
research on self-organizing data structures and online algorithms in a Markov
setting [1,7–11,15–18]. That body of work should be seen as part of a larger effort
to understand algorithms that exploit the fact that input distributions often ex-
hibit only a small amount of entropy. This effort is driven not only by the hope
for improvements in practical applications (e.g., exploiting coherence in data
streams), but it is also motivated by theoretical questions: for example, the key
to resolving the problem of designing an optimal deterministic algorithm for min-
imum spanning trees lies in the discovery of an optimal heap for constant-entropy
sources [2]. Markov chains have been studied intensively, and there exists a huge
literature on them (e.g., [12]). Nonetheless, the focus has been on state functions
(such as stationary distribution or commute/cover/mixing times) rather than on
the behavior of complex objects evolving over them. This leads to a number of
fundamental questions which, we hope, will inspire further research.

? A preliminary version appeared as B. Chazelle and W. Mulzer, Data Structures on
Event Graphs in Proc. 20th ESA, pp. 313–324, 2012
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Let us describe our model in more detail. Our object of interest is a structure
T (X) that evolves over time. The structure T (X) is defined over a finite subset
X of a universe U . In the simplest case, we have U = N and T (X) = X.
This corresponds to the classic dictionary problem where we need to maintain a
subset of a given universe. We can also imagine more complicated scenarios such
as U = Rd with T (X) being the Delaunay triangulation of X. An event graph
G = (V,E) specifies restrictions on the queries and updates that are applied
to T (X). For simplicity, we assume that G is undirected and connected. Each
node v ∈ V is associated with an item xv ∈ U and corresponds to one of three
possible requests: (i) insert(xv); (ii) delete(xv); or (iii) query(xv). Requests
are specified by following a walk in G, beginning at a designated start node of
G and hopping from node to neighboring node. We consider both adversarial
walks, in which the neighbors can be chosen arbitrarily, and random walks, in
which the neighbor is chosen uniformly at random. The latter case corresponds
to the classic Markov chain model. Let vt be the node of G visited at time t
and let Xt ⊆ U be the set of active elements, i.e., the set of items inserted prior
to time t and not deleted after their last insertions. We also call Xt an active
set. For any t > 0, Xt = Xt−1 ∪ {xvt} if the operation at vt is an insertion
and Xt = Xt−1 \ {xvt} in the case of deletion. The query at v depends on
the structure under consideration (successor, point location, ray shooting, etc.).
Another way to interpret the event graph is as a finite automaton that generates
words over an alphabet with certain cancellation rules.

Markov chains are premised on forgetting the past. In our model, however,
the structure T (Xt) can remember quite a bit. In fact, we can define a secondary
graph over the much larger vertex set V ×2U|V , where U|V = {xv| v ∈ V } denotes
those elements in the universe that occur as labels in G, see Fig. 1. We call this
larger graph the decorated graph, dec(G), since the way to think of this secondary
graph is to picture each node v of G being “decorated” with the subsets X ⊆ U|V .

(We define the vertex set using 2U|V in order to allow for every possible initial
subset X.) Let n be the number of nodes in G. Since |U|V | ≤ n, an edge (v, w)
in the original graph gives rise to up to 2n edges (v,X)(w, Y ) in the decorated
graph, with Y derived from X in the obvious way. A trivial upper bound on the
number of states is n2n, which is essentially tight. If we could afford to store all
of dec(G), then any of the operations at the nodes of the event graph could be
precomputed and the running time per step would be constant. However, the
required space might be huge, so the main question is

Can the decorated graph be compressed with no loss of performance?

This seems a difficult question to answer in general. In fact, even counting the
possible active sets in decorated graphs seems highly nontrivial, as it reduces to
counting words in regular languages augmented with certain cancellation rules.
Hence, in this paper we focus on basic properties and special cases that highlight
the interesting behavior of the decorated graph. Beyond the results themselves,
the main contribution of this work is to draw the attention of algorithm designers
to a more realistic input model that breaks away from worst-case analysis.



Our Results. The paper has two main parts. In the first part, we investigate some
basic properties of decorated graphs. We show that the decorated graph dec(G)
has a unique strongly connected component that corresponds to the limiting
phase of a walk on the event graph G, and we give characterizations for when a
set X ⊆ U|V appears as an active set in this limiting phase. We also show that
whether X is such an active set can be decided in linear time (in the size of G).

In the second part, we consider the problem of maintaining a dictionary that
supports successor searches during a one-dimensional walk on a cycle. We show
how to achieve linear space and constant expected time for a random walk. If
the walk is adversarial, we can achieve a similar result with near-linear stor-
age. The former result is in the same spirit as previous work by the authors
on randomized incremental construction (RIC) for Markov sources [3]. RIC is
a fundamental algorithmic paradigm in computational geometry that uses ran-
domness for the construction of certain geometric objects, and we showed that
there is no significant loss of efficiency if the randomness comes from a Markov
chain with sufficiently high conductance.
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Fig. 1. An event graph over four vertices and the associated decorated graph. Each
node of the event graph is replaced by four nodes decorated with the subsets of {1, 2}.

2 Basic Properties of Decorated Graphs

We are given a labeled, connected, undirected graph G = (V,E). In this section,
we consider only labels of the form ix and dx, where x is an element from a
finite universe U and i and d stand for insert and delete. We imagine an
adversary that maintains a subset X ⊆ U while walking on G and performing
the corresponding operations on the nodes. Since the focus of this section is the
evolution of X over time, we ignore queries for now.



Recall that U|V denotes the elements that appear on the nodes of G. For
technical convenience, we require that for every x ∈ U|V there is at least one
node labeled ix and at least one node labeled dx. The walk on G is formalized
through the decorated graph dec(G). The graph dec(G) is a directed graph on
vertex set V ′ := V ×2U|V . The pair ((u,X), (v, Y )) is an edge in E′ if and only if
{u, v} is an edge in G and Y = X ∪{xv} or Y = X\{xv} depending on whether
v is labeled ixv or dxv, see Fig. 1.

By a walk W in a (directed or undirected) graph, we mean any finite sequence
of nodes such that the graph contains an edge from each node in W to its
successor in W (in particular, a node may appear multiple times in W ). Let A
be a walk in dec(G). Recall that the nodes in A are tuples, consisting of a node
in G and a subset of U|V . By taking the first elements of the nodes in A, we
obtain a walk in G, the projection of A, denoted by proj(A). For example, in
Fig. 1, the projection of the walk (i1, ∅), (i2, {2}), (i1, {1, 2}), (d1, {2}) in the
decorated graph is the walk i1, i2, i1, d1 in the event graph. Similarly, let W be
a walk in G with start node v, and let X ⊆ 2U|V . Then the lifting of W with
respect to X is the walk in dec(G) that begins at node (v,X) and follows the
steps of W in dec(G). We denote this walk by lift(W,X). For example, in Fig. 1,
we have lift((i1, i2, i1, d1), ∅) = ((i1, ∅), (i2, {2}), (i1, {1, 2}), (d1, {2})).

Since dec(G) is a directed graph, it can be decomposed into strongly con-
nected components that induce a directed acyclic graph D. We call a strongly
connected component of dec(G) a sink component (also called essential class in
Markov chain theory), if it corresponds to a sink (i.e., a node with out-degree
0) in D. First, we observe that every node of G is represented in each sink
component of dec(G), see Fig 2.

Lemma 2.1. Let C be a sink component of dec(G). For each vertex v of G,
there exists at least one subset Y ⊆ U|V such that (v, Y ) is a node in C. In other
words, v is the first element of at least one node in C.

Proof. Let (w,X) be any node in C. Since G is connected, there is a walk W in
G from w to v, so lift(W,X) ends in a node in C whose first element is v. ut

Next, we show that to understand the behaviour of a walk on G in the limit,
it suffices to focus on a single sink component of dec(G).

Lemma 2.2. In dec(G) there exists a unique sink component C such that for
every node (v, ∅) in dec(G), C is the only sink component that (v, ∅) can reach.

Proof. Suppose there is a node v in G such that (v, ∅) can reach two different sink
components C and C′ in dec(G). By Lemma 2.1, both C and C′ must contain at
least one node with first element v. Call these nodes (v,X) (for C) and (v,X ′) (for
C′). Furthermore, by assumption dec(G) contains a walk A from (v, ∅) to (v,X)
and a walk A′ from (v, ∅) to (v,X ′). Let W := proj(A) and W ′ := proj(A′). Both
W and W ′ are closed walks in G that start and end in v, so their concatenations
WW ′W and W ′W ′W are valid walks in G, again with start and end vertex
v. Consider the lifted walks lift(WW ′W, ∅) and lift(W ′W ′W, ∅) in dec(G). We
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Fig. 2. The decomposition of the decorated graph from Fig. 1 into strongly connected
components. There is a unique sink component in which each node from the event
graph is represented.

claim that these two walks have the same end node (v,X ′′). Indeed, for each
x ∈ U|V , whether x appears in X ′′ or not depends solely on whether the label
ix or the label dx appears last on the original walk in G. This is the same
for both WW ′W and W ′W ′W . Hence, C and C′ must both contain (v,X ′), a
contradiction to the assumption that they are distinct sink components. Thus,
each node (v, ∅) can reach exactly one sink component.

Now consider two distinct nodes (v, ∅) and (w, ∅) in dec(G) and assume that
they reach the sink components C and C′, respectively. Let W be a walk in G
that goes from v to w and let W ′ := proj(A), where A is a walk in dec(G) that
connects w to C′. Since G is undirected, the reversed walk WR is a valid walk in
G from w to v. Now consider the walks Z1 := WWRWW ′ and Z2 := WRWW ′.
The walk Z1 begins in v, the walk Z2 begins in w, and they both have the same
end node. Furthermore, for each x ∈ U|V , the label ix appears last in Z1 if and
only if it appears last in Z2. Hence, the lifted walks lift(Z1, ∅) and lift(Z2, ∅)
have the same end node in dec(G), so C = C′. The lemma follows. ut

Since the unique sink component C from Lemma 2.2 represents the limit
behaviour of the set X during a walk in G, we will henceforth focus on this
component. Let us begin with a few properties of C. First, we characterize the
nodes in C.

Lemma 2.3. Let v be a node of G and X ⊆ U|V . We have (v,X) ∈ C if and
only if there exists a closed walk W in G with the following properties:

1. the walk W starts and ends in v:
2. for each x ∈ U|V , there is at least one node in W with label ix or dx;



3. we have x ∈ X if and only if the last node in W referring to x is an insertion
and x 6∈ X if and only if the last node in W referring to x is a deletion.

We call the walk W from Lemma 2.3 a certifying walk for the node (v,X) of C.
For example, as we can see in Fig. 2, the sink component of our example graph
contains the node (d2, {2}). A certifying walk for this node is d2, i2, d1, i2, d2.

Proof. First, suppose there is a walk with the given properties. By Lemma 2.1,
there is at least one node in C whose first element is v, say (v, Y ). The properties
of W immediately imply that the walk lift(W,Y ) ends in (v,X), which proves
the “if”-direction of the lemma.

Now suppose that (v,X) is a node in C. Since C is strongly connected, there
exists a closed walk A in C that starts and ends at (v,X) and visits every node
of C at least once. Let W := proj(A). By Lemma 2.1 and our assumption on the
labels of G, the walk W contains for every element x ∈ U|V at least one node
with label ix and one node with label dx. Therefore, the walk W meets all the
desired properties. ut

This characterization of the nodes in C immediately implies that the deco-
rated graph can have only one sink component.

Corollary 2.4 The component C is the only sink component of dec(G).

Proof. Let (v,X) be a node in dec(G). By Lemmas 2.1 and 2.3, there exists in
C a node of the form (v, Y ) and a corresponding certifying walk W . Clearly, the
walk lift(W,X) ends in (v, Y ). Thus, every node in dec(G) can reach C, so there
can be no other sink component. ut

Next, we give a bound on the length of certifying walks, from which we can
deduce a bound on the diameter of C.

Theorem 2.5. Let (v,X) be a node of C and let W be a corresponding certifying
walk of minimum length. Then W has length at most O(n2), where n denotes
the number of nodes in G. There are examples where any certifying walk needs
Ω(n2) nodes. It follows that C has diameter O(n2) and that this is tight.

Proof. Consider the reversed walk WR. We subdivide WR into phases: a new
phase starts when WR encounters a node labeled ix or dx for an x ∈ U|V that it
has not seen before. Clearly, the number of phases is at most n. Now consider the
i-th phase and let Vi be the set of nodes in G whose labels refer to the i distinct
elements of U|V that have been encountered in the first i phases. In phase i,
the walk WR can use only vertices in Vi. Since W has minimum cardinality, the
phase must consist of a shortest walk in Vi from the first node of phase i to the
first node of phase i + 1. Hence, each phase consists of at most n vertices and
the length of W is O(n2).

We now describe the lower bound construction. Let m ≥ 2 be an integer.
The event graph P is a path with n = 2m+ 1 vertices. The first m vertices are
labeled im, i(m− 1), . . . i1, in this order. The middle vertex is labeled dm, and



the remaining m vertices are labeled d1, d2, . . . , dm, in this order, see Fig. 3. Let
v be the middle vertex of P and C be the unique sink component of dec(P ).
First, note that (v,X) is a node of C for every X ⊆ {1, . . . ,m−1}. Indeed, given
X ⊆ {1, . . . ,m−1}, we can construct a certifying walk for X as follows: we begin
at v, and for k = m − 1,m − 2, . . . , 1, we walk from v to ik or dk, depending
on whether k lies in X or not, and back to v. This gives a certifying walk for X
with 2(m−1)+2(m−2)+ · · ·+2 = Θ(m2) steps. Now, we claim that the length
of a shortest certifying walk for the node (v, {2k + 1 | k = 0, . . . , bm/2c − 1}) is
Θ(m2) = Θ(n2). Indeed, note that the set Y = {2k + 1 | k = 0, . . . , bm/2c − 1}
contains exactly the odd numbers between 1 and m− 1. Thus, a certifying walk
for Y must visit the node i1 after all visits to node d1, the node d2 after all
visits to i2, etc. Furthermore, the structure of P dictates that any certifying
walk performs these visits in order from largest to smallest, i.e., first comes the
last visit to the node for m− 1, then the last visit to the node for m− 2, etc. To
see this, suppose that there exist i < j such that the last visit to the node for i,
wi, comes before the last visit to the node for j, wj . Then the parity of i and j
must differ, because otherwise the walk must cross wi on the way from wj to v.
However, in this case, on the way from wj to v, the certfying walk has to cross
the node with the wrong label for i (insert instead of delete, or vice versa),
and hence it could not be a certifying walk. It follows that any certifying walk
for (v, Y ) has length Ω(n2).

v

i2 i1 d4 d1 d2i4 i3 d3 d4

Fig. 3. The lower bound example for m = 4. The shortest certifying walk for (v, {1, 3})
goes from v to i3, then to d2, then to i1, and then back to v.

We now show that any two nodes in C are connected by a walk of length
O(n2). Let (u,X) and (v, Y ) be two such nodes and let Q be a shortest walk
from u to v in G and W be a certifying walk for (v, Y ). Then lift(QW,X) is a walk
of length O(n2) in C from (u,X) to (v, Y ). Hence, the diameter of C is O(n2).
Again, the lower bound example from the previous paragraph applies: the length
of a shortest walk in C between (v, ∅) and (v, {2k + 1 | k = 0, . . . , bm/2c − 1}) is
Θ(n2), as can be seen by an argument similar to the argument for the shortest
certifying walk. ut

Next, we describe an algorithm that is given G, a node v ∈ V , and a set
X ⊆ U|V and then decides whether (v,X) is a node of the unique sink or not.
For W ⊆ V , let U|W denote the elements that appear in the labels of the nodes
in W . For U ⊆ U , let V|U denote the nodes of G whose labels contain an element
of U .



Theorem 2.6. Given an event graph G, a node v of G and a subset X ⊆ U|V ,
we can decide in O(|V |+ |E|) steps whether (v,X) is a node of the unique sink
component C of dec(G).

Proof. The idea of the algorithm is to construct a certifying walk for (v,X)
through a modified breadth first search.

In the preprocessing phase, we color a vertex w of G blue if w is labeled
ix and x ∈ X, or if w is labeled dx and x 6∈ X. Otherwise, we color w red. If
v is colored red, then (v,X) cannot be in C, and we are done. Otherwise, we
perform a directed breadth first search that starts from v and tries to construct
a reverse certifying walk. Our algorithm maintains several queues. The main
queue is called the blue fringe B. Furthermore, for every x ∈ U|V , we have a
queue Rx, the red fringe for x. At the beginning, the queue B contains only v,
and all the red fringes are empty.

The main loop of the algorithm takes place while B is not empty. We pull
the next node w out of B, and we process w as follows: if we have not seen the
element xw ∈ U|V for w before, we color the set V|{xw} of all nodes whose label
refers to xw blue, append all the nodes of Rxw

to B, and we delete Rxw
. Next,

we process the neighbors of w as follows: if a neighbor w′ of w is blue, we append
it to B if w′ has not been inserted into B before. If w′ is red and labeled with
the element xw′ , we append w′ to Rxw′ , if necessary, see Fig. 4.
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Fig. 4. An intermediate stage of the algorithm while deciding whether the node
(v, {3, 4}) lies in the unique sink of the given event graph. At this point, the nodes
v and i4 have been processed. Since the elements 3 and 4 have been encountered, the
corresponding nodes have been colored blue. The nodes for the other elemenents still
have the original color. We have B = {d1, d2}, R2 = {i2}, and R1 = R3 = R4 = ∅.
Suppose that in the next step, the algorithm processes d2. Then the node i2 is colored
blue and added to B, and i1 is added to R1.



The algorithm terminates after at most |V | iterations. In each iteration, the
cost is proportional to the degree of the current vertex w and (possibly) the size
of one red fringe. The latter cost can be charged to later rounds, since the nodes
of the red fringe are processed later on. Let Vred be the union of the remaining
red fringes after the algorithm terminates.

If Vred = ∅, we obtain a certifying walk for (v,X) by walking from one newly
discovered vertex to the next inside the current blue component and reversing
the walk. Now suppose Vred 6= ∅. Let A be the set of all vertices that were
traversed during the BFS. Then G \Vred has at least two connected components
(since there must be blue vertices outside of A). Furthermore, U|A ∩ U|Vred

= ∅.
We claim that a certifying walk for (v,X) cannot exist. Indeed, suppose that W
is such a certifying walk. Let xw ∈ U|Vred

be the element in the label of the last
node w in W whose label refers to an element in U|Vred

. Suppose that the label
of w is of the form ixw; the other case is symmetric. Since W is a certifying
walk, we have xw ∈ X, so w was colored blue during the initialization phase.
Furthermore, all the nodes on W that come after w are also blue at the end. This
implies that w ∈ A, because by assumption a neighor of w was in B, and hence
w must have been added to B when this neighbor was processed. Hence, we get
a contradiction to the fact that U|A ∩ U|Vred

= ∅, so W cannot exist. Therefore,
(v,X) 6∈ C. ut

The proof of Theorem 2.6 gives an alternative characterization of whether a
node appears in the unique sink component or not.

Corollary 2.7 The node (v,X) does not appear in C if and only if there exists
a set A ⊆ V (G) with the following properties:

1. G\A has at least two connected components.
2. U|A ∩ U|B = ∅, where B denotes the vertex set of the connected component

of G \A that contains v.
3. For all x ∈ U , A contains either only labels of the form ix or only labels of

the form dx (or neither). If A has a node with label ix, then x 6∈ X. If A
has a node with label dx, then x ∈ X.

A set A with the above properties can be found in polynomial time. ut
Lemma 2.8. Given k ∈ N and a node (v,X) ∈ C, it is NP-complete to decide
whether there exists a certifying walk for (v,X) of length at most k.

Proof. The problem is clearly in NP. To show completeness, we reduce from
Hamiltonian path in undirected graphs. Let G be an undirected graph with n
vertices, and suppose the vertex set is {1, . . . , n}. We let U = N and take two
copies G1 and G2 of G. We label the copy of node i in G1 with ii and the copy
of node i in G2 with di. Then we add two nodes v1 and v2, and we connect v1 to
v2 and to all nodes in G1 and G2, We label v1 with i(n+1) and v2 with d(n+1).
The resulting graph G′ has 2n + 2 nodes and meets all our assumptions about
an event graph. Clearly, G′ can be constructed in polynomial time. Finally, since
by definition a certifying walk must visit for each element i either ii or di, it
follows that G has a Hamiltonian path if and only if the node (v1, {1, . . . , n+1})
has a certifying walk of length at most n+ 2. This completes the reduction. ut



3 Successor Searching on Cycle Graphs

We now consider the case that the event graph G is a simple cycle v1, . . . , vn, v1
and the item xvi at node vi is a real number. Again, the structure T (X) is X
itself, and we now have three types of nodes: insertion, deletion, and query. A
query at time t asks for succXt(xvt) = min{x ∈ Xt |x ≥ xvt } (or∞). Again, an
example similar to Fig. 3 shows that the decorated graph can be of exponential
size: let n be even. For i = 1, . . . , n/2, take xvi = xvn+1−i

= i, and define the
operation at vi as ixvi for i = 1, . . . , n/2, and dxvn+1−i for i = n/2 + 1, . . . , n. It
is easy to design a walk that produces any subset of {1, . . . , n/2} at either v1 or
vn, which implies a lower bound of Ω(2n/2) on the size of the decorated graph.

We consider two different walks on G. The random walk starts at v1 and
hops from a node to one of its neighbors with equal probability. The main result
of this section is that for random walks, maximal compression is possible.

Theorem 3.1. Successor searching in a one-dimensional random walk can be
done in constant expected time per step and linear storage.

First, however, we consider an adversarial walk on G. Note that we can
always achieve a running time of O(log log n) per step by maintaining a van
Emde Boas search structure dynamically [5, 6], so the interesting question is
how little storage we need if we are to perform each operation in constant time.

Theorem 3.2. Successor searching along an n-node cycle in the adversarial
model can be performed in constant time per operation, using O(n1+ε) storage,
for any fixed ε > 0.

Before addressing the walk on G, we must consider the following range search-
ing problem (see also [4]). Let Y = y1, . . . , yn be a sequence of n distinct num-
bers, and consider the points (k, yk), for k = 1, . . . , n. A query is given by
two indices i and j, together with a type. The type is defined as follows: the
horizontal lines x 7→ yi and x 7→ yj divide the plane into three unbounded
open strips R1, R2, and R3, numbered from top to bottom. For a = 1, 2, 3, let
Sa = {k ∈ {1, . . . , n} | (k, yk) lies inside Ra}. The type is specified by the num-
ber a together with a direction → or ←. The former is called a right query, the
latter a left query. Let us describe the right query: if Sa = ∅, the result is ∅. If Sa

contains an index larger than i, we want the minimum index in Sa larger than
i. If all indices in Sa are less than i, we want the overall minimum index in Sa.
The left query is defined symmetrically. See Fig. 5(left) for an example.

Thus, there are six types of queries, and we specify a query by a triplet
(i, j, σ), with σ to being the type. We need the following result, which, as a
reviewer pointed out to us, was also discovered earlier by Crochemore et al. [4].
We include our proof below for completeness.

Lemma 3.3. Any query can be answered in constant time with the help of a
data structure of size O(n1+ε), for any ε > 0.

Using Lemma 3.3, we can prove Theorem 3.2.
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Fig. 5. Left: the query (i, j, (2,→)), we want the leftmost point to the right of yi in
the strip R2; right: the successor data structure. The squares at the bottom represent
the vertices of the cycle, split at the edge vnv1 to obtain a better picture. The dots
above the cycle nodes represent the elements xvi . The node vt is the current node, and
Xt the active set. We maintain pointers between each element x ∈ Xt and the closest
clockwise and counterclockwise node such that the successor in Xt of the corresponding
element is x.

Proof (of Theorem 3.2). At any time t, the algorithm has at its disposal: (i) a
sorted doubly-linked list of the active set Xt (augmented with∞); (ii) a (bidirec-
tional) pointer to each x ∈ Xt from the first node vk on the circle clockwise from
vt, if it exists, such that succXt(xvk) = x (same thing counterclockwise)—see
Fig. 5(right). Assume now that the data structure of Lemma 3.3 has been set
up over Y = xv1 , . . . , xvn . As the walk enters node vt at time t, succXt(xvt) is
thus readily available and we can update Xt in O(1) time. The only remaining
question is how to maintain (ii). Suppose that the operation at node vt is a
successor request and that the walk reached vt clockwise. If x is the successor,
then we need to find the first node vk on the cycle clockwise from vt such that
succXt(xvk) = x. This can be handled by two range search queries (i, j, σ): for
i, use the index of the current node vt; and, for j, use the node for x in the first
query and the node for x’s predecessor in Xt in the second query. An insert can
be handled by two such queries (one on each side of vt), while a delete requires
pointer updating, but no range search queries. ut

Proof (of Lemma 3.3). We define a single data structure to handle all six types
simultaneously. We restrict our discussion to the type (2,→) from Fig. 5(left)
but kindly invite the reader to check that all other five types can be handled
in much the same way. We prove by induction that with scn1+1/s storage, for
a large enough constant c, any query can be answered in at most O(s) table
lookups. The case s = 1 being obvious (precompute all queries), we assume that
s > 1. Sort and partition Y into consecutive groups Y1 < · · · < Yn1/s of size
n1−1/s each. We have two sets of tables:



– Ylinks: for each yi ∈ Y , link yi to the highest-indexed element yj to the
left of i (j < i) within each group Y1, . . . , Yn1/s , wrapping around the strip
if necessary (left pointers in Fig. 6(left)).

– Zlinks: for each yi ∈ Y , find the group Y`i to which yi belongs and, for
each k, define Zk as the subset of Y sandwiched between yi and the smallest
(resp. largest) element in Yk if k ≤ `i (resp. k ≥ `i). Note that this actually
defines two sets for Z`i , so that the total number of Zk’s is really n1/s+1. Link
yi to the lowest-indexed yj (j > i) in each Zk (right pointers in Fig. 6(left)),
again wrapping around if necessary.

– Prepare a data structure of type s− 1 recursively for each Yi.

Given a query (i, j) of type (2,→), we first check whether it fits entirely
within Y`i and, if so, solve it recursively. Otherwise, we break it down into two
subqueries: one of them can be handled directly by using the relevant Zlink. The
other one fits entirely within a single Yk. By following the corresponding Ylink,
we find yi′ and solve the subquery recursively by converting it into another query
(i′, j) of appropriate type (Fig. 6(right)). By induction, it follows that this takes
O(s) total lookups and storage

dn1+1/s + (s− 1)cn1/s+(1−1/s)(1+1/(s−1)) = dn1+1/s + (s− 1)cn1+1/s ≤ scn1+1/s,

for some constant d and for c large enough, since(
1− 1

s

)(
1 +

1

s− 1

)
=
s− 1

s

s

s− 1
= 1.

ut

Y1

yi

Y2

yi′ yj

yi

Fig. 6. Left: the recursive data structure: The Ylinks (dashed) point to the rightmost
point to the left of yi in each strip. The ZLinks point to the leftmost point in each block
defined by yi and a consecutive sequence of strips; right: a query (i, j) is decomposed
into a part handled by a ZLink and a part that is handled recursively.



Using Theorem 3.2 together with the special properties of a random walk on
G, we can quickly derive the algorithm for Theorem 3.1.

Proof (of Theorem 3.1). The idea is to divide up the cycle into
√
n equal-size

paths P1, . . . , P√n and prepare an adversarial data structure for each one of
them right upon entry. The high cover time of a one-dimensional random walk
is then invoked to amortize the costs. De-amortization techniques are then used
to make the costs worst-case. The details follow. As soon as the walk enters a
new Pk, the data structure of Lemma 3.3 is built from scratch for ε = 1/3, at a
cost in time and storage of O(n2/3). By merging Lk = {xvi

| vi ∈ Pk } with the
doubly-linked list storing Xt, we can set up all the needed successor links and
proceeds just as in Theorem 3.2. This takes O(n) time per interpath transition
and requires O(n2/3) storage. There are few technical difficulties that we now
address one by one.

P ′
1

P1

Fig. 7. The parallel tracks on the cycle.

– Upon entry into a new path Pk, we must set up successor links from Pk to
Xt, which takes O(n) time. Rather than forcing the walk to a halt, we use
a “parallel track” idea to de-amortize these costs. (Fig. 7). Cover the cycle
with paths P ′i shifted from Pi clockwise by 1

2

√
n. and carry on the updates

in parallel on both tracks. As we shall see below, we can ensure that updates
do not take place simultaneously on both tracks. Therefore, one of them is
always available to answer successor requests in constant time.

– Upon entry into a new path Pk (or P ′k), the relevant range search structure
must be built from scratch. This work does not require knowledge of Xt and,
in fact, the only reason it is not done in preprocessing is to save storage.
Again, to avoid having to interrupt the walk, while in Pk we ensure that the
needed structures for the two adjacent paths Pk−1, Pk+1 are already available
and those for Pk−2, Pk+2 are under construction. (Same with P ′k.)

– On a path, we do not want our range queries to wrap around as in the
original structure. Thus, if a right query returns an index smaller than i, or
a left query returns an index larger than i, we change the answer to ∅.



– The range search structure can only handle queries (i, j) for which both yi and
yj are in the ground set. Unfortunately, j may not be, for it may correspond
to an item of Xt inserted prior to entry into the current Pk. There is an
easy fix: upon entering Pk, compute and store succLk

(xvi) for i = 1, . . . , n.
Then, simply replace a query (i, j) by (i, j′) where j′ is the successor (or
predecessor) in Lk.

The key idea now is that a one-dimensional random walk has a quadratic
cover time [13]; therefore, the expected time between any change of paths on
one track and the next change of paths on the other track is Θ(n). This means
that if we dovetail the parallel updates by performing a large enough number of
them per walking step, we can keep the expected time per operation constant.
This proves Theorem 3.1. ut

4 Conclusion

We have presented a new approach to model and analyze restricted query se-
quences that is inspired by Markov chains. Our results only scratch the surface
of a rich body of questions. For example, even for the simple problem of the
adversarial walk on a path, we still do not know whether we can beat van Emde
Boas trees with linear space. Even though there is some evidence that the known
lower bounds for successor searching on a pointer machine give the adversary
a lot of leeway [14], our lower bound technology does not seem to be advanced
enough for this setting. Beyond paths and cycles, of course, there are several
other simple graph classes to be explored, e.g., trees or planar graphs.

Furthermore, there are more fundamental questions on decorated graphs to
be studied. For example, how hard is it to count the number of distinct active sets
(or the number of nodes) that occur in the unique sink component of dec(G)?
What can we say about the behaviour of the active set in the limit as the walk
proceeds randomly? And what happens if we go beyond the dictionary problem
and consider the evolution of more complex structures during a walk on the
event graph?
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