
ar
X

iv
:1

20
4.

44
31

v1
 [

cs
.D

S]
 1

9
A

pr
 2

01
2

Explicit and Efficient Hash Families Suffice for

Cuckoo Hashing with a Stash

Martin Aumüller1, Martin Dietzfelbinger1,⋆, and Philipp Woelfel2,⋆⋆

1 Fakultät für Informatik und Automatisierung, Technische Universität Ilmenau,
98694 Ilmenau, Germany

martin.aumueller@tu-ilmenau.de, martin.dietzfelbinger@tu-ilmenau.de
2 Department of Computer Science, University of Calgary,

Calgary, Alberta T2N 1N4, Canada
woelfel@cpsc.ucalgary.ca

Abstract. It is shown that for cuckoo hashing with a stash as proposed
by Kirsch, Mitzenmacher, and Wieder (2008) families of very simple hash
functions can be used, maintaining the favorable performance guarantees:
with stash size s the probability of a rehash is O(1/ns+1), and the evalu-
ation time is O(s). Instead of the full randomness needed for the analysis
of Kirsch et al. and of Kutzelnigg (2010) (resp. Θ(log n)-wise indepen-
dence for standard cuckoo hashing) the new approach even works with
2-wise independent hash families as building blocks. Both construction
and analysis build upon the work of Dietzfelbinger and Woelfel (2003).
The analysis, which can also be applied to the fully random case, utilizes
a graph counting argument and is much simpler than previous proofs.
As a byproduct, an algorithm for simulating uniform hashing is obtained.
While it requires about twice as much space as the most space efficient
solutions, it is attractive because of its simple and direct structure.

1 Introduction

Cuckoo hashing as proposed by Pagh and Rodler [17] is a popular implementa-
tion of a dictionary with guaranteed constant lookup time. To store a set S of
n keys from a universe U (i.e., a finite set), cuckoo hashing utilizes two hash
functions, h1, h2 : U → [m], where m = (1+ε)n, ε > 0. Each key x ∈ S is stored
in one of two hash tables of size m; either in the first table at location h1(x)
or in the second one at location h2(x). The pair h1, h2 might not be suitable to
accommodate S in these two tables. In this case, a rehash operation is necessary,
which chooses a new pair h1, h2 and inserts all keys anew.

In their ESA 2008 paper [11], Kirsch, Mitzenmacher, and Wieder deplored
the order of magnitude of the probability of a rehash, which is as large as Θ(1/n).
They proposed adding a stash, an additional segment of storage that can hold
up to s keys for some (constant) parameter s, and showed that this change

⋆ Research supported by DFG grant DI 412/10-2.
⋆⋆ Research supported by a Discovery Grant from the National Sciences and Research

Council of Canada (NSERC).

http://arxiv.org/abs/1204.4431v1

reduces the rehash probability to Θ(1/ns+1). However, the analysis of Kirsch et
al. requires the hash functions to be fully random. In the journal version [12]
Kirsch et al. posed “proving the above bounds for explicit hash families that can
be represented, sampled, and evaluated efficiently” as an open problem.

Our contribution. In this paper we generalize a hash family construction
proposed by Dietzfelbinger and Woelfel [9] and show that the resulting hash
functions have random properties strong enough to preserve the qualities of
cuckoo hashing with a stash. The proof involves a new and simpler analysis
of this hashing scheme, which also works in the fully random case. The hash
functions we propose have a very simple structure: they combine functions from
O(1)-wise independent families3 with a few tables of size n1−Θ(1) with random
entries from [m] = {0, . . . ,m− 1}. An attractive version of the construction for
stash capacity s has the following performance characteristics: the description of
a hash function pair (h1, h2) consists of a table with

√
n entries from [m]2 and

2s + 6 functions from 2-wise independent classes. To evaluate h1(x) and h2(x)
for x ∈ U , we must evaluate these 2s + 6 functions, read 2s + 4 table entries,
and carry out 4s+8 additions modulo m. Our main result implies for these hash
functions and for any set S ⊆ U of n keys that with probability 1 − O(1/ns+1)
S can be accommodated according to the cuckoo hashing rules.

In addition, we present a simple data structure for simulating a uniform hash
function on S with range R, using our hash class and essentially a table with
2(1 + ε)n random elements from R.

Cuckoo hashing with a stash and weak hash functions. In [12,14] it
was noticed that for the analysis of cuckoo hashing with a stash of size s the
properties of the so-called cuckoo graph G(S, h1, h2) are central. Assume a set S
and hash functions h1 and h2 with range [m] are given. The associated cuckoo
graph G(S, h1, h2) is the bipartite multigraph whose two node sets are copies
of [m] and whose edge set contains the n pairs (h1(x), h2(x)), for x ∈ S. It is
known that a single parameter of G = G(S, h1, h2) determines whether a stash
of size s is sufficient to store S using (h1, h2), namely the excess ex(G), which is
defined as the minimum number of edges one has to remove from G so that all
connected components of the remaining graph are acyclic or unicyclic.

Lemma 1 ([12]). The keys from S can be stored in the two tables and a stash
of size s using (h1, h2) if and only if ex(G(S, h1, h2)) ≤ s.

For the convenience of the reader, a proof is given in Appendix A, along with a
discussion of insertion procedures, which is omitted in the main text.

Kirsch et al. [12] showed that with probability 1 − O(1/ns+1) a random
bipartite graph with 2m = 2(1+ε)n nodes and n edges has excess at most s. Their
proof uses sophisticated tools such as Poissonization and Markov chain coupling.
This result generalizes the analysis of standard cuckoo hashing [17] with no stash,
in which the rehash probability is Θ(1/n). Kutzelnigg [14] refined the analysis

3 κ-wise independent families of hash functions are defined in Section 2.

2

of [12] in order to determine the constant factor in the asymptotic bound of the
rehash probability. His proof uses generating functions and differential recurrence
equations. Both approaches inherently require that the hash functions h1 and
h2 used in the algorithm are fully random.

Recently, Pǎtraşcu and Thorup [18] showed that simple tabulation hash func-
tions are sufficient for running cuckoo hashing, with a rehash probability of
Θ(1/n1/3), which is tight. Unfortunately, for these hash functions the rehash
probability cannot be improved by using a stash.

Our main contribution is a new analysis that shows that explicit and ef-
ficient hash families are sufficient to obtain the O(1/ns+1) bound on the re-
hash probability. We build upon the work of Dietzfelbinger and Woelfel [9]. For
standard cuckoo hashing, they proposed hash functions of the form hi(x) =
(

fi(x) + z(i)[g(x)]
)

mod m, for x ∈ U , for i ∈ {1, 2}, where fi and g are from 2k-

wise independent classes with range [m] and [ℓ], resp., and z(1), z(2) ∈ [m]ℓ are
random vectors. They showed that with such hash functions the rehash prob-
ability is O(1/n + n/ℓk). Their proof has parts (i) and (ii). Part (i) already
appeared in [3] and [17]: The rehash probability is bounded by the sum, taken
over all minimal excess-1 graphs H of different sizes and all subsets T of S, of
the probability that G(T, h1, h2) is isomorphic to H . In Sect. 5 of this paper we
demonstrate that for h1 and h2 fully random a similar counting approach also
works for minimal excess-(s + 1) graphs, whose presence in G(S, h1, h2) deter-
mines whether a rehash is needed when a stash of size s is used. As in [17], this
analysis also works for O((s+ 1) logn)-wise independent families.

Part (ii) of the analysis in [9] is a little more subtle. It shows that for each key
set S of size n there is a part Bconn

S of the probability space given by (h1, h2) such
that Pr(Bconn

S) = O(n/ℓk) and in Bconn
S the hash functions act fully randomly

on T ⊆ S as long as G(T, h1, h2) is connected. In Sect. 4 we show how this
argument can be adapted to the situation with a stash, using subgraphs without
leaves in place of the connected subgraphs. Woelfel [23] already demonstrated
by applying functions in [9] to balanced allocation that the approach has more
general potential to it.

A comment on the “full randomness assumption” and work relating to it
seems in order. It is often quoted as an empirical observation that weaker hash
functions like κ-wise independent families will behave almost like random func-
tions. Mitzenmacher and Vadhan [15] showed that if the key set S has a certain
kind of entropy then 2-wise independent hash functions will behave similar to
fully random ones. However, as demonstrated in [7], there are situations where
cuckoo hashing fails for a standard 2-wise independent family and even a random
set S (which is “too dense” in U). The rather general “split-and-share” approach
of [6] makes it possible to justify the full randomness assumption for many situa-
tions involving hash functions, including cuckoo hashing and many of its variants.
However, for practical application this method is less attractive, since space con-
sumption and failure probability are negatively affected by splitting the key set
into “chunks” and treating these separately.

3

Simulating Uniform Hashing. Consider a universe U of keys and a finite
set R. By the term “simulating uniform hashing for U and R” we mean an
algorithm that does the following. On input n ∈ N, a randomized procedure sets
up a data structure DSn that represents a hash function h : U → R, which can
then be evaluated efficiently for keys in U . For each set S ⊆ U of cardinality n
there is an event BS with the property that conditioned on BS the values h(x),
x ∈ S, are fully random. The quality of the algorithm is determined by the space
needed for DSn, the evaluation time for h, and the probability of the event BS .
It should be possible to evaluate h in constant time. The amount of entropy
required for such an algorithm implies that at least n log |R| bits are needed to
represent DSn.

Pagh and Pagh [16] proposed a construction with O(n) random words from
R, based on Siegel’s functions [19], which have constant, but huge evaluation
time. They also gave a general method to reduce the space to (1 + ε)n, at the
cost of an evaluation time of O(1/ε2). In [9] a linear-space construction with ta-
bles of size O(n) was given that contain (descriptions of) O(1)-wise independent
hash functions. The construction with the currently asymptotically best perfor-
mance parameters, (1 + ε)n words from R and evaluation time O(log(1/ε)), as
given in [6], is based on results of Calkin [1] and the “split-and-share” approach,
involving the same disadvantages as mentioned above.

Our construction, to be described in Sect. 6, essentially results from the
construction in [16] by replacing Siegel’s functions with functions from our new
class. The data structure consists of a hash function pair (h1, h2) from our hash
class, a O(1)-wise independent hash function with range R, O(s) small tables
with entries from R, and two tables of size m = (1 + ε)n each, filled with
random elements from R. The evaluation time of h is O(s), and for S ⊆ U ,
|S| = n, the event BS occurs with probability O(1/ns+1). The construction
requires roughly twice as much space as the most space-efficient solutions [6,16].
However, it seems to be a good compromise combining simplicity with moderate
space consumption.

2 Basics

Let U (the “universe”) be a finite set. A mapping from U to [r] is a hash
function with range [r]. For an integer κ ≥ 2, a set H of hash functions with
range [r] is called a κ-wise independent hash family if for arbitrary distinct
keys x1, . . . , xκ ∈ U and for arbitrary j1, . . . , jκ ∈ [r] we have Prh∈H

(

h(x1) =

j1 ∧ . . . ∧ h(xκ) = jκ
)

= 1/rκ. The classical κ-wise independent hash family
construction is based on polynomials of degree κ−1 over a finite field [22]. More
efficient hash function evaluation can be achieved with tabulation-based con-
structions [9,20,21,13]. Throughout this paper, Hκ

r denotes an arbitrary κ-wise
independent hash family with domain U and range [r].

We combine κ-wise independent classes with lookups in tables of size ℓ in
order to obtain pairs of hash functions from U to [m]:

4

Definition 1. Let c ≥ 1 and κ ≥ 2. For integers m, ℓ ≥ 1, and given f1, f2 ∈
Hκ

m, g1, . . . , gc ∈ Hκ
ℓ , and vectors z

(i)
j ∈ [m]ℓ, 1 ≤ j ≤ c, for i ∈ {1, 2}, let

(h1, h2) = (h1, h2)〈f1, f2, g1, . . . , gc, z(1)1 , . . . , z
(1)
c , z

(2)
1 , . . . , z

(2)
c 〉, where

hi(x) =
(

fi(x) +
∑

1≤j≤c z
(i)
j [gj(x)]

)

mod m, for x ∈ U, i ∈ {1, 2}.

Let Zκ,c
ℓ,m be the family of all these pairs (h1, h2) of hash functions.

While this is not reflected in the notation, we consider (h1, h2) as a structure

from which the components g1, . . . , gc and fi, z
(i)
1 , . . . , z

(i)
c , i ∈ {1, 2}, can be

read off again. It is family Z = Z2k,c
ℓ,m , for some k ≥ 1, made into a probability

space by the uniform distribution, that we will study in the following. We usually
assume that c and k are fixed and that m and ℓ are known.

2.1 Basic Facts

We start with some basic observations concerning the effects of compression
properties in the “g-part” of (h1, h2), extending similar statements in [9].

Definition 2. For T ⊆ U , define the random variable dT , the “deficiency” of
(h1, h2) with respect to T , by dT ((h1, h2)) = |T | − max{k, |g1(T)|, . . . , |gc(T)|}.
(Note: dT depends only on the gj-components of (h1, h2).) Further, define

(i) badT as the event that dT > k;
(ii) goodT as badT , i. e., the event that dT ≤ k;
(iii) critT as the event that dT = k.
Hash function pairs (h1, h2) in these events are called “T -bad”, “T -good”, and
“T -critical”, resp.

Lemma 2. Assume k ≥ 1 and c ≥ 1. For T ⊆ U , the following holds :
(a) Pr(badT ∪ critT) ≤

(

|T |2k/ℓk
)c
.

(b) Conditioned on goodT (or on critT), the pairs (h1(x), h2(x)), x ∈ T , are
distributed uniformly and independently in [r]2.

Proof. (a) Assume |T | ≥ 2k (otherwise the events badT and critT cannot occur).
Since g1, . . . , gc are independent, it suffices to show that for a function g chosen
randomly from H2k

ℓ we have Pr(|T | − |g(T)| ≥ k) ≤ |T |2k/ℓk.
We first argue that if |T | − |g(T)| ≥ k then there is a subset T ′ of T with

|T ′| = 2k and |g(T ′)| ≤ k. Initialize T ′ as T . Repeat the following as long as
|T ′| > 2k: (i) if there exists a key x ∈ T ′ such that g(x) 6= g(y) for all y ∈ T ′\{x},
remove x from T ′; (ii) otherwise, remove any key. Clearly, this process terminates
with |T ′| = 2k. It also maintains the invariant |T ′| − |g(T ′)| ≥ k: In case (i)
|T ′| − |g(T ′)| remains unchanged. In case (ii) before the key is removed from T ′

we have |g(T ′)| ≤ |T ′|/2 and thus |T ′| − |g(T ′)| ≥ |T ′|/2 > k.
Now fix a subset T ′ of T of size 2k that satisfies |g(T ′)| ≤ k. The preimages

g−1(u), u ∈ g(T ′), partition T ′ into k′ classes, k′ ≤ k, such that g is constant on
each class. Since g is chosen from a 2k-wise independent class, the probability

5

that g is constant on all classes of a given partition of T ′ into classes C1, . . . , Ck′ ,
with k′ ≤ k, is exactly ℓ−(2k−k′) ≤ ℓ−k.

Finally, we bound Pr(|g(T)| ≤ |T | − k). There are
(

|T |
2k

)

subsets T ′ of T of
size 2k. Every partition of such a set T ′ into k′ ≤ k classes can be represented
by a permutation of T ′ with k′ cycles, where each cycle contains the elements
from one class. Hence, there are at most (2k)! such partitions. This yields:

Pr(|T | − |g(T)| ≥ k) ≤
(|T |
2k

)

· (2k)! · 1

ℓk
≤ |T |2k

ℓk
. (1)

(b) If |T | ≤ 2k, then h1 and h2 are fully random on T simply because f1 and
f2 are 2k-wise independent. So suppose |T | > 2k. Fix an arbitrary g-part of
(h1, h2) so that goodT occurs, i.e., max{k, |g1(T)|, . . . , |gc(T)|} ≥ |T | − k. Let
j0 ∈ {1, . . . , c} be such that |gj0(T)| ≥ |T | − k. Arbitrarily fix all values in the

tables z
(i)
j with j 6= j0 and i ∈ {1, 2}. Let T ∗ be the set of keys in T colliding with

other keys in T under gj0 . Then |T ∗| ≤ 2k. Choose the values z
(i)
j0
[gj0(x)] for all

x ∈ T ∗ and i ∈ {1, 2} at random. Furthermore, choose f1 and f2 at random from
the 2k-wise independent family H2k

r . This determines h1(x) and h2(x), x ∈ T ∗,
as fully random values. Furthermore, the function gj0 maps the keys x ∈ T −T ∗

to distinct entries of the vectors z
(i)
j0

that were not fixed before. Thus, the hash
function values h1(x), h2(x), x ∈ T − T ∗, are distributed fully randomly as well
and are independent of those with x ∈ T ∗. ⊓⊔

3 Graph Properties and Basic Setup

For m ∈ N let Gm denote the set of all bipartite (multi-)graphs with vertex set
[m] on each side of the bipartition. A set A ⊆ Gm is called a graph property. For
example, A could be the set of graphs in Gm that have excess larger than s. For
a graph property A ⊆ Gm and T ⊆ U , let AT denote the event that G(T, h1, h2)
has property A (i. e., that G(T, h1, h2) ∈ A). In the following, our main objective
is to bound the probability Pr(∃T ⊆ S : AT) for graph properties A which are
important for our analysis.

For the next lemma we need the following definitions. For S ⊆ U and a graph
propertyA letBA

S ⊆ Z be the event ∃T ⊆ S : AT∩badT (see Def. 2). Considering
fully random hash functions (h∗

1, h
∗
2) for a moment, let pAT = Pr(G(T, h∗

1, h
∗
2) ∈

A).

Lemma 3. For an arbitrary graph property A we have

Pr(∃T ⊆ S : AT) ≤ Pr(BA
S) +

∑

T⊆S

pAT . (2)

Proof. Pr(∃T ⊆ S : AT) ≤ Pr(BA
S) + Pr((∃T ⊆ S : AT) ∩BA

S), and
∑

T⊆S

Pr(AT ∩BA
S) ≤

(i)

∑

T⊆S

Pr(AT ∩ goodT) ≤
∑

T⊆S

Pr(AT | goodT) =
(ii)

∑

T⊆S

pAT ,

where (i) holds by the definition of BA
S , and (ii) holds by Lemma 2(b). ⊓⊔

6

This lemma encapsulates our overall strategy for bounding Pr(∃T ⊆ S : AT).
The second summand in (2) can be bounded assuming full randomness. The
task of bounding the first summand is tackled separately, in Section 4.

4 A Bound for Leafless Graphs

The following observation, which is immediate from the definitions, will be help-
ful in applying Lemma 3.

Lemma 4. Let m ∈ N, and let A ⊆ A′ ⊆ Gm. Then Pr(BA
S) ≤ Pr(BA′

S). ⊓⊔
We define a graph property to be used in the role ofA′ in applications of Lemma 4.
A node with degree 1 in a graph is called a leaf ; an edge incident with a leaf is
called a leaf edge. An edge is called a cycle edge if removing it does not disconnect
any two nodes. A graph is called leafless if it has no leaves. Let LL ⊆ Gm be the
set of all leafless graphs. The 2-core of a graph is its (unique) maximum leafless
subgraph. The purpose of the present section is to prove a bound on Pr(BLL

S).

Lemma 5. Let ε > 0, let S ⊆ U with |S| = n, and let m = (1 + ε)n. Assume

(h1, h2) is chosen at random from Z = Z2k,c
ℓ,m . Then Pr(BLL

S) = O
(

n/ℓck
)

.

We recall a standard notion from graph theory (already used in [9]; cf. App. A.1):
The cyclomatic number γ(G) of a graph G is the smallest number of edges one
has to remove from G to obtain a graph with no cycles. Also, let ζ(G) denote
the number of connected components of G (ignoring isolated points).

Lemma 6. Let N(t, ℓ, γ, ζ) be the number of non-isomorphic (multi-)graphs
with ζ connected components and cyclomatic number γ that have t edges, ℓ of
which are leaf edges. Then N(t, ℓ, γ, ζ) = tO(ℓ+γ+ζ).

Proof. In [9, Lemma 2] it is shown that N(t, ℓ, γ, 1) = tO(ℓ+γ). Now note that
each graph G with cyclomatic number γ, ζ connected components, t− ℓ non-leaf
edges, and ℓ leaf edges can be obtained from some connected graph G′ with
cyclomatic number γ, t− ℓ+ ζ − 1 non-leaf edges, and ℓ leaf edges by removing
ζ − 1 non-leaf, non-cycle edges. There are no more than (t− ℓ+ ζ − 1)ζ−1 ways
for choosing the edges to be removed. This implies, using [9, Lemma 2]:

N(t, ℓ, γ, ζ) ≤ N(t+ ζ − 1, ℓ, γ, 1) · (t− ℓ+ ζ − 1)ζ−1

≤ (t+ ζ)O(ℓ+γ) · (t+ ζ)ζ = (t+ ζ)O(ℓ+γ+ζ) = tO(ℓ+γ+ζ). ⊓⊔

We shall need more auxiliary graph properties: A graph from Gm belongs to LCY

if at most one connected component contains leaves (the leaf component); for

K ≥ 1 it belongs to LCY
(K) if it has the following four properties:

1. at most one connected component of G contains leaves (i. e., LCY(K) ⊆ LCY);
2. the number ζ(G) of connected components is bounded by K;
3. if present, the leaf component of G contains at most K leaf and cycle edges;
4. the cyclomatic number γ(G) is bounded by K.

7

Lemma 7. If T ⊆ U and (h1, h2) is from Z such that G(T, h1, h2) ∈ LL and
(h1, h2) is T -bad, then there exists a subset T ′ of T such that G(T ′, h1, h2) ∈
LCY

(4ck) and (h1, h2) is T ′-critical.

Proof. Fix T and (h1, h2) as in the assumption. Initialize T ′ as T . We will remove
(“peel”) edges from G(T ′, h1, h2) in four stages. Of course, by “removing edge
(h1(x), h2(x)) from G(T ′, h1, h2)” we mean removing x from T ′.

Stage 1: Initially, we have dT ′((h1, h2)) > k. Repeat the following step: If
G(T ′, h1, h2) contains a leaf, remove a leaf edge from it, otherwise remove a
cycle edge. Clearly, such steps maintain the property that G(T ′, h1, h2) belongs
to LCY. Since dT ′((h1, h2)) can decrease by at most 1 when an edge is removed,
we finally reach a situation where dT ′((h1, h2)) = k, i. e., (h1, h2) is T ′-critical.

Then G(T ′, h1, h2) satisfies Property 1 from the definition of LCY(4ck).
To prepare for the next stages, we define a set T ∗ ⊆ T ′ with 2k ≤ |T ∗| ≤

2ck, capturing keys that have to be “protected” during the following stages to
maintain criticality of T ′. If |T ′| = 2k, we simply let T ∗ = T ′. Then (h1, h2)
is T ∗-critical. If |T ′| > 2k, a little more work is needed. By the definition
of dT ((h1, h2)) we have |T ′| − max{|g1(T ′)|, . . . , |gc(T ′)|} = k. For each j ∈
{1, . . . , c} Lemma 2(a) gives us a set T ∗

j ⊆ T ′ such that |T ∗
j | = 2k and |gj(T ∗

j)| ≤
k. Let T ∗ := T ∗

1 ∪ . . . ∪ T ∗
c . Clearly, 2k ≤ |T ∗| ≤ 2ck. Since T ∗

j ⊆ T ∗, we have
|T ∗|− |gj(T ∗)| ≥ |T ∗

j |− |gj(T ∗
j)| ≥ k, for 1 ≤ j ≤ c, and hence dT∗((h1, h2)) ≥ k.

On the other hand we know that there exists some j with |T ′| − |gj(T ′)| = k.
Since T ∗ ⊆ T ′, we have |T ∗| − |gj(T ∗)| ≤ k for this j. Altogether we get
dT∗((h1, h2)) = k, which means that (h1, h2) is T

∗-critical also in this case.
Now we “mark” all edges of G = G(T ′, h1, h2) whose keys belong to T ∗.
Stage 2: Remove all components of G without marked edges. Afterwards

there are at most 2ck components left, and G satisfies Property 2.
Stage 3: If G has a leaf component C, repeatedly remove unmarked leaf and

cycle edges from C, while C has such edges. The remaining leaf and cycle edges
in C are marked, and thus there number is at most 2ck; Property 3 is satisfied.

Stage 4: If there is a leaf component C with z marked edges (where z ≤ 2ck),
then γ(C) ≤ z−1. Now consider a leafless component C′ with cyclomatic number
z. We need the following claim, which is proved in Appendix B.

Claim. Every leafless connected graph with i marked edges has a leafless con-
nected subgraph with cyclomatic number ≤ i+1 that contains all marked edges.

This claim gives us a leafless subgraph C′′ of C′ with γ(C′′) ≤ z + 1 that
contains all marked edges of C′. We remove from G all vertices and edges of
C′ that are not in C′′. Doing this for all leafless components yields the final
key set T ′ and the final graph G = G(T ′, h1, h2). Summing contributions to the
cyclomatic number of G over all (at most 2ck) connected components, we see
that γ(G) ≤ 4ck; Property 4 is satisfied. ⊓⊔

What have we achieved? By Lemma 7, we can bound Pr(BLL
S) by just adding,

over all T ′ ⊆ S, the probabilities Pr(LCY
(4ck)
T ′ ∩ critT ′), that means, the terms

Pr(LCY
(4ck)
T ′ | critT ′) ·Pr(critT ′). Lemma 2(a) takes care of the second factor. By

8

Lemma 2(b), we may assume that (h1, h2) acts fully random on T ′ for the first
factor. The next lemma estimates this factor, using the notation from Section 3.

Lemma 8. Let T ⊆ U, |T | = t, and c, k ≥ 1. Then pLCY
(4ck)

T ≤ t! · tO(1)/mt−1.

Proof. By Lemma 6, there are at most tO(ck) = tO(1) ways to choose a bipartite
graph G in LCY

(4ck) with t edges. Graph G cannot have more than t+ 1 nodes,
since cyclic components have at most as many nodes as edges, and in the single
leaf component, if present, the number of nodes is at most one bigger than the
number of edges. In each component of G, there are two ways to assign the
vertices to the two sides of the bipartition. After such an assignment is fixed,
there are at most mt+1 ways to label the vertices with elements of [m], and
there are t! ways to label the edges of G with the keys in T . Assume now such
labels have been chosen for G. Draw t edges (h∗

1(x), h
∗
2(x)) from [m]2 uniformly

at random. The probability that they exactly fit the labeling of nodes and edges

of G is 1/m2t. Thus, pLCY
(4ck)

T ≤ mt+1 · t! · tO(1)/m2t = t! · tO(1)/mt−1. ⊓⊔

We can now finally prove Lemma 5, the main lemma of this section.

Proof (of Lemma 5). By Lemma 7, and using the union bound, we get

Pr(BLL

S) = Pr(∃T ⊆ S : LLT ∩ badT) ≤ Pr(∃T ′ ⊆ S : LCY
(4ck)
T ′ ∩ critT ′)

≤
∑

T ′⊆S

Pr(LCY
(4ck)
T ′ | critT ′) · Pr(critT ′) =: ρS .

By Lemma 2(b), given the event that (h1, h2) is T ′-critical, (h1, h2) acts fully
random on T ′. Using Lemma 8 and Lemma 2(a), this yields:

Pr(LCY
(4ck)
T ′ | critT ′) · Pr(critT ′) ≤ (|T ′|! · |T ′|O(1)/m|T ′|−1) · (|T ′|2/ℓ)ck.

Summing up, collecting sets T ′ of equal size together, and using that ck is con-
stant, we obtain

ρS ≤
∑

2k≤t≤n

(

n

t

)

· t! · t
O(1)

mt−1
·
(

t2

ℓ

)ck

≤ n

ℓck
·

∑

2k≤t≤n

tO(1)

(1 + ε)t−1
= O

(n

ℓck

)

. ⊓⊔

5 Cuckoo Hashing With a Stash

In this section we prove the desired bound on the rehash probability of cuckoo
hashing with a stash when functions from Z are used. We focus on the question
whether the pair (h1, h2) allows storing key set S in the two tables with a stash
of size s. In view of Lemma 1, we identify minimal graphs with excess s+ 1.

Definition 3. An excess-(s + 1) core graph is a leafless graph G with excess
exactly s + 1 in which all connected components have at least two cycles. By
CS

(s+1) we denote the set of all excess-(s+ 1) core graphs in Gm.

9

Lemma 9. Let G = G(S, h1, h2) be a cuckoo graph with ex(G) ≥ s + 1. Then
G contains an excess-(s+ 1) core graph as a subgraph.

Proof. We repeatedly remove edges from G. First we remove cycle edges until the
excess is exactly s+ 1. Then we remove components that are trees or unicyclic.
Finally we remove leaf edges one by one until the remaining graph is leafless. ⊓⊔

We are now ready to state our main theorem.

Theorem 1. Let ε > 0 and 0 < δ < 1, let s ≥ 0 and k ≥ 1 be given. Assume
c ≥ (s + 2)/(δk). For n ≥ 1 consider m ≥ (1 + ε)n and ℓ = nδ. Let S ⊆ U

with |S| = n. Then for (h1, h2) chosen at random from Z = Z2k,c
ℓ,m the following

holds:

Pr(ex(G(S, h1, h2)) ≥ s+ 1) = O(1/ns+1).

Proof. By Lemma 3 and Lemma 9, the probability that the excess of G(S, h1, h2)
is at least s+ 1 is

Pr(∃T ⊆ S : CS
(s+1)
T) ≤ Pr(BCS

(s+1)

S) +
∑

T⊆S

pCS
(s+1)

T . (3)

Since CS
(s+1) ⊆ LL, we can combine Lemmas 4 and 5 to obtain Pr(BCS

(s+1)

S) ≤
Pr(BLL

S) = O(n/ℓck). It remains to bound the second summand in (3).4

Lemma 10.
∑

T⊆S pCS
(s+1)

T = O(1/ns+1).

Proof. We start by counting (unlabeled) excess-(s+1) core graphs with t edges.
A connected component C of such a graph G with cyclomatic number γ(C)
(which is at least 2) contributes γ(C)− 1 to the excess of G. This means that if
G has ζ = ζ(G) components, then s + 1 = γ(G) − ζ and ζ ≤ s + 1, and hence
γ = γ(G) ≤ 2(s+1). Using Lemma 6, there are at most N(t, 0, γ, ζ) = tO(γ+ζ) =
tO(s) such graphs G. If from each component C of such a graph G we remove
γ(C) − 1 cycle edges, we get unicyclic components, which have as many nodes
as edges. This implies that G has t− (s+ 1) nodes.

Now fix a bipartite (unlabeled) excess-(s+1) core graph G with t edges and
ζ components, and let T ⊆ U with |T | = t be given. There are 2ζ ≤ 2s+1 ways
of assigning the t− s− 1 nodes to the two sides of the bipartition, and then at
most mt−s−1 ways of assigning labels from [m] to the nodes. Thus, the number

of bipartite graphs with property CS
(s+1), where each node is labeled with one

side of the bipartition and an element of [m], and where the t edges are labeled
with distinct elements of T is smaller than t! · 2s+1 ·mt−s−1 · tO(s).

Now if G with such a labeling is fixed, and we choose t edges from [m]2

uniformly at random, the probability that all edges (h1(x), h2(x)), x ∈ T , match

4 We remark that the following calculations also give an alternative, simpler proof
of [11, Theorem 2.1] for the fully random case, even if the effort needed to prove
Lemma 6 and [9, Lemma 2] is taken into account.

10

the labeling is 1/m2t. For constant s, this yields the following bound:

∑

T⊆S

pCS
(s+1)

T ≤
∑

s+3≤t≤n

(

n

t

)

2s+1 · nt−s−1 · t! · tO(s)

m2t
≤ 2s+1

ns+1
·

∑

s+3≤t≤n

nt · tO(1)

mt

= O

(

1

ns+1

)

·
∑

s+3≤t≤n

tO(1)

(1 + ε)t
= O

(

1

ns+1

)

. ⊓⊔

Since ℓ = nδ and c ≥ (s+ 2)/(kδ), we get

Pr(ex(G) ≥ s+ 1) = O(n/ℓck) +O(1/ns+1) = O(1/ns+1). ⊓⊔

6 Simulating Uniform Hashing

In the following, let R be the range of the hash function to construct, and assume
that (R,⊕) is a commutative group. (We could use R = [t] with addition mod
t.)

Theorem 2. Let n ≥ 1, 0 < δ < 1, ε > 0, and s ≥ 0 be given. There exists a
data structure DSn that allows us to compute a function h : U → R such that :
(i) For each S ⊆ U of size n there is an event BS of probability O(1/ns+1)

such that conditioned on BS the function h is distributed uniformly on S.
(ii) For arbitrary x ∈ U , h(x) can be evaluated in time O(s/δ).
(iii) DSn comprises 2(1 + ε)n+O(snδ) words from R and O(s) words from U .

Proof. Let k ≥ 1 and choose c ≥ (s + 2)/(kδ). Given U and n, set up DSn as
follows. Let m = (1+ ε)n and ℓ = nδ, and choose and store a hash function pair

(h1, h2) from Z = Z2k,c
ℓ,m (see Definition 1), with component functions g1, . . . , gc

from H2k
ℓ . In addition, choose 2 random vectors t1, t2 ∈ Rm, c random vectors

y1, . . . , yc ∈ Rℓ, and choose f at random from a 2k-wise independent family of
hash functions from U to R.

Using DSn, the mapping h : U → R is defined as follows:

h(x) = t1[h1(x)] ⊕ t2[h2(x)] ⊕ f(x)⊕ y1[g1(x)]⊕ . . .⊕ yc[gc(x)].

DSn satisfies (ii) and (iii) of Theorem 2. We show that it satisfies (i) as well.
First, consider only the hash functions (h1, h2) from Z. By Lemma 5 we have

Pr(BLL
S) = O(n/ℓck) = O(1/ns+1). Now fix (h1, h2) /∈ BLL

S , which includes fixing
the components g1, . . . , gc. Let T ⊆ S be such that G(T, h1, h2) is the 2-core of
G(S, h1, h2), the maximal subgraph with minimum degree 2. Graph G(T, h1, h2)
is leafless, and since (h1, h2) /∈ BLL

S , we have that (h1, h2) is T -good. Now we
note that the part f(x) ⊕ ⊕

1≤j≤c yj[gj(x)] of h(x) acts exactly as one of our
hash functions h1 and h2 (see Definition 1(a)), so that arguing as in the proof
of Lemma 2 we see that h(x) is fully random on T .

Now assume that f and the entries in the tables y1, . . . , yc are fixed. It is not
hard to show that the random entries in t1 and t2 alone make sure that h(x),
x ∈ S − T , is fully random. (Such proofs were given in [9] and [16].) ⊓⊔

11

Concluding Remarks

We presented a family of efficient hash functions and showed that it exhibits
sufficiently strong random properties to run cuckoo hashing with a stash, pre-
serving the favorable performance guarantees of this hashing scheme. We also
described a simple construction for simulating uniform hashing. We remark that
the performance of our construction can be improved by using 2-universal hash
families5 (see, e. g., [2,5]) for the gj-components. The proof of Lemma 2 can be
adapted easily to these weaker families. It remains open whether generalized
cuckoo hashing [10,8] can be run with efficient hash families.

References

1. Calkin, N.J.: Dependent sets of constant weight binary vectors. Combinatorics,

Probability and Computing 6(3), 263–271 (1997)

2. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.

Sci. 18(2), 143–154 (1979)

3. Devroye, L., Morin, P.: Cuckoo hashing: Further analysis. Inf. Process. Lett. 86(4),
215–219 (2003)

4. Diestel, R.: Graph Theory. Springer (2005)

5. Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable random-
ized algorithm for the closest-pair problem. J. Algorithms 25(1), 19–51 (1997)

6. Dietzfelbinger, M., Rink, M.: Applications of a splitting trick. In: Proc. 36th ICALP
(1). pp. 354–365. LNCS 5555, Springer (2009)

7. Dietzfelbinger, M., Schellbach, U.: On risks of using cuckoo hashing with simple
universal hash classes. In: Proc. 20th Ann. ACM-SIAM Symp. on Discrete Algo-
rithms (SODA). pp. 795–804 (2009)

8. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly
packed constant size bins. Theor. Comput. Sci. 380(1-2), 47–68 (2007)

9. Dietzfelbinger, M., Woelfel, P.: Almost random graphs with simple hash functions.
In: Proc. 35th ACM Symp. on Theory of Computing (STOC). pp. 629–638. New
York, NY, USA (2003)

10. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient hash tables with
worst case constant access time. Theory Comput. Syst. 38(2), 229–248 (2005)

11. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing
with a stash. In: Proc. 16th ESA 2008. pp. 611–622. LNCS 5193, Springer (2008)

12. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing
with a stash. SIAM J. Comput. 39(4), 1543–1561 (2009)

13. Klassen, T.Q., Woelfel, P.: Independence of tabulation-based hash classes. In: Proc.
10th LATIN 2012. pp. 506–517. LNCS 7256, Springer (2012)

14. Kutzelnigg, R.: A further analysis of cuckoo hashing with a stash and random
graphs of excess r. Discr. Math. and Theoret. Comput. Sci. 12(3), 81–102 (2010)

15. Mitzenmacher, M., Vadhan, S.P.: Why simple hash functions work: exploiting the
entropy in a data stream. In: Proc. 19th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA). pp. 746–755 (2008)

5 A family H of hash functions with range R is 2-universal if for each pair x, y ∈ U ,
x 6= y, and h chosen at random from H we have Pr(h(x) = h(y)) ≤ 2/|R|.

12

16. Pagh, A., Pagh, R.: Uniform hashing in constant time and optimal space. SIAM

J. Comput. 38(1), 85–96 (2008)
17. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
18. Pǎtraşcu, M., Thorup, M.: The power of simple tabulation hashing. In: Proc. 43rd

ACM Symp. on Theory of Computing (STOC). pp. 1–10 (2011)
19. Siegel, A.: On universal classes of extremely random constant-time hash functions.

SIAM J. Comput. 33(3), 505–543 (2004)
20. Thorup, M., Zhang, Y.: Tabulation based 4-universal hashing with applications to

second moment estimation. In: Proc. 15th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA). pp. 615–624 (2004)

21. Thorup, M., Zhang, Y.: Tabulation based 5-universal hashing and linear probing.
In: Proc. 12th ALENEX. pp. 62–76. SIAM (2010)

22. Wegman, M.N., Carter, L.: New classes and applications of hash functions. In:
Proc. 20th Ann. Symp. on Foundations of Computer Science (FOCS). pp. 175–182.
IEEE Computer Society (1979)

23. Woelfel, P.: Asymmetric balanced allocation with simple hash functions. In: Proc.
17th ACM-SIAM Symp. on Discrete Algorithms (SODA). pp. 424–433 (2006)

A Excess, Stash Size, and Insertions

In this supplementary section, provided for the convenience of the reader, we
clarify the connection between stash size needed and the excess ex(G(S, h1, h2))
of the cuckoo graph G(S, h1, h2) as well as the role of insertion procedures. In
particular, we prove Lemma 1. The central statements of this section can also
be found in [12,14].

A.1 The Excess of a Graph

For G a graph, ζ(G) denotes the number of connected components of G. The
cyclomatic number γ(G), technically defined as “the dimension of the cycle space
of G”, can be characterized by the following basic formula [4]:

γ(G) = m− n+ ζ(G), (4)

for n the number of nodes and m the number of edges of G. Note that acyclic
graphs are characterized by the equation n = m+ζ(G) and hence by the equation
γ(G) = 0. Using (4), two helpful ways of viewing γ(G) are easy to prove.

Lemma 11. (a) If we remove edges from G sequentially, in an arbitrary order,
and the resulting graph is acyclic, then γ(G) is the number of cycle edges
removed.

(b) γ(G) is the minimum number of edges one has to remove from G such that
the resulting graph is acyclic.

Proof. Assume a subgraph G′ of G (with all n nodes) has m′ > 0 edges. If we
remove one edge e′ from G′ to obtain G′′, we have, using (4) twice:

γ(G′′) = (m′ − 1)− n+ ζ(G′′) = γ(G′)− (1− (ζ(G′′)− ζ(G′))).

We observe:

13

– If e′ is a cycle edge in G′, then ζ(G′′) = ζ(G′), and hence γ(G′′) = γ(G′)− 1.
– If e′ is not a cycle edge, then ζ(G′′) = ζ(G′) + 1, and hence γ(G′′) = γ(G′).

We prove (a): By what we just observed, to reduce the cyclomatic number from
γ(G) to 0 the number of rounds in which a cycle edge is removed must be γ(G).
Now we prove (b): Think of the edges as being removed sequentially. Again, by
our observation, in order to reduce the cyclomatic number from γ(G) to 0 by
removing as few edges as possible we should never remove an edge that is not
on a cycle. In this way we remove exactly γ(G) (cycle) edges. ⊓⊔

We have defined the excess ex(G) of a graph G as the minimum number of edges
one has to remove from G so that the remaining subgraph has only acyclic and
unicyclic components. In [14] the characterization of this quantity given next
was used as a definition; the same idea was used in [12] (without giving it a
name).

For G a graph, let ζcyc(G) denote the number of cyclic components of G.

Lemma 12. In all graphs G the equation ex(G) = γ(G)− ζcyc(G) is satisfied.

Proof. Assume G has n nodes and m edges.
“≤”: Starting with G, we iteratively remove cycle edges until each cyclic com-
ponent has only one cycle left. The number of edges removed is at least ex(G).
Call the resulting graph G′. Removing one cycle edge from each of the ζcyc(G)
cyclic components of G′ will yield an acyclic graph. Lemma 11(a) tells us that
together exactly γ(G) edges have been removed; hence γ(G) ≥ ex(G) + ζcyc(G).
“≥”: Choose a set E+ of ex(G) edges in G such that removing these edges leaves
a graph G′ with only acyclic and unicyclic components. Now imagine that the
edges in E+ are removed one by one in an arbitrary order. Let β denote the
number of edges in E+ that are on a cycle when removed; the other ex(G) − β
many were non-cycle edges when removed. Removing one cycle edge from each
cyclic component of G′ will leave an acyclic graph. Counting the number of
cycle edges we removed altogether, and applying Lemma 11(a) again, we see
that γ(G) = β + ζcyc(G

′). Since removing a non-cycle edge from a graph can
increase the number of cyclic components by at most 1, we have that ζcyc(G

′) ≤
ζcyc(G)+(ex(G)−β). Combining the inequalities yields γ(G) ≤ ζcyc(G)+ex(G).

⊓⊔

A.2 The Excess of the Cuckoo Graph and the Stash Size

The purpose of this section is to prove Lemma 1, which we recall here. We assume
that h1 and h2 are given, and write G(S) for G(S, h1, h2), for S ⊆ U .

Lemma 1 ([12]). The keys from S can be stored in the two tables and a stash
of size s using (h1, h2) if and only if ex(G(S)) ≤ s.

Proof. “⇒”: Assume T is a subset of S of size at most s such that all keys from
S′ = S − T can be stored in the two tables. Then all components of G(S′) must
be acyclic or unicyclic. (Assume C is a component with γ(C) > 1. Then by (4)

14

the number of edges (keys) in C would be strictly larger than the number of
nodes (table positions), which is impossible.) Since G(S′) is obtained from G(S)
by removing the edges (h1(x), h2(x)), x ∈ T , we get ex(G(S)) ≤ s.
“⇐”: Assume ex(G(S)) ≤ s. Choose a subset T of S of size ex(G(S)) such that
G(S−T) has only acyclic and unicyclic components. From what is known about
the behaviour of standard cuckoo hashing, we can store S′ = S − T in the
two tables using h1 and h2 (e. g., see [3, Sect. 4]). (This can even be proved
directly. If one of the nodes touched by an edge (h1(x), h2(x)), x ∈ S′, has
degree 1, we place x in the corresponding cell. Iterating this, we can place all
keys excepting those that belong to cycle edges. Since G(S′) has only acyclic and
unicyclic components, the cycle edges form isolated simple cycles, and clearly the
keys that belong to such a cycle can be placed in the corresponding cells.) By
assumption, the keys from T fit into the stash. ⊓⊔

A.3 The Insertion Procedure

We consider here the obvious generalization of the insertion procedure in stan-
dard cuckoo hashing [17]. It assumes that a procedure rehash is given that will
choose two new hash functions and insert all keys anew. The parameter maxloop
is used for avoiding infinite loops. (When using cuckoo hashing with a stash of
size s, one will choose maxloop = Θ((s+ 2) logn). For analysis purposes, larger
values of maxloop are considered as well.) Empty table cells contain nil. The
operation swap exchanges the contents of two variables.

Algorithm 1 (Insertion in a cuckoo table with a stash).

procedure stashInsert(x: key)
(1) nestless := x;
(2) i := 1;
(3) repeat maxloop times
(4) swap(nestless, Ti[hi(nestless)]);
(5) if nestless = nil then return;
(6) i := 3− i;
(7) if stash is not yet full
(8) then add nestless to stash
(9) else rehash.

As long as it is not finished, the procedure maintains a “nestless” key (in
nestless) and the current index i ∈ {1, 2} (in i) of the table where this key is
to be placed. When a new key x is to be inserted, it is declared “nestless” and i
is set to 1. As long as there is a nestless key x, but at most for maxloop rounds,
the following is iterated: Assume x is nestless and the current index is i. Then
x is placed in position hi(x) in table Ti. If this position is empty, the procedure
terminates; if it contains a key x′, that key gets evicted to make room for x, is
declared nestless, and i is changed to the other value 3− i. If the loop does not
terminate within maxloop rounds, the key that is currently nestless gets stored
in the stash. If this causes the stash to overflow, a rehash is carried out. (This

15

may be realized by collecting all keys from tables and stash as well as the nest-
less key, choosing a new pair (h1, h2) of hash functions, and calling the insertion
procedure for all keys.)

A.4 Complete Insertion Loops and the Excess

We first look at the behavior of certain variants of the insertion procedure (called
“complete”), which exhibit the following behavior when x is inserted: (i) if with
maxloop set to infinity the loop were to run forever, then this is noticed and at
some point the currently nestless key is put in the stash; (ii) otherwise the loop
is left to run until the nestless key is stored in an empty cell. It is not hard to
see (cf. [3]) that one obtains a complete variant from Algorithm 1 if one chooses
maxloop as some number larger than 2|S|+ 3.

Proposition 1 ([12,14]). If inserting the keys of S by some complete insertion
procedure places s keys in the stash, then s = ex(G(S)) = ex(G(S, h1, h2)).

Proof. “≥”: After the insertion is complete, all keys from S are stored in the
two tables and the stash. Lemma 1 implies that s ≥ ex(G(S)).
“≤”: For this, we use induction on the size of S. If S = ∅, excess and stash size
are both 0. Now assume as induction hypothesis that set S has been inserted,
that the set of keys placed in the stash is T , and that |T | = s ≤ ex(G(S)). Let
S′ = S − T . We insert a new key y from U − S.
Case 1: The insertion procedure finds that y can be accommodated without
using the stash.—The stash size remains s, and s ≤ ex(G(S)) ≤ ex(G(S ∪{y})).
Case 2: The complete insertion procedure notices that the loop were to run
forever and places some key in the stash.—By the properties of the complete
insertion loop for standard cuckoo hashing as explored in [3] we know that G(S′∪
{y}) must contain a connected component that is neither acyclic nor unicyclic.
Since ex(G(S′)) = 0, it must be edge (h1(x), h2(x)) that makes the difference.
This means that each endpoint of (h1(x), h2(x)) lies in some cyclic component of
ex(G(S′)). Now G(S′) is a subgraph of G(S), so the same is true in G(S). Recall
Lemma 12, and consider two cases when changing from S to S ∪ {y}: If the
endpoints of (h1(x), h2(x)) lie in two different cyclic components of G(S), then
the number of cyclic components decreases by 1, hence the excess increases by
1; if they lie in one and the same cyclic component, then the cyclomatic number
increases by 1, and the excess increases by 1 as well. In both cases we get that
s+ 1 ≤ ex(G(S)) + 1 = ex(G(S ∪ {y})). ⊓⊔

A.5 Standard Insertion

It turns out that by choosing maxloop = Θ((s+ 2) logn) in Algorithm 1 we can
make sure that with probability of O(1/ns+1) no rehash is necessary.6 Note that

6 If deletions are allowed, before calling rehash one should try whether any one of the
s keys presently stored in the stash can be inserted into the tables by the insertion
procedure. We ignore deletions here.

16

if the stash has size 0, then Algorithm 1 is exactly the insertion procedure of
standard cuckoo hashing from [17]. The following claim and proof are similar to
what has to be done in the analysis of standard cuckoo hashing.

Proposition 2. Assume the hash functions (h∗
1, h

∗
2) are fully random, and the

keys from S are inserted sequentially into a cuckoo table with a stash of size s,
using Algorithm 1. If we choose maxloop = α(s+2) logn for a suitable constant
α > 0, then we have:

Pr(the stash of size s overflows) = O(1/ns+1).

Sketch of proof. Theorem 1 tells us that the probability that a stash of size s
is not sufficient because the excess of G(S, h∗

1, h
∗
2) is too large is O(1/ns+1). All

we have to show is that the probability is also this small that an extra key slips
into the stash because the insertion loop was stopped by the step counter hitting
maxloop. Let S = {x1, . . . , xn}, with the keys listed in the order in which they are
inserted, and let Sj = {x1, . . . , xj}. For 1 ≤ j ≤ n and some bound p consider the
event that the insertion procedure for xj needs p or more rounds. One can show
(this was done in [17] with a different terminology) that then G(Sj) must contain
a path u0, u1, . . . , ut, ut+1, with t = ⌈p/3⌉, where u0 is the node corresponding
to Ti[hi(xj)], for i = 1 or i = 2, and u0, . . . , ut are distinct nodes. Viewing the
situation in terms of edges this means that there must be some T ⊆ Sj−1 of size
t = ⌈p/3⌉ such that the edges (h1(x), h2(x)), with x ∈ T , in some order, form
such a path. The latter event we call AT . We have Pr(AT) ≤ t! · 2/mt. The
number of sets T to consider is

(

j−1
t

)

<
(

n
t

)

. Thus,

Pr(∃T ⊆ Sj−1 : |T | = t ∧ AT) ≤
(

n

t

)

t! · 2

mt
<

2

(1 + ε)t
. (5)

If the insertion of xj increases the stash size although ex(G(Sj)) = ex(G(Sj−1)),
then this insertion must make p = maxloop steps. By (5), the probability of
this to happen is smaller than 2/(1 + ε)⌈maxloop/3⌉. So, if we choose maxloop =
3(s+2) log1+ε n (i. e., α = 3/ log(1+ε) = Θ(1/ε)), this probability will be smaller
than 1/ns+2. Summing over all j we obtain the bound O(1/ns+1). ⊓⊔

Proposition 3. Assume the hash functions (h∗
1, h

∗
2) are fully random, the keys

from S are stored in a cuckoo table with a stash of size s, and a new key y is
inserted by Algorithm 1, with maxloop ≥ α(s+2) logn for α as in Proposition 2.
Then the expected number of steps needed for this insertion is O(1).

Sketch of proof. Let the random variable Z denote the number of rounds needed
for this insertion. We ignore the cost of a rehash. (The contribution of this rare
event to the overall insertion time is O(1/ns). A discussion of the case s = 0 can
be found in [9].) Then E(Z) ≤ ∑

p≥1 Pr(at least p rounds are needed to store y),
and hence, using (5) and arguing as in [17],

E(Z) ≤
∑

p≥1

Pr(∃T : |T | = ⌈p/3⌉ ∧ AT) ≤
∑

p≥1

2

(1 + ε)⌈p/3⌉
= O(1). ⊓⊔

17

Of course, the last two propositions are formulated for fully random hash func-
tions. Using the techniques developed for the proof of Theorem 1 one can show
that they are valid for hash functions from Z2k,c

ℓ,m as well, for the parameter
choices as in that theorem. The only difference is that instead of the graph prop-
erty LL one has to use the graph property “connected” in a way explored in
detail in [9].

B Proof of a Claim

We prove the following claim, stated and used in the proof of Lemma 7.

Claim. Every leafless connected graph with i marked edges has a leafless con-
nected subgraph with cyclomatic number ≤ i+1 that contains all marked edges.

Proof. Let G = (V,E) be a leafless connected graph. If γ(G) ≤ i + 1, there is
nothing to prove. Thus assume γ(G) ≥ i+2. Choose an arbitrary spanning tree
(V,E0) of G.

There are two types of edges in G: bridge edges and cycle edges. A bridge
edge is an edge whose deletion disconnects the graph, cycle edges are those whose
deletion does not disconnect the graph.

Clearly, all bridge edges are in E0. Let Emb ⊆ E0 denote the set of marked
bridge edges. Removing the edges of Emb from G will split V into |Emb| + 1
connected components V1, . . . , V|Emb|+1; removing the edges of Emb from the
spanning tree (V,E0) will give exactly the same components. For each cyclic
component Vj we choose one edge ej /∈ E0 that connects two nodes in Vj . The
set of these |Emb|+1 edges is called E1. Now each marked bridge edge lies on a
path connecting two cycles in (V,E0 ∪ E1).

Recall from graph theory [4] the notion of a fundamental cycle: Clearly, each
edge e ∈ E − E0 closes a unique cycle with E0. The cycles thus obtained are
called the fundamental cycles of G w. r. t. the spanning tree (V,E0). Each cycle
in G can be obtained as an XOR-combination of fundamental cycles. (This is
just another formulation of the standard fact that the fundamental cycles form
a basis of the “cycle space” of G, see [4].) From this it is immediate that every
cycle edge of G lies on some fundamental cycle. Now we associate an edge e′ /∈ E0

with each marked cycle edge e ∈ Emc. Given e, let e′ /∈ E0 be such that e is on
the fundamental cycle of e′. Let E2 be the set of all edges e′ chosen in this way.
Clearly, each e ∈ Emc is a cycle edge in (V,E0 ∪ E2).

Now let G′ = (V,E0∪E1∪E2). Note that |E1∪E2| ≤ (|Emb|+1)+|Emc| ≤ i+1
and thus γ(G′) ≤ i+ 1. In G′, each marked edge is on a cycle or on a path that
connects two cycles. If we iteratively remove leaf edges from G′ until no leaf is
left, none of the marked edges will be affected. In this way we obtain the desired
leafless subgraph G∗ with γ(G∗) = γ(G′) ≤ i+ 1. ⊓⊔

18

	Explicit and Efficient Hash Families Suffice for Cuckoo Hashing with a Stash

