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Abstract We consider Degree Constrained Survivable Network problems. For
the directed Degree Constrained k-Edge-Outconnected Subgraph problem, we
slightly improve the best known approximation ratio, by a simple proof. Our
main contribution is giving a framework to handle node-connectivity degree
constrained problems with the iterative rounding method. In particular, for
the degree constrained versions of the Element-Connectivity Survivable Network
problem on undirected graphs, and of the k-Outconnected Subgraph problem
on both directed and undirected graphs, our algorithm computes a solution
J of cost O(log k) times the optimal, with degrees O(2k) · b(v). Similar result
are obtained for the k-Connected Subgraph problem. The latter improves on
the only degree approximation O(k log n) · b(v) in O(nk) time on undirected
graphs by Feder, Motwani, and Zhu.

Keywords Network design; Node-connectivity; Degree bounds; Approxima-
tion algorithms

1 Introduction

1.1 Problem definition

In Degree Constrained Connectivity Network Design problems, one seeks a cheap
subgraph J of a given graph G that satisfies both connectivity requirements
and degree constraints. Such problems are vastly studied in Combinatorial Op-
timization and Approximation Algorithms, see a recent survey by Lau, Ravi,
and Singh [20]. One such type of problems are the matching/edge-cover prob-
lems, which are solvable in polynomial time. For other degree constrained prob-
lems, even checking whether there exists a feasible solution is NP-complete,
hence one considers bicriteria approximation algorithms when the degree con-
straints are relaxed.
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We consider mainly degree constrained node-connectivity problems. In these
problems we are given a directed/undirected graph G = (V,E) with non-
negative edge-costs {ce : e ∈ E} and positive integral outdegree/degree bounds
b = {b(v) : v ∈ B ⊆ V }. The goal is to find a subgraph J of G that satisfies
prescribed node-connectivity requirements, such that the degree/outdegree of
every node v is at most b(v). In particular, we consider the following problems.

Degree Constrained k-Outconnected Subgraph
Here for a given integer k, the solution graph J is required to be spanning
and k-outconnected from a given root s, namely, J should contain k pair-
wise internally-disjoint paths from s to every other node.
In the Degree Constrained k-Edge-Outconnected Subgraph problem, the
paths should be only pairwise edge disjoint.

Degree Constrained k-Connected Subgraph
Here for a given integer k, the solution graph J is required to be spanning
and k-connected, namely, J has at least k + 1 nodes and should contain k
internally disjoint paths between every pair of its nodes.

In the above two problems, the input graph G may be directed or undi-
rected. In the case of directed graphs, one may consider also indegree con-
straints, where the indegree of every node v should be at most bin(v).

In the next two problems, G is assumed to be undirected, and we are given
connectivity requirements r = {r(u, v) : u, v ∈ U ⊆ V } on a set U of terminals.

Degree Constrained Element-Connectivity Survivable Network
Here for all u, v ∈ U , the solution graph J should contain r(u, v) pairwise
edge disjoint uv-paths such that no two of them have a non-terminal node
in V \ U in common.

Degree Constrained Node-Connectivity Survivable Network
Here for all u, v ∈ U , the solution graph J should contain r(u, v) pairwise
internally disjoint uv-paths. Rooted requirements is the case when there is
s ∈ U such that r(u, v) > 0 implies u = s.

We say that an algorithm for a degree constrained connectivity problem
is (α, β(b(v)))-approximation, or that it has ratio (α, β(b(v))), if runs in poly-
nomial time and outputs a solution such that its cost is at most α times the
optimal value, and the degree (the out-degree, in the case of directed graph) of
each v ∈ B is at most β(b(v)), for any instance which has a feasible solution.

1.2 Previous work and our results

Degree constrained edge-connectivity problems were vastly studied. We refer
the reader to a survey by Lau, Ravi, and Singh [20], and here only mention
some literature relevant to this paper. One of the most important methods for
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approximating connectivity network design problems is the iterative rounding
method, that was invented by Jain [14] to obtain ratio 2 for Edge-Connectivity
Survivable Network. For degree-constrained edge-connectivity problems, this
method was first applied by Singh and Lau [26] to obtain ratio (1, b(v)+1) for
the Degree Constrained Spanning Tree problem, and by Lau, Naor, Salavatipour,
and Singh [18] to obtain ratio (2, 2b(v) + 3) for undirected Degree Constrained
Edge-Connectivity Survivable Network; this was improved to (2, 2b(v) + 2) by
Louis and Vishnoi [21], and to (2, b(v) + 6k+3) by Lau and Singh [19], where
k denotes the maximum requirement.

For directed k-Edge-Outconnected Subgraph, Bansal, Khandekar, and Na-

garajan [2] obtained a
(

1
ε
,
⌈

b(v)
1−ε

⌉

+ 4
)

-approximation scheme, 0 ≤ ε ≤ 1/2.

They also showed that this cost and degree approximation trade off cannot be
much improved based on the standard LP-relaxation. For the version without
costs, a (b(v) + 3)-approximation is given in [23], and for k = 1 a (b(v) + 2)-
approximation is given in [2]. The version with indegree constraints admits
an exact polynomial time algorithm [23]. Some additional results for related
problems can be found in [2], [3], [11], and [23].

Our first result slightly improves by a simple and short proof the ratio
(

1
ε
,
⌈

b(v)
1−ε

⌉

+ 4
)

for Degree Constrained k-Edge-Outconnected Subgraph of [2],

matching for ε = 0 the best known degree only approximation of [23].

Theorem 1 Directed Degree Constrained k-Edge-Outconnected Subgraph ad-

mits a
(

1
ε
,
⌈

b(v)
1−ε

⌉

+ 3
)

-approximation scheme, ε ∈ [0.1/2).

However, there was only a small success in extending the iterative roun-
ding method to node-connectivity degree constrained problems. Some previous
work is as follows. Feder, Motwani, and Zhu [6] considered the undirected
Degree Constrained k-Connected Subgraph problem (without costs), and gave
an O(nk) time algorithm that computes a k-connected spanning subgraph J
of G with degrees O(k log n) · b(v); their algorithm does not rely on iterative
rounding. In [15] is given a (4, 5b(v) + 3)-approximation algorithm for k = 2.
the input graph is complete and the costs are metric is considered in [3].

Without degree constraints, Directed k-Outconnected Subgraph admits a
polynomial time algorithm by Frank and Tardos [10], while other problems we
consider are NP-hard. The currently best known cost approximation ratios for
these problems are as follows: 2 for undirected k-Outconnected Subgraph [10]

and Edge/Element-Connectivity Survivable Network [14,7,4]; O
(

log k · log n
n−k

)

for k-Connected Subgraph for both directed and undirected graphs [22]; for
Node-Connectivity Survivable Network on undirected graphs the best (nontriv-
ial) ratios are O(k3 log |U |) for arbitrary requirements [5], and O(k log k) for
rooted requirements [24].

Using an idea from [15] where the case k = 2 is considered, we give a
framework to handle node-connectivity degree constrained problems with the
iterative rounding method, and obtain the following results.
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Theorem 2 For both directed and undirected graphs, Degree Constrained k-
Outconnected Subgraph admits an (O(log k), O(2k))-approximation algorithm.
For directed graphs and indegree constraints, the problem admits an exact poly-
nomial time algorithm.

Theorem 3 Degree Constrained Element-Connectivity Survivable Network ad-
mits a polynomial time algorithm that returns a subgraph J of G that sat-
isfies the connectivity requirements, of cost c(J) = O(log k) · τ and degrees
O(k + log k · b(v)) for all v ∈ U , and O(2k) · b(v) for all v ∈ V \ U .

Recently, Fukunaga and Ravi [12] obtained ratios (2, 2b(v) + 4k − 1) for
Degree Constrained k-Outconnected Subgraph and (4k−1, (4k−1)b(v)+4k−2)
for Degree Constrained Element-Connectivity.

Our other results are deduced from Theorems 1, 2, and 3, using essentially
known reductions. Using Theorem 2 we prove the following.

Theorem 4 If Degree Constrained k-Outconnected Subgraph admits approxi-
mation ratio (γ, ρ(b(v))) then Degree Constrained k-Connected Subgraph admits
approximation ratio

(

γ + pk − 1, ρ(b(v)) + 2k2
)

, where p = 1 for undirected
graphs and p = 2 for directed graphs. Thus for both directed and undirected
graphs, Degree Constrained k-Connected Subgraph admits ratio (O(k), O(2k)).

This improves the (∞, O(log n) · b(v))-approximation in O(nk) time for
undirected graphs by [6], that does not rely on iterative rounding; for constant
k our degree approximation is a constant while that of [6] is O(log n), and for
k = O(log log n) our approximation is O(log n), while the algorithm of [6] has
in this case running time Ω(nlog logn), which is not polynomial.

Chuzhoy and Khanna [5] showed that an instance of a node-connectivity
problem can be decomposed into p-instances of element-connectivity problems,
where p = O(k3 log |U |); in the case of rooted requirements p = O(k2 log |U |).
This decomposition also applies for degree constrained problems. Combined
with Theorem 3, we obtain the following.

Corollary 1 Degree Constrained Node-Connectivity Survivable Network admits
a polynomial time algorithm that returns a subgraph J of G that satisfies the
connectivity requirements, of cost c(J) = p(k, n) ·O(log k) · τ and with degrees:
p(k, n) · O(k + log k · b(v)) for all v ∈ U and p(k, n) · O(2k) · b(v) for all
v ∈ V \ U , where p(k, n) = O(k3 log |U |) in the case of arbitrary requirements
and p(k, n) = O(k2 log |U |) in the case of rooted requirements.

The ratios in Theorems 2, 3, and 4 are rough, and for small values of k we
can obtain improved ratios, as follows.

Theorem 5 (i) Directed Degree Constrained 2-Outconnected Subgraph admits a
(

2 + 1
2ε , 2b(v) + 2

⌈

b(v)
2(1−ε)

⌉

+ 7
)

-approximation scheme, ε ∈ [0, 1/2).

(ii) Directed Degree Constrained 2-Connected Subgraph admits a
(

4 + 1
2ε , 2b(v) + 2

⌈

b(v)
2(1−ε)

⌉

+ 9
)

-approximation scheme, ε ∈ [0, 1/2).
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(iii) On undirected graphs, Degree Constrained 2-Outconnected Subgraph and
Degree Constrained 2-Connected Subgraph admit ratio (5, 3b(v) + 9).

(iii) For k = 2, Degree Constrained Element-Connectivity and Degree Constrained
Node-Connectivity admit ratio (4, 4b(v) + 8).

This paper is organized as follows. In Sections 2, 3, 5 we prepare some tools
that we use. We first formulate Theorems 1,2,3 in terms of a biset/setpair LP-
relaxation (Section 2, Theorems 6,7,8), and then in terms of extreme point
solutions of appropriate polytopes (Section 3, Theorems 9,10,11); in Sections
3 and 5 we establish some general properties of these extreme point solutions.
Theorems 9,10,11 are then formally proved in Sections 4,6,7. In Section 8 we
finish the proofs of Theorems 2,3,4, while Theorem 5 is proved in Section 9.

2 Biset function edge-cover formulation of connectivity problems

An edge e covers a set S ⊂ V if it goes from V \ S to S. For edge-connectivity
problems, connectivity requirements can be specified by a set function f on V ,
meaning that for every S ⊆ V at least f(S) edges should cover S. For example,
by Menger’s Theorem, a directed/undirected graph J is k-edge-outconnected
from s if and only if at least k edges of J cover S (namely, f(S) = k) for
any non-empty subset of V \ {s}. A similar formulation for node-connectivity
problems (c.f. [9,7,4,8]) relies on a known concept of “setpair” or “biset”, as
given in the following definition.

Definition 1 A biset is an ordered pair Ŝ = (S, S+) of subsets of a groundset
V such that S ⊆ S+; S is the inner part and S+ is the outer part of Ŝ, and
Γ (Ŝ) = S+ \ S is the boundary of Ŝ. Let V denote the family of all bisets
on V . The intersection and the union of bisets X̂, Ŷ is defined by X̂ ∩ Ŷ =
(X ∩Y,X+ ∩Y +) and X̂ ∪ Ŷ = (X ∪Y,X+ ∪Y +). The biset X̂ \ Ŷ is defined
by X̂ \ Ŷ = (X \ Y +, X+ \ Y ).

Any set S can be considered as a biset (S, S). To any biset (S, S+) corre-
sponds the setpair (S, V \S+), c.f. [7,4]. An edge e covers a biset Ŝ = (S, S+) if
it goes from V \S+ to S. For example, by Menger’s Theorem, a directed graph
J is k-outconnected from s if and only if at least k − |Γ (Ŝ)| edges of J cover
S (namely, f(S) = k − |Γ (Ŝ)|) for any biset Ŝ with S 6= ∅ and S+ ⊆ V \ {s}.

Definition 2 A biset function is (positively) intersecting supermodular if for
any two bisets X̂, Ŷ ∈ V with f(X̂), f(Ŷ ) > 0 which inner parts intersect, f
satisfies the supermodular inequality

f(X̂) + f(Ŷ ) ≤ f(X̂ ∩ Ŷ ) + f(X̂ ∪ Ŷ ) . (1)

A biset function f on V is (positively) weakly supermodular if for any two
bisets X̂, Ŷ ∈ V with f(X̂), f(Ŷ ) > 0 the function f satisfies the inequality

f(X̂) + f(Ŷ ) ≤ max{f(X̂ ∩ Ŷ ) + f(X̂ ∪ Ŷ ), f(X̂ \ Ŷ ) + f(Ŷ \ X̂)} . (2)
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For a directed/undirected edge-set or a graph J and Ŝ ∈ V let δinJ (Ŝ)

denote the set of edges in J covering the biset Ŝ; this notation is used for both
directed and undirected graphs. For a node v ∈ V let δJ(v) denote the set of
edges in J leaving v and degJ(v) = |δJ (v)| the outdegree/degree of v in J .
Given a biset function f on V , we say that a graph J on V is f -connected if
|δinJ (Ŝ)| ≥ f(Ŝ) for all Ŝ ∈ V.

Let R+ and Z+ denote the set of positive reals and positive integers, re-
spectively. We consider the following problem for both directed and undirected
graphs with intersecting supermodular biset function f , and for undirected
graphs with weakly supermodular f .

Degree Constrained Biset Function Edge Cover (DCBFEC)
Instance: A graph G = (V,E) with edge-costs, outdegree/degree bounds

{b(v) ∈ Z+ : v ∈ B ⊆ V }, and a biset function f on V .
Objective: Find a minimum cost f -connected subgraph J of G such that

degJ(v) ≤ b(v) for all v ∈ B.

We assume that G is f -connected, so f(Ŝ) > 0 implies S 6= ∅ and S+ 6= V .
In the case of the directed k-Outconnected Subgraph problem, f is defined by
f(Ŝ) = max{k− |Γ (Ŝ)|, 0} for bisets on V \ {s} and f(Ŝ) = 0 otherwise. This
biset function f is intersecting supermodular, see [8].

In the case of undirected Element Connectivity problem, f is defined by
f(Ŝ) = max{r(Ŝ) − |Γ (Ŝ)|, 0}, where r(Ŝ) is the requirement of Ŝ defined
by r(Ŝ) = max{r(u, v) : |{u, v} ∩ S| = |{u, v} \ S+| = 1} if U ∩ S 6= ∅,
U \ S+ 6= ∅, and Γ (Ŝ) ⊆ U ; otherwise, r(Ŝ) = 0. This biset function f is
weakly supermodular, see [7,4].

Given a set F and x ∈ R
F let x(F ) =

∑

e∈F xe. In DCBFEC problems,
the function f may not be given explicitly, but we assume that one can com-
pute in polynomial time an extreme point optimal solution to the natural
LP-relaxation τ = min{c · x : x ∈ P (f, b, E)} for DCBFEC, where P (f, b, E) is
the polytope defined by the following constraints:

x(δinE (Ŝ)) ≥ f(Ŝ) for all Ŝ ∈ V

x(δE(v)) ≤ b(v) for all v ∈ B

0 ≤ xe ≤ 1 for all e ∈ E

This assumption holds for all the problems considered; we omit the somewhat
standard implementation details.

In the case of directed graphs and indegree constraints we consider the
polytope P (f, bin, E) with indegree constraints x(δinE (v)) ≤ bin(v) instead of
the outdegree constraints x(δE(v)) ≤ b(v).

Since the k-Edge-Outconnected Subgraph problem is modeled by an inter-
secting supermodular set function, the following theorem implies Theorem 1.

Theorem 6 (Implies Theorem 1) Directed Degree Constrained Set Function

Edge-Cover with intersecting supermodular set function f admits a
(

1
ε
,
⌈

b(v)
1−ε

⌉

+ 3
)

-

approximation scheme, ε ∈ [0, 1/2).
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Our degree approximation ratios for DCBFEC problems are expressed in
terms of the following parameters. The role that these parameters play in our
algorithms is briefly explained below, and for more details see Section 8.

Definition 3 We say that bisets X̂, Ŷ are disjoint if X ∩ Y = ∅; X̂, Ŷ are
strongly disjoint if X ∩Y +, Y ∩X+ = ∅. For a biset function f on V let ∆f (v)

(∆∗
f (v)) be the maximum size of a biset family F ⊆ {Ŝ ∈ V : f(Ŝ) > 0}

of pairwise disjoint (pairwise strongly disjoint) bisets such that v ∈ Γ (Ŝ) for
every Ŝ ∈ F . A biset function f on V is symmetric if f(Ŝ) = f((V \S+, V \S))
for every Ŝ ∈ V.

In Section 8 we show that the following two theorems imply Theorems 2,3.

Theorem 7 (Implies Theorem 2) DCBFEC with intersecting supermodular
biset function f admits ratios (2, 2b(v) + ∆f (v) + 1) for directed graphs and

(4, 2b(v) +∆f (v) + 1 + k) for undirected graphs, where k = max
Ŝ∈V f(Ŝ). In

the case of directed graphs and indegree constraints, the problem admits an
exact polynomial time algorithm.

Theorem 8 (Implies Theorem 3) Degree Constrained Biset Function Edge-
Cover admits approximation ratio (3, 3b(v)+max{∆∗

f (v), 3}+1) for undirected
graphs and weakly supermodular symmetric biset-fumction f .

The symmetry assumption in Theorem 8 is not a restrictive one, and it
is needed only for a correct evaluation of the parameter ∆∗

f (v); for a non-
symmetric f , our proof gives a degree approximation larger by one.

If f is a set function, then ∆f (v) = ∆∗
f (v) = 0, and then better degree

approximations are known than the ones in Theorems 7,8. However in the
case of biset functions, we seek to minimize the factor multiplying the terms
∆f (v), ∆

∗
f (v) in the degree approximation, since these terms can be much

larger than b(v); even when all bisets Ŝ with positive f -value have |Γ (Ŝ)| = 1,
we may have ∆f (v) = ∆∗

f (v) = |V | − 1; an example is the biset function

defined by f(Ŝ) = 1 if Ŝ ∈ {(u, {u, v}) : u ∈ V \ {v}} and f(Ŝ) = 0 otherwise.
We now briefly explain how we use Theorem 7 to prove the degree approx-

imation in Theorem 2; Theorem 3 is deduced from Theorem 8 in a similar
way (for details see Section 8). Consider the version of the Degree Constrained
k-Outconnected Subgraph problem when we seek to augment a graph J which
is (ℓ− 1)-outconnected from s by a minimum cost edge set I such that J ∪ I
is ℓ-outconnected from s, and such that degI(v) ≤ b(v) for all v ∈ V . This
problem can be formulated as DCBFEC with intersecting supermodular 0, 1-
valued biset function fℓ. Now consider the following sequential algorithm: start
with J = ∅, and at iteration ℓ = 1, . . . , k add to J an augmenting edge-
set Iℓ that covers fℓ, using the algorithm for DCBFEC as in Theorem 2. We
prove that ∆fℓ(v) ≤ degJ (v) holds at the beginning of every iteration, hence
degIℓ(v) ≤ 2b(v) +∆fℓ(v) + 1 ≤ 2b(v) + degJ(v) + 1. Denoting d0(v) = 0, we
get the following recursive formula for the degree dℓ(v) of a node v at the end
of iteration ℓ: dℓ(v) = dℓ−1(v) + degIℓ(v) ≤ 2b(v) + 2dℓ−1(v) + 1. Unraveling,
we get the bound dk(v) = O(2k) · b(v) of Theorem 2.
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Iterative rounding algorithm for DCBFEC

Input: A graph G = (V,E) with edge-costs, degree bounds {b(v) ∈ Z+ : v ∈ B ⊆ V }, a
biset function f on V , parameters γ ≥ α ≥ 1, σ ≤ α, and {βv ∈ Z+ : v ∈ B}.
Initialization: J ← ∅.
If P (f, b, E) = ∅, then return ”UNFEASIBLE” and STOP.
While E 6= ∅ do:

1. Compute an optimal extreme point solution x ∈ P (fJ , b
α

J
, E).

2. Remove from E every edge e with xe = 0.
3. Add to J and remove from E every edge e with xe ≥ 1/α.
4. Add to J and remove from E every edge e /∈

⋃
v∈B

δE(v) with xe ≥ 1/γ.
5. Remove from B every v ∈ B with degE(v) < σbα

J
(v) + βv .

EndWhile

Return J .

Fig. 1 Iterative rounding algorithm for DCBFEC problems.

3 Iterative rounding for degree constrained connectivity problems

Let us recall some facts from polyhedral theory. Let Π ⊆ R
m be a polytope

defined by a system of linear inequalities and let x ∈ Π. x is an extreme point
of Π if it is not a convex combination of other points in Π. x is a basic feasible
solution to the system that definesΠ, if there exists a set ofm inequalities such
that x is the unique solution for the corresponding linear equations system;
that is, the corresponding m equations are linearly independent and each of
them holds as equality for x. It is well known that x is an extreme point of Π
if and only if x is a basic feasible solution to the system that defines Π. It is
also known that if the LP min{c · x : x ∈ Π} has an optimal solution, then it
has an optimal solution which is basic.

Given a biset function f and an edge-set or a graph J , the residual biset
function of f is fJ(Ŝ) = f(Ŝ)−|δinJ (Ŝ)|. Given a parameter α ≥ 1, the residual
degree bounds are bαJ (v) = b(v) − |δJ (v)|/α. It is known that if f admits
a polynomial time evaluation oracle and is intersecting supermodular or is
weakly supermodular, then so is fJ . Particular cases of the generic algorithm
for DCBFEC in Figure 1 were used in various papers for set functions, c.f. [18,
2,19,23]. The algorithm starts with J = ∅ and performs iterations. In every
iteration, one considers the residual polytope P (fJ , b

α
J , E), and removes some

edges from E or some nodes from B, until E becomes empty. The performance
of the algorithm is summarized in the following statement, which proof is
almost identical to the ones in [18,2,19,23] for set functions.

Lemma 1 If the algorithm in Figure 1 terminates (and does not return “UN-
FEASIBLE”), then it computes an f -connected subgraph J of G such that
c(J) ≤ γτ and such that for every v ∈ B the following holds:

– If σ = 0 then degJ(v) ≤ αb(v) or degJ(v) < αb(v)+βv−1; thus degJ (v) ≤
⌈αb(v)⌉+max{βv − 2, 0}.

– If σ > 0 then degJ (v) < αb(v) + βv; thus degJ(v) ≤ ⌈αb(v)⌉+ βv − 1.

Proof The cost approximation proof is the same as in the paper of Jain [14].
We prove the approximation of the degrees. Consider a node v ∈ B. Let J ′ be
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the set of edges added to δJ(v) while v ∈ B, and let J ′′ be the set of edges
in δE(v) when v was excluded from B. Note that |J ′| = α(b(v) − bαJ ′(v)). If
bαJ ′(v) = 0 then J ′′ = ∅, and then |J | = |J ′| ≤ αb(v). Suppose that bαJ ′(v) > 0,
so |J ′| < αb(v). If σ = 0 then |J ′′| ≤ βv − 1, hence degJ(v) = |J ′| + |J ′′| <
αb(v)+βv − 1. If σ > 0 then |J ′′| < bαJ ′(v)+βv, hence degJ(v) = |J ′|+ |J ′′| <
α(b(v)− bαJ ′(v)) + bαJ ′(v) + βv < αb(v) + βv. ⊓⊔

We prove the following sequence of theorems, that imply Theorems 6,7,8.

Theorem 9 (Implies Theorem 6) Let x be an extreme point of P (f, b, E)
with xe > 0 for all e ∈ E, where G = (V,E) is a directed graph, f is an
intersecting supermodular set function on V and {b(v) ≥ 0 : v ∈ B ⊆ E}. Let
I be the set of edges in E with tail in B and let F = E \ I. Then for any
ε ∈ [0, 1/2) at least one of the following two properties holds:

(P1) There is e ∈ I such that xe ≥ 1− ε or there is e ∈ F such that xe ≥ ε.
(P2) There is v ∈ B such that degE(v) < b(v) + 4.

Theorem 9 is proved in Section 4. Theorem 6 (and thus also Theorem 1)
follows from Theorem 9 by substituting in Lemma 1 α = 1

1−ε
, γ = 1

ε
, σ = 1,

and βv = 4, which gives degJ (v) ≤ ⌈αb(v)⌉+ βv − 1 =
⌈

b(v)
1−ε

⌉

· b(v) + 3.

Theorem 10 (Implies Theorem 7) Let x be an extreme point of P (f, b, E)
with xe > 0 for all e ∈ E, where G = (V,E) is a directed graph, f is an
intersecting supermodular biset function on V . Then there is e ∈ E with xe ≥
1/2 or there is v ∈ B such that degE(v) < 2b(v) +∆f (v) + 2. In the case of
indegree bounds, for any extreme point x ∈ P (f, bin, E) there is an edge e ∈ E
with xe ∈ {0, 1}.

Theorem 10 is proved in Section 6. Theorem 7 (and thus also Theorem 2)
follows from Theorem 10. The case of outdegree constraints in Theorem 7
follows from Theorem 10 by substituting in Lemma 1 α = σ = γ = 2,
and βv = ∆f (v) + 1. Then Lemma 1 gives the degree bound degJ(v) ≤
⌈αb(v)⌉+βv = 2b(v)+∆f (v)+2. The case of indegree bounds also follows from
Theorem 10, while the undirected case is easily deduced from the directed one,
see Section 6.3.

Theorem 11 (Implies Theorem 8) Let x be an extreme point of P (f, b, E)
with xe > 0 for all e ∈ E, where G = (V,E) is an undirected graph, f is a
weakly supermodular symmetric biset function on V , and {b(v) ≥ 0 : v ∈ B ⊆
V }. Then there is e ∈ E with xe ≥ 1/3 or there is v ∈ B with degE(v) <
max{∆∗

f (v), 3}+ 3.

Theorem 11 is proved in Section 7. Theorem 8 (and thus also Theorem 3)
follows from Theorem 11 by substituting in Lemma 1 σ = 0, α = γ = 3, and
βv = max{∆∗

f (v), 3}+3 for all v ∈ B. Then Lemma 4 gives the degree bound
degJ(v) ≤ ⌈αb(v)⌉+max{βv − 2, 0} = 3b(v) + max{∆∗

f (v), 3}+ 1.
Recall that a set family L is laminar if for any distinct sets X,Y ∈ L either

X ⊂ Y , or Y ⊂ X, or X ∩ Y = ∅. We extend this definition to biset-families
in two ways.



10 Zeev Nutov

Definition 4 We say that a biset Ŷ contains a biset X̂ and write X̂ ⊆ Ŷ if
X ⊆ Y and X+ ⊆ Y +; if also X̂ 6= Ŷ then X̂ ⊂ Ŷ and Ŷ properly contains
X̂. A biset family L is laminar if for any X̂, Ŷ ∈ L either X̂ ⊆ Ŷ , or Ŷ ⊆ X̂,
or X̂, Ŷ are disjoint (namely, X ∩Y = ∅). A biset family L is strongly laminar
if for any X̂, Ŷ ∈ L either X̂ ⊆ Ŷ , or Ŷ ⊆ X̂, or X̂, Ŷ are strongly disjoint
(namely, X ∩ Y +, Y ∩X+ = ∅).

The following statement is proved using a standard “uncrossing” argument,
c.f. [7,4] where the case without degree constraints was considered; we provide
a proof-sketch of one case for completeness of exposition.

Intuitively, “uncrossing” two bisets X̂, Ŷ means the following. In the case of
intersecting supermodular f , X̂, Ŷ withX∩Y 6= ∅ are replaced by X̂∩Ŷ , X̂∪Ŷ .
Note that if {X̂ ∩ Ŷ , X̂ ∪ Ŷ } = {X̂, Ŷ } for all X̂, Ŷ ∈ F with X ∩Y 6= ∅, then
F must be laminar. In the case of a skew supermodular f , X̂, Ŷ are replaced
either by X̂∪Ŷ , X̂∪Ŷ , or by X̂\Ŷ , Ŷ \X̂. Note that if {X̂∩Ŷ , X̂∪Ŷ } = {X̂, Ŷ }
or {X̂\Ŷ , Ŷ \Ŷ } = {X̂, Ŷ } for all X̂, Ŷ ∈ F , then F must be strongly laminar.

For a biset family F let χE(F) denote the set of the incidence vectors of
the edge-sets in the family {δinE (Ŝ) : Ŝ ∈ F}. Similarly, for T ⊆ B, χE(T ) is
the set of incidence vectors of the edge-sets in {δE(v) : v ∈ T}.

Lemma 2 Let f be a biset function and G a graph on V . Then for any extreme
point x of P (f, b, E) with 0 < xe < 1 for all e ∈ E, there exist a family L ⊆ V
and T ⊆ B, such that f(Ŝ) ≥ 1 for all Ŝ ∈ L, and such that the vectors in
χE(L)∪χE(T ) are linearly independent and |L|+ |T | = |E|. Furthermore, the
following holds.

(i) If f is intersecting supermodular and G is directed then there exists such
L that is laminar.

(ii) If f is weakly supermodular and G is undirected, then there exists such L
that is strongly laminar.

Proof We provide a proof-sketch for the case of weakly supermodular f and
undirected G; the proof for the case of intersecting supermodular f and di-
rected G is similar. Given a set χ of vectors let span(χ) denote the linear space
spanned by them. Fleischer, Jain, and Williamson [7] proved the following:
Let G = (V,E) be an undirected graph and f a weakly supermodular biset func-
tion on V . Let x ∈ R

E
+ and F = {Ŝ ∈ V : x(δE(Ŝ)) = f(Ŝ)}. If L′ is an inclu-

sion maximal strongly laminar subfamily of F then span(χ(L′)) = span(χ(F)).
Let F and L′ be as in the above result of [7]. Let L be an inclusion maxi-

mal sub-family of L′ such that the vectors in χ(L) are linearly independent,
so span(χ(L)) = span(χ(L′)) = span(χ(F)). Let T be a maximal subset of
Q = {v ∈ B : x(δE(v)) = b(v)} such that the vectors in χ(L) ∪ χ(T ) are
linearly independent. Note that span(χ(L)∪χ(T )) = span(χ(F)∪χ(Q)). Since
x is an extreme point, the dimension of the vector space span(χ(F)∪χ(Q)) is
exactly |E|, which implies |L|+ |T | = |χ(L)|+ |χ(T )| = |E|. ⊓⊔

Any laminar biset family L defines a tree order on its members by the
inclusion as in Definition 4; this order coincides with the tree order defined by
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an ordinary inclusion of the inner parts of the bisets in L. We carry the usual
notion of children, descendants, ancestors, and leaf-sets, from laminar families
of sets to laminar families of bisets. Given a biset Ŝ ∈ L and an edge-set E let
us use the following notation.

• E+
S is the set of edges in E covering Ŝ but not a child of Ŝ.

• E−
S is the set of edges in E covering some child of Ŝ but not Ŝ.

• ES = E+
S ∪ E−

S is the set of edges in E covering either Ŝ or a child of Ŝ.

Lemma 3 Let G = (V,E) be a graph with edge weights {xe : e ∈ E} and let
L be a laminar biset family on V . Then the following holds for every Ŝ ∈ L
if G is directed, and for every Ŝ ∈ L1 if G is undirected, where C is the is the
set of children in L of Ŝ:

x(E+
S )− x(E−

S ) = x(δinE (Ŝ))−
∑

C∈C

x(δinE (Ĉ)) .

Proof The statement is easily verified by counting the contribution of every
edge in ES to each side. ⊓⊔

Corollary 2 In the setting of Lemma 3, suppose that x(δinE (Ŷ )) is a positive

integer for every Ŷ ∈ {Ŝ} ∪ C, δinE (Ŝ) 6=
⋃

C∈C δ
in
E (Ĉ), and 0 < xe ≤ 1/(α− ǫ)

for all e ∈ ES, where α ≥ 1 and 0 < ǫ < α. If one of the edge sets E+
S , E−

S is
empty, then the other has at least ⌈α+ ǫ⌉ edges. In particular, |ES | ≥ 2.

Proof Suppose that E−
S = ∅. Then E+

S 6= ∅, as otherwise δinE (Ŝ) =
⋃

C∈C δ
in
E (Ĉ).

By Lemma 3, x(E+
S ) is an integer, and it must be a positive integer, since

E+
S 6= ∅ and since xe > 0 for all e ∈ ES . Since 0 < xe < 1/(α + ǫ) for all

e ∈ ES , we get that |E+
S | ≥ ⌈(α+ ǫ)x(E+

S )⌉ ≥ ⌈α+ ǫ⌉.
The proof of the case E+

S = ∅ is similar. ⊓⊔

4 Proof of Theorem 9

The following lemma is used in the proof of Theorems 9 and 10.

Lemma 4 Let x and L be as in Lemma 2, where G is a directed graph and
L is a laminar set family, and let {βv ∈ Z+ : v ∈ B}. Let I be the set of
edges in E with tail in B and let F = E \ I. Then there is v ∈ B such that
degE(v) < σb(v) + βv, if for some θ > 0 the following inequality holds:

|L| < (θβ(B)− |B|) + (1− θ)|I|+ θσx(I) + |F | . (3)

Proof Note that since x(δE(v)) ≤ b(v) and δE(v) = δI(v) for all v ∈ B then
∑

v∈B

(degE(v)− σb(v)) ≤
∑

v∈B

(degE(v)− σx(δE(v))) = |I| − σx(I) .

Thus |I|−σx(I) <
∑

v∈B βv = β(B) implies that degE(v) < b(v)+βv for some
v ∈ B. Adding |F | to both sides of the inequality |I| − σx(I) < β(B) gives
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|I|+ |F | < β(B) + σx(I) + |F |. Note that since |I|+ |F | = |E| = |L|+ |T |, we
have |I|+ |F | = 1

θ
(|L|+ |T |)+(1− 1

θ
)(|I|+ |F |). Consequently, since |T | ≤ |B|,

to prove that there is v ∈ B such that degE(v) < αb(v) + βv, it is sufficient to
prove that

1

θ
(|L|+ |B|) + (1−

1

θ
)(|I|+ |F |) < β(B) + σx(I) + |F | .

Multiplying both sides by θ and rearranging terms gives (3). ⊓⊔

Now we prove Theorem 9. We will assume that Property (P1) does not
hold, namely, that

xe < 1− ε for all e ∈ I and xe < ε for all e ∈ F (4)

and prove that Property (P2) must hold. Substituting in (3) θ = 1/2, σ = 1,
and βv = 4 for all v ∈ B, gives

|L| < |B|+
1

2
|I|+

1

2
x(I) + |F | .

To show that the latter inequality holds, we assign tokens to edges in E and
nodes in B of total amount that equals the right-hand side, as follows.

• 1 token to every v ∈ B, placed at v.
• 1

2 (1 + xe) “head-tokens” to every e ∈ E placed at the head of e.
• 1

2 (1− xe) additional “tail-tokens” to every e ∈ F placed at the tail of e.

We will show that assumption (4) implies that these tokens can be redis-
tributed among the sets in L such that every set gets at least 1 token, and
some spare tokens remain. Let us say that a leaf-set S ∈ L0 is dangerous if
S ∩B = ∅ and |δinE (S)| = 2. We prove the following.

Lemma 5 For any S ∈ L it is possible to redistribute the S-tokens such that
every proper descendant of S in L gets 1 token, and such that: S gets 3/2
tokens if S is dangerous, and S gets 2 tokens otherwise.

Proof The proof is by induction on the number of descendants of S in L. If S
is a leaf set, then S gets (|E+

S |+ x(E+
S ))/2 ≥ (|E+

S |+1)/2 head tokens; this is
at least 3/2, and is at least 2 if S is dangerous.

Suppose that S is not a leaf. Let t = x(E+
S )−x(E−

S )+ |E−
S |. By Lemma 3,

t = f(S)−
∑

C∈C f(C)+ |E−
S |, where C is the set of children of S; hence t is an

integer. Since |E−
S | ≥ x(E−

S ), t ≥ 1. The amount of tokens S gets from edges
in ES is (|E+

S |+ x(E+
S ))/2 + (|E−

S | − x(E−
S ))/2 = (t+ |E+

S |)/2. Consequently,
S can collect 2 tokens from its children, edges in ES , and nodes in B, unless
S owns no node in B, and either (see Figure 2):

(a) S has two children, both dangerous, and E+
S = ∅ (see Figure 2(a)).

(b) S has 1 dangerous child and |E+
S | ≤ 1 (see Figure 2(b)).

(c) S has 1 non dangerous child and E+
S = ∅ (see Figure 2(c)).
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S SS

(b)(a) (c)

Fig. 2 Illustration to the proof of Lemma 5.

Case (a) is not possible. To see this, note that by (4), the two edges entering
a dangerous set belong to I, and thus have tail in B. Hence the tail of an edge
that enters a child of S cannot be in S; namely, the dashed edges in figure 2(a)
do not exist. Consequently, every edge that enters a child of S also enters S.
Since E+

S = ∅ we get that the edges entering S is a disjoint union of the edges
entering the children of S. This contradicts linear independence.

Case (b) is not possible by a similar argument. The tail of an edge that
enters a child of S cannot be in S, hence we must have E−

S = ∅ in this case.
This contradicts Corollary 2.

In Case (c), by a similar argument, we must have |E−
S | ≥ 2, which implies

t ≥ |E−
S |/2 ≥ 1. In this case S gets 1 token from edges in ES and one token

from its non-dangerous child. ⊓⊔

5 Sharing property of laminar biset-families

Given a laminar biset family L let Lp denote the members of L that have
exactly p children in L; in particular, L0 is the family of leaf-bisets of L, and
L1 is the family of bisets in L that have a unique child in L. Note that

|L| < 2|L0|+ |L1| . (5)

We now illustrate a key difficulty in applying token counting arguments in the
case of laminar biset families. The token distribution schemes for set-functions
(e.g., as in the proof of Theorem 9) rely on the fact that if L is a laminar set
family, then the following holds.

(i) A set S ∈ L owns v if, and only if, there can be an edge incident to v that
covers S or a child of S, but no edge incident to v can cover both.

(ii) For every v ∈ V there is at most one set in L that owns v.

Now let L be a laminar biset family. For our purposes, it is sufficient to
consider bisets in L0 ∪ L1 only, but even in this case, we cannot satisfy prop-
erties (i),(ii) simultaneously. Consider a biset Ŝ ∈ L1 and its child Ĉ. It is not
hard to verify (see Figure 3) that for both directed and undirected graphs, v
satisfies property (i) if and only if v belongs to the set (S \C) ∪ (Γ (Ŝ) \C+).
These sets may not be pairwise disjoint, as for distinct X̂, Ŷ ∈ L1 we may
have that Γ (X̂)\C+

X and Γ (Ŷ )\C+
Y intersect, where ĈX is the child of X̂ and

CY is the child of Ŷ . This motivates the following definition (see Figure 3).
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C

(b)

S

C

v v

Fig. 3 Illustration to Definition 5 for Ŝ ∈ L1 with child Ĉ; Ŝ owns each of v1, v2 and shares
v (an edge in δES

(v) must cover Ĉ). (a) Undirected graphs. (b) Directed graphs.

Definition 5 Let L be a laminar biset family on V , let Ŝ ∈ L0 ∪ L1, and let
Ĉ be the child of Ŝ if Ŝ ∈ L1 and Ĉ = (∅, ∅) if Ŝ ∈ L0. We say that Ŝ owns
v ∈ V if v ∈ S \ C, and for Ŝ ∈ L1 we say that Ŝ shares v if v ∈ Γ (Ŝ) \ C+.
Let L1(v) denote the family of bisets in L1 sharing v.

The following two statement are easily verified.

Lemma 6 Let G = (V,E) be a graph, let L be a laminar biset family on V ,
let Ŝ ∈ L0 ∪ L1, and let e ∈ ES (for illustration see Figure 3).

(i) If G is a directed graph then the following holds. If e ∈ E+
S then Ŝ owns

the head of e, and if e ∈ E−
S then Ŝ owns or shares the tail of e.

(ii) If G is an undirected graph then the following holds. If e ∈ E+
S then Ŝ owns

one endnode of e, and if e ∈ E−
S then Ŝ owns or shares one endnode of e.

Lemma 7 Let L be a laminar biset family on V and let v ∈ V .

(i) There is at most one biset that owns v.
(ii) If two bisets share v then none of them is a descendant of the other.

By the definition of the parameters ∆f (v), ∆
∗
f (v) and part (ii) of the last

lemma, we have the following.

Corollary 3 Let f and L be as in Lemma 2. Then |L1(v)| ≤ ∆f (v), and if L
is strongly laminar then |L1(v)| ≤ ∆∗

f (v).

Lemma 8 Let L be a laminar biset family on V , let G = (V,E) be a di-
rected/undirected graph, let v ∈ V , and let Ŝ, X̂ ∈ L0 ∪ L1 be distinct. Then
δES

(v) ∩ δEX
(v) = ∅ if both Ŝ, X̂ share v, or if Ŝ shares v and X̂ owns v and

one of the following holds:

(i) G is a directed graph.
(ii) G is an undirected graph and L is strongly laminar.

Proof Let ĈS be the child of Ŝ and ĈX the child of X̂, if such exists. Let
eS ∈ δES

(v) and eX ∈ δEX
(v). We claim that eS 6= eX in the cases of the

lemma. If Ŝ, X̂ share v, then eS covers ĈS and eX covers ĈX (see Figure 3).
By Lemma 7(ii), CS ∩ CX = ∅, hence eS 6= eX , as required.
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Fig. 4 Illustration to the proof of Lemma 8 for the case when Ŝ shares v and X̂ owns v.

Suppose that Ŝ shares v and X̂ owns v. Assume that none of X̂, Ŝ contains
the other (see Figure 4(a)). Since v ∈ X∩Γ (Ŝ), L cannot be strongly laminar.
Hence the relevant case is when G is a directed graph. By the definition of
the sets ES , EX , eS has its head in CS and eX has its head in CX . Since L is
laminar, CS ∩ CX = ∅. This implies eS 6= eX . Now assume that one of X̂, Ŝ
contains the other. Since v ∈ X∩Γ (Ŝ), we must have Ŝ ⊆ X̂ (possibly Ŝ = ĈX ,
which is the case depicted in Figure 4(a)). Since Ŝ ⊆ X̂ and v ∈ X ∩ Γ (Ŝ),
eX cannot cover ĈX . Hence eX covers X̂ and the relevant case is when G
is an undirected graph. On the other hand, eS covers ĈS , since v ∈ Γ (Ŝ).
Summarizing, eX goes from v to V \ X+ and eS goes from v to CS . Since
(V \X+) ∩ CS = ∅, we must have eS 6= eX . ⊓⊔

6 Proof of Theorem 10

6.1 Directed graphs and outdegree constraints

Let x,L be as in Lemma 2, and let I, F be as in Lemma 4. Assume that
0 < xe < 1/2 for all e ∈ E. Substituting in (3) θ = 1, σ = 2, and βv =
∆L1(v) + 2 ≤ ∆f (v) + 2 for all v ∈ B, gives

|L| < ∆L1(B) + |B|+ 2x(I) + |F | .

To show that the latter inequality holds, we assign tokens to edges in E and
nodes in B of total amount at most the right-hand side, as follows.

• ∆L1(v) + 1 “shared-tokens” to every v ∈ B.
• 2xe “head-tokens” to every e ∈ E placed at the head of e.
• 1− 2xe additional “tail-tokens” to every e ∈ F placed at the tail of e.

By (5) we have |L| < 2|L0|+ |L1|, hence it is sufficient to prove the following.

Lemma 9 We can reassign the tokens to the members of L0 ∪ L1 such that
every Ŝ ∈ L0 gets at least 2 tokens and every Ŝ ∈ L1 gets at least 1 token.

Proof Token reassignment rules are as follows.
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• If Ŝ ∈ L1 owns or shares v ∈ B then Ŝ gets 1 shared-token from v.
• If Ŝ ∈ L0 ∪ L1 then Ŝ gets the tail-tokens from each edge in E−

S and the
head-tokens from each edge in E+

S .

Since by Lemma 7(i) every node is owned by at most one biset, the total
amount of tokens a node v ∈ B gives to bisets does not exceed the amount of
tokens initially placed at v. Also, from Lemma 8 and Lemma 6, it follows that
for every e ∈ E, the tail-tokens of e are assigned to at most one biset, and the
head-tokens of e are assigned to at most one biset.

If Ŝ ∈ L0 is a leaf set then Ŝ gets from edges in δinE (Ŝ) exactly 2x(δinE (Ŝ)) =

2f(Ŝ) ≥ 2 head-tokens. Let Ŝ ∈ L1 and let Ĉ be the child of Ŝ. If the tail
v of some edge in E−

S is in B, then Ŝ owns or shares v, by Lemma 6. In

this case Ŝ gets 1 token from v. Otherwise, all edges in E−
S have their tail in

V \B, so E−
S ⊆ F ; thus Ŝ gets |E−

S | − 2x(E−
S ) tail-tokens from edges in |E−

S |.

In addition, Ŝ also gets 2x(E+
S ) head tokens from edges in E+

S . Thus Ŝ gets
2x(E+

S ) − 2x(E−
S ) + |E−

S | = 2(x(E+
S ) − x(E−

S )) + |E−
S | tokens from edges in

ES . By Lemma 3, this is an integer, and it must be a positive integer, since
xe <

1
2 for all e ∈ E implies |E−

S | − 2x(E−
S ) > 0. ⊓⊔

6.2 Directed graphs and indegree constraints

Suppose to the contrary that 0 < xe < 1 for all e ∈ E. Then similarly to
Lemma 2 we have the following. There exist a laminar family L on V and
T in ⊆ B, such that f(Ŝ) ≥ 1 for all Ŝ ∈ L, and such that the vectors in
χE(L) ∪ χE(T

in) are linearly independent and |L| + |T in| = |E|. Now let
us consider the biset family F = L ∪ {(v, v) : v ∈ T in}. Then |F| = |E|
and the characteristic vectors of the edge sets {δinE (Ŝ) : Ŝ ∈ F} are linearly
independent. Let Fmax denote the family of the inclusion-maximal members
of L; note that |Fmax| ≥ 1. To obtain a contradiction, we prove that 2|E| −
|Fmax| ≥ 2|F|. We will assign 2 tokens to every e ∈ E as follows.

• 1 “head-token” placed at the head of e.
• 1 “tail-token” placed at the tail of e.

The total amount of tokens is 2|E|. We will show how to reassign 2|E|−|Fmax|
of these tokens to the members of F , such that every member of F gets at
least 2 tokens. The tokens reassignment rule is: every Ŝ ∈ F gets the tail-
tokens of the edges in E−

S and the head-tokens from edges in E+
S . Note that

the tail tokens of the edges entering the members of Fmax are not assigned. No
head token is assigned twice by Lemma 6, and no tail token is assigned twice
by Lemma 8, hence every token is assigned to at most one biset in F . Every
member of F gets at least 2 tokens, since |ES | ≥ 2; to see this, note that if
one of E+

S , E−
S is empty then the other has at least 2 edges, by Corollary 2

and the assumption xe < 1 for all e ∈ E.
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6.3 Undirected graphs

In Theorem 7, the part concerning undirected graphs follows from the part
concerning directed graphs, and the following (essentially known) statement;
we provide a proof-sketch for completeness of exposition.

Lemma 10 Let f be an intersecting supermodular biset function. Then any
inclusion-minimal f -connected directed graph J has maximum indegree at most
k = max{f(Ŝ) : Ŝ ∈ V}.

Proof Consider the biset family F = {Ŝ : |δinJ (S)| = f(S)}. We claim that F

is an intersecting biset family, namely, for any bisets X̂, Ŷ ∈ F which inner
parts intersect, X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F . To see this, note that the biset function
|δinJ (Ŝ)| is submodular, and hence

f(X̂)+f(Ŷ ) = |δinJ (X̂)|+|δinJ (Ŷ )| ≥ |δinJ (X̂∩Ŷ )|+|δinJ (X̂∪Ŷ )| ≥ f(X̂∩Ŷ )+f(X̂∪Ŷ ) .

Since f is intersecting supermodular, equality must hold everywhere, and thus
|δinJ (X̂ ∩ Ŷ )| = f(X̂ ∩ Ŷ ) and |δinJ (X̂ ∪ Ŷ )| = f(X̂ ∪ Ŷ ), so X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F .

For an edge e ∈ J let Fe = {Ŝ ∈ F : e ∈ δinJ (Ŝ)}. Since J is minimally f -
connected, Fe is non-empty for every e ∈ J . Furthermore, Fe is an intersecting
biset family, hence among all bisets Ŝ ∈ Fe there is a unique biset Ŝe =
(Se, S

+
e ) with |Se|+ |S+

e | minimal.
Suppose to the contrary that degJ(v) ≥ k+1 for some v ∈ V . Let e ∈ δinJ (v)

and let Ŝe be as above. Since degH(v) ≥ k+1 there is e′ ∈ δinJ (v) that does not

enter Ŝe. Now consider the bisets Ŝe and Ŝe′ . Their inner parts intersect (both
contain v), hence Ŝ = Ŝe ∩ Ŝe′ ∈ F . It is also easy to see that e, e′ ∈ δinJ (Ŝ).
This contradicts the minimality of |Se|+ |S+

e | or of |Se′ |+ |S+
e′ |. ⊓⊔

Now we use the following standard reduction, that implies the undirected
graphs part in Theorem 7.

Proposition 1 For DCBFEC with intersecting supermodular biset function f ,
existence of a (ρ(b(v)), α)-approximation algorithm for directed graphs implies
existence of a (ρ(b(v))+k, 2α)-approximation algorithm for undirected graphs.

Proof Given an instance of undirected DCBFEC obtain an instance of directed
DCBFEC by bidirecting the edges ofG, namely, replacing every undirected edge
e = uv of G by the two opposite directed edges uv, vu of the same cost as e.
Then apply the (ρ(b(v)), α)-approximation algorithm on the obtained directed
graph to compute a directed inclusion minimal f -connected subgraph J ′, and
output the underlying graph J of J ′. The biderection of any f -connected sub-
graph is also f -connected, and the outdegree of every node in the biderection
equals the degree of this node in the original graph. As in any inclusion min-
imal f -connected directed graph the indegree of every node is at most k, in
the underlying graph of J ′ the degree of every node is at most ρ(b(v)) + k. It
also a routine to show that the cost approximation is 2α. ⊓⊔
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7 Proof of Theorem 11

Assume to the contrary that xe < 1/3 for all e ∈ E and that

degE(v) ≥ max{∆∗
f (v) + 3, 6} ∀v ∈ B . (6)

Let L, T be as in Lemma 2, where L is strongly laminar. We obtain the con-
tradiction 2|E| ≥ 4|L0|+2|L1|+2|T | > 2(|L|+ |T |) as follows. We will assign
two tokens to every edge e ∈ E, placing one token at each of the endnodes
of e. We then reassign these tokens such that every biset in L0 gets 4 tokens,
every biset in L1 gets 2 tokens, and such that for every v ∈ T at least 2 tokens
placed at v are not assigned.

Definition 6 Let Ŝ ∈ L0 ∪ L1 and let Ĉ is the unique child of Ŝ if Ŝ ∈ L1

and Ĉ = (∅, ∅) if Ŝ ∈ L0. The contribution av(Ŝ) of v ∈ V to Ŝ is the amount
of tokens placed at v that are assigned to Ŝ, and it is defined by

av(Ŝ) = min{degE(v), 4} if v ∈ S \ C+

av(Ŝ) = 1 if v ∈ Γ (Ŝ) ∪ Γ (Ĉ) and 1 ≤ degES
(v) ≤ 3

av(Ŝ) = 2 if v ∈ Γ (Ŝ) ∪ Γ (Ĉ) and degES
(v) ≥ 4

av(Ŝ) = 0 otherwise

Let a(Ŝ) =
∑

v∈V av(Ŝ) be the total amount of tokens assigned to Ŝ.

Note that if v is not owned or shared by Ŝ then av(Ŝ) = 0. Denote by
Av =

∑

Ŝ∈L0∪L1 av(Ŝ) be the total amount of tokens that v contributes to

the members of L0 ∪ L1, and let A =
∑

v∈V Av =
∑

Ŝ∈L0∪L1 a(Ŝ) be the
total amount of tokens assigned to the members of L0∪L1. We will show that
2|E| − 2|T | ≥ A ≥ 4|L0|+ 2|L1|.

Lemma 11 a(Ŝ) ≥ 4 if Ŝ ∈ L0 and a(Ŝ) ≥ 2 if Ŝ ∈ L1.

Proof Let Ŝ ∈ L0. By (6), a(Ŝ) ≥ 4 if S ∩ T 6= ∅. Otherwise, the assumption
“xe < 1/3 for all e ∈ E” implies that |δinE (S)| ≥ 4, hence a(Ŝ) ≥ |δinE (S)| ≥ 4.

Let Ŝ ∈ L1. Consider the set VS of the endnodes of the edges in ES that
Ŝ owns or shares. We have av(Ŝ) ≥ 1 for every v ∈ VS , by the definition,
hence if |VS | ≥ 2 then we are done. Suppose therefore that VS = {v}. Let Ĉ
be the child of Ŝ. By Corollary 2, |ES | ≥ 2, and if one of E+

S , E−
S is empty

then |ES | ≥ 4. If v ∈ S \ C+ then av(Ŝ) ≥ min{degE(v), 4} ≥ degES
(v) ≥ 2.

If v ∈ Γ (Ŝ) ∪ Γ (ĈS), then E+
S = ∅ (if v ∈ Γ (Ĉ)) or E−

S = ∅ (if v ∈ Γ (Ŝ)).

Then degES
(v) ≥ 4, which implies a(Ŝ) ≥ av(Ŝ) = 2. ⊓⊔

Lemma 12 Av ≤ degE(v) if v ∈ V \ T and Av ≤ degE(v)− 2 if v ∈ T .

Proof For Ŝ ∈ L0 ∪ L1, let Ĉ be as in Definition 6. If v ∈ S \ C+ for some
Ŝ ∈ L0 ∪L1, then v is owned by Ŝ, but v is not owned or shared by any other
biset, since L is strongly laminar. Hence the contribution of v to any other biset
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is zero, and Av = av(Ŝ) = min{degE(v), 4} ≤ degE(v). Furthermore, if v ∈ T
then min{degE(v), 4} ≤ degE(v)−2, by (6). Consequently, the statement holds
in this case.

Assume henceforth that v /∈ S \ C+ for every Ŝ ∈ L0 ∪ L1. Consider the
biset family F = {Ŝ ∈ L0 ∪ L1 : av(Ŝ) ≥ 1}. By Lemma 8, the edge-sets
{δES

(v) : Ŝ ∈ F} are pairwise disjoint, hence

degE(v)−Av ≥
∑

Ŝ∈F

degES
(v)−

∑

Ŝ∈F

av(Ŝ) =
∑

Ŝ∈F

(degES
(v)− av(Ŝ)) .

By the definition of av(Ŝ) and F , degES
(v)− av(Ŝ) ≥ 0 for any Ŝ ∈ F . Hence

if v ∈ V \ T then Av ≤ degE(v) as claimed. Assume that v ∈ T . Note that
degES

(v) − av(Ŝ) ≥ degES
(v) − 1 if degES

(v) ≥ 2. Thus if there is Ŝ ∈ F

with degES
(v) ≥ 3, or if there are X̂, Ŷ ∈ F with degEX

(v) = degEY
(v) = 2,

then we are done. Hence we assume that degES
(v) = 1 for all Ŝ ∈ Fv, except

of maybe one biset Ŝ that may have degES
(v) = 2. In particular, |F| ≥ 4

(since degE(v) ≥ 6 by (6)), and
∑

Ŝ∈F degES
(v) ≤ |F|+1. We will show that

|F| ≤ ∆∗
f (v). Together with (6), this would imply that

Av ≤
∑

Ŝ∈F

degES
(v) ≤ |F|+ 1 ≤ ∆∗

f (v) + 1 ≤ degE(v)− 2

We prove that |F| ≤ ∆∗
f (v). If every biset in F shares v, then |F| ≤

|L1(v)| ≤ ∆∗
f (v), where the second inequality is by Lemma 7(ii). Suppose

therefore that there is Ŝ ∈ F that owns v. Now consider the bisets in F \{Ŝ}.
By Lemma 7(i) each of these bisets shares v, and by Lemma 7(ii) none of them
is a descendant of the other (note that this already implies |F| ≤ ∆∗

f (v) + 1).

One can verify that since L is strongly laminar, any X̂ ∈ F \ {Ŝ} must be
a proper descendant of Ŝ. Hence Ŝ ∈ L1. Let Ĉ be the child of Ŝ and note
that v ∈ Γ (Ĉ). Now we use the symmetry of f to show that |F| ≤ ∆∗

f (v).

Let Ĉ ′ = (V \ C+, V \ C). Since f is symmetric, f(Ĉ ′) = f(Ĉ) > 0, and note
that Ĉ ′ /∈ L. Let F ′ = (F \ {Ŝ}) ∪ {Ĉ ′}. Then F ′ satisfies the assumptions of
Definition 3, namely, F ′ ⊆ {Ŝ ∈ V : f(Ŝ) > 0}, the members of F ′ are pairwise
strongly disjoint, and v ∈ Γ (Ŝ) for every Ŝ ∈ F ′. Hence |F ′| ≤ ∆∗

f (v) Since
|F| = |F ′|, we get |F| ≤ ∆∗

f (v), and the proof of the lemma is complete. ⊓⊔

8 Proof of Theorems 2,3,4

Let opt denote the optimal value of a standard LP-relaxation for a Degree
Constrained Survivable Network problem at hand, and H(k) the kth Harmonic
number.
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8.1 k-Outconnected Subgraph (Theorem 2)

Theorem 2 follows from Theorem 7 and the following statement.

Lemma 13 Suppose that DCBFEC with directed G and intersecting supermo-
dular 0, 1-valued biset function g admits a polynomial time algorithm that com-
putes a solution J of cost c(J) ≤ γτ such that degJ (v) ≤ ⌈αb(v)⌉+µ∆f (v)+q
for all v ∈ B. Then Degree Constrained k-Outconnected Subgraph admits a
polynomial time algorithm that computes a solution J of cost c(J) ≤ γH(k)·opt

such that degJ(v) ≤ (⌈αb(v)⌉+ q+ µ) · (1 + µ)
k
= O

(

(1 + µ)
k
)

b(v) for every

v ∈ B.

Consider the version of the Degree Constrained k-Outconnected Subgraph
problem when we are given a subgraph J of G of cost 0, such that J is
(ℓ − 1)-outconnected from the root s. The goal is to find a minimum cost
augmenting edge set I ⊆ E \ J such that J ∪ I is ℓ-outconnected from s, and
degI(v) ≤ b(v) for all v ∈ V . By Menger’s Theorem, this problem can be for-
mulated as DCBFEC with the following intersecting supermodular 0, 1-valued
biset function g, see [8]:

g(Ŝ) = 1 if |Γ (Ŝ)|+ |δinJ (Ŝ)| = ℓ− 1 and s /∈ S+. (7)

Consider the following sequential algorithm. Start with J = ∅. At iteration
ℓ = 1, . . . , k, add to J an augmenting edge-set Iℓ that increases the outcon-
nectivity from s by 1, from ℓ−1 to ℓ. The augmenting edge set Iℓ is computed
using the algorithm for DCBFEC as in Lemma 13 with biset function defined
by (7) and with degree bounds b(v)/(k − ℓ+ 1). Then at every iteration ℓ we
have the following.

Lemma 14 c(Iℓ) ≤ γ opt
k−ℓ+1 and degIℓ(v) ≤ µ∆g(v) +

⌈

αb(v)
k−ℓ+1

⌉

+ q for all

v ∈ B.

Proof Note that at iteration ℓ, any feasible solution J∗ to Degree Constrained
k-Outconnected Subgraph has at least k − ℓ+ 1 edges in E \ J covering every
biset Ŝ with g(Ŝ) = 1, by Menger’s Theorem. Thus if x is a characteristic
vector of the edges in J∗ \ J , then x/(k − ℓ + 1) is a feasible solution for the
LP-relaxation for edge-covering g. ⊓⊔

Now we use the following observation.

Lemma 15 Let J be (ℓ− 1)-outconnected from s and let g be defined by (7).
If g(Ŝ) = 1 and v ∈ Γ (Ŝ) then v has a neighbor u ∈ S in the graph J .

Proof Let X̂ = (S, S+\{v}). If v has no neighbor in S then |Γ (X̂)|+|δinJ (X̂)| =

|Γ (Ŝ)|+ |δinJ (Ŝ)| − 1 = ℓ− 2. This contradicts that J is (ℓ− 1)-outconnected
from s. ⊓⊔

From Lemma 15 and the definition of the parameter ∆g(v), we have the
following.
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Corollary 4 At each iteration, ∆g(v) ≤ degJ(v) for every v ∈ V .

Let dℓ(v) be the degree of v at the end of iteration ℓ, after increasing the
outconnectivity from ℓ − 1 to ℓ. Let d0(v) = 0. By Lemma 15, at iteration ℓ,
the degree of every node v ∈ B increases by at most

degIℓ(v) ≤ µ degJ(v) +

⌈

α
b(v)

k − ℓ+ 1

⌉

+ q .

At the beginning of the iteration, degJ(v) = dℓ−1(v). Thus we have:

dℓ(v) = dℓ−1(v) + degIℓ(v) ≤ (1 + µ)dℓ−1(v) +

⌈

α
b(v)

k − ℓ+ 1

⌉

+ (q + µ) .

This implies dℓ(v) ≤ (1+µ)dℓ−1(v) + ⌈αb(v)⌉+ (q+µ). Unraveling gives that

dℓ(v) ≤ (⌈αb(v)⌉+ q + µ) · (1 + µ)
ℓ
. Thus after k iteration we have degJ (v) =

dk(v) ≤ (⌈αb(v)⌉ + q + µ) · (1 + µ)
k
, as claimed. This concludes the proof of

Theorem 2.

8.2 Element-Connectivity Survivable Network (Theorem 3)

The proof of Theorem 3 is similar to that of Theorem 2. We show that the same
statement as in Lemma 13 holds for undirected G, weakly supermodular g, and
the Degree Constrained Element Connectivity Survivable Network problem, with
∆f replaced by ∆∗

f .
Consider the version of the Degree Constrained Element Connectivity Sur-

vivable Network problem when we are given a spanning subgraph J of G of
cost 0, and a set U of pairs from U . The goal is to find a min-cost augmenting
edge set I such that λJ∪I(u, v) ≥ λJ(u, v) + 1, and degI(v) ≤ b(v) for all
v ∈ V . This problem can be formulated as DCBFEC with the following weakly
supermodular 0, 1-valued biset function g, see [7,4]:

g(Ŝ) = 1 if Γ (Ŝ) ∩ U = ∅ and |Γ (Ŝ)|+ |δinJ (Ŝ)| = λJ(u, v). (8)

Consider the following sequential algorithm for Degree Constrained Element
Connectivity Survivable Network. Start with J = ∅. At iteration ℓ = 1, . . . , k,
add to J an augmenting edge-set Iℓ that increases by 1 the connectivity be-
tween pairs in

Uℓ = {{u, v} : λJ(u, v) = r(u, v)− k + ℓ− 1, u, v ∈ U} .

The augmenting edge set Iℓ is computed using the algorithm for DCBFEC
as in Lemma 13 with biset function defined by (8) and with degree bounds
b(v)/(k − ℓ + 1). After iteration ℓ, we have λJ(u, v) ≥ r(u, v) − k + ℓ for all
u, v ∈ U . Consequently, after k iterations λJ(u, v) ≥ r(u, v) holds for all u, v ∈
U , thus the computed solution J satisfies the connectivity requirements. At
iteration ℓ, any feasible solution J∗ to Degree Constrained Element Connectivity
Survivable Network has at least k − ℓ + 1 edges in E \ J covering every biset
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1. Let R ⊂ V be a set of k nodes. Let G′ be obtained from G by adding a new node s
and all edges between s and R, of cost zero each.

Undirected graphs: With degree bounds b′(v) = b(v)+1 if v ∈ R and b′(v) = b(v)
otherwise, compute a k-outconnected from s spanning subgraph J ′ of G′ using
the (ρ(b(v)), γ)-approximation algorithm.
Directed graphs: Compute a spanning subgraph J ′ = J− ∪ J+ of G′ where:
• J+ is k-outconnected from s, computed by the (ρ(b(v)), γ)-approximation

algorithm.
• J− is a minimum cost subgraph which is k-inconnected to s.

2. Compute an edge set F as in Lemma 16. For every ut ∈ F compute a minimum-cost
inclusion-minimal augmenting edge-set Iut ⊆ E \J ′ such that (J ′ \{r})∪Iut contains
k internally disjoint ut-paths.

3. Return J = (J ′ \ {s}) ∪ I, where I = ∪ut∈F Iut.

Fig. 5 Algorithm for Degree Constrained k-Connected Subgraph.

Ŝ with g(Ŝ) = 1, by Menger’s Theorem. Thus if x is a characteristic vector
of the edges of J∗ \ J , then x/(k − ℓ + 1) is a feasible solution for the LP-
relaxation for edge-covering g. Consequently, c(Iℓ) ≤ γ · opt/(k − ℓ + 1), and
degIℓ(v) ≤ β∆g(v) + αb(v)/(k − ℓ + 1) + q for all v ∈ V . Now, by essentially
the same proof as that of Lemma 15 we have that ∆∗

g(v) ≤ degJ(v) for all
v ∈ V \U . Also, ∆∗

g(v) = 0 for all v ∈ U . The rest of the analysis of the element
connectivity case coincides with the one for the k-outconnectivity case, and
thus is omitted.

8.3 k-Connected Subgraph (Theorem 4)

We will show that the algorithm from [17], originally designed for the k-
Connected Subgraph problem (without degree constraints), has the desired
performance. A graph is k-inconnected to s if it contains k internally-disjoint
paths from every node to s (for undirected graphs this is the same as “k-
outconnected from s”). We need the following summary of several statements
from [16,17].

Lemma 16 Let J ′ be a graph on at least k+2 nodes, which is k-outconnected
from s and k-inconnected to s and let R = {u ∈ V : su ∈ J ′ or us ∈ J ′}. Then
there exists a set F of new edges on R such that (J ′ \ {r})∪F is k-connected,
and if F is such an inclusion minimal edge set, then |F | ≤ |R| − 1 if J ′ is an
undirected graph, and |F | ≤ 2|R| − 1 if J ′ is a directed graph.

The algorithm is given in Fig. 5. We prove that it has performance as in
Theorem 4. The fact that J is k-connected was established in [16,17]. We have
degJ ′\{s} ≤ ρ(b(v)) (note that in the case of undirected graphs, at Step 1 of the
algorithm the edges incident to s are included in J ′). Now we bound degI(v).

• In the case of undirected graphs, degIut
(v) ≤ k if v = u or v = t and

degIut
(v) ≤ 2 otherwise; hence degI(v) ≤ |F | · k ≤ k2 if v ∈ R and

degI(v) ≤ 2k otherwise.
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• In the case of directed graphs, degIut
(v) ≤ k if v = u and degIut

(v) ≤ 1
otherwise; hence degI(v) ≤ |F | · k ≤ 2k2 if v ∈ R and degI(v) ≤ 2k
otherwise.

To see that c(J) = (γ + pk − 1) · opt, note that c(J ′) ≤ γ · opt, and that
c(Iut) ≤ opt for every ut ∈ F . Hence c(J) = c(J ′) + |F | · opt = γ · opt+ (pk −
1) · opt.

9 Proof of Theorem 5

9.1 Directed Degree Constrained 2-Outconnected/2-Connected Subgraph

The algorithm for Directed Degree Constrained 2-Outconnected Subgraph is as
follows.

1. With degree bounds b(v)/2, apply the algorithm from Theorem 1 to com-
pute an arborescence J1.

2. With degree bounds b(v), apply the algorithm from Theorem 7 with biset
function g defined by (7) to compute an augmenting edge-set J2 ⊆ E \ J1
such that J1 ∪ J2 is 2-outconnected from s.

By Lemma 14, c(J1) ≤
1
2εopt, and scaling the degree bounds in Step 1 to

b(v)/2 is justified. By Lemma 14 and Corollary 4, degJ1
(v) ≤

⌈

b(v)
2(1−ε)

⌉

+ 3.

Also, c(J2) ≤ 2opt and degJ2
(v) ≤ 2b(v) + ∆g(v) + 1 ≤ 2b(v) +

⌈

b(v)
2(1−ε)

⌉

+

3+1. Thus the overall degree approximation is degJ1
(v)+ degJ2

(v) ≤ 2b(v)+

2
⌈

b(v)
2(1−ε)

⌉

+ 7.

Now we give a proof sketch of the Degree Constrained 2-Connected Subgraph
case. We apply the algorithm in Fig. 5, using the algorithm for Directed Degree
Constrained 2-Outconnected Subgraph described above. Then degJ ′\{s}(v) ≤

2b(v)+2
⌈

b(v)
2(1−ε)

⌉

+7 and c(J ′ \{s}) ≤ (2+1/2ε)opt. Denote R = {u, t}. Here

(J ′ \ {s})∪ {ut, tu} is 2-connected, hence |F | ≤ 2. It is not hard to verify that
J ′ is 1-connected, and that this implies degIut

(v), degItu(v) ≤ 1 for all v ∈ V .
Summarizing, we have c((J ′ \ {s})∪ I) ≤ c(J ′ \ {s}) + |F |opt ≤ (4+ 1/2ε)opt,

and degJ ′\{s}(v) + degI(v) ≤ degJ ′\{s}(v) + 2 ≤ 2b(v) + 2
⌈

b(v)
2(1−ε)

⌉

+ 9 for all

v ∈ B.

9.2 Undirected Degree Constrained 2-Outconnected/2-Connected Subgraph

In [1] is given a polynomial time approximation ratio preserving reduction
from 2-Connected Subgraph to 2-Outconnected Subgraph; this reduction also
works for the degree constrained versions of the problems. Hence we consider
the Degree Constrained 2-Outconnected Subgraph problem only. The algorithm
is as follows.
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1. With degree bounds b(v)/2, apply the (b(v)+3, 2)-approximation algorithm
of [19] for the Degree Constrained Steiner Forest problem to compute a
spanning tree T in G.

2. Let G′ be the bidirection of G and let T ′ be the arborescence obtained
by directing the edges of T from s. With degree bounds b(v), apply the
algorithm from Theorem 7 with biset function g defined by (7) to compute
an augmenting edge set I ′ such that T ′ ∪ I ′ is 2-outconnected from s.

3. Return J = T ∪ I, where I is the underlying edge set of I.

It is not hard to see that J is 2-outconnected from s. Note that by an
argument similar to the one in the proof of Lemma 14 we have c(T ) ≤ 2 · opt2 =
opt and that in Step 1, scaling the degree bounds to b(v)/2 is justified; in this
context we note that the Degree Constrained Spanning Tree problem admits a
(1, b(v)+1)-approximation algorithm [26], but it is based on an LP-relaxation
different from the one in this paper, which does not allow such scaling. It is
also not hard to verify that c(I) ≤ c(I ′) ≤ 4opt. Thus c(J) ≤ 5opt.

We prove the approximabilty of the degrees. We have degT (v) ≤
⌈

b(v)
2

⌉

+3

for all v ∈ B. Note that degI(v) ≤ degI′(v) + 1, by Lemma 10, and that

∆g(v) ≤ degT ′(v) ≤ degT (v) ≤
⌈

b(v)
2

⌉

+ 3 for all v ∈ B. Since we use the

algorithm from Theorem 7, degI′(v) ≤ 2b(v) +∆g(v) + 1 ≤ 2b(v) +
⌈

b(v)
2

⌉

+ 4

for all v ∈ B. Thus degI(v) ≤ degI′(v)+ 1 ≤ 2b(v)+
⌈

b(v)
2

⌉

+5. Summarizing,

we get degJ(v) ≤ degT (v) + degI(v) ≤ 2b(v) + 2
⌈

b(v)
2

⌉

+ 8 ≤ 3b(v) + 9

for all v ∈ B. With an extra step of “guessing” an edge incident to s in
some optimal solution, the degree approximation can be reduced to degJ (v) ≤

2b(v)+2
⌈

b(v)
2

⌉

+7 ≤ 3b(v)+8, since degT ′(v) ≤ degT (v)−1 for all v ∈ V \{s}.

9.3 Degree Constrained Element/Node-Connectivity with k = 2

For simplicity of exposition, we consider the case of element-connectivity only;
the node-connectivity case can be handled in a similar way, relying on results
from [7]. We will show that the algorithm from Section 8 has the desired
performance if at the first iteration we use the (b(v) + 3, 2)-approximation
algorithm of [19] for the Degree Constrained Steiner Forest problem. Formally,
the algorithm is as follows.

1. With degree bounds b(v)/2 and requirements r′(u, v) = ⌊r(u, v)/2⌋ ≤ 1,
apply the (b(v)+3, 2)-approximation algorithm of [19] for the Degree Con-
strained Steiner Forest problem to compute a forest J .

2. With degree bounds b(v), compute an augmenting edge-set I that increases
by 1 the connectivity between pairs in U = {{u, v} : λJ(u, v) = r(u, v) −
1, u, v ∈ U}, using the algorithm for DCBFEC as in Lemma 13 with biset
function defined by (8).

3. Return J ∪ I.
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We have c(J) ≤ τ and degJ(v) ≤
⌈

b(v)
2

⌉

+3 for all v ∈ B. Also, c(I) ≤ 3opt

and degI(v) ≤ 3b(v) +∆∗
f (v) + 1 ≤ 3b(v) + degJ(v) + 1 ≤ 3b(v) +

⌈

b(v)
2

⌉

+ 4.

Summarizing, we get degJ(v) + degI(v) ≤ 3b(v) + 2
⌈

b(v)
2

⌉

+ 7 ≤ 4b(v) + 8.

The proof of Theorem 5 is complete.

10 Recent developements and conclusions

We presented a framework to handle node-connectivity degree constrained
problems with the iterative rounding method. Our ratios are roughly O(log k)
for the cost and O(2k) · b(v) for the degrees. After the conference version
of this papaper [25] was published, Fukunaga and Ravi [12] obtained ra-
tios (2, 2b(v) + O(k)) for Degree Constrained k-Outconnected Subgraph and
(4k,O(k) · b(v)) for Degree Constrained Element-Connectivity. Recently, in [13],
combining the ideas from [12] and this paper resulted in an improved ratio
(α, αb(v) +O(k/α)) for both problems, where α is an integer such that α ≥ 2
for Degree Constrained k-Outconnected Subgraph and α ≥ 4 for Degree Con-
strained Element-Connectivity. Obtaining a constant degree approximation in-
dependent of k, or providing lower bounds that this is unlikely, is an important
future work.

Acknowledgment: I thank Jochen Könemann for drawing my attention that
no non-trivial algorithm was known for Degree Constrained Element-Connectivi-
ty Survivable Network problem. I also thank Rohit Khandekar and Guy Kort-
sarz for some discussions.
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