
Polynomial-Time Algorithms for Energy Games with Special
Weight Structures∗

Krishnendu Chatterjee† Monika Henzinger‡ Sebastian Krinninger‡

Danupon Nanongkai§

Abstract

Energy games belong to a class of turn-based two-player infinite-duration games
played on a weighted directed graph. It is one of the rare and intriguing combinatorial
problems that lie in NP ∩ co-NP, but are not known to be in P. The existence of
polynomial-time algorithms has been a major open problem for decades and apart from
pseudopolynomial algorithms there is no algorithm that solves any non-trivial subclass
in polynomial time.

In this paper, we give several results based on the weight structures of the graph.
First, we identify a notion of penalty and present a polynomial-time algorithm when the
penalty is large. Our algorithm is the first polynomial-time algorithm on a large class of
weighted graphs. It includes several worst-case instances on which previous algorithms,
such as value iteration and random facet algorithms, require at least sub-exponential
time. Our main technique is developing the first non-trivial approximation algorithm
and showing how to convert it to an exact algorithm. Moreover, we show that in a
practical case in verification where weights are clustered around a constant number of
values, the energy game problem can be solved in polynomial time. We also show that
the problem is still as hard as in general when the clique-width is bounded or the graph
is strongly ergodic, suggesting that restricting the graph structure does not necessarily
help.

∗This paper appeared in the ESA 2012 special issue of Algorithmica [CHK+14]. A preliminary version
was presented at the 20th Annual European Symposium on Algorithms (ESA 2012).
†Institute of Science and Technology, Klosterneuburg, Austria. Supported by the Austrian Science Fund

(FWF): P23499-N23, the Austrian Science Fund (FWF): S11407-N23 (RiSE), an ERC Start Grant (279307:
Graph Games), and a Microsoft Faculty Fellows Award.
‡University of Vienna, Faculty of Computer Science, Vienna, Austria. Supported by the Austrian Sci-

ence Fund (FWF): P23499-N23, the Vienna Science and Technology Fund (WWTF) grant ICT10-002, the
University of Vienna (IK I049-N), and a Google Faculty Research Award.
§Nanyang Technological University, Singapore, Singapore. Work partially done while at University of

Vienna, Austria.

1

ar
X

iv
:1

60
4.

08
23

4v
2

 [
cs

.D
S]

 2
9

A
pr

 2
01

6

Contents
1 Introduction 3

2 Preliminaries 7

3 Value Iteration Algorithm with Admissible List 10
3.1 Proof of Proposition 3.1 . 11
3.2 Proofs of Corollary 3.2 and Theorem 1.3 . 15

4 Approximating Minimal Energies for Large Penalties 17
4.1 Proof of the First Inequality of Proposition 4.1 19
4.2 Proof of the Second Inequality of Proposition 4.1 20

5 Exact Solution by Approximation 22
5.1 Auxiliary Lemma Needed for Proving Lemma 5.1 24
5.2 Full Proof of Lemma 5.1 . 25

6 Hardness on Complete Bipartite Graphs 27
6.1 Proof Ideas of Theorem 6.2 . 29
6.2 Properties of Complete Bipartite Graphs . 29
6.3 Reduction to Graphs Where One Player Wins Everywhere 31
6.4 Reduction to Complete Bipartite Graphs . 33

6.4.1 Part 1: Reduction to Bipartite Graphs 33
6.4.2 Part 2: Reduction to Complete Bipartite Graphs 34

7 Conclusion 35

References 35

2

1 Introduction
Consider a coffee shop A having a budget of e competing with its rival B across the street
who has an unlimited budget. Each competitor can set the price of a cup of coffee between
1 cent and 10 euros (as an integer cent amount). Coffee shop B can observe the price of a
cup of coffee at A, say p0, and responds with a price p1, causing A a loss of w(p0, p1), which
could potentially put A out of business. If A manages to survive, then it can respond to B
with a price p2, gaining itself a profit of w(p1, p2). Then B will try to put A out of business
again with a price p3. How much initial budget e does A need in order to guarantee that its
business will survive forever? This is a simple example of a perfect-information turn-based
infinite-duration game called an energy game, defined as follows.

In an energy game, there are two players, Alice and Bob, playing a game on a finite
directed graph G = (V,E) with weight function w : E → Z. Each node in G belongs to
either Alice or Bob. The game starts by placing an imaginary car on a specified starting
node v0 with an initial energy e0 ∈ Z≥0∪{∞} in the car (where Z≥0 = {0, 1, . . .}). The game
is played in rounds: at any round i > 0, if the car is at node vi−1 and has energy ei−1, then
the owner of vi−1 moves the car from vi−1 to a node vi along an edge (vi−1, vi) ∈ E. The
energy of the car is then updated to ei = ei−1 + w(vi−1, vi). The goal of Alice is to sustain
the energy of the car while Bob will try to make Alice fail. That is, we say that Alice wins
the game if the energy of the car is never below zero, i.e. ei ≥ 0 for all i; otherwise, Bob wins.
The problem of computing the minimal sufficient energy is to compute the minimal initial
energy e0 such that Alice wins the game. (Note that such e0 always exists since it could be
∞ in the worst case.) Figure 1 shows an example run of an energy game. The important
parameters in terms of running time are the number n of nodes in the graph, the number
m of edges in the graph, and the weight parameter W defined as W = max(u,v)∈E |w(u, v)|.

7 2

4

-2

3

-8

0

(a)

7 2

4

-2

3

-8

2

(b)

7 2

4

-2

3

-8

-6

(c)

Figure 1: An example of an energy game. The round node belongs to Alice and the
rectangular nodes belong to Bob. The current energy level of the car is written in the box
at the bottom. The game starts at the bottom node, which belongs to Alice, with the initial
energy level 0 (a). Alice chooses to move the car to the upper right node using the edge of
weight 2. Afterwards the car has energy 2 and is located on Bob’s node (b). Bob chooses
to move the car to the bottom node using the edge of weight −8. This decreases the energy
of the car to −6 (c). At this point Alice has lost the game because the energy of the car is
negative.

3

Related Work. Energy games belong to an intriguing family of infinite-duration turn-
based games which includes alternating games [RBK+10], and has applications in areas
such as computer-aided verification and automata theory [CAH+03, BCH+09, CCH+11],
as well as in online and streaming problems [ZP96]. Energy games are polynomial-time
equivalent to mean-payoff games [BFL+08]. Furthermore there are polynomial-time re-
ductions from parity games to energy games [Jur98] and from energy games to simple
stochastic games [Con92, ZP96].1 These games are among the rare combinatorial problems,
along with Graph Isomorphism, that are unlikely to be NP-complete (since they are in
UP∩ co-UP ⊆ NP∩ co-NP [EM79, GKK90, ZP96, Jur98]) but not known to be in P. It is a
major open problem whether any of these games are in P or not. While the energy game
is relatively new and interesting in its own right, it has been implicitly studied since the
late 80s, due to its close connection with the mean-payoff game. In particular, the seminal
paper by Gurvich et al. [GKK90] presents a simplex-like algorithm for mean-payoff games
which computes a “potential function” that is essentially the energy function.2

The algorithm of Gurvich et al. [GKK90] was shown to be pseudopolynomial by Pis-
aruk [Pis99]. Another pseudopolynomial algorithm was given by Zwick and Paterson [ZP96].
Björklund and Vorobyov [BV07] developed an algorithm for mean-payoff games that be-
sides being pseudopolynomial has a randomized strongly subexponential running time of
2O(
√
n logn) logW . Lifshits and Pavlov [LP07] described an exponential algorithm for mean-

payoff games. Recently, Brim et al. [BCD+11] gave an algorithm for energy games that is
faster than previous deterministic pseudopolynomial algorithms and runs in time O(mnW).
It yields the current fastest pseudopolynomial complexity for energy games as well as mean-
payoff games. To the best of our knowledge only two special cases of energy or mean-payoff
games are known to admit a polynomial-time algorithm. The first special case is where all
nodes belong to one player and for example can be solved with Karp’s minimum cycle mean
algorithm [Kar78]. The second special case is when W is polynomial in the input size and
thus pseudopolynomial algorithms actually run in polynomial time.

Infinite-duration turn-based games also have strong connections to (mixed) Nash equi-
librium computation [DP11] and Linear Programming [Vor08]. For example, they are in a
low complexity class lying very close to P called CCLS [DP11] which is in PPAD ∩ PLS.
This implies that, unlike many problems in Game Theory, these games are unlikely to
be PPAD-complete. Moreover, as shown by Halman [Hal07], all these games are LP-type
problems [SW92], a concept that generalizes linear programming. Therefore the random
facet algorithm [Kal92, Kal97, MSW96], a simplex-algorithm with a certain randomized
pivoting rule, can be used to solve them in randomized subexponential time3. This relates
infinite-duration turn-based games to the question whether there exists a pivoting rule for
the simplex algorithm that requires a polynomial number of pivoting steps on any linear
program, which is perhaps one of the most important problems in the field of linear pro-
gramming. In fact, several randomized pivoting rules have been conjectured to solve linear

1Both reductions were originally shown for mean-payoff games.
2More precisely, the auxiliary algorithm of Gurvich et al. [GKK90] solves a decision version of mean-payoff

games. It has to output, for every node v, whether the mean-payoff at v is at least zero or not. If it is, the
potential of v computed by this algorithm is equal to what we call the minimal sufficient energy of v. If not,
we know that the minimal sufficient energy of v is ∞.

3The randomized subexponential algorithm of Björklund and Vorobyov [BV07] uses the same random-
ization scheme as the random facet algorithm.

4

LP-Type Problems

Simple Stochastic
Games

Linear
Programming

Energy
Games

Mean-payoff
Games

Markov Decision
Processes

Parity
Games

∈ P
∈ P?

∈ NP ∩ coNP
∈ PPAD ∩ PLS

Figure 2: The complexity status of energy games and related problems. Arrows indicate
polynomial-time reductions.

programs in polynomial time until recent breakthrough results [FHZ11b, Fri11, FHZ11a]
have rejected these conjectures. As noted by Friedmann et al. [FHZ11b], infinite-duration
turn-based games played an important role in this breakthrough as the lower bounds were
first developed for these games and later extended to linear programs via Markov Deci-
sion Processes. Figure 2 summarizes the complexity status of energy games and related
problems.

Our Contributions. In this paper we identify several classes of graphs (based on weight
structures) for which energy games can be solved in polynomial time. For any starting node
s, let e∗G,w(s) denote the minimal sufficient energy. Our first contribution is an algorithm
whose running time is based on a parameter called penalty. Informally, a penalty4 of D
means that Bob has a way to play optimally such that, for all choices of Alice, one of the
following two situations occurs. (1) Alice wins the game for some finite initial energy. (2)
Alice loses the game even if an additional energy of D would be added to the car in every
turn. We denote the penalty of the graph (G,w) by P (G,w). We show that the higher the
penalty is, the faster we can compute the minimal energies.

Theorem 1.1. Given a graph (G,w) and an integer M we can compute the minimal initial
energies of all nodes in

O

(
mn

(
log M

n

)(
log M

ndP (G,w)e

)
+m

M

dP (G,w)e

)
time, provided that for all v, e∗G,w(v) <∞ implies that e∗G,w(v) ≤M .

We note that in addition to (G,w), our algorithm takesM as an input. IfM is unknown,
we can simply use the universal upper boundM = nW [BCD+11]. Allowing different values
of M will be useful in our proofs. We emphasize that the algorithm can run without

4We formally define the concept of penalty in Section 2.

5

knowing P (G,w). Our algorithm is as efficient as the fastest known pseudopolynomial-time
(O(mnW)-time) algorithm [BCD+11] in the general case where M = nW and P (G,w) =
1/n (so dP (G,w)e = 1).

If the penalty is at least W/poly(n), our algorithm runs in polynomial time. Therefore,
the algorithm also solves several classes of graphs that are previously not known to be
solvable in polynomial time. As an illustration, consider the class of graphs where each
cycle has total weight either positive or less than −W/2. In this case, our algorithm runs
in polynomial time. All known worst-case instances [GKK90, BV01, ZP96, FHZ11a] of
previous algorithms fall in this class of graphs. In particular, we observe that, for this class
of graphs, the following algorithms need at least subexponential time (while our algorithm
runs in polynomial time): the algorithm by Gurvich et al. [GKK90], the algorithm by
Brim et al. [BCD+11], the algorithm by Zwick and Paterson [ZP96] and the random facet
algorithm by Matoušek et al. [MSW96] (the latter two algorithms are used for the decision
versions of mean-payoff and parity games, respectively).5

Our result might also be of a practical interest since it solves energy games faster when
penalties are high while it runs with the same running time as previous pseudopolynomial-
time algorithms [BCD+11] in the worst case.

Our second contribution is an algorithm that approximates the minimal energy within
some additive error where the size of the error depends on the penalty. This result is the
main tool in proving Theorem 5.1 where we show how to use the approximation algorithm
to compute the minimal energy exactly.

Theorem 1.2. Given a graph (G,w) with P (G,w) ≥ 1, an integer M , and an integer c
such that n ≤ c ≤ nP (G,w), we can compute an energy function e such that

e(v) ≤ e∗G,w(v) ≤ e(v) + c

for every node v in O(mnM/c) time, provided that for every node v, e∗G,w(v) < ∞ implies
that e∗G,w(v) ≤M .

The main technique in proving Theorem 1.2 is rounding weights appropriately. We note
that a similar idea of approximation has been explored earlier in the case of mean-payoff
games [BEF+11]. Roth et al. [RBK+10] show an additive FPTAS for rational weights in
[−1, 1]. This implies an additive error of εW for any ε > 0 in our setting. This does not help
in general since the error depends onW . Boros et al. [BEF+11] later achieved amultiplicative
error of (1 + ε). This result holds, however, only when the edge weights are non-negative
integers. In fact, it is shown that if one can approximate the mean-payoff within a small
multiplicative error in the general case, then the exact mean-payoff can be found [Gen14].
Despite several results for mean-payoff games, there is currently no approximation algorithm

5A worst-case instance for the first two algorithms has been developed by Lebedev and is mentioned by
Gurvich et al. [GKK90] and shown by Beffara and Vorobyov [BV01] (for the second algorithm, we exploit
the fact that it is deterministic and there exists a bad ordering in which the nodes are processed). Worst-
case instances for the third and the fourth algorithm have been given by Zwick and Paterson [ZP96] and
Friedmann et al. [FHZ11a], respectively. We note that the instances shown by Beffara and Vorobyov [BV01]
and Friedmann et al. [FHZ11a] contain one cycle of small negative weight. One can change the value of this
cycle to −W to make these examples belong to the desired class of graphs without changing the worst-case
behaviors of the mentioned algorithms.

6

for general energy games. Our algorithm is the first non-trivial approximation algorithm
for the energy game.

Our third contribution is a variant of theValue Iteration Algorithm by Brim et al. [BCD+11]
which runs faster in many cases. The running time of the algorithm depends on a concept
that we call admissible list (defined in Section 3) which uses the weight structure. One con-
sequence of this result is used to prove Theorem 1.2. The other consequence is an algorithm
for what we call the fixed-window case.

Theorem 1.3. If there are d values w1, . . . , wd and a window size δ such that for every
edge (u, v) ∈ G we have w(u, v) ∈ {wi− δ, . . . , wi + δ} for some 1 ≤ i ≤ d, then the minimal
energies can be computed in O(mδnd+1) time.

The fixed-window case, besides its theoretical attractiveness, is also interesting from a
practical point of view. Energy and mean-payoff games have many applications in the area of
verification, mainly in the synthesis of reactive systems with resource constraints [BCH+09]
and performance aware program synthesis [CCH+11]. In most applications related to synthe-
sis, the resource consumption is through only a few common operations, and each operation
depending on the current state of the system consumes a related amount of resources. In
other words, in these applications there are d groups of weights (one for each operation)
where in each group the weights differ by at most δ (i.e, δ denotes the small variation in
resource consumption for an operation depending on the current state), and d and δ are
typically constant. Theorem 1.3 implies a polynomial-time algorithm for this case.

We also show that the energy game problem is still as hard as the general case even
when the clique-width is bounded or the graph is strongly ergodic (see Section 6). This
suggests that restricting the graph structures might not help in solving the problem, which
is in sharp contrast to the fact that parity games can be solved in polynomial time in these
cases [Obd07, Leb05].

Theorem 1.4. The energy game problem on arbitrary graphs is polynomial-time equivalent
to the energy game problem on graphs that have bounded clique-width as well as to the energy
game problem on graphs that are strongly ergodic.

2 Preliminaries
Figure 3 summarizes the notation introduced in this section.

Energy Games. An energy game is played by two players, Alice and Bob. Its input
instance consists of a finite weighted directed graph (G,w) where all nodes have out-degree
at least one6. The set of nodes V is partitioned into VA and VB, which belong to Alice and
Bob respectively, and every edge (u, v) ∈ E has an integer weight w(u, v) ∈ {−W, . . . ,W}.
It can be assumed without loss of generality that there are no self-loops.7 Additionally, we
are given a node s and an initial energy e0. To formally define energy games, we need the

6(G,w) is usually called a “game graph” in the literature. We will simply say “graph”.
7If some node v has a self-loop (v, v) of weight w(v, v), we can replace the self-loop as follows: we add an

artificial node v′ and two edges (v, v′) and (v′, v). The edges (v, v′) and (v′, v) both get the weight w(v, v).
This does not change the energy values nor the average weight of any cycle.

7

G = (V,E) Directed graph with nodes V and edges E in which
every node has out-degree ≥ 1

VA (VB) Set of nodes controlled by Alice (Bob). VA ∪ VB = V
and VA ∩ VB = ∅

n Number of nodes in G, i.e., n = |V |
m Number of edges in G, i.e., m = |E|
w(u, v) Weight of edge (u, v)
w(P) Total weight of a finite path P , sum of all edge weights

on P
W Maximum absolute edge weight, W =

max(u,v)∈E |w(u, v)|
e∗G,w(v) Minimal energy at node v in weighted graph (G,w)
P (G,w) Penalty of weighted graph (G,w)
σ (τ) A strategy of Alice (Bob), i.e., a function that maps

every node u ∈ VA (u ∈ VB) to a neighboring node v
such that (u, v) ∈ E

(σ, τ) A pair of strategies where σ is a strategy of Alice and
τ is a strategy of Bob

σ∗ (τ∗) An optimal strategy of Alice (Bob)
G(σ, τ) Restriction of G to pair of strategies (σ, τ)

Figure 3: Overview of notation defined in Section 2

notion of strategies. While general strategies can depend on the history of the game, it has
been shown that we can assume that if a player wins a game, a positional strategy suffices
to win [CAH+03, BFL+08].8 Therefore we only consider positional strategies. A positional
strategy σ of Alice is a mapping from each node in VA to one of its out-neighbors, i.e., for
any u ∈ VA, σ(u) = v for some (u, v) ∈ E. This means that Alice sends the car to v every
time it is at u. We define a positional strategy τ of Bob similarly. We simply use “strategy”
instead of “positional strategy” in the rest of the paper.

A pair of strategies (σ, τ) consists of a strategy σ of Alice and τ of Bob. For any pair of
strategies (σ, τ), we define G(σ, τ) to be the subgraph of G having only edges corresponding
to the strategies σ and τ ; i.e.,

G(σ, τ) = (V,E′) where E′ = {(u, σ(u)) | u ∈ VA} ∪ {(u, τ(u)) | u ∈ VB}.

In G(σ, τ) every node has a unique out-edge.
Now, consider an energy game played by Alice and Bob starting at node s with initial

energy e0 using strategies σ and τ , respectively. We use G(σ, τ) to determine who wins
the game as follows. For any i, let Pi be the (unique) directed path of length i in G(σ, τ)
originating at s. Observe that Pi is exactly the path that the car will be moved along for
i rounds, and the energy of the car after i rounds is ei = e0 + w(Pi) where w(Pi) is the

8Positional strategies are both pure and memoryless, i.e., they are deterministic and do not depend on
the history of the game. The existence of optimal positional strategies in energy games follows immediately
from the existence of optimal positional strategies in mean-payoff games [EM79] and the reduction of energy
games to mean-payoff games [BFL+08].

8

7 2

4

-8

Figure 4: The graph of this picture is the modification of the graph in Figure 1 where we
have fixed Bob’s optimal strategy. The round node belongs to Alice and the rectangular
nodes belong to Bob. Alice has two strategies at the bottom node. If she chooses to go left,
then the car runs into a cycle of total weight 3 and average weight 1. If she goes right, the
car runs into a cycle of total weight −6 and average weight −3. Therefore the graph has
penalty 3.

sum of the edge weights in Pi. We say that Bob wins the game if there exists i such that
e0 + w(Pi) < 0 and Alice wins otherwise. Equivalently, we can determine who wins as
follows. Let C be the (unique) cycle reachable by s in G(σ, τ), and let w(C) be the sum of
the edge weights in C. If w(C) < 0, then Bob wins; otherwise, Bob wins if and only if there
exists a simple path Pi of some length i such that e0 + w(Pi) < 0.

This leads to the following definition of the minimal sufficient energy at node s corre-
sponding to strategies σ and τ , denoted by e∗G(σ,τ),w(s): If w(C) < 0, then e∗G(σ,τ),w(s) =∞;
otherwise, e∗G(σ,τ),w(s) = max{0,−minw(Pi)} where the minimization is over all simple
paths Pi in G(σ, τ) originating at s. We then define the minimal sufficient energy at node
s to be

e∗G,w(s) = min
σ

max
τ

e∗G(σ,τ),w(s) (1)

where the minimization and the maximization are over all positional strategies σ of Alice and
τ of Bob, respectively. We note that it follows from Martin’s determinacy theorem [Mar75]
that minσ maxτ e∗G(σ,τ),w(s) = maxτ minσ e∗G(σ,τ),w(s), and thus it does not matter which
player picks the strategy first. We say that a strategy σ∗ of Alice is an optimal strategy if
for any strategy τ of Bob, e∗G(σ∗,τ),w(s) ≤ e∗G,w(s). Similarly, τ∗ is an optimal strategy of
Bob if for any strategy σ of Alice, e∗G(σ,τ∗),w(s) ≥ e∗G,w(s).

We call any e : V → Z≥0 ∪ {∞} an energy function. We call e∗G,w in Eq. (1) a minimal
sufficient energy function or simply a minimal energy function. By this definition the min-
imal energy function is unique. If e(s) ≥ e∗G,w(s) for all s, then we say that e is a sufficient
energy function. The goal of the energy game problem is to compute e∗G,w.

We say that a natural number M is an upper bound on the finite minimal energy if for
every node v either e∗G,w(v) = ∞ or e∗G,w(v) ≤ M . This means that every finite minimal
energy is bounded from above by M . A universal upper bound is M = nW [BCD+11].

Penalty. Let (G,w) be a weighted graph. For any node s and realD ≥ 0, we say that s has
a penalty of at least D if there exists an optimal strategy τ∗ of Bob such that for any strategy
σ of Alice, the following condition holds for the (unique) cycle C reachable by s in G(σ, τ∗):
if w(C) < 0, then the average weight on C is at most −D, i.e.

∑
(u,v)∈C w(u, v)/|C| ≤ −D.

See Figure 4 for an example.
Intuitively, this means that either Alice wins the game using a finite initial energy, or

she loses significantly, i.e., even if she would constantly receive an extra energy of a little

9

less than D per round, she still needs an infinite initial energy in order to win the game. We
note that

∑
(u,v)∈C w(u, v)/|C| is known in the literature as the mean-payoff of s when Alice

and Bob play according to σ and τ∗, respectively. Thus, the condition above is equivalent to
saying that either the mean-payoff of s (when (σ, τ∗) is played) is non-negative or otherwise
it is at most −D.

We define the penalty of s, denoted by PG,w(s), as the supremum9 of all D such that
s has a penalty of at least D. We say that the graph (G,w) has a penalty of at least D if
every node s has a penalty of at least D, and define P (G,w) = mins∈G PG,w(s). Note that
for any graph (G,w), P (G,w) ≥ 1/n since for any cycle C,

∑
(u,v)∈C w(u, v)/|C| is either

non-negative or at most −1/n.

3 Value Iteration Algorithm with Admissible List
In this section we present a variant of the Value Iteration Algorithm for computing the
minimal energies of Brim et al. [BCD+11]. In addition to the graph (G,w), our algorithm
uses one more parameter A which is a sorted list containing all possible minimal energy
values. That is, the algorithm is promised that e∗G,w(v) ∈ A for every node v. We call
any sorted list A such that e∗G,w(v) ∈ A for every node v an admissible list. We show the
following proposition.

Proposition 3.1. There is an algorithm that, given a (sorted) admissible list A, computes
the minimal energies of all nodes in (G,w) in O(m|A|) time.

In general, the simplest choice of an admissible list is A = {0, 1, . . . , nW,∞}. In this
case the algorithm works like the current fastest pseudopolynomial algorithm by Brim et
al. [BCD+11] and has a running time of O(mnW). However, for some natural cases, we
can give smaller admissible lists. Our first example are graphs where every edge weight is
a multiple of an integer B > 0, as shown in the following corollary. This corollary will be
used later in this paper.

Corollary 3.2. Let (G,w) be a graph for which there is an integer B > 0 such that the
weight of every edge (u, v) ∈ G is of the form w(u, v) = iB for some integer i, and M
is an upper bound on the finite minimal energy (i.e., for any node v, if e∗G,w(v) < ∞,
then e∗G,w(v) ≤ M). There is an admissible list of size O(M/B) which can be computed in
O(M/B) time. Thus there is an algorithm that computes the minimal energies of (G,w) in
O(mM/B) time.

Our second example are graphs in which we have a (small) set of values {w1, . . . , wd}
of size d and a window size δ such that every weight lies in {wi − δ, . . . , wi + δ} for one of
the values wi. This is exactly the situation described in Theorem 1.3. Since we prove this
theorem in this section, we restate it here.

Theorem 3.3 (Restated). If there are d values w1, . . . , wd and a window size δ such that
for every edge (u, v) ∈ G we have w(u, v) ∈ {wi − δ, . . . , wi + δ} for some 1 ≤ i ≤ d, then
the minimal energies can be computed in O(mδnd+1) time.

9We need to take the supremum here to include the case that s has penalty of at least D for every real
D. In this case, PG,w(s) =∞ (PG,w(s) will not be well-defined if we use maximum instead of supremum).

10

As noted in Section 1, in some applications d is a constant and δ is polynomial in n. In
this case Theorem 1.3 implies a polynomial-time algorithm.

In the rest of this section we first give a proof of Proposition 3.1 (cf. Section 3.1). We
subsequently use it to prove Corollary 3.2, and Theorem 1.3 (cf. Section 3.2). In both cases,
we first highlight the main ideas before giving the full proofs.

3.1 Proof of Proposition 3.1

In the following we describe the modified value iteration algorithm for computing minimal
energies and prove its correctness and running time as stated in Proposition 3.1. The value
iteration algorithm relies on the following characterization of the minimal energy.

Lemma 3.3 (Minimal Energy Characterization [BCD+11]). An energy function e is the
minimal energy function of a weighted graph (G,w) if and only if it fulfills the following
three conditions:

1. For every node u ∈ VA, e(u) + w(u, v) ≥ e(v) for some edge (u, v) ∈ E.

2. For every node u ∈ VB, e(u) + w(u, v) ≥ e(v) for every edge (u, v) ∈ E.

3. For every energy function e′ that fulfills conditions 1 and 2 we have e(v) ≤ e′(v) for
every node v ∈ V .

Note that the first two conditions of this lemma are trivially satisfied for a node u if we
set e(u) = ∞. An intuitive interpretation of the first two conditions is this: Consider any
node u of Alice. If we believe that e(v) is sufficient for all neighbors v of u, then e(u) should
be sufficient if, when the car has energy e(u) at u, she can move the car to some neighboring
node v to make sure that the energy of the car is still sufficient, i.e., e(u) + w(u, v) ≥ e(v).
Similarly, if u is Bob’s node and we believe that e(v) is sufficient for all neighbors v of u,
then e(u) should be sufficient if, when the car has energy e(u) at u, it can be guaranteed that
the energy is still sufficient for any neighbor v the car is moved to, i.e., e(u)+w(u, v) ≥ e(v)
for all v.

The first two conditions give a sufficient condition for an energy function to be sufficient.
It can be shown that these conditions are not necessary (i.e., some sufficient energy functions
do not satisfy these conditions). However, an interesting property of these conditions is
that it is necessary for an energy to be minimal. Since there could be non-minimal energy
functions that satisfy the first two conditions, we have to add the third condition: at all
nodes, the minimal energy function has to be smaller than all other functions that satisfy
the first two conditions. All three conditions together characterize the (unique) minimal
energy function.

We will first give a general algorithm based on value iteration, called Algorithm 1,
in which nodes are “updated” in an arbitrary order. We will prove the correctness of
this algorithm. Then we will present a second, faster algorithm, called Algorithm 2, that
processes the nodes in a specific order and that uses a simple data structure. We will argue
that this algorithm gives the desired running time.

The basic idea of Algorithm 1 is as follows. The algorithm starts with an energy function
e(v) = minA for every node v and keeps increasing e slightly in an attempt to satisfy the
first two conditions in Lemma 3.3. That is, as long as these conditions are not fulfilled for

11

some node u, it increases e(u) to the next value in A, which could also be∞. This updating
process is repeated until e satisfies the conditions (which will eventually happen at least
when all e(u) become ∞). This updating process of the algorithm is the same as in the
algorithm of Brim et al. except that e(u) always increases to the next value in A and not
only to the value given by Lemma 3.3.

Correctness. Algorithm 1 shows a simplified version of the algorithm. We adapt the
correctness proof of Brim et al. [BCD+11] to our notation. It turns out that our modification
of the algorithm using a list of admissible values does not disturb the overall correctness
argument.

Algorithm 1: Modified value iteration algorithm
Input: A weighted graph (G,w), a sorted list A of admissible values for the minimal

energies
Output: The minimal energy of (G,w)

1 e(u)← minA for every u ∈ V // Initialization
// Repeat as long as some node u violates the first two conditions of

Lemma 3.3
2 while there is a node u ∈ V such that u ∈ VA and

(u ∈ VA and ∀(u, v) ∈ E : e(u) + w(u, v) < e(v)) or
(u ∈ VB and ∃(u, v) ∈ E : e(u) + w(u, v) < e(v)) do

// Update e(u)
3 if u ∈ VA then
4 e(u)← min(u,v)∈E(e(v)− w(u, v))
5 else if u ∈ VB then
6 e(u)← max(u,v)∈E(e(v)− w(u, v))

7 // Increase e(u) to next admissible value
8 e(u)← min{r ∈ A | r ≥ e(u)}
9 return e

We first prove the following invariant: after every iteration of the algorithm we have
e(x) ≤ e∗G,w(x) for every node x. The statement is certainly true before the first iteration:
Since e∗G,w(x) ∈ A we have minA ≤ e∗G,w(x).

Now assume that e(x) ≤ e∗G,w(x) for every node x at the beginning of the current
iteration. Let u be the node that is updated in the current iteration. For every node x 6= u
the value of e(x) does not change in the current iteration. Let e′(u) be the value before the
energy of u is increased to the next admissible value in Line 8 and let e′′(u) be the value
after this operation. Since e′′(u) = min{r ∈ A | r ≥ e′(u)}, it is sufficient to show that
e′(u) ≤ e∗G,w(u).

Consider first the case that u ∈ VA. In this case we have e(u) +w(u, y) < e(y) for every
edge (u, y) because otherwise the algorithm would not update u. After the update (and
before the execution of Line 8) we still have e′(u) + w(u, y) ≤ e(y) for every edge (u, y).
Since e∗G,w is the minimal energy function we have e∗G,w(u)+w(u, v) ≥ e∗G,w(v) for some edge

12

(u, v) by Lemma 3.3. By the induction hypothesis we have e(v) ≤ e∗G,w(v).10 Therefore we
get

e′(u) + w(u, v) ≤ e(v) ≤ e∗G,w(v) ≤ e∗G,w(u) + w(u, v)

and it follows that e′(u) ≤ e∗G,w(u).
Consider now the case that u ∈ VB. In this case we have e(u) + w(u, v) < e(v) for at

least one edge (u, v). After the update (and before the execution of Line 8) we still have
e′(u) +w(u, v) = e(v) for at least one edge (u, v). Since e∗G,w is the minimal energy function
we have e∗G,w(u) +w(u, y) ≥ e∗G,w(y) for every edge (u, y) by Lemma 3.3. In particular this
holds for the edge (u, v). By the induction hypothesis we have e′(v) = e(v) ≤ e∗G,w(v). In
total we get

e′(u) + w(u, v) = e(v) ≤ e∗G,w(v) ≤ e∗G,w(u) + w(u, v)

and it follows that e′(u) ≤ e∗G,w(u).
This concludes the proof that for the energy function e returned by our algorithm we

have e(x) ≤ e∗G,w(x) for every node x. Clearly, the energy function returned by our algorithm
fulfills the first two conditions of Lemma 3.3 because otherwise it would not have terminated.
Thus, our algorithm returns the minimal energies, i.e., e(v) = eG,w(v) for every node v. We
remark that the order in which the nodes are processed in the while loop is irrelevant for the
correctness proof. We will use this fact in the following improved algorithm, Algorithm 2.

Running Time. A running time of O(mn|A|) for Algorithm 1 is immediate as every node
has to be updated at most |A| times and both updating a node and checking whether it has
to be updated takes time proportional to its out-degree. The speed-up technique of Brim
et al. [BCD+11] also works for our modification and gives a running time of O(m|A|). The
idea is to maintain a counter for Alice’s nodes that keeps track of the number of outgoing
edges which fulfill the first condition of Lemma 3.3. The energy only has to be updated
if the counter reaches 0. Algorithm 2 is the full algorithm which we show for the sake of
completeness.

To show the correctness of this algorithm the following two invariants are needed:

1. For every node u ∈ V \ L the following holds:

• If u ∈ VA, then there is an edge (u, v) such that e(u) + w(u, v) ≥ e(v)
• If u ∈ VB, then for every edge (u, v) we have e(u) + w(u, v) ≥ e(v)

2. If u ∈ VA \ L, then count(u) = |{v ∈ V | (u, v) ∈ E, e(u) + w(u, v) ≥ e(v)}|

The proof of these invariants does not differ from the one given by Brim et al. [BCD+11]
which is why we omit it here. The update mechanism in Lines 10 to 14 is the same as in
Algorithm 1 which we already proved to be correct.

We now obtain the desired running time of Algorithm 1 as follows. For every node u, we
let deg+(u) and deg−(u) denote its out-degree and in-degree, respectively. The initialization
steps in Lines 1 to 5 of the algorithm need time O(deg+(u)) for every node u. Thus, the
total initialization cost is O(

∑
u∈U deg+(u)) = O(m). Each iteration of the while loop in

10Remember that we assume that there are no self-loops and therefore v 6= u.

13

Algorithm 2: Modified value iteration algorithm with speed-up technique
Input: A weighted graph (G,w), a sorted list A of admissible values for the minimal

energies
Output: The minimal energy of (G,w)
// Initialization

1 L← {u ∈ VA | ∀(u, v) ∈ E : e(u) + w(u, v) < e(v)}
2 L← {u ∈ VB | ∃(u, v) ∈ E : e(u) + w(u, v) < e(v)} ∪ L
3 e(u)← minA for every u ∈ V
4 count(u)← 0 for every u ∈ VA ∩ L
5 count(u)← |{v ∈ V | (u, v) ∈ E, e(u) + w(u, v) ≥ e(v)}| for every u ∈ VA \ L

// Repeat as long as some node u violates the first two conditions of
Lemma 3.3

6 while L 6= ∅ do
7 Pick u ∈ L
8 L← L \ {u}
9 eold ← e(u)

// Update node u
10 if u ∈ VA then
11 e(u)← min(u,v)∈E(e(v)− w(u, v))
12 else if u ∈ VB then
13 e(u)← max(u,v)∈E(e(v)− w(u, v))
14 e(u)← min{r ∈ A | r ≥ e(u)}
15 if u ∈ VA then
16 count(u)← |{v ∈ V | (u, v) ∈ E, e(u) + w(u, v) ≥ e(v)}|

// Check whether neighbors of u have to be updated
17 foreach t ∈ V such that (t, u) ∈ E and e(t) + w(t, u) < e(u) do
18 if t ∈ VA then
19 if e(t) + w(t, u) ≥ eold then
20 count(t)← count(t)− 1
21 if count(t) ≤ 0 then
22 L← L ∪ {t}

23 else if t ∈ VB then
24 L← L ∪ {t}

25 return e

14

which we update a node u needs time O(deg+(u) + deg−(u)). Since the energy of every
node can increase at most |A| times, the total running time of this Algorithm 2 is

O

(∑
u∈V

(deg+(u) + deg−(u)) · |A|
)

= O(m|A|) .

This completes the proof of Proposition 3.1.

3.2 Proofs of Corollary 3.2 and Theorem 1.3

We now prove that in the two special cases described in Corollary 3.2 and Theorem 1.3, we
can give explicit formulations of admissible lists. For both proofs we first characterize what
values the minimal energy can assume, dependent on the set of edge weights and an upper
bound M on the finite minimal energy. Specifically, we define

UM = {0, . . . ,M,∞} . (2)

We denote the set of different weights of a graph (G,w) by

RG,w = {w(u, v) | (u, v) ∈ E}. (3)

The set of all (negated) combinations of edge weights is defined as

CG,w =
{
−

k∑
i=1

xi | xi ∈ RG,w for all i, 0 ≤ k ≤ n
}
∪ {∞} . (4)

Our key observation is the following lemma.

Lemma 3.4. For every graph (G,w) with an upper bound M on the finite minimal energy
we have e∗G,w(v) ∈ CG,w ∩ UM for every node v ∈ V .

Proof. If e∗G,w(v) =∞ then we clearly have e∗G,w(v) ∈ CG,w ∩ UM . If e∗G,w(v) <∞ we have
e∗G,w(v) ∈ UM since M is an upper bound on the finite minimal energy. We still have to
show that e∗G,w(v) ∈ CG,w.

Let (σ∗, τ∗) be a pair of optimal strategies. Since σ∗ and τ∗ are optimal we have
e∗G,w(v) = e∗G(σ∗,τ∗),w(v) < ∞. By the definition of the minimal energy (see Section 2) we
have

e∗G(σ∗,τ∗),w(v) = max{0,−min
P

w(P)}

where the minimization is over all simple paths in G(σ∗, τ∗) originating at v and w(P)
denotes the sum of the edge weights of the path P . If e∗G,w(v) = 0 we have e∗G,w(v) ∈ CG,w
by setting k = 0 (the empty sum has value 0). Otherwise we have

e∗G,w(v) = −
∑

(x,y)∈P
w(x, y)

for some simple path P in G(σ∗, τ∗) originating at v. Since the length of P is at most n we
have at most n edges on P which makes it clear that e∗G,w(v) ∈ CG,w.

15

Proof of Corollary 3.2. We want to use the value iteration algorithm of Proposition 3.1
with the list

A =
{
i ·B | 0 ≤ i ≤

⌈
M

B

⌉}
∪ {∞} .

It is clear that A has size O(M/B) and can be generated in O(M/B) time. Thus, we only
have to show that A is admissible to apply Proposition 3.1.

We will now show that CG,w ∩ UM ⊆ A where CG,w and UM are as in Lemma 3.4. Let
y ∈ CG,w ∩ UM . The set of different edge weights is RG,w ⊆ {i · B | −W/B ≤ i ≤ W/B}.
Since y ∈ CG,w there is some k (0 ≤ k ≤ n) such that

y = −
k∑
j=1

xj

where xj ∈ RG,w for every 1 ≤ j ≤ k. Therefore there is an integer ij for every 1 ≤ j ≤ k
such that xj = ijB and we get

y = −
k∑
j=1

ijB = −B
k∑
j=1

ij = −iB

for some integer i. Since y ∈ UM we have 0 ≤ −iB ≤ M and therefore 0 ≤ −i ≤ M/B ≤
dM/Be. Thus, y = −iB ∈ A which proves CG,w ∩ UM ⊆ A. Since CG,w ∩ UM is admissible
by Lemma 3.4 also A is admissible, i.e., e∗G,w(v) ∈ A for every node v. This completes the
proof of Corollary 3.2.

Proof of Theorem 1.3. We want to use the value iteration algorithm of Proposition 3.1
with the list

A′ =

x−
k∑
j=1

wij | 1 ≤ ij ≤ d, 0 ≤ k ≤ n,−nδ ≤ x ≤ nδ

 ∪ {∞} .
To show Theorem 1.3 we have to prove three things:

1. A′ is an admissible list.

2. A′ has size O(δnd+1).

3. A sorted version of A′ can be computed in O(δnd+1 + dnd logn) time.

We will now show that CG,w ⊆ A′ where CG,w is as in Lemma 3.4. Let y ∈ CG,w. By
the definition of CG,w there is some k (0 ≤ k ≤ n) such that there are k edge weights
x1, . . . , xk ∈ RG,w such that

y = −
k∑
j=1

xj .

16

By the structure of RG,w, the set of all edge weights, we have, for every 1 ≤ j ≤ k,
xj = wij + δj for some ij and δj such that 1 ≤ ij ≤ d and −δ ≤ δj ≤ δ which gives

y = −
k∑
j=1

(wij + δj)

Now observe that

−
k∑
j=1

(wij + δj) = −
k∑
j=1

wij −
k∑
j=1

δj = x−
k∑
j=1

wij .

for some x such that −nδ ≤ −kδ ≤ x ≤ kδ ≤ nδ. Therefore y ∈ A′ which proves that
CG,w ⊆ A′. Since CG,w is admissible by Lemma 3.4, also A′ is admissible.

We now consider the size of A′. We define

S =

−
k∑
j=1

wij | 1 ≤ ij ≤ d for all j, 0 ≤ k ≤ n,

and get that

A′ = {y + x | y ∈ S,−nδ ≤ x ≤ nδ} ∪ {∞}.
We now bound the size of S as follows. Each element of S is a sum of at most n numbers,
each chosen from {w1, . . . , wd}. Therefore, such an element is of the form

∑d
i=1 niwi where

each ni is chosen from {0, 1, . . . , n}. Thus, the size of S is O(nd) and the size of A′ is
O(δnd+1).

For the computation of A′ we first compute S. Sorting S takes time O(|S| · log |S|)
which is O(dnd logn). We iterate over every element y ∈ S and generate every integer i
in [y − nδ, y + nδ]. We append i to the list A′ if it is larger than the current last element
of the list. Since for every y ∈ S the interval that we consider has the same “width” of
nδ, it can never happen that we generate an integer i that is smaller than the last element
and does not yet occur in the list. Therefore A′ is always sorted. This process takes time
O(|A′|) = O(δnd+1). In total it takes time O(δnd+1 + dnd logn) to compute A′.

By Proposition 3.1 it takes time O(m|A′|) to compute the minimal energies. When we
add the construction time of A′ we get a total running time of O(δmnd+1 +dnd logn). Note
that it is always possible to group the edge weights into d = m groups such that every group
contains only one edge weight. Therefore we may assume that d ≤ m. In that case the
first term dominates the second term which gives a total running time of O(δmnd+1). This
completes the proof of Theorem 1.3.

4 Approximating Minimal Energies for Large Penalties
This section is devoted to proving Theorem 1.2. We restate it here for convenience.

Theorem 4.2 (Restated). Given a graph (G,w) with P (G,w) ≥ 1, an integer M , and an
integer c such that n ≤ c ≤ nP (G,w), we can compute an energy function e such that

e(v) ≤ e∗G,w(v) ≤ e(v) + c

for every node v in O(mnM/c) time, provided that for every node v, e∗G,w(v) < ∞ implies
that e∗G,w(v) ≤M .

17

We show that we can approximate the minimal energy of nodes in high-penalty graphs
(see Section 2 for the definition of penalty). The key idea is rounding edge weights, as
follows. For an integer B > 0 we denote the weight function resulting from rounding up
every edge weight to the nearest multiple of B by wB. Formally, the function wB is given
by

wB(u, v) =
⌈
w(u, v)
B

⌉
·B

for every edge (u, v) ∈ E. Our algorithm is as follows. We set B = bc/nc ≤ P (G,w) (where c
is as in Theorem 1.2). Since weights in (G,wB) are multiples of B, e∗G,wB

can be found faster
than e∗G,w due to Corollary 3.2: we can compute e∗G,wB

in time O(mM/B) = O(mnM/c)
provided that M is an upper bound on the finite minimal energy. This is the running time
stated in Theorem 1.2. We complete the proof of Theorem 1.2 by showing that e∗G,wB

is a
good approximation of e∗G,w (i.e., it is the desired function e). Recall that by the definition
of P (G,w) every node v has penalty PG,w(v) ≥ P (G,w).

Proposition 4.1. For every node v with penalty PG,w(v) ≥ B = bc/nc (where c ≥ n) we
have

e∗G,wB
(v)

(1)
≤ e∗G,w(v)

(2)
≤ e∗G,wB

(v) + nB ≤ e∗G,wB
(v) + c .

The rest of this section is devoted to proving Proposition 4.1. 11 Let us first give the
proof ideas. The last inequality in the proposition follows immediately from the definition
of B. The first two inequalities will be proved in Section 4.1 and 4.2. Let us first outline
the proofs of these inequalities here. Inequality (1) is quite intuitive: We are doing Alice
a favor by increasing edge weights from w to wB. Thus, Alice should not require more
energy in (G,wB) than she needs in (G,w). As we show in Lemma 4.5 in Section 4.1, this
actually holds for any increase in edge weights: For any w′ such that w′(u, v) ≥ w(u, v)
for all (u, v) ∈ G, we have e∗G,w′(v) ≤ e∗G,w(v). Thus we get the first inequality by setting
w′ = wB.

For inequality (2) in Proposition 4.1, unlike the first inequality, we do not state this result
for general increases of the edge weights as the bound depends on our rounding procedure.
At this point we also need the precondition that the graph we consider has penalty at least
B. We first show that the inequality holds when the strategies played by both players fulfill
a certain condition, formally stated as follows (we prove this lemma in Section 4.2).

Lemma 4.2. Let (σ, τ) be a pair of strategies. For any node v, if e∗G(σ,τ),w(v) =∞ implies
e∗G(σ,τ),wB

(v) =∞, then e∗G(σ,τ),w(v) ≤ e∗G(σ,τ),wB
(v) + nB.

The above lemma needs a pair of strategies (σ, τ) such that e∗G(σ,τ),w(v) = ∞ implies
e∗G(σ,τ),wB

(v) =∞. This property can be explained as follows: If Alice needs infinite energy
at node v in the graph (G(σ, τ), w) then she also needs infinite energy in the rounded-weight

11 At this point we remark that energy games are not as resistant to perturbations of weights as mean-
payoff games. In particular, if w(u, v) ≤ w′(u, v) ≤ w(u, v) + x for every edge (u, v) and some positive
constant x, then also val(v) ≤ val′(v) ≤ val(v)+x, where val(v) and val′(v) are the values of the mean-payoff
games for v in (G,w) and (G,w′), respectively. A similar inequality is not true for the minimal energies.
Consider a cycle of total weight 0. By adding −1 to each edge weight, the weight of this cycle changes from
non-negative to negative. Thus, the minimal energy might change from 0 to ∞.

18

graph (G(σ, τ), wB). Our second crucial fact shows that if v has penalty at least B then
there exists a pair of strategies that has this property. This is where we exploit the fact that
the penalty is large.

Lemma 4.3. Let v be a node with penalty PG,w(v) ≥ B. Then there is an optimal strategy
τ∗ of Bob such that for every strategy σ of Alice we have that e∗G(σ,τ∗),w(v) = ∞ implies
e∗G(σ,τ∗),wB

(v) =∞.

To prove Lemma 4.2 we only have to consider a special graph where the strategies of
both players are fixed and thus all nodes have out-degree one. The challenge in proving
Lemma 4.3 is to use the “right” strategy τ∗. We use the strategy τ∗ that comes from the
definition of the penalty (cf. Section 2). The full proofs of Lemmas 4.2 and 4.3 are given in
Section 4.2.

The other challenge of the proof of Proposition 4.1 is translating our result from graphs
with fixed strategies to general graphs in order to prove the second inequality in Propo-
sition 4.1. We do this as follows. Let σ∗ be an optimal strategy of Alice for (G,w) and
let (σ∗B, τ∗B) be a pair of optimal strategies for (G,wB). Since v has penalty PG,w(v) ≥ B,
Lemma 4.3 tells us that the preconditions of Lemma 4.2 are fulfilled. We use Lemma 4.2 and
get that there is an optimal strategy τ∗ of Bob such that e∗G(σ∗B ,τ∗),w

(v) ≤ e∗G(σ∗B ,τ∗),wB
(v) +

nB. We now arrive at the chain of inequalities

e∗G,w(v) (a)= e∗G(σ∗,τ∗),w(v)
(b)
≤ e∗G(σ∗B ,τ∗),w

(v)
(Lem. 4.2)
≤ e∗G(σ∗B ,τ∗),wB

(v) + nB

(c)
≤ e∗G(σ∗B ,τ

∗
B),wB

(v) + nB
(d)= e∗G,wB

(v) + nB

that can be explained as follows. Since (σ∗, τ∗) and (σ∗B, τ∗B) are pairs of optimal strategies,
we have (a) and (d). Due to the optimality we also have e∗G(σ∗,τ∗),w(v) ≤ e∗G(σ,τ∗),w(v) for
any strategy σ of Alice, and in particular σ∗B, which implies (b). A symmetric argument
gives (c).

4.1 Proof of the First Inequality of Proposition 4.1

In the following we prove that an increase in edge weights does not increase the minimal
energy for any node. We first prove the claim for the case where we fix the strategies of
both players, i.e., on graphs where we have deleted all edges except those corresponding to
the strategies of Alice and Bob. Afterwards we generalize the claim to arbitrary graphs.

Lemma 4.4. Let G be a graph and w1 and w2 be edge weights such that w1(u, v) ≤ w2(u, v)
for every edge (u, v) ∈ G. Then, for every pair of strategies (σ, τ) and every node v ∈ G,
we have e∗G(σ,τ),w1

(v) ≥ e∗G(σ,τ),w2
(v).

Proof. Let v be any node and (σ, τ) be any pair of strategies. First, consider the case
where e∗G(σ,τ),w2

(v) =∞. Let C denote the unique cycle reachable from v in G(σ, τ). Since
e∗G(σ,τ),w2

(v) = ∞ we know by the definition of the minimal energy that w2(C) < 0 where
w2(C) denotes the sum of the edge weights of the cycle C. By our assumption we have
w1(C) ≤ w2(C) < 0, meaning that e∗G(σ,τ),w1

(v) = ∞ which is exactly what our inequality
claims.

19

Next, consider the case where e∗G(σ,τ),w2
(v) <∞. By the definition of the minimal energy

(see Section 2) we have

e∗G(σ,τ),w2
(v) = max

{
0,−min

P
w2(P)

}
where the minimization is over all simple paths in (G(σ, τ), w2) originating at v and w2(P)
denotes the sum of the edge weights of the path P .

In the case where e∗G(σ,τ),w2
(v) = 0, we have e∗G(σ,τ),w2

(v) = 0 ≤ e∗G(σ,τ),w1
(v). If

e∗G(σ,τ),w2
(v) > 0, we have

e∗G(σ,τ),w2
(v) = −min

P
w2(P) .

Since w2(P) ≥ w1(P) for every path P we have

e∗G(σ,τ),w2
(v) = −min

P
w2(P)

≤ −min
P

w1(P)

≤ max{0,−min
P

w1(P)}

= e∗G(σ,τ),w1
(v) .

It is now straightforward to generalize the previous lemma by applying it to an optimal
pair of strategies.

Lemma 4.5. Let G be a graph and w1 and w2 be edge weights such that w1(u, v) ≤ w2(u, v)
for every edge (u, v) ∈ G. Then e∗G,w1

(v) ≥ e∗G,w2
(v) for every node v.

Proof. Let (σ∗1, τ∗1) be an optimal pair of strategies for (G,w1) and let (σ∗2, τ∗2) be an optimal
pair of strategies for (G,w2). Note that e∗G(σ∗1 ,τ∗1),w1

(v) ≥ e∗G(σ∗1 ,τ),w1
(v) for every strategy τ

of Bob (since τ∗1 is Bob’s optimal strategy). We also have e∗G(σ,τ∗2),w2
(v) ≥ e∗G(σ∗2 ,τ∗2),w2

(v) for
every strategy σ of Alice. Together with Lemma 4.4 we get

e∗G,w1(v) = e∗G(σ∗1 ,τ∗1),w1
(v) ≥ e∗G(σ∗1 ,τ∗2),w1

(v) ≥ e∗G(σ∗1 ,τ∗2),w2
(v)

≥ e∗G(σ∗2 ,τ∗2),w2
(v) = e∗G,w2(v) .

4.2 Proof of the Second Inequality of Proposition 4.1

We now complete the proof of the second inequality of Proposition 4.1. We have already
proved this inequality right after the statement of Proposition 4.1, but our proof assumes
Lemmas 4.2 and 4.3. In this section, we provide the proofs of these two lemmas.

Lemma 4.2 (Restated). Let (σ, τ) be a pair of strategies. For any node v, if e∗G(σ,τ),w(v) =
∞ implies that e∗G(σ,τ),wB

(v) =∞, then e∗G(σ,τ),w(v) ≤ e∗G(σ,τ),wB
(v) + nB.

Proof. Recall that wB is defined as the weight function resulting from rounding up every
edge weight of w to the nearest multiple of B, i.e.,

wB(u, v) =
⌈
w(u, v)
B

⌉
·B .

20

By this definition we have wB(u, v) ≤ w(u, v) +B for every edge (u, v) ∈ E.
If e∗G(σ,τ),w(v) = ∞, then also e∗G(σ,τ),wB

(v) = ∞ which trivially makes the inequality
e∗G(σ,τ),w(v) ≤ e∗G(σ,τ),wB

(v) + nB hold. We now consider the case where e∗G(σ,τ),w(v) < ∞.
By the definition of the minimal energy we have

e∗G(σ,τ),w(v) = max
{

0,−min
P

w(P)
}

where the minimization is over all simple paths in (G(σ, τ), w) originating at v and w(P)
denotes the sum of the edge weights of the path P . In the case where e∗G(σ,τ),w(v) = 0, our
claimed inequality trivially holds because e∗G(σ,τ),wB

(v) ≥ 0. Consider now the second case
where e∗G(σ,τ),w(v) > 0. In this case, we have

e∗G(σ,τ),w(v) = −min
P

w(P) .

Every simple path P has length at most n and therefore

wB(P) =
∑

(u,v)∈P
wB(u, v) ≤

∑
(u,v)∈P

(w(u, v) +B) ≤ w(P) + nB .

Thus, we get w(P) ≥ wB(P)− nB for every simple path P . We now get

e∗G(σ,τ),w(v) = −min
P

w(P) ≤ −min
P

(wB(P)− nB)

= −min
P

(wB(P)) + nB = e∗G(σ,τ),wB
(v) + nB .

We now show that the precondition of the previous lemma is already implied by our
choice of B.
Lemma 4.3 (Restated). Let v be a node with penalty PG,w(v) ≥ B. Then there is an optimal
strategy τ∗ of Bob such that for every strategy σ of Alice we have that e∗G(σ,τ∗),w(v) = ∞
implies e∗G(σ,τ∗),wB

(v) =∞.
To prove the above lemma, we first prove the following claim.

Claim 4.6. If the average weight of a cycle C in (G,w) is at most −B, then C is a negative
cycle in (G,wB) with total weight wB(C) < 0.
Proof. We assume that the average weight of C in (G,w) is at most −B, i.e.,∑

(u,v)∈C w(u, v)
|C|

≤ −B .

Since wB(u, v) < w(u, v) +B for every edge (u, v) ∈ E, we get the following bound for the
average weight of C in (G,wB):∑

(u,v)∈C wB(u, v)
|C|

<

∑
(u,v)∈C(w(u, v) +B)

|C|

=
∑

(u,v)∈C w(u, v)
|C|

+
∑

(u,v)∈C B

|C|

≤ −B + |C| ·B
|C|

= 0 .

Therefore, wB(C) =
∑

(u,v)∈C wB(u, v) < 0 which means that C is a negative cycle in
(G,wB). This finishes the proof of the claim.

21

We now give the proof of Lemma 4.3.

Proof of Lemma 4.3. By the definition of the penalty we know that there is an optimal
strategy τ∗ of Bob such that, for every strategy σ of Alice, if the unique cycle C reachable
from v in G(σ, τ∗) has negative total weight w(C) < 0, then its average weight is at most
−PG,w(v) ≤ −B by the definition of P (G,w). Now let σ be any strategy of Alice and let
C denote the unique cycle C reachable from v in G(σ, τ∗). Assume that e∗G(σ,τ∗),w(v) =∞.
Then we have w(C) < 0 and thus, by the definition of the penalty, C has an average weight
of at most −B. By our claim we get that C is a negative cycle in (G,wB) (i.e. wB(C) < 0)
and therefore e∗G(σ,τ∗),wB

(v) =∞.

5 Exact Solution by Approximation
We now use our results from the previous sections to prove Theorem 5.1.

Theorem 5.1 (Restated). Given a graph (G,w) and an integer M we can compute the
minimal initial energies of all nodes in

O

(
mn

(
log M

n

)(
log M

ndP (G,w)e

)
+m

M

dP (G,w)e

)
time, provided that for all v, e∗G,w(v) <∞ implies that e∗G,w(v) ≤M .

As the first step, we provide an algorithm that computes the minimal energy given a
lower bound on the penalty of the graph. For this algorithm, we show how we can use the
approximation algorithm in Section 4 to find an exact solution.

Lemma 5.1. There is an algorithm that takes a graph (G,w), a lower bound D on the
penalty P (G,w), and an upper bound M on the finite minimal energy of (G,w) as its
input and computes the minimal energies of (G,w) in O(mn logD +m · MdDe) time. Specif-
ically, if P (G,w) ≥ M/(2n), we can set D = M/(2n) and the algorithm runs in time
O(mn log (M/n)).

Main Idea. We provide the main idea of the proof of Lemma 5.1. Details are in Section 5.1
and 5.2.

To illustrate the main idea, we focus on the case D = M/(2n) where we want to show
an O(mn log(M/n)) running time. If that condition does not hold, we can transform the
problem into a problem where it holds in time O(mM/D). Let A be the approximation
algorithm given in Theorem 1.2. Recall that A takes c as its input and returns e(v) such
that

e(v) ≤ e∗G,w(v) ≤ e(v) + c (5)

provided that n ≤ c ≤ nP (G,w). Our exact algorithm will runA with parameter c = bM/2c
which satisfies c ≤ M/2 ≤ nD ≤ nP (G,w). By Theorem 1.2, this takes O(mnM/c) =
O(mn) time. Using the energy function e returned by A, our algorithm produces a new
graph (G,w′) defined by w′(u, v) = w(u, v) + e(u) − e(v) for every edge (u, v) . It can be
proved that this graph has the following crucial properties (see details in Lemma 5.3 in
Section 5.1):

22

1. The penalty does not change, i.e., PG,w(v) = PG,w′(v) for every node v.

2. We have e∗G,w(v) = e∗G,w′(v) + e(v) for every node v.

3. The largest finite minimal energy of nodes in (G,w′) is at most c; i.e., if e∗G,w′(v) <∞
then e∗G,w′(v) ≤ c. (This follows from property 2 and the inequality e∗G,w(v) ≤ e(v) + c
of Theorem 1.2.)

The algorithm then recurses on input (G,w′), D and M ′ = c = bM/2c. Properties 1 and 3
guarantee that the preconditions of our algorithm for the recursive call are fulfilled: By our
choice of M ′ we know that if e∗G,w′(v) < ∞ then e∗G,w′(v) ≤ M ′ and since D ≤ PG,w(v) =
PG,w′(v), D is a lower bound on the penalty of (G,w′). Therefore we may recurse and the
algorithm will return e∗G,w′(v) for every node v. It then outputs e∗G,w′(v) + e(v) which is
guaranteed to be a correct solution (i.e., e∗G,w(v) = e∗G,w′(v) + e(v)) by the second property.
The running time of this algorithm is T (n,m,M) ≤ T (n,m,M/2) + O(mn). We stop
the recursion when M becomes small enough, i.e. when M ≤ n. In this case the value
iteration algorithm A runs in O(mn) time. Thus we get T (n,m,M) = O(mn log(M/n)) as
desired.

We now prove Theorem 5.1 by extending the algorithm of Lemma 5.1 to an algorithm
that does not require the knowledge of a lower bound of the penalty.

Proof of Theorem 5.1. We repeatedly guess a lower bound for the penalty PG,w and run the
algorithm of Lemma 5.1 until our guess eventually turns out to be correct. We start with the
guess D = M/(2n) for which the algorithm of Lemma 5.1 runs in time O(mn log(M/n)). We
then perform binary search for the next values of D by trying the values M/(2n), M/(4n),
M/(8n), and so on.

If our guess was correct, the algorithm returns the minimal energy function. If our guess
was not correct, the energy function returned by our algorithm might not necessarily be
the minimal energy function. Using the following characterization of the minimal energy
we can check in linear time whether we have already found the minimal energy function.

Lemma 5.2 (Minimal Energy Characterization [LP07]). The minimal energy of the graph
(G,w) is the unique energy function e satisfying

e(u) =
{

min(u,v)∈E max(e(v)− w(u, v), 0) if u ∈ VA
max(u,v)∈E max(e(v)− w(u, v), 0) if u ∈ VB .

for every node u ∈ G.

By checking the equation for every node u we can determine in time O(m) whether an
energy function e is indeed the minimal energy function.

We stop if we have already found the minimal energy function by running the algorithm
of Lemma 5.1 with our guessed lower bound D of the penalty. Otherwise we guess a new
lower bound D of the penalty which is half of the previous one and run the algorithm of
Lemma 5.1 again. Eventually, our guess will be correct and we will stop before the guessed
value is smaller than P (G,w)/2 or 1 (in the latter case we simply run the value iteration
algorithm). Therefore we get a running time of

O
(
mn

(
log M

2n + log M
4n + . . .+ log(dP (G,w)e)

)
+m

(
2n+ 4n+ . . .+ M

dP (G,w)e

))

23

which solves to O(mn(log M
n)(log M

ndP (G,w)e) + mM
dP (G,w)e).

In the worst case, i.e., when P (G,w) = 1/n and M = nW , our algorithm runs in time
O(mnW) which matches the current fastest pseudopolynomial algorithm [BCD+11]. The
result also implies that graphs with a penalty of at least W/poly(n) form an interesting
class of polynomial-time solvable energy games.

5.1 Auxiliary Lemma Needed for Proving Lemma 5.1

In the following we prove an auxiliary lemma that we need for arguing about the correctness
of the algorithm of Lemma 5.1. In that algorithm we first compute an energy function e
that approximates the minimal energy function of a weighted graph (G,w) and then define
a new weight function w′ by w′(u, v) = w(u, v) + e(u)− e(v) for every edge (u, v). For our
algorithm to be correct we need two properties to hold.12

1. The penalty does not change, i.e., PG,w(v) = PG,w′(v) for every node v.

2. We have e∗G,w(v) = e∗G,w′(v) + e(v) for every node v.

We will show that these two properties actually hold for any energy function e.
Note that this kind of modification of the weights is often called a potential transforma-

tion [GKK90] by the potential function e. It is well-known that a potential transformation
does not change the average weight of any cycle and the total weight of a path from u to v
changes by e(u) − e(v). The first property above in fact follows from this observation and
we provide its proof only for completeness. The second property above additionally needs
the precondition that e(v) does not exceed the minimal energy at v and is not true for an
arbitrary potential transformation.

Lemma 5.3. Let (G,w) be a weighted graph and let e be an energy function such that
e(v) ≤ e∗G,w(v) for all v ∈ G. Define the modified game (G,w′) with the weight function w′
by w′(u, v) = w(u, v) + e(u) − e(v) for every edge (u, v) ∈ G. Then the penalty does not
change, i.e., PG,w(v) = PG,w′(v) for every node v ∈ G, and e∗G,w(v) = e(v) + e∗G,w′(v) for
every node v ∈ G.

Proof. We first show that the penalty does not change from w to w′, i.e., PG,w = PG,w′ . For
this purpose we will show that every cycle in G has the same sum of edge weights in (G,w)
and in (G,w′) which means that the average weights are the same. By the definition of the
penalty this implies that PG,w(v) = PG,w′(v) for every node v ∈ G as desired. Let C be a
cycle of G consisting of the nodes v1, . . . , vk. We simply plug in the definition of w′ to check

12The third property we mentioned above follows from property 2 and the approximation guarantee of the
energy function e.

24

that our claim is true:

∑
(u,v)∈C

w′(u, v) = w′(vk, v1) +
k−1∑
i=1

w′(vi, vi+1)

= w(vk, v1) + e(vk)− e(v1) +
k−1∑
i=1

(w(vi, vi+1) + e(vi)− e(vi+1))

= w(vk, v1) + e(vk)− e(v1) +
k−1∑
i=1

w(vi, vi+1) +
k−1∑
i=1

e(vi)−
k∑
i=2

e(vi)

= w(vk, v1) +
k−1∑
i=1

w(vi, vi+1) +
k∑
i=1

e(vi)−
k∑
i=1

e(vi)

= w(vk, v1) +
k−1∑
i=1

w(vi, vi+1)

=
∑

(u,v)∈C
w(u, v) .

We now prove the second property. We define the energy function f by f(v) = e(v) +
e∗G,w′(v) for every node u ∈ G. We use Lemma 5.2 to show that f is the minimal energy
e∗G,w. We have to show that, for every node u ∈ G, we have

f(u) =
{

min(u,v)∈E max(f(v)− w(u, v), 0) if u ∈ VA
max(u,v)∈E max(f(v)− w(u, v), 0) if u ∈ VB

.

By the definition of f this is equivalent to

e(u) + e∗G,w′(u) =
{

min(u,v)∈E max(e∗G,w′(v)− w(u, v) + e(v), 0) if u ∈ VA
max(u,v)∈E max(e∗G,w′(v)− w(u, v) + e(v), 0) if u ∈ VB

.

Since e(u) is a constant in the minimization and maximization terms, we get

e∗G,w′(u) =
{

min(u,v)∈E max(e∗G,w′(v)− w(u, v)− e(u) + e(v), 0) if u ∈ VA
max(u,v)∈E max(e∗G,w′(v)− w(u, v)− e(u) + e(v), 0) if u ∈ VB

.

By the definition of w′ this is equivalent to

e∗G,w′(u) =
{

min(u,v)∈E max(e∗G,w′(v)− w′(u, v), 0) if u ∈ VA
max(u,v)∈E max(e∗G,w′(v)− w′(u, v), 0) if u ∈ VB

.

which is true by Lemma 5.2.

5.2 Full Proof of Lemma 5.1

Our algorithm is called MinimalEnergy and is described in Algorithm 3. We call the
algorithm provided by Theorem 1.2, which computes an approximation of the minimal

25

Algorithm 3: Computing minimal energy based on approximation
Input: A weighted graph (G,w), an upper bound M on the finite minimal energy of

(G,w) and a lower bound D on the penalty of (G,w)
Output: The minimal energy of (G,w)
Procedure MinimalEnergy(G, w, M, D)

1 if D ≤M/(2n) then
2 if M ≤ n then

// cf. Proposition 3.1
3 return ValueIteration(G,w, {0, . . . , n,∞})
4 else
5 c← bM2 c
6 e← Approximate(G,w,M, c) // cf. Theorem 1.2

// Now solve (G,w′) with weights modified by energy e
7 w′(u, v)← w(u, v) + e(u)− e(v) for every edge (u, v) ∈ G
8 e′ ← MinimalEnergy(G,w′, c,D)
9 e′′(v)← e(v) + e′(v) for every node v ∈ G

10 return e′′

11 else
12 c← nD
13 e← Approximate(G,w,M, c) // cf. Theorem 1.2

// Now solve (G,w′) with weights modified by energy e
14 w′(u, v)← w(u, v) + e(u)− e(v) for every edge (u, v) ∈ G
15 e′ ← MinimalEnergy(G,w′, c,D)
16 e′′(v)← e(v) + e′(v) for every node v ∈ G
17 return e′′

26

energy, Approximate and we call the value iteration algorithm provided by Proposition 3.1,
which computes the minimal energy exactly, ValueIteration.

We first consider the case D ≥M/(2n). As pointed out in the proof idea, the correctness
of MinimalEnergy in this case follows from Theorem 1.2 and Lemma 5.3. We therefore
only argue about the running time. If M ≤ n, we know that n is an upper bound on
the finite minimal energy, and we can use the value iteration algorithm of Proposition 3.1
with the admissible list {0, . . . , n,∞}, as explained in Section 3. The running time in
this case is O(mn). The algorithm Approximate runs in time O(mMn/c) for the upper
bound M on the finite minimal energy. For c = bM/2c the factor M cancels itself and
therefore the running time of Approximate is O(mn). We recurse with the upper bound
M ′ = c = bM/2c on the finite minimal energy and the unchanged lower bound D on the
penalty. It is still the case that D ≥ M ′/(2n). Thus, the running time of the procedure
MinimalEnergy is given by the following recurrence:

T (n,m,M) =

O (mn) if M ≤ n
T
(
n,m, M2

)
+O (mn) otherwise

.

Since the initial value of M is halved with every iteration of the algorithm until M ≤ n,
the algorithm runs for at most logM − logn = log (M/n) many iterations. Every iteration
needs time O(mn) and therefore the total running time is O(mn · log (M/n)).

We now consider the case D < M/(2n) in which we perform one step of Approximate
to reduce M to M ′ such that D ≥ M ′/2n. We first compute an approximation e of the
minimal energy by calling Approximate with the approximation error c = nD. Then we
set w′(u, v) = w(u, v) + e(u) − e(v). We can compute the approximation of the minimal
energy in time O(mM/D). After that we can recurse on (G,w′) with the new upper bound
M ′ = c = nD on the finite minimal energy to compute e′(v) = eG,w′(v) for every node
v. By Lemma 5.3 the algorithm afterwards correctly returns the minimal energy e′′(v) =
e(v) + e′(v) for every node v. The new upper bound M ′ fulfills the following inequality:

M ′

2n = nD

2n = D

2 < D .

Since the penalty does not change, i.e., P (G,w) = P (G,w′) by Lemma 5.3, our previous
running time analysis of the case D ≥ M ′/(2n) now applies. The remaining time needed
to compute the minimal energy of (G,w′) therefore is O(mn · log (M ′/n)) = O(mn · logD).
Thus, the total running time in this case is O(mn · logD +m ·M/D). This completes the
proof of Lemma 5.1.

6 Hardness on Complete Bipartite Graphs
We show in this section that energy games on complete bipartite graphs are polynomial-
time equivalent to the general case. This implies that energy games on graphs of bounded
clique-width [CO00] and strongly ergodic13 graphs [Leb05] are as hard as the general case.14

13There are many notions of ergodicity [Leb05, BEF+11]. Strong ergodicity is the strongest one as it
implies other ergodicity conditions.

14We formally define the notion of clique-width and the class of strongly ergodic graphs in Section 6.2.

27

Our result indicates that structural properties of the input graphs might not yield efficiently
solvable subclasses. This is in contrast to the fact that parity games (a natural subclass
of energy and mean-payoff games) can be solved in polynomial time in these cases [Obd07,
Leb05].

Our main hardness result is for the decision problem of energy games which will imply
the hardness of the value problem as well as of mean-payoff games. The value problem is
what we have discussed so far. The decision problem of energy games for a graph (G,w) and
a node s asks whether the minimal energy e∗G,w(s) is finite. If e∗G,w(s) is finite, we say that
Alice wins at s; otherwise, we say that Alice loses (or equivalently Bob wins). The decision
problem and the value problem of energy games are polynomial-time equivalent [BFL+08].15

We show that the decision problem on strongly ergodic graphs or graphs of bounded
clique-width is just as hard as the general decision problem on arbitrary graphs. For this
purpose we will work with a special type of complete bipartite graphs which are strongly
ergodic and have bounded clique-width (see Definition 6.4). We note the following fact,
proved in Section 6.2.

Lemma 6.1. Every complete bipartite graph has clique-width two and is strongly ergodic.

Our main result is a polynomial-time reduction from the decision problem on arbitrary
graphs to the decision problem on complete bipartite graphs.

Theorem 6.2. The decision problem of energy games on complete bipartite graphs is
polynomial-time equivalent to the decision problem of energy games on general graphs.

This shows that if we can solve the decision problem of energy games on very special
graphs that have clique-width two and are strongly ergodic, then we can solve this problem
on general graphs too.

The relationship in Theorem 6.2 also carries over to the value problem and to mean-
payoff games.

Corollary 6.3. The value problem of energy games on complete bipartite graphs is polynomial-
time equivalent to the value problem of energy games on general graphs. Moreover, the
mean-payoff game problem on complete bipartite graphs is polynomial-time equivalent to the
mean-payoff game problem on general graphs.

The first statement of the above corollary follows from the fact that the value problem
of energy games on general graphs can be reduced to the decision problem [BFL+08], and
the decision problem on complete bipartite graph is a special case of the value problem
on complete bipartite graphs (because solving the value problem also answers the decision
problem). For the second statement observe that the decision problem of energy games
and the decision problem of mean-payoff games are exactly the same problem [BFL+08]
because the minimal energy at a node v is finite if and only if the mean-payoff value at v
is non-negative. Therefore the statement follows from the fact that the value problem of
mean-payoff games can be reduced to the decision problem of mean-payoff games [GKK90],

15The reduction of Bouyer et al. [BFL+08] adds nodes and edges such that, after every edge that is taken,
Bob has the possibility to return to the starting node s by an edge of weight t, for a finite t ≥ 0. In this
way we have e∗G,w(s) ≤ t if and only if Alice wins at s. It is now possible to find e∗G,w(s) by binary search
because the maximum finite energy is limited to nW .

28

and the decision problem of mean-payoff games on complete bipartite graphs is a special
case of the value problem of mean-payoff games on complete bipartite graphs.

The rest of this section is devoted to proving Theorem 6.2. We first give a proof idea in
Section 6.1. In Section 6.2, we formally define the notion of complete bipartite graphs in the
context of energy games and prove Lemma 6.1. In Section 6.3 and 6.4, we show two parts of
our reduction. In the first part (Section 6.3), we reduce from the general decision problem
of energy games to the problem where it is promised that one player wins everywhere, i.e.,
either the minimal energy function is finite at all nodes (Alice wins) or infinite at all nodes
(Bob wins). Note that an input graph of this promised problem is still a general graph.
In the second part (Section 6.4), we reduce from this win-everywhere problem on general
graphs to the same problem on complete bipartite graphs.

6.1 Proof Ideas of Theorem 6.2

The main idea of proving Theorem 6.2 is to add “useless” edges to the input graph to make
the graph complete bipartite while the answer to the energy game problem remains the
same. To illustrate this point, consider any input graph (G,w) and a node s. For each node
u belonging to Alice, we add an edge (u, v) with weight −∞, for all nodes v belonging to
Bob. Let (G′, w′) be the new graph.16

Observe that if Alice wins in (G,w), i.e. e∗G,w(s) <∞, then she can still play the same
strategy in (G′, w′) so that she wins in (G′, w′), i.e. e∗G′,w′(s) < ∞. On the other hand,
if Alice loses in (G,w), i.e. e∗G,w(s) = ∞, then the only way she can win in (G′, w′) is to
use some edges that are not in (G,w). These edges, however, have weight −∞. So, the
minimum energy that Alice requires remains ∞ even when she use the new edges. Thus,
Alice also loses in (G′, w′), i.e. e∗G′,w′(s) =∞.

The actual proof of Theorem 6.2 is based on this idea but needs a bit more work. This
is because we cannot add an edge of weight −∞. We instead add an edge of weight −X,
for large enough X. But this does not solve the whole problem since, when e∗G,w(s) = ∞,
Alice can use this edge to “escape” to some node v such that e∗G,w(s) <∞. This will make
e∗G′,w′(s) <∞. To get around this, we first reduce the problem on (G,W) to another graph
(G′′, w′′) where Alice either wins everywhere or loses everywhere. This makes the escaping
impossible. We do this in Section 6.3. After we have reduced to the case where one player
wins everywhere, we can add edges as above. We also have to add edges from Bob’s nodes
to Alice’s nodes. We assign to these edges a large positive weight.

6.2 Properties of Complete Bipartite Graphs

In the following we define what we mean by the class of complete bipartite graphs and show
that these graphs are strongly ergodic and have clique-width two. Later, we will show that
we can reduce energy games on arbitrary graphs to energy games on complete bipartite
graphs.

16Readers that are familiar with parity games might wonder why the same idea does not work for parity
games. In parity games every node has a priority. This corresponds to the case where all outgoing edges of
a node have the same weight. Under this restriction we are not allowed to add edges of weight −∞ wherever
we want to.

29

Definition 6.4. A complete bipartite graph is a graph G = (V,E) fulfilling the following
two conditions:

• (bipartite) There is no edge (u, v) from a node u ∈ VA of Alice to a node v ∈ VA of
Alice and there is no edge (u, v) from a node u ∈ VB of Bob to a node v ∈ VB of Bob.

• (complete) For every node u ∈ VA of Alice and every node v ∈ VB there is an edge
(u, v) ∈ E and for every node u ∈ VB of Bob and every node v ∈ VA of Bob there is
an edge (u, v).

Note that the number of nodes of Alice and Bob is not required to be equal to fit
this definition. We claim that every complete bipartite graph has clique-width two and is
strongly ergodic.

The notion of clique-width was introduced by Courcelle and Olariu [CO00]. We state
the definition of clique-width using different notation.

Definition 6.5. The clique-width of a graph is the minimum number of labels needed to
construct G by means of the following four operations.

1. Creation of a new node with label i

2. Disjoint union of two labeled graphs

3. Adding an edge (u, v) for every vertex u with label i and every vertex v with label j

4. Renaming label i to label j

It is easy to see that every complete bipartite graph has clique-width 2. Note that 2 is
the smallest clique-width possible for a graph with more than one node. Furthermore, every
graph that has bounded tree-width also has bounded clique-width [CO00]. The concept
of tree-width is applied to directed graphs by viewing every edge as an undirected edge.
Remember that parity games, which can be reduced to energy games in polynomial-time,
can be solved in polynomial time on graphs of bounded clique-width [Obd07].

We now show that every complete bipartite graph is strongly ergodic.

Definition 6.6 (Ergodicity). 17 An ergodic partition is a pair (SA, SB) of sets of nodes
such that SA and SB are a partition of the nodes satisfying the following conditions:

1. For every node u in SA ∩ VA there is a node v ∈ SA such that (u, v) ∈ E; i.e., Alice
can always keep the car inside SA if she wants to.

2. There is no edge (u, v) such that u ∈ SA ∩ VB and v ∈ SB; i.e., Bob cannot move the
car out of SA.

3. For every node u in SB ∩ VB there is a node v ∈ SB such that (u, v) ∈ E; i.e., Bob
can always keep the car inside SB if he wants to.

4. There is no edge (u, v) such that u ∈ SB ∩VA and v ∈ SA; i.e., Alice cannot move the
car out of SB.

17We use Lebedev’s definitions [Leb05].

30

A graph is ergodic if it has no non-trivial ergodic partition (a partition (SA, SB) is trivial
if SA = ∅ or SB = ∅). A graph is strongly ergodic if every induced subgraph such that every
node has out-degree at least 1 is ergodic.

Lemma 6.7. Every complete bipartite graph is strongly ergodic.

Proof. Note that every induced subgraph of a complete bipartite graph is also a complete
bipartite graph. Therefore it is sufficient to show that every complete bipartite graph is
ergodic.

Suppose that there is a complete bipartite graph G that is not ergodic. Then G has a
non-trivial ergodic partition (SA, SB). We consider three cases where each one leads to a
contradiction:

• SA contains a node u of Bob, and SB contains a node v of Alice: Since we have a
complete bipartite graph there is an edge (u, v). This means that Bob has an edge
leaving SA which contradicts the second condition in Definition 6.6.

• SB contains no node of Alice (SA might or might not contain a node of Bob): Then
SB only contains nodes of Bob. Since the graph is bipartite all nodes of SB only have
edges that leave SB. Since SB is nonempty, there is a node of Bob in SB that has no
edge that stays in SB which contradicts the third condition in Definition 6.6.

• SA contains no node of Bob (SB might or might not contain a node of Alice): sym-
metric to previous case.

Since SA 6= ∅ and SB 6= ∅ we have considered all cases.

We remark that every graph that is strongly ergodic is also structurally ergodic in the
sense of Boros et al. [BEF+11]. Thus, complete bipartite graphs are also structurally ergodic.

6.3 Reduction to Graphs Where One Player Wins Everywhere

In the following, we give the first reduction. We show that energy games on arbitrary
weighted graphs can—in polynomial time—be reduced to energy games on weighted graphs
in which one player wins at every node.

Lemma 6.8. For energy games, the following variants of the decision problem are polynomial-
time equivalent:

• Decision problem on arbitrary weighted graphs.

• Decision problem on weighted graphs in which one player wins everywhere.

Clearly, graphs in which one player wins everywhere are included in the class of all
graphs. The reduction from arbitrary graphs to graphs in which one player wins everywhere
goes as follows. We are given a graph (G,w) and want to solve the decision problem, i.e., we
want to figure out which player wins at a node s in (G,w). We construct a graph (G′, w′)
as follows. All nodes of G also appear in G′ and belong to the same player as in G. We
replace every edge (x, y) of G (see Fig. 5) by the following construction: We add a node u
of Alice and node v of Bob and add the edges (x, u), (u, v), (v, y), (u, s), and (v, s) with the
weights w′(x, u) = w(x, y), w′(u, v) = w′(v, y) = 0, w′(u, s) = −nW , and w′(v, s) = nW .

31

x yw(x,y)

⇓

x u

s

v yw(x,y) 0 0

−nW nW

Figure 5: This picture shows the reduction from the general decision problem to the decision
problem in which one of the players wins everywhere. The round nodes belong to Alice and
the rectangular nodes belong to Bob. The diamond-shaped nodes are unspecified and could
belong to any of the two players.

Lemma 6.9. Alice wins at s in (G,w) if and only if Alice wins at s in (G′, w′).

Proof. We first prove the following claim: If Alice wins at s in (G,w), then Alice also wins
at s in (G′, w′). Alice simply has to play the winning strategy σ∗ for s in (G,w).18 If Bob
never plays a new edge that goes back to s, his strategy was also available in (G,w) and
then Alice wins because σ∗ is a winning strategy in G. As soon as Bob plays one of the
new edges, a cycle is formed. The cycle C consists of a simple path P from s to some node
v and then an edge from v to s. Since the path P in (G′, w′) does not contain an edge
going to s, it corresponds to some path in (G,w) of the same weight. As a simple path in
(G,w) contains at most n− 1 edges each of weight at least −W , the weight of P is at least
−(n − 1)W . Since the edge from x to s has weight nW , the cycle C has positive weight.
Therefore σ∗ is also a winning strategy in (G′, w′).

A symmetric argument can be used to prove the following claim: If Bob wins at s in
(G,w), then Bob also wins at s in (G′, w′). Now the lemma follows from determinacy: Alice
does not win if and only if Bob wins.

Lemma 6.10. One of the players wins everywhere in (G′, w′).

Proof. We show that the player that wins at s in (G,w) is the one that wins everywhere in
G′. We assume that Alice wins at s in (G,w). (For Bob the argument is symmetric.) By
Lemma 6.9 it follows that Alice wins at s in (G′, w′) by playing some strategy σ. We define
a strategy σ′ for every node v of Alice as follows: If the edge (v, s) does not exist, we set
σ′(v) = σ(v). If the edge (v, s) does exist we distinguish two cases. If Alice wins at v in
(G′, w′) by playing according to σ, then σ′(v) = σ(v). Otherwise, Alice takes the new edge
that goes to s, i.e., σ(v) = s. In other words, σ′ is defined as follows for every node v of
Alice:

σ′(v) =
{
s if edge (v, s) exists in G′ and Alice loses at v in (G′, w′) by playing σ
σ(v) otherwise

18To be precise: Alice has to play σ∗ for nodes already present in (G,w) and for the other nodes the edge
that does not go back to s has to be chosen.

32

We now show that with the strategy σ′ Alice wins against any strategy τ of Bob. Let P
be the (unique) infinite path in (G′(σ, τ), w′) starting at s.19 Since σ is a winning strategy
of Alice starting from s in (G′, w′), Alice wins for every node on P in (G′, w′) by playing
according to σ. By the above definition of σ′ we have σ′(v) = σ(v) for every node v on P .
This means that the infinite path in (G′(σ′, τ), w′) starting at s is exactly P and contains a
non-negative cycle.

We now show that in fact for every node u, the infinite path P ′ in (G′(σ′, τ), w′) starting
at u contains a non-negative cycle. If P ′ contains s, then P ′ ends in P . As argued above, P
contains a non-negative cycle and therefore also P ′ contains a non-negative cycle. Consider
now the case that P ′ does not contain s which implies that σ′(v) = σ(v) for every node v
of Alice on P ′ (because otherwise P ′ would contain s). Therefore P ′ is equal to the infinite
path in (G′(σ, τ), w′) starting at u. By the way we constructed G′, P ′ must contain at least
one node v of Alice that has an edge (v, s) to s. Since σ′(v) = σ(v) 6= s it follows by the
way we defined σ′ that Alice wins at v in (G′, w′) by playing according to σ. Therefore P ′
contains a non-negative cycle as desired. Since τ was an arbitrary strategy of Bob, we know
that Alice wins everywhere in (G′, w′) with the strategy σ′.

6.4 Reduction to Complete Bipartite Graphs

We now give our second reduction. We show how to reduce the decision problem on graphs
in which one player wins everywhere to the decision problem on complete bipartite graphs,
as in the following lemma.

Lemma 6.11. For energy games, the following variants of the decision problem are polynomial-
time equivalent.

(1) Decision problem on graphs in which one player wins everywhere.

(2) Decision problem on weighted complete bipartite graphs.

Note that the reduction from (2) to (1) is trivial. This is because complete bipartite
graphs are strongly ergodic, and in strongly ergodic graphs one player wins everywhere (be-
cause otherwise the sets of winning nodes of Alice and Bob, respectively, would immediately
give a non-trivial ergodic partition).

The rest of this subsection is devoted to showing the reduction from (1) to (2). This
reduction has two parts. We first reduce from (1) to bipartite graphs, which can be done
very easily, and from there we reduce to complete bipartite graphs.

6.4.1 Part 1: Reduction to Bipartite Graphs

We are given a graph (G,w) in which one of the players wins everywhere. We want make
the graph bipartite, i.e., there should neither be an edge (u, v) such that u ∈ VA and v ∈ VA
nor should there be and edge (u, v) such that u ∈ VB and v ∈ VB. We modify (G,w) as
follows:

• We replace every edge (u, v) ∈ E such that u, v ∈ VA by two edges (u, u′) and (u′, v)
where u′ is a new node of Bob and the weights of the new edges are w0(u, u′) = w(u, v)
and w0(u′, v) = 0.

19Because of its special structure such a path P is also known as a “lasso” in the literature.

33

• We replace every edge (u, v) ∈ E such that u, v ∈ VB by two edges (u, u′) and (u′, v)
where u′ is a new node of Alice and the weights of the new edges are w0(u, u′) = w(u, v)
and w0(u′, v) = 0.

We call the resulting graph (G0, w0). Observe that e∗G,w(v) = e∗G0,w0
(v) for every node

v of G. Therefore the player that wins everywhere in (G,w) also wins everywhere in
(G0, w0). The same reduction has recently been considered for mean-payoff games by Boros
et al. [BEG+13].

6.4.2 Part 2: Reduction to Complete Bipartite Graphs

We are given a bipartite graph (G,w) in which one player wins everywhere. The reduction
to complete bipartite graphs has two steps:

1. Modification of (G,w): For every pair (u, v) of nodes such that u ∈ VA and v ∈ VB,
if the edge (u, v) is not contained in G, we add it with weight w1(u, v) = −nW . We
call the resulting graph (G1, w1).

2. Modification of (G1, w1): For every pair (u, v) of nodes such that u ∈ VB and v ∈ VA,
if the edge (u, v) is not contained in G, we add it with weight w2(u, v) = n2W . We
call the resulting graph (G2, w2).

Clearly (G2, w2) is a complete bipartite graph.
Lemma 6.12. In (G,w) and (G2, w2) the same player wins everywhere.
Proof. The following claims follow easily:
• If Alice wins everywhere in (G,w), then Alice also wins everywhere in (G1, w1). (Alice

simply has to play the same strategy as in (G,w), Bob does not have more strategies
than in (G,w).)

• If Bob wins everywhere in (G1, w1), then Bob also wins everywhere in (G2, w2). (Bob
simply has to play the same strategy as in (G1, w1), Alice does not have more strategies
than in (G1, w1).)

Now we show the following: If Bob wins everywhere in (G,w), then Bob also wins
everywhere in (G1, w1). Let τ∗ be a winning strategy of Bob in (G,w). We argue that τ∗
is also a winning strategy of Bob in (G1, w1). Let σ1 be an arbitrary strategy of Alice in
(G1, w1). Let C be a cycle in G1(σ1, τ

∗). If all edges of C already occur in (G,w), we know
that C is a cycle of negative weight in (G1, w1) because τ∗ is a winning strategy of Bob in
G. If there is an edge in C that did not already occur in (G,w), then this edge has weight
−nW . Since the largest positive weight in (G1, w1) isW , and C consists of at most n edges,
we know that C is a cycle of negative weight. Thus, every cycle in G(σ1, τ

∗) has negative
weight. Since σ1 was an arbitrary strategy of Alice in (G1, w1), we conclude that τ∗ is a
winning strategy of Bob in (G1, w1) which he can play to win everywhere.

A symmetric argument can be used to prove the following: If Alice wins everywhere
in (G1, w1), then Alice also wins everywhere in (G2, w2). The only difference to before is
that the minimal negative edge weight in (G1, w1) is −nW which is the reason why we have
to set the weight of the new edges of Bob to n2W . Since either Alice wins everywhere in
(G,w) or Bob wins everywhere in (G,w) it follows by our claims that the same player wins
everywhere in (G,w) and (G2, w2).

34

7 Conclusion
In this paper we answer the question whether the energy game problem can be solved
efficiently under certain restrictions. We give both negative and positive answers to this
question. On the negative side, we show that usual graph structure restrictions, namely
clique-width and strong ergodicity, do not make the problem easier. This is in contrast
to the situation of the parity game problem (a special case of the energy game problem),
which can be solved in polynomial time under such restrictions. Thus, our result provides
evidence that energy games might really be harder to solve than parity games.

On the positive side, we identify two weight structure restrictions that allow us to solve
the energy game problem efficiently: fixed-window and large penalty restrictions. We also
provide an algorithm for solving the energy game problem with additive error and show
how to use this algorithm to solve the energy game problem exactly.

Many problems remain open for solving energy games and related problems. The most
fundamental one is, of course, settling the complexity status of these problems. On the one
hand, current algorithmic techniques seem to be insufficient to show that these problems
can be solved in polynomial time. On the other hand, it is unlikely that these problem
are hard for any complexity classes currently known. It is interesting to investigate how
weight structures can help in attacking these problems. For example, it might be possible
to transform a graph (G,w) to another graph (G′, w′) whose penalty is large while the
solution to the energy game problem remains the same. While this might be true for any
graph (G,w), we believe that it is already interesting to show this for some natural class of
graphs, e.g. bounded tree-width graphs and graphs from the special case of parity games.

References
[BCD+11] Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gentilini, and Jean-

François Raskin. “Faster algorithms for mean-payoff games”. In: Formal Meth-
ods in System Design 38.2 (2011). Announced at MEMICS’09 and (GAMES’09),
pp. 97–118 (cit. on pp. 4–7, 9–13, 24).

[BCH+09] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara
Jobstmann. “Better Quality in Synthesis through Quantitative Objectives”.
In: International Conference on Computer-Aided Verification (CAV). 2009,
pp. 140–156 (cit. on pp. 4, 7).

[BEF+11] Endre Boros, Khaled M. Elbassioni, Mahmoud Fouz, Vladimir Gurvich, Kazuhisa
Makino, and Bodo Manthey. “Stochastic Mean Payoff Games: Smoothed Anal-
ysis and Approximation Schemes”. In: International Colloquium on Automata,
Languages, and Programming (ICALP). 2011, pp. 147–158 (cit. on pp. 6, 27,
31).

[BEG+13] Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Kazuhisa Makino. “On
Canonical Forms for Zero-Sum Stochastic Mean Payoff Games”. In: Dynamic
Games and Applications 3.2 (2013), pp. 128–161 (cit. on p. 34).

35

http://dx.doi.org/10.1007/s10703-010-0105-x
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-22006-7_13
http://dx.doi.org/10.1007/978-3-642-22006-7_13
http://dx.doi.org/10.1007/s13235-013-0075-x
http://dx.doi.org/10.1007/s13235-013-0075-x

[BFL+08] Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey,
and Jirí Srba. “Infinite Runs in Weighted Timed Automata with Energy Con-
straints”. In: International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS). 2008, pp. 33–47 (cit. on pp. 4, 8, 28).

[BV01] Emmanuel Beffara and Sergei Vorobyov. Is Randomized Gurvich-Karzanov-
Khachiyan’s Algorithm for Parity Games Polynomial? Tech. rep. 2001-025.
Department of Information Technology, Uppsala University, 2001 (cit. on p. 6).

[BV07] Henrik Björklund and Sergei G. Vorobyov. “A combinatorial strongly subexpo-
nential strategy improvement algorithm for mean payoff games”. In: Discrete
Applied Mathematics 155.2 (2007), pp. 210–229 (cit. on p. 4).

[CAH+03] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle
Stoelinga. “Resource Interfaces”. In: International Conference on Embedded
Software (EMSOFT). 2003, pp. 117–133 (cit. on pp. 4, 8).

[CCH+11] Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakr-
ishna, and Rohit Singh. “Quantitative Synthesis for Concurrent Programs”.
In: International Conference on Computer-Aided Verification (CAV). 2011,
pp. 243–259 (cit. on pp. 4, 7).

[CHK+14] Krishnendu Chatterjee, Monika Henzinger, Sebastian Krinninger, and Danupon
Nanongkai. “Polynomial-Time Algorithms for Energy Games with Special Weight
Structures”. In: Algorithmica 70.3 (2014), pp. 457–492 (cit. on p. 1).

[CO00] Bruno Courcelle and Stephan Olariu. “Upper bounds to the clique width of
graphs”. In: Discrete Applied Mathematics 101.1-3 (2000), pp. 77–114 (cit. on
pp. 27, 30).

[Con92] Anne Condon. “The Complexity of Stochastic Games”. In: Information and
Computation 96.2 (1992), pp. 203–224 (cit. on p. 4).

[DP11] Constantinos Daskalakis and Christos H. Papadimitriou. “Continuous Local
Search”. In: Symposium on Discrete Algorithms (SODA). 2011, pp. 790–804
(cit. on p. 4).

[EM79] Andrzej Ehrenfeucht and Jan Mycielski. “Positional strategies for mean payoff
games”. In: International Journal of Game Theory 8.2 (1979), pp. 109–113 (cit.
on pp. 4, 8).

[FHZ11a] Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick. “A subexponential
lower bound for the Random Facet algorithm for Parity Games”. In: Symposium
on Discrete Algorithms (SODA). 2011, pp. 202–216 (cit. on pp. 5, 6).

[FHZ11b] Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick. “Subexponential
lower bounds for randomized pivoting rules for the simplex algorithm”. In:
Symposium on Theory of Computing (STOC). 2011, pp. 283–292 (cit. on p. 5).

[Fri11] Oliver Friedmann. “A Subexponential Lower Bound for Zadeh’s Pivoting Rule
for Solving Linear Programs and Games”. In: Conference on Integer Program-
ming and Combinatorial Optimization (IPCO). 2011, pp. 192–206 (cit. on p. 5).

36

http://dx.doi.org/10.1007/978-3-540-85778-5_4
http://dx.doi.org/10.1007/978-3-540-85778-5_4
https://www.it.uu.se/research/publications/reports/2001-025/2001-025.pdf
https://www.it.uu.se/research/publications/reports/2001-025/2001-025.pdf
http://dx.doi.org/10.1016/j.dam.2006.04.029
http://dx.doi.org/10.1016/j.dam.2006.04.029
http://dx.doi.org/10.1007/978-3-540-45212-6_9
http://dx.doi.org/10.1007/978-3-642-22110-1_20
http://dx.doi.org/10.1007/s00453-013-9843-7
http://dx.doi.org/10.1007/s00453-013-9843-7
http://dx.doi.org/10.1016/S0166-218X(99)00184-5
http://dx.doi.org/10.1016/S0166-218X(99)00184-5
http://dx.doi.org/10.1016/0890-5401(92)90048-K
http://dx.doi.org/10.1137/1.9781611973082.62
http://dx.doi.org/10.1137/1.9781611973082.62
http://dx.doi.org/10.1007/BF01768705
http://dx.doi.org/10.1007/BF01768705
http://dx.doi.org/10.1137/1.9781611973082.19
http://dx.doi.org/10.1137/1.9781611973082.19
http://dx.doi.org/10.1145/1993636.1993675
http://dx.doi.org/10.1145/1993636.1993675
http://dx.doi.org/10.1007/978-3-642-20807-2_16
http://dx.doi.org/10.1007/978-3-642-20807-2_16

[Gen14] Raffaella Gentilini. “A note on the approximation of mean-payoff games”. In:
Information Processing Letters 114.7 (2014). Announced at CILC 2011, pp. 382–
386 (cit. on p. 6).

[GKK90] Vladimir A. Gurvich, Alexander V. Karzanov, and Leonid G. Khachiyan. “Cyclic
games and an algorithm to find minimax cycle means in directed graphs”.
In: USSR Computational Mathematics and Mathematical Physics 28.5 (1990),
pp. 85–91 (cit. on pp. 4, 6, 24, 28).

[Hal07] Nir Halman. “Simple Stochastic Games, Parity Games, Mean Payoff Games
and Discounted Payoff Games Are All LP-Type Problems”. In: Algorithmica
49.1 (2007), pp. 37–50 (cit. on p. 4).

[Jur98] Marcin Jurdzinski. “Deciding the Winner in Parity Games is in UP ∩ co-UP”.
In: Information Processing Letters 68.3 (1998), pp. 119–124 (cit. on p. 4).

[Kal92] Gil Kalai. “A Subexponential Randomized Simplex Algorithm”. In: STOC.
1992, pp. 475–482 (cit. on p. 4).

[Kal97] Gil Kalai. “Linear programming, the simplex algorithm and simple polytopes”.
In: Mathematical Programming 79.1-3 (1997), pp. 217–233 (cit. on p. 4).

[Kar78] Richard M. Karp. “A characterization of the minimum cycle mean in a digraph”.
In: Discrete Mathematics 23.3 (1978), pp. 309–311 (cit. on p. 4).

[Leb05] V. N. Lebedev. “Effectively Solvable Classes of Cyclical Games”. In: Journal of
Computer and Systems Sciences International 44.4 (2005), pp. 525–530 (cit. on
pp. 7, 27, 28, 30).

[LP07] Yury M. Lifshits and Dmitri S. Pavlov. “Potential theory for mean payoff
games”. In: Journal of Mathematical Sciences 145.3 (2007), pp. 4967–4974 (cit.
on pp. 4, 23).

[Mar75] Donald A. Martin. “Borel determinacy”. In: Annals of Mathematics 102(2)
(1975), pp. 363–371 (cit. on p. 9).

[MSW96] Jirí Matoušek, Micha Sharir, and Emo Welzl. “A Subexponential Bound for
Linear Programming”. In: Algorithmica 16.4-5 (1996). Announced at SoCG’92,
pp. 498–516 (cit. on pp. 4, 6).

[Obd07] Jan Obdrzálek. “Clique-Width and Parity Games”. In: 21st International Work-
shop on Computer Science Logic (CSL). 2007, pp. 54–68 (cit. on pp. 7, 28, 30).

[Pis99] N. N. Pisaruk. “Mean Cost Cyclical Games”. In: Mathematics of Operations
Research 24.4 (1999), pp. 817–828 (cit. on p. 4).

[RBK+10] Aaron Roth, Maria-Florina Balcan, Adam Kalai, and Yishay Mansour. “On the
Equilibria of Alternating Move Games”. In: Symposium on Discrete Algorithms
(SODA). 2010, pp. 805–816 (cit. on pp. 4, 6).

[SW92] Micha Sharir and EmoWelzl. “A Combinatorial Bound for Linear Programming
and Related Problems”. In: Symposium on Theoretical Aspects of Computer
Science (STACS). 1992, pp. 569–579 (cit. on p. 4).

[Vor08] Sergei Vorobyov. “Cyclic games and linear programming”. In: Discrete Applied
Mathematics 156.11 (2008), pp. 2195–2231 (cit. on p. 4).

37

http://dx.doi.org/10.1016/j.ipl.2014.02.010
http://dx.doi.org/10.1016/0041-5553(88)90012-2
http://dx.doi.org/10.1016/0041-5553(88)90012-2
http://dx.doi.org/10.1007/s00453-007-0175-3
http://dx.doi.org/10.1007/s00453-007-0175-3
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1145/129712.129759
http://dx.doi.org/10.1007/BF02614318
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://dx.doi.org/10.1007/s10958-007-0331-y
http://dx.doi.org/10.1007/s10958-007-0331-y
http://dx.doi.org/10.2307/1971035
http://dx.doi.org/10.1007/BF01940877
http://dx.doi.org/10.1007/BF01940877
http://dx.doi.org/10.1007/978-3-540-74915-8_8
http://dx.doi.org/10.1287/moor.24.4.817
http://dx.doi.org/10.1137/1.9781611973075.66
http://dx.doi.org/10.1137/1.9781611973075.66
http://dx.doi.org/10.1007/3-540-55210-3_213
http://dx.doi.org/10.1007/3-540-55210-3_213
http://dx.doi.org/10.1016/j.dam.2008.04.012

[ZP96] Uri Zwick and Mike Paterson. “The Complexity of Mean Payoff Games on
Graphs”. In: Theoretical Computer Science 158.1&2 (1996). Announced at CO-
COON’95, pp. 343–359 (cit. on pp. 4, 6).

38

http://dx.doi.org/10.1016/0304-3975(95)00188-3
http://dx.doi.org/10.1016/0304-3975(95)00188-3

	1 Introduction
	2 Preliminaries
	3 Value Iteration Algorithm with Admissible List
	3.1 Proof of Proposition 3.1
	3.2 Proofs of Corollary 3.2 and Theorem 1.3

	4 Approximating Minimal Energies for Large Penalties
	4.1 Proof of the First Inequality of Proposition 4.1
	4.2 Proof of the Second Inequality of Proposition 4.1

	5 Exact Solution by Approximation
	5.1 Auxiliary Lemma Needed for Proving Lemma 5.1
	5.2 Full Proof of Lemma 5.1

	6 Hardness on Complete Bipartite Graphs
	6.1 Proof Ideas of Theorem 6.2
	6.2 Properties of Complete Bipartite Graphs
	6.3 Reduction to Graphs Where One Player Wins Everywhere
	6.4 Reduction to Complete Bipartite Graphs
	6.4.1 Part 1: Reduction to Bipartite Graphs
	6.4.2 Part 2: Reduction to Complete Bipartite Graphs

	7 Conclusion
	References

