
ar
X

iv
:1

20
7.

57
22

v1
  [

cs
.D

S]
  2

4 
Ju

l 2
01

2

Approximating Minimum-Cost Connected T -Joins

Joseph Cheriyan∗ Zachary Friggstad† Zhihan Gao‡

September 16, 2018

Abstract

We design and analyse approximation algorithms for the minimum-cost connected T -join
problem: given an undirected graph G = (V,E) with nonnegative costs on the edges, and a
set of nodes T ⊆ V , find (if it exists) a spanning connected subgraph H of minimum cost such
that every node in T has odd degree and every node not in T has even degree; H may have
multiple copies of any edge of G. Two well-known special cases are the TSP (T = ∅) and the
s, t path TSP (T = {s, t}). Recently, An, Kleinberg, and Shmoys [STOC 2012] improved on
the long-standing 5

3
approximation guarantee for the latter problem and presented an algorithm

based on LP rounding that achieves an approximation guarantee of 1+
√
5

2
≈ 1.61803.

We show that the methods of An et al. extend to the minimum-cost connected T -join prob-
lem. They presented a new proof for a 5

3
approximation guarantee for the s, t path TSP; their

proof extends easily to the minimum-cost connected T -join problem. Next, we improve on the
approximation guarantee of 5

3
by extending their LP-rounding algorithm to get an approxima-

tion guarantee of 13

8
= 1.625 for all |T | ≥ 4.

Finally, we focus on the prize-collecting version of the problem, and present a primal-dual
algorithm that is “Lagrangian multiplier preserving” and that achieves an approximation guar-
antee of 3 − 2

|T |−1
when |T | ≥ 4. Our primal-dual algorithm is a generalization of the known

primal-dual 2-approximation for the prize-collecting s, t path TSP. Furthermore, we show that
our analysis is tight by presenting instances with |T | ≥ 4 such that the cost of the solution found
by the algorithm is exactly 3− 2

|T |−1
times the cost of the constructed dual solution.

Keywords: approximation algorithms, LP rounding, primal-dual method, prize-collecting
problems, T -joins, Traveling Salesman Problem, s, t-path TSP.

∗(jcheriyan@uwaterloo.ca) Dept. of Comb. & Opt., University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
†(zfriggstad@uwaterloo.ca) Dept. of Comb. & Opt., University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
‡(z9gao@uwaterloo.ca) Dept. of Comb. & Opt., University of Waterloo, Waterloo, Ontario N2L3G1, Canada.

http://arxiv.org/abs/1207.5722v1


1 Introduction

The Traveling Salesman Problem (TSP) and its variants, especially the s, t path TSP, are currently
attracting substantial research interest. We focus on a generalization that captures the TSP and
the s, t path TSP.

Let G = (V,E) be an undirected graph with nonnegative costs ce on the edges e ∈ E and let
T be a subset of V . A T -join is a multiset of edges J of G such that the set of nodes with odd
degree in the graph H = (V, J) is precisely T , that is, a node v ∈ V has degJ(v) odd if and only
if v ∈ T , [7, 16]. A (spanning) connected T -join is a multiset of edges F of G such that the graph
H = (V, F ) is connected and T is the set of nodes with odd degree in H, that is, a node v ∈ V
has degF (v) odd if and only if v ∈ T . Clearly, we may (and we shall) assume that G is connected
and that |T | is even, otherwise, no connected T -join exists; moreover, we may assume that each
edge of G occurs with multiplicity zero, one, or two in H, otherwise, we may remove two copies of
an edge from H while preserving the connected T -join property. In the minimum-cost connected
T -join problem, the goal is to find a connected T -join of minimum cost. Two well-known special
cases are the TSP (T = ∅), and the s,t path TSP (T = {s, t}).

By a metric graph G we mean a complete graph on V (G) such that the edge costs satisfy the
triangle inequality. The metric completion of a graph G is given by the complete graph on V (G)
with the cost of any edge vw equal to the cost of a shortest v,w path of G. It can be seen that
G has a connected T -join of cost at most γ if and only if the metric completion has a connected
T -join of cost at most γ. Thus, we may assume that the given graph G is a metric graph.

Christofides presented an algorithm for the (metric) TSP that achieves an approximation guar-
antee of 3

2 , [6], and this is the best result known for this problem. Hoogeveen [10] extended the
algorithm and its analysis to the s, t path TSP, and proved an approximation guarantee of 5

3 . Re-
cently, An, Kleinberg, and Shmoys [1] improved on this long-standing 5

3 approximation guarantee

and presented an algorithm that achieves an approximation guarantee of 1+
√
5

2 ≈ 1.61803. To
the best of our knowledge, there is only one previous result on approximating min-cost connected
T -joins: Sebő and Vygen [15] present a very nice 3

2 -approximation algorithm for unweighted graphs
(each edge has unit cost); in this context, we mention that the input graph cannot be assumed to
be a metric graph. Sebő and Vygen [15] were motivated in part by previous advances on the special
case of T = ∅ (namely, the graphic TSP) by Oveis Gharan, Saberi and Singh [14], Mömke and
Svensson [12], and Mucha [13]; in fact, Sebő and Vygen [15] achieve an approximation guarantee
of 7

5 = 1.4 for this special case.
All of our algorithms follow the plan of Christofides’ algorithm: first, compute an appropriate

tree, then, compute a D-join of minimum cost, where D denotes the set of nodes that have the
“wrong degree” in the tree; finally, return the union of the tree and the D-join. (Here, a D-join
means a multiset of edges E′ such that D is the set of nodes of odd degree in (V,E′); throughout
the paper, we use “T” and “T -join” as in the abstract, that is, T denotes a set of nodes specified in
the input; we use a symbol different from T for a join with respect to some auxiliary set of nodes.)

We show that the methods of An et al. extend to the minimum-cost connected T -join problem.
They presented a new proof for a 5

3 approximation guarantee for the s, t path TSP; in Section 3,
we show that their proof extends easily to the minimum-cost connected T -join problem. More
interestingly, in Section 4, we generalize the main result of An et al. to obtain an approximation
guarantee of 13

8 = 1.625 < 5
3 for |T | ≥ 4. Our analysis uses some new methods over that of An et

al. and we elaborate in the next subsection.

1



Our second batch of results pertain to the following prize-collecting version of the problem: in
addition to the graph G = (V,E) and the edge costs c, there is a nonnegative penalty π(v) for
each node v ∈ V \ T ; the goal is to find I ⊆ V \ T and a connected T -join F of the graph G \ I
such that c(F ) + π(I) is minimized. The special case of the prize-collecting TSP (T = ∅) has been
extensively studied for over 20 years, starting with Balas [3], and an approximation guarantee of
1.91457 has been presented by Goemans [8]; also see Archer et al. [2]. The special case of the
prize-collecting s, t path TSP (T = {s, t}) has also been studied, and An et al. [1] present an
approximation guarantee of 1.9535.

We focus on the general problem (prize-collecting connected T -join) and present a primal-dual
algorithm that achieves an approximation guarantee of 3 − 2

|T |−1 when |T | ≥ 4. Our primal-dual
algorithm may be viewed as a generalization of the known primal-dual 2-approximation for the
prize-collecting s, t path TSP by Chaudhuri et al. [5], and we also match their approximation
guarantee of 2 for |T | = 2. Furthermore, we show that our analysis is tight by presenting instances
with |T | ≥ 4 such that the cost of the solution found by the algorithm is exactly 3 − 2

|T |−1 times
the cost of the constructed dual solution.

In fact, the total penalty of the set of isolated nodes I in the solution found by our algorithm is at
most one times the penalty incurred by the LP solution. Thus, our algorithm has the “Lagrangian
Multiplier Preserving” property; this property is useful for the design and analysis of approximation
algorithms for cardinality-constrained versions of problems.

Our algorithm and analysis follow Chaudhuri et al. [5], and also we follow the well-known method
of Goemans and Williamson [9] for the prize-collecting Steiner tree problem. One key difference
comes from the cost analysis for the D-join, where D denotes the set of nodes that have the wrong
degree in the tree computed by the algorithm. A simple analysis of the cost of this D-join results
in an approximation guarantee of 4−O(|T |−1). To get the improved approximation guarantee, our
analysis has to go beyond the standard methods used for analysing the approximation guarantee
of primal-dual algorithms.

Most of our notation is standard, and follows Schrijver [16]; Section 2 has a summary of our
notation.

1.1 New Contributions on Min-Cost Connected T -Joins

This subsection discusses the main points of difference between our analysis and that of An et al.
Our algorithm and analysis follow that of An et al. at a high level. The algorithm solves an

LP relaxation, and using the optimal solution x∗ of the LP, it samples a random spanning tree J ,
and then computes a min-cost D-join, where D is the set of nodes of the wrong degree in J . The
analysis hinges on constructing a fractional D-join (a solution to an LP formulation of the D-join
problem) of low cost to “fix” the wrong-degree nodes in J .

We construct the fractional D-join as y := α · χ(J) + β · x∗ + z where χ(J) is the 0-1 incidence
vector for the edges of J , z is some “correction” vector (described in Section 4.4), and α and β are
carefully chosen (scalar) values. By the integrality of the D-join polyhedron, the cheapest D-join
has cost at most the cost of y. By linearity of expectation, the expected cost of y is less than or
equal to α + β times the cost of x∗ plus the expected cost of z. It turns out that the correction
vector z is needed only for a special type of cut, the so-called τ -narrow cuts: these are given by
T -odd sets U such that x∗(δ(U)) < 1 + τ . When |T | = 2, as in An et al. [1], it turns out that (the
node sets of) the τ -narrow cuts form a nested family U1 ⊂ U2 ⊂ · · · ⊂ Ui ⊂ . . . . This is no longer

2



true for |T | ≥ 4, and hence, the analysis of the correction vectors by An et al. does not apply when
|T | ≥ 4.

We prove that the τ -narrow cuts form a laminar family when |T | ≥ 4. Moreover, in contrast
with An et al., our analysis hinges on the “partition inequalities” that are satisfied by spanning
trees and fractional spanning trees such as x∗, namely, every partition P = {P1, . . . , Pk} of the
node set into nonempty sets satisfies x∗(δ(P1, . . . , Pk)) ≥ k − 1. In our application, we are given
a subfamily of τ -narrow cuts from the laminar family of τ -narrow cuts, and we have to obtain a
partition of the nodeset V into nonempty sets that correspond to the given subfamily. It is not
clear that this holds for τ close to 1, but, we prove that it holds for τ ≤ 1

2 .
To complete the analysis, we have to fix α, β and τ subject to several constraints, and we have

to minimize the expected cost of the fractional D-join. We choose τ = 1
2 , and this gives α = 1

5 ,
β = 2

5 ; moreover, we get a bound of 5
8cost(x

∗) on the expected cost of the fractional D-join, and
thus we get an approximation guarantee of 13

8 = 1.625. We have an example for |T | = 4 showing
that 1

2 is the optimal value for τ for our methods; see Section 4.3.

2 Preliminaries

We first establish some notation. Given a multiset of edges F , we use c(F ) to denote the cost of
F ; thus, c(F ) =

∑
e µ

F
e ce; here, µ

F
e denotes the number of copies of the edge e in F .

For any set of edges F of G, we use χ(F ) to denote the zero-one incidence vector of F , thus,
χ(F ) ∈ {0, 1}|E|, and we use V (F ) to denote the set of incident nodes. For any set of edges F of G
and any subset of nodes S, we use F (S) to denote the set of edges of F that have both endpoints
in S, and we use δF (S) to denote the set of edges of F that have exactly one endpoint in S. We
use the same notation for a multiset of edges.

For any set of nodes S, let S denote the complement V \ S. A set of nodes S is called T -even
if |S ∩ T | is even, and it is called T -odd if |S ∩ T | is odd. Also, we say that a cut δF (S) is T -even
(respectively, T -odd) if S is T -even (respectively, S is T -odd).

We say that two subsets of nodes R and S cross if R ∩ S, R ∪ S, R \ S and S \ R are all
non-empty, proper subsets of V . A family of subsets of V is called laminar if no two of the subsets
in the family cross. Equivalently, a family of subsets of V is laminar if for any two subsets R,S in
the family, either R and S are disjoint or one contains the other.

Let P = {P1, . . . , Pk} be a partition of the nodes of G into nonempty sets P1, . . . , Pk. Then
δ(P) denotes the set of edges that have endpoints in different sets in P.

For ease of notation, we often identify a tree with its edge-set, e.g., we may use J ⊆ E(G) to
denote a spanning tree. Moreover, we may use relaxed notation for singleton sets, e.g., for a node
t, we may use V − t instead of V \ {t}.

We use the the next fact throughout the paper. It relates the number of odd-degree nodes in a
set U ⊆ V and the parity of the cut δ(U).

Lemma 2.1 Let G = (V,E) be a graph, and let T ⊆ V have even size. Let F be a multiset of
edges of G, and let D be the set of wrong-degree nodes w.r.t. F , that is, D consists of nodes v ∈ T
with degF (v) even and nodes v ∈ V \ T with degF (v) odd. Then, for any U ⊆ V we have

(i) |δF (U)| ≡ |U ∩D ∩ T |+ |U ∩D ∩ T | (mod 2);

(ii) moreover, if U is both T -odd and D-odd, then |δF (U)| is even.

3



Proof. First, we prove (i). Summing over the degrees in F of all nodes in U we have the equation

∑

v∈U∩D∩T
|δF (v)| +

∑

v∈U∩D∩T

|δF (v)| +
∑

v∈U∩D∩T

|δF (v)|+
∑

v∈U∩D∩T

|δF (v)| = 2|F (U)| + |δF (U)|,

since each edge in δF (U) is counted once and each edge in F (U) is counted twice. Now, the degree,
in F , of each node in U ∩D ∩ T and U ∩D ∩ T is even and the degree of each node in U ∩D ∩ T
and U ∩D ∩ T is odd. Then (i) follows by reducing modulo 2.

Now, consider (ii). Since U is both T -odd and D-odd, it can be seen that |U ∩ D ∩ T | and
|U ∩D ∩ T | have the same parity. Then, by (i), |δF (U)| is even. �

2.1 An LP Relaxation

We will assume that G is a metric graph for both the 5/3-approximation and its improvement. If
T = ∅, then any solution F forms an Eulerian graph H = (V, F ); then the standard argument
of following an Eulerian walk and shortcutting past repeated nodes yields a Hamiltonian cycle of
no greater cost. Otherwise, if T 6= ∅, then the next result shows that there is a minimum-cost
solution subgraph H = (V, F ) that is a spanning tree; the proof follows by generalizing the notion
of shortcutting an Eulerian walk.

Proposition 2.2 Let G = (V,E) be a metric graph, and let T ⊆ V have even cardinality. Assume
that T 6= ∅. Given a connected T -join F , we can efficiently find a spanning tree of G of cost ≤ c(F )
that is also a connected T -join.

Proof. Let F be a connected T -join in G. Suppose that either F has multiple copies of an edge
of G or F is not acyclic. Then we give a procedure for finding a connected T -join of smaller size
and no greater cost. This procedure can be repeated until we find a connected T -join that is simple
and has no cycles.

Let C := v1v2, v2v3, . . . , vk−1vk, vkv1 be a cycle in F for k ≥ 2, where the case k = 2 means we
are considering two copies of an edge v1v2 in F . We first claim that there is another edge in F apart
from v1v2, . . . , vk−1vk, vkv1 that has at least one of these vi as its end node. If V \ {v1, . . . , vk} 6= ∅
then this is true because F is a connected T -join. Otherwise, vi ∈ T for some 1 ≤ i ≤ k since
T 6= ∅. But vi has degree two using the edges in C and odd degree in the T -join F , so there is some
edge in F incident to vi that has not been included in C.

Suppose uvi is an edge in F that is not listed among the edges in C. Remove uvi and vivi+1

from F and add uvi+1 to F (where we let vi+1 denote v1 if i = k). If u = vi+1, then we simply
remove uvi and vivi+1 without adding any edges. Denote the resulting multiset of edges by F ′. By
the triangle inequality, we have c(F ′) ≤ c(F ).

The parity of the degrees of the nodes does not change, so F ′ is still a T -join. Furthermore,
we claim that the graph H = (V, F ′) is connected. To see this, observe that H = (V, F ′) has a
walk W ′ between a pair of nodes v,w if and only if (V, F ) has a walk W between v,w, because
any occurrence of vivi+1 in W could be replaced by the sequence of edges given by C \ {vivi+1},
similarly, uvi could be replaced by uvi+1, C \ {vivi+1}, and any occurrence of uvi+1 in W ′ could be
replaced by uvi, vivi+1.

This completes the proof: in a metric graph, given a connected T -join that has cycles or multi-
edges, we can find a connected T -join of smaller size and no greater cost, assuming T 6= ∅. �

4



Let F be a connected T -join and consider any T -even subset of nodes S. Observe that |δF (S)|
is even; this follows by applying Lemma 2.1 to F and noting that the set of wrong-degree nodes
D is empty. This fact and Proposition 2.2 lead to our linear programming relaxation (L.P.1) for
the minimum-cost connected T -join problem. The optimal value of (L.P.1) gives a lower bound on
the minimum cost of a connected T -join, because there exists an optimal connected T -join whose
incidence vector satisfies all the constraints of (L.P.1).

(L.P.1) minimize :
∑

e∈E cexe
subject to : x(E(S)) ≤ |S| − 1 ∀S ( V, |S| ≥ 2

x(E(V )) = |V | − 1
x(δ(S)) ≥ 2 ∀∅ ( S ( V, |S ∩ T | even

xe ≥ 0 ∀e ∈ E
The preceding discussion shows that the optimal value of this linear program is a lower bound

for the optimal cost for the connected T -join problem when T 6= ∅. Using the ellipsoid method,
we can solve this linear program efficiently. The first two constraints assert that a feasible solution
x must be in the spanning tree polytope and these can be separated over efficiently (see [11]).
The last constraints say that the total x-value assigned to edges crossing any particular T -even cut
should be at least 2. An efficient separation oracle for these constraints was developed by Barahona
and Conforti [4].

Finally, we recall a linear programming formulation for the minimum cost T -join problem,
assuming nonnegative costs. The extreme points of this LP are integral, see [16], meaning that the
optimal value of this LP is equal to the minimum cost of a T -join. We call any feasible solution to
the following linear program a fractional T -join.

(L.P.2) minimize :
∑

e∈E cexe
subject to : x(δ(U)) ≥ 1 ∀U ⊆ V, |U ∩ T | odd

xe ≥ 0 ∀e ∈ E

3 A 5
3-Approximation Algorithm

Hoogeveen [10] showed that Christofides’ 3/2-approximation algorithm for the TSP (the case when
T = ∅) extends to give a 5/3-approximation algorithm for the s, t path TSP (the case when
T = {s, t}). Later, An, Kleinberg, and Shmoys (AKS) [1] proved that the 5/3-approximation
guarantee holds with respect to (the optimal value of) an LP relaxation for the s, t path TSP.

It turns out that Christofides’ algorithm generalizes to give a 5/3-approximation algorithm for
the min-cost connected T -join problem; this is observed in [15]. The (generalized) algorithm first
computes a minimum spanning tree J ⊆ E(G). Then let D denote the set of “wrong degree” nodes
in J . That is, D consists of the nodes in T that have even degree in J and the nodes in V \ T that
have odd degree in J . Let M ⊆ E(G) be a minimum-cost D-join. Then the multiset F = J ∪M (F
has two copies of each edge in J∩M) forms a connected T -join. Thus the algorithm is combinatorial
and does not require solving any linear programs. The next result uses the method of An et al.
to show that the algorithm achieves an approximation guarantee of 5/3 w.r.t. the optimal value of
the LP relaxation (L.P.1); we include the proof, since it serves as an introduction to our improved
approximation algorithm that is presented in the next section.

Theorem 3.1 (An, Kleinberg, and Shmoys [1]) Let x∗ be an optimal solution for the linear
programming relaxation of the connected T -join problem, (L.P.1), and let OPTLP denote the opti-
mal value

∑
e∈E cex

∗
e. Then the solution F computed by the algorithm has cost ≤ 5

3OPTLP .

5



Proof. The first two constraints of the linear program ensure that any feasible solution x
is contained in the spanning tree polytope of G, that is, x is a convex combination of zero-one
incidence vectors of spanning trees of G, [16]. Let J be a minimum spanning tree; then, we have
c(J) ≤ OPTLP .

Let y := 1
3 χ(J) + 1

3x
∗; we claim that y is a fractional D-join. By the integrality of the D-join

polyhedron, this would show that the cost of the D-join M is ≤ 2
3OPTLP , and hence, the cost of

F is ≤ 5
3OPTLP .

To see that y is a fractional D-join, consider any set of nodes U that is D-odd. If U is also
T -odd, then Lemma 2.1 part (ii) implies that |δJ(U)| is even; moreover, J is connected, hence,
|δJ (U)| has size ≥ 2. Also, we have x∗(δ(U)) ≥ 1, hence, we have y(δ(U)) ≥ 1. Otherwise, if U is
T -even, then x∗(δ(U)) ≥ 2 by the last constraints of the linear program, and J ∩ δ(U) has size ≥ 1
since J is connected. Thus we have y(δ(U)) ≥ 1 in this case as well. Hence, y(δ(U)) ≥ 1 holds for
every D-odd set U ⊆ V , therefore, by (L.P.2), y is a fractional D-join. �

4 An Improved Approximation For |T | ≥ 4

In this section, we improve on the approximation guarantee of 5/3 for the mincost connected T -join
problem, by extending the approximation algorithm and analysis by An et al. [1], for the s, t path
TSP. We assume |T | ≥ 4, and we prove an approximation guarantee of 13

8 = 1.625. (We note that
the analysis in [1] for the case |T | = 2 applies also to the linear program (L.P.1); there is a minor
difference between the two LP relaxations since (L.P.1) does not have degree constraints for the
nodes; but, the degree constraints in their LP are only required in their analysis to show that their
LP solution is a convex combination of spanning trees.)

Theorem 4.1 There is an algorithm (described in Section 4.1) that finds a connected T -join F of
cost at most 13

8 times the optimum value of linear program (L.P.1).

4.1 The Algorithm

Let x∗ denote an optimal solution to the linear programming relaxation for the minimum-cost
connected T -join problem. The first two constraints of the LP allow us to decompose x∗ as a
convex combination of incidence vectors of spanning trees. That is, there exist spanning trees
J1, . . . , Jk and non-negative values λ1, . . . , λk summing to 1 such that x∗ =

∑k
i=1 λi χ(Ji). By

Caratheodory’s theorem, we may assume k ≤ |E|+1 and it is possible to find these spanning trees
in polynomial time, [16]. For each spanning tree Ji, let Di denote the set of nodes that have the
“wrong” degree in Ji, that is, Di consists of the nodes in T that have even degree in Ji and the
nodes in V \ T that have odd degree in Ji. Let Mi be a minimum cost Di-join and let Fi be the
multiset formed by the union of Mi and Ji. Clearly, each Fi is a connected T -join. We output the
cheapest of these solutions.

It is easier to analyze a related randomized algorithm. Rather than trying every tree Ji, our
algorithm randomly selects a single tree J by choosing Ji with probability λi. Since the deterministic
algorithm tries all such trees, the cost of the solution found by the deterministic algorithm is at
most the expected cost of the solution found by this randomized algorithm. Let D denote the set
of nodes of wrong degree in J , M denote the minimum-cost D-join, and F denote the (multiset)
union of M and J . The randomized algorithm returns F .

6



The expected cost of F is the expected cost of J plus the expected cost of the D-join M . The
expected cost of the tree J is precisely the cost of x∗ since each edge e has probability precisely x∗e
of appearing in J . We will show that the expected cost of M is at most 5

8 times the cost of x∗.

4.2 Constructing the Fractional D-Join

As in the proof of the 5/3-approximation guarantee, we will construct a fractional D-join. However,
instead of using exactly 1

3 of χ(J) and 1
3 of x∗, we will construct the fractional D-join as y :=

α · χ(J) + β · x∗ + z where x∗ ∈ IR|E|, z is some “correction” vector in IR|E| to be described below,
and α and β are values which will be specified shortly. Again, by the integrality of the T -join
polyhedron, the cost of M will be at most the cost of y. By linearity of expectation, the expected
cost of y will be exactly α+ β times the cost of x∗ plus the expected cost of z.

The following lemma shows that for certain α and β, the correction vector is not needed for
many cuts. The proof is similar to a result in [1].

Lemma 4.2 Suppose α+ 2β ≥ 1. Then (α · χ(J) + β · x∗)(δ(U)) ≥ 1 if U is either
(i) T -even, or
(ii) T -odd and D-odd, with x∗(δ(U)) ≥ 1−2α

β
.

Proof. First, suppose U is T -even. Then x∗(δ(U)) ≥ 2 by the LP constraints. Since J is
connected, then |J ∩ δ(U)| ≥ 1. Therefore, we have α · χ(J)(δ(U)) ≥ α and β · x∗(δ(U)) ≥ 2β; the
sum of the two terms is ≥ α+ 2β ≥ 1.

Now, consider part (ii). Suppose that U is T -odd with x∗(δ(U)) ≥ 1−2α
β

. Since U is both
T -odd and D-odd, Lemma 2.1 part (ii) implies that |J ∩ δ(U)| is even; moreover, J is a spanning
tree, hence, J has ≥ 2 edges in δ(U). Consequently, we have α · χ(J)(δ(U)) ≥ 2α, and moreover,
β · x∗(δ(U)) ≥ 1− 2α by the assumption on x∗(δ(U)); the lemma follows, since the sum of the two
terms is ≥ 1. �

It will be convenient to fix a particular node t̂ ∈ T . Unless otherwise specified, when discussing
a cut of the graph we will take the set S ⊆ V representing the cut to be such that t̂ 6∈ S, thus the
cut will be denoted δ(S), S ⊆ V − t̂. As T -odd cuts of the graph that have small x∗ capacity will
be used frequently in our analysis, we employ the following definition.

Definition 4.3 Let τ ≥ 0. A T -odd subset of nodes S is called τ -narrow if x∗(δ(S)) < 1 + τ .

Using this definition, Lemma 4.2 says that if α + 2β ≥ 1 with both α, β ≥ 0, then the vector
α·χ(J)+β·x∗ satisfies all constraints defining theD-join polyhedron except, perhaps, the constraints
corresponding to T -odd, τ -narrow cuts for τ ≥ 1−2α

β
− 1.

An et al. in [1], proved that if R and S are distinct τ -narrow, T -odd cuts then either S ⊂ R or
R ⊂ S. A generalization of this result to connected T -joins is the following.

Lemma 4.4 If τ ≤ 1 and R and S are distinct τ -narrow cuts, then R and S do not cross.

Proof. Assume, for the sake of contradiction, that R and S cross. There are two cases to consider,
depending on the cardinality of R∩S ∩T . If R∩S ∩T is odd, then R \S and S \R are nonempty,
proper subsets of V that have even intersection with T . But then we have

2 + 2τ > x∗(δ(R)) + x∗(δ(S)) ≥ x∗(δ(R \ S)) + x∗(δ(S \R)) ≥ 2 + 2,

7



where the last inequality follows from the LP constraints applied to the T -even sets R\S and S \R.
However, this contradicts τ ≤ 1.

If, on the other hand, R∩S ∩ T is even, then R∩S and R∪S are nonempty, proper subsets of
V that have even intersection with T . A similar contradiction can be reached in this case using the
inequality x∗(δ(R))+x∗(δ(S)) ≥ x∗(δ(R∩S))+x∗(δ(R∪S)), where we have ∅ 6= R∩S,R∪S 6= V
because R,S cross. �

Another way to state Lemma 4.4 is that the τ -narrow, T -odd cuts of the graph form a laminar
family L of nonempty subsets of V \ {t̂}.

The correction vector z that we add to α · χ(J) + β · x∗ for the T -odd, τ -narrow cuts can be
constructed from the following lemma. The main difference from the analogous result in [1] is that
we require a further restriction on the size of τ .

Lemma 4.5 Let L = {Ui} be the laminar family of T -odd, τ -narrow cuts. For τ ≤ 1
2 there exists

vectors fU ∈ IR|E|, one for each cut Ui ∈ L, such that the following three conditions hold.

1. For each U ∈ L, fU ≥ 0

2.
∑

U∈L fU ≤ x∗

3. For each U ∈ L, fU(δ(U)) ≥ 1

The proof of this lemma is deferred to the next section. Assuming this lemma, we will now
show how to complete the analysis of the algorithm. We now fix τ to be 1

2 . We also set α := 1
5 and

β := 2
5 . For these choices of parameters, we have α+ 2β ≥ 1 and τ = 1−2α

β
− 1.

We construct the correction vector z by including an appropriate multiple of fU for each D-odd
cut U ∈ L. Formally,

z =
∑

U∈L
|U∩D| odd

(1− 2α − βx∗(δ(U))) · fU .

Since x∗(δ(U)) < 1 + τ and τ = 1−2α
β

− 1, we have 1 − 2α − βx∗(δ(U)) ≥ 0 for each U ∈ L which
shows z ≥ 0. From this, Lemma 4.2 shows that y(δ(U)) ≥ 1 for each D-odd, T -even cut U and
each D-odd, T -odd cut U that is not τ -narrow. Finally, if U is D-odd, T -odd and τ -narrow (so
U ∈ L), then fU (δ(U)) ≥ 1 so y(δ(U)) ≥ 2α + βx∗(δ(U)) + (1 − 2α − βx∗(δ(U))) = 1. Thus, we
have proved the next result.

Lemma 4.6 The vector y is a fractional D-join.

We conclude the analysis by bounding the expected cost of y. The next result states that the
probability that a T -odd cut U is also D-odd is ≤ x∗(δ(U)) − 1; this is an immediate extension of
a similar statement in [1].

Fact 4.7 Let U be a T -odd set. Suppose that J is a random spanning tree (obtained from x∗ by
choosing Ji with probability λi). Then Pr[|D ∩ U | is odd] ≤ x∗(δ(U)) − 1.

Therefore,

E[cost(y)] = (α+ β) cost(x∗) +
∑

U∈L
(1− 2α− βx∗(U)) ·Pr[|D ∩ U | is odd] · cost(fU).

8



Now, for each U ∈ L we can bound (1−2α−βx∗(δ(U)))·Pr[|D∩U | is odd] by (1−2α−βx∗(δ(U)))·

(x∗(δ(U))−1). This is −2x∗(δ(U))2+5x∗(δ(U))−3
5 . For x∗(δ(U)) bound between 1 and 3

2 , the maximum
value of this function is achieved at x∗(δ(U)) = 5

4 and its value is 1
40 .

So, the expected cost of y is at most (α+β)·cost(x∗)+ 1
40 ·

∑
U∈L cost(fU). Since

∑
U∈L fU ≤ x∗,

we have the final bound on the expected cost of y being (α+ β + 1
40) cost(x

∗). Adding this to the
expected cost of J , we have that the expected cost of the connected T -join is at most 13

8 cost(x
∗).

Note that this is strictly less than 5
3 .

4.3 Tight Example for τ

Here, we present an example for |T | = 4 showing that 1
2 is the optimal value for τ for our methods.

Let G = (V,E) be the complete graph on four nodes K4, and let T = V . It can be seen that
x ∈ IR|E| with xe =

1
2 , ∀e ∈ E, satisfies all the constraints of the LP relaxation (L.P.1). Choose any

one node to be t̂; recall that for any cut δ(S) of the graph, we assume that the set S representing
the cut is a subset of V − t̂. Suppose that we choose a value strictly greater than 1

2 for τ . Then we

have four T -odd, τ -narrow cuts, namely, the cuts of the three singletons S = {v}, v ∈ V − t̂, and
the cut of S = V − t̂; each of these cuts δ(S) has x(δ(S)) = 3

2 < 1 + τ . Clearly, Lemma 4.5 does
not apply, because the sum of fS(δ(S)) over the four τ -narrow cuts has to be ≥ 4, but we have
x(E) = 3, hence, part 2 of Lemma 4.5 cannot hold. On the other hand, the lemma holds for τ = 1

2 .

4.4 The Correction Vector

We complete the analysis by proving Lemma 4.5. As in [1], we set up a flow network and use
the max-flow/min-cut theorem to ensure a flow exists with the desired properties. However, our
analysis is complicated by the fact that the sets in L are laminar rather than simply nested.

Our argument on the existence of the desired flow uses the following inequality for spanning
trees. For a connected graph H and a partition of V (H) into k non-empty sets, P = {P1, . . . , Pk},
the number of edges that have endpoints in different sets in P is at least k−1, that is, |δE(H)(P)| ≥
k − 1. Thus, as our vector x∗ is a convex combination of (incidence vectors of) spanning trees, we
have x∗(δ(P1, . . . , Pk)) ≥ k − 1, for any partition P1, . . . , Pk of V (G) into nonempty sets.

Let L′ be a subfamily of L. For U ∈ L′, let gL′(U) be the nodes in U that are not found in any
smaller subset in L′. That is,

gL′(U) = {v ∈ U : v 6∈ W for any W ∈ L′ with W ( U}.

The following result is the key to generalizing the argument in [1] to our setting.

Lemma 4.8 Suppose that τ ≤ 1
2 . Let L′ be any subfamily of L. The family of subsets {gL′(U) :

U ∈ L′} ∪ {V \
⋃

W∈L′ W} forms a partition of V , and each such subset is nonempty.

Proof. Each node v in some subset in the family L′ is in gL′(U) for some U ∈ L′ since v is
“assigned” to the smallest subset of L′ containing v. All other nodes appear in the set V \

⋃
W∈L′ W .

By construction, the sets are disjoint. It remains to prove that each of the sets is nonempty.
Since t̂ is not in any subset in the family L′, it must be that V \

⋃
W∈L′ W 6= ∅. For a set U ∈ L′,

let mL′(U) be the maximal proper subsets of U in the subfamily L′. That is, W ∈ L′ is in mL′(U) if
W ( U and no other subset W ′ ∈ L′ satisfies W ( W ′ ( U . Note that gL′(U) = U \

⋃
W∈mL′(U)W

and the sets in mL′(U) are disjoint.

9



For the sake of contradiction, suppose that gL′(U) = ∅. Then U is the disjoint union of the sets
in mL′(U). Since every set in L′ is T -odd, then |mL′(U)| is also odd and we let 2k+1 = |mL′(U)|.
Note that 2k + 1 ≥ 3 which implies k ≥ 1.

Now we examine the quantity X = x∗(δ(U)) +
∑

W∈mL′(U) x
∗(δ(W )). One the one hand, since

U and each W ∈ mL′(U) are τ -narrow cuts, then X < (1 + τ) + (2k + 1)(1 + τ) = (2k + 2)(1 + τ).
On the other hand, we consider the partition P = {W : W ∈ mL′(U)} ∪ {V \ U} of V . We claim
that 2x∗(δ(P)) ≤ X. To see this, notice that any edge e with ends in V \ U and W0 for some
W0 ∈ mL′(U) is counted twice in X. (Once for δ(U) and once for δ(W0).) Similarly, for any edge e
with ends in different subsets W0,W1 in mL′(U) is also counted twice.(Once for δ(W0) and once for
δ(W1).) By the partition inequality, we have 2(2k + 1) ≤ 2x∗(δ(P)) ≤ X < (2k + 2)(1 + τ). Thus,
2(2k + 1) < (2k + 2)(1 + τ) which implies τ > k

k+1 ≥ 1
2 since k ≥ 1. This contradicts τ ≤ 1

2 . �

Proof of Lemma 4.5 We now finish construction of the vectors fU , U ∈ L by describing the
flow network. Create a directed graph with 4 layers of nodes, where the first layer has a single
source node vs and the last layer has a single sink node vt. We have a node vU for each τ -narrow
cut U ∈ L in the second layer, and a node ve for each edge e ∈ E(G) in the third layer. For each
U ∈ L, there is an arc from vs to vU with capacity 1. For each edge e of G, there is an arc from ve
to vt with capacity x∗e. Finally, for each U ∈ L and each e ∈ δ(U) we have an arc from vU to ve
with capacity ∞.

We claim that there is a flow from vs to vt that saturates each of the arcs originating from vs;
this is proved below. From such a flow, we construct the vectors fU for U ∈ L by setting fU

e to
be the amount of flow sent on the arc from vU to ve (where we use fU

e = 0 if e 6∈ δ(U)). We have
fU ≥ 0 and, by the capacities of the arcs entering vt,

∑
U∈L fU ≤ x∗. Finally, since each U ∈ L

has the arc from vs to vU saturated by one unit of flow, we have fU (δ(U)) ≥ 1. Thus, the vectors
fU , U ∈ L satisfy the requirements of Lemma 4.5.

We prove the existence of this flow by the max-flow/min-cut theorem. Let S be any cut with
vs ∈ S, vt 6∈ S. If S contains some node vU for U ∈ L but not ve for some e ∈ δ(U), then the
capacity of S is ∞. Otherwise, let LS denote the subfamily of sets U ∈ L such that the node vU
representing U is in S. Then the total capacity of the arcs leaving S is at least

|L| − |LS |+
∑

e∈δ(U)
for some U∈LS

x∗e.

Consider the collection of sets PS := {gLS
(U), U ∈ LS} ∪ {V \

⋃
W∈LS

W}. From Lemma 4.8,
each set in PS is nonempty and the sets of PS form a partition of V .

Next, we claim that e ∈ δ(PS) if and only if e ∈ δ(U) for some U ∈ LS . Consider an edge
e ∈ δ(PS). If one endpoint of e is in V \

⋃
W∈LS

W , then the other endpoint lies in gLS
(U) where

U is the smallest set in LS containing this endpoint. But then e ∈ δ(U) because e has exactly one
endpoint in U . Otherwise, e = uv has u ∈ gLS

(U) and v ∈ gLS
(W ) for distinct sets U,W ∈ LS .

Suppose, without loss of generality, that either U ( W or U ∩ W = ∅. Then by definition of
gLS

(W ), we cannot have v ∈ U . Therefore, e ∈ δ(U).
Conversely, if e = uv ∈ δ(U) for some U ∈ LS with, say, u ∈ U , then u lies in gLS

(W ) where
W is the smallest set in LS containing u. Since W ⊆ U and v 6∈ U , then v must lie in a different
set in PS . Thus, e ∈ δ(PS).

10



This shows ∑

e∈δ(U)
for some U∈LS

x∗e = x∗(PS) ≥ |LS |,

where the inequality holds since |PS | = |LS | + 1. Therefore, the capacity of the cut S is at least
|L|. Since this holds for all vs,vt cuts S, then the maximum flow is at least |L|. Finally, the cut
S = {vs} has capacity precisely |L| so the maximum vs,vt flow saturates all of the arcs exiting vs.

�

5 Prize-Collecting Connected T -Joins

We start with a linear programming relaxation of the prize-collecting problem. For notational
convenience, we define a large penalty for each node in T . We also designate an arbitrary node
t⋆ ∈ T as the root node. The LP has a variable ZX for each set X ⊆ V − t⋆ such that ZX = 1
indicates that X is the set of isolated nodes of an optimal integral solution; moreover, we have a cut
constraint for each nonempty subset S of V − t⋆; the requirement (r.h.s. value) of a cut constraint
is 1 or 2, depending on whether the set S is T -odd or T -even.

Let Q denote the T -odd subsets of V − t⋆ and let R denote the non-empty, T -even subsets of
V − t⋆. Our LP relaxation is stated below.

(L.P.3) minimize :
∑

e

cexe +
∑

X⊆V−t⋆

π(X)ZX

subject to : x(δ(Q)) ≥ 1 ∀ Q ∈ Q

x(δ(R)) +
∑

X:X⊇R,X⊆V−t⋆

2ZX ≥ 2 ∀ R ∈ R

x,Z ≥ 0
Consider any solution to the prize-collecting connected T -join problem. Let I ⊆ V − t⋆ denote

the set of isolated nodes and let F denote the connected T -join of G \ I; thus this solution incurs
a total cost of c(F ) for the edges in F plus π(I) for the penalties of the nodes in I. We define
an integral solution to (L.P.3) by taking ZI = 1, ZS = 0 for all other subsets S ⊆ V − t⋆, and
moreover, for each edge e, we take xe to be the number of copies of e used in F . By construction,
the cost of this solution (x,Z) is equal to c(F ) + π(I).

For every Q ∈ Q, observe that at least one edge of δ(Q) is in F (since F connects the nodes
in T ); this justifies the first set of constraints in the LP relaxation. Now, focus on the second
set of constraints in the LP relaxation, and consider any one set R ∈ R and its constraint in
(L.P.3). If R ⊆ I, then the constraint is satisfied due to the term 2ZI (in the left-hand side of the
constraint). Otherwise, if R 6⊆ I then at least one edge in δ(R) is in F (since F connects the nodes
in {t̂} ∪ R \ I); moreover, by Lemma 2.1, |δF (R)| is even, so at least two edges of δ(R) are in F ;
hence, the constraint is satisfied if R 6⊆ I. The above discussion is summarized by the next result.

Fact 5.1 The optimal value of (L.P.3) is at most the optimal cost of a prize-collecting connected
T -join.

The dual of (L.P.3) has a variable yQ for each primal-constraint of the first type, and a variable
yR for each primal-constraint of the second type; thus, each T -odd set Q ⊆ V − t⋆ has a dual
variable yQ, and each T -even set ∅ ( R ( V − t⋆ has a dual variable yR.

11



(L.P.4) maximize :
∑

Q∈Q
yQ +

∑

R∈R
2yR

subject to :
∑

S∈Q∪R:e∈δ(S)
yS ≤ ce ∀ e ∈ E

∑

R⊆X,R∈R
2yR ≤ π(X) ∀ X ⊆ V − t⋆

y ≥ 0
Consider the dual LP and a feasible solution y; we call an edge e tight if the constraint for e

holds with equality, and we call a set of nodes X π-tight if the constraint for X holds with equality.

5.1 The Primal-Dual Algorithm

The algorithm proceeds in phases. In each phase, a partition P of V (G) is maintained; some sets
in this partition are active and some are inactive. Throughout, the set containing the root, t⋆, is
taken to be inactive. The initial partition consists of singletons {v} for every v ∈ V . Each of the
sets {v}, v ∈ V − t⋆, is designated as active. We initialize yS := 0 for every subset S of V . Let F
denote the set of edges chosen during the growing phase of the algorithm; we initialize F := ∅.

Each phase proceeds as follows. We simultaneously raise yS for every active set S in the current
partition at a uniform rate. (Recall that sets containing t⋆ have no dual variables. Since the
algorithm designates such sets as inactive, it never uses dual variables of such sets.) The phase
ends when either (i) an edge becomes tight or (ii) an active subset of nodes S becomes π-tight. If
the former occurs, then we pick any edge e = vw that becomes tight; its endpoints v and w must
be in different components of the current partition; we add e to F , and we merge the components
in the current partition containing v and w; we call the resulting new component inactive if it
contains the root, otherwise, we call the new component active. If the latter occurs, that is, if an
active subset S ⊆ V in the partition becomes π-tight, then S becomes inactive. The algorithm
terminates when there are no remaining active sets.

Standard arguments show that the dual solution at the end of the algorithm is feasible and that
the set of edges F chosen throughout the algorithm is acyclic. We prune our solution F in the usual
way. Namely, we iteratively discard any edge e such that there exists an inclusion-wise maximal
set X that was inactive at some point of the algorithm and δ(X) = {e}; moreover, after this stage
of pruning, we discard all remaining edges that are not in the component of t⋆. Let J denote the
remaining subset of edges. The subgraph that remains after discarding the isolated nodes is a tree
J containing the root t⋆. Furthermore, since each node in T has a large penalty, then J contains
all nodes in T .

Finally, let D ⊆ V (J) denote the set of nodes that have the wrong degree in the tree J . We
compute a minimum-cost D-join M and finally, we output J ∪M as a connected T -join on V (J).
Let I denote the set of nodes not included in J , thus I = V \ V (J).

5.2 Analysis of the Primal-Dual Algorithm

Our argument for bounding the cost of the tree J and the penalties of the nodes in I is similar to
known arguments. A simple way to bound the cost of the D-join M would be to pair the nodes in
D using edge-disjoint paths in J , so that adding M to J at most doubles the cost of the set of edges
used. However, we can improve on this simple analysis of the cost of the D-join by scrutinizing the
analysis of the dual growing phase. The following theorem summarizes the cost bounds.

12



Theorem 5.2 The penalty of the nodes in I is exactly 2
∑

X⊆I

yX , the cost of the tree J is

≤

(
2−

1

|T | − 1

) ∑

Q∈Q
yQ + 2

∑

R∈R,R*I

yR,

and the cost of the D-join M is

≤

(
1−

1

|T | − 1

) ∑

Q∈Q
yQ + 2

∑

R∈R,R*I

yR.

Let ρ(|T |) denote the approximation guarantee of our algorithm; below, we show that ρ(|T |) =
3− 2

|T |−1 for |T | ≥ 4, and ρ(2) = 2. Before presenting the proof, we remark that this shows

cost(J ∪M) + ρ(|T |) · π(I) is at most ρ(|T |) times the cost of the dual solution y.
Proof. The equation for the penalty is standard and follows by construction since I (being the
union of the π-tight inactive components that were pruned) is π-tight. The analysis for the cost
of J is nearly identical to Goemans and Williamson’s analysis [9] and is included in Appendix A
for completeness. One minor difference in our analysis comes from the fact that there are at most
|T | components that are T -odd at any point in the execution, and we exploit this fact to derive an
approximation guarantee that is tight on some examples.

To bound the cost of the D-join M , we consider a possibly different D-join M ′ obtained by
pairing the nodes in D with edge-disjoint paths in J . Clearly c(M) ≤ c(M ′) so it suffices to bound
the cost of M ′. Let Ĵ be the subset of J consisting of edges e such that J \ {e} consists of two
D-even components. Note that M ′ ∩ Ĵ = ∅ since, by parity arguments, any D-join must have an
even number of edges crossing any D-even cut, and each edge of J is used at most once in M ′. The
next claim is the key to the improved cost analysis for minimal D-joins.

Claim 5.3 Let Q be a T -odd component from any step in the execution of the algorithm. Then at
least one of the edges in δJ(Q) belongs to Ĵ . That is, δM ′(Q) is a proper subset of δJ(Q).

Proof of Claim We have two cases to consider, either Q is D-odd or it is D-even. First, suppose
Q is D-odd. Then, by Lemma 2.1 part (ii), |δJ (Q)| is even. Focus on J \ δJ (Q) and observe that
it has an odd number of connected components, so at least one of them, say S, must be D-even.
Thus, the edge in δJ (Q) connecting Q to S is in Ĵ .

Similarly, if Q is D-even, then |δJ (Q)| is odd. Then J \ δJ (Q) has an even number of connected
components, hence, there is another connected component that is D-even, call it S, S 6= Q. Then,
the edge between Q and S is in Ĵ . �

Using this, we can bound the cost of M ′ in the following way.

∑

e∈M ′

ce =
∑

e∈M ′




∑

Q∈Q
e∈δ(Q)

yQ +
∑

R∈R
R*I,e∈δ(R)

yR


 =

∑

Q∈Q
|δM ′(Q)|yQ +

∑

R∈R,R*I

|δM ′(R)|yR

≤
∑

Q∈Q
(|δJ (Q)| − 1)yQ +

∑

R∈R,R*I

|δJ (R)|yR ≤

(
1−

1

|T | − 1

) ∑

Q∈Q
yQ + 2

∑

R∈R,R*I

yR

13



The first inequality follows from the claim for the T -odd sets in Q and the simple fact that δM ′(R) ⊆
δJ(R) for R ∈ R. The second inequality follows from our analysis of the cost of J in Appendix A.

�

This completes the analysis of the primal-dual algorithm. Our algorithm and analysis are also
valid in the case |T | = 2, and it can be seen that our approximation guarantee for |T | = 2 is
ρ(2) = 2. In fact, our algorithm in this case is essentially identical to the 2-approximation for the
prize-collecting s, t path TSP presented in [5].

Our analysis is tight even up to lower-order terms when |T | ≥ 4. This is realized by a cycle
on T , that is, G = (T,E) consists of an even-length cycle with at least 4 nodes. Let t⋆ ∈ T be a
designated node and let the edges incident to it have cost 1

2 while all other edges have cost one.
The dual growth phase grows y{v} to 1/2 for every singleton v ∈ T − t⋆. The algorithm could find

a tree of cost |T | − 3
2 (by picking all edges of G except one of the two edges incident to t⋆), and

then find a D-join of cost |T |−2
2 . Observe that the cost of the dual solution is |T |−1

2 , whereas the

connected T -join constructed by the algorithm has cost 3|T |−5
2 ; the ratio of these two quantities is

exactly 3− 2
|T |−1 .

6 Conclusions

We presented a 13
8 = 1.625 approximation algorithm for the mincost connected T -join problem

whose analysis closely followed the analysis of the s, t path TSP algorithm in [1]. Furthermore,
we presented a max{3 − 2

|T |−1 , 2}-approximation algorithm for a prize-collecting version of the

problem; this algorithm is based on the primal-dual method [9] and it is Lagrangian multiplier
preserving.

Our algorithms in Sections 4 and 5 are based on the LP relaxations (L.P.1) in Section 2 and
(L.P.3) in Section 5, respectively. Unfortunately, we do not have tight bounds on the integrality
ratios of these LP relaxations. As far as we know, the best lower bound on the integrality ratio of
(L.P.1) is 3

2 , and this follows from an example for the s, t path TSP in [1, Figure 1].

Acknowledgements: We thank a number of colleagues for useful discussions; in particular, we
thank Jochen Könemann and Chaitanya Swamy.

References

[1] H.-C.An, R.Kleinberg, and D.B.Shmoys, Improving Christofides’ algorithm for the s-t path
TSP, In Proc. ACM STOC, 2012. CoRR, abs/1110.4604v2, 2011.

[2] A.Archer, M.Bateni, M.Hajiaghayi, and H.J.Karloff, Improved approximation algorithms for
prize-collecting Steiner tree and TSP, SIAM J.Comput., 40(2):309–332, 2011.

[3] E.Balas, The prize-collecting traveling salesman problem, Networks, 19(6):621–636, 1989.

[4] F.Barahona and M.Conforti, A construction for binary matroids, Discrete Mathematics,
66(3):213–218, 1987.

[5] K.Chaudhuri, B.Godfrey, S.Rao, and K.Talwar, Paths, trees, and minimum latency tours, In
Proc. IEEE FOCS, 36–45, 2003.

14



[6] N.Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem,
Technical report, Graduate School of Industrial Administration, Carnegie Mellon University,
Pittsburgh, PA, 1976.

[7] J.Edmonds and E.Johnson, Matching: A well-solved class of integer linear programs, in Pro-
ceedings of the Calgary International Conference on Combinatorial Structures and Their Ap-
plications, R.Guy et al., eds., Gordon and Breach, 82–92, 1970.

[8] M.X.Goemans, Combining aproximation algorithms for the prize-collecting TSP, CoRR,
abs/0910.0553, 2009.

[9] M.X.Goemans and D.P.Williamson, A general approximation technique for constrained forest
problems, SIAM J. Comput., 24(2):296–317, 1995.

[10] J.A.Hoogeveen, Analysis of Christofides’ heuristic: Some paths are more difficult than cycles,
Operations Research Letters, 10:291–295, 1991.

[11] L.C.Lau, R.Ravi, and M.Singh, Iterative Methods in Combinatorial Optimization, Cambridge
University Press, 2011.

[12] T.Mömke and O.Svensson, Approximating graphic TSP by matchings, In Proc. IEEE FOCS,
560–569, 2011.

[13] M.Mucha, 13/9-approximation for graphic TSP, STACS 2012: 30–41. Improved analysis for
graphic TSP approximation via matchings, CoRR abs/1108.1130, 2011.

[14] S.Oveis Gharan, A.Saberi, and M.Singh, A randomized rounding approach to the Traveling
Salesman Problem, In Proc. IEEE FOCS, 550–559, 2011.

[15] A.Sebő and J.Vygen, Shorter tours by nicer ears: 7/5-approximation for graphic TSP, 3/2 for
the path version, and 4/3 for two-edge-connected subgraphs, CoRR, abs/1201.1870v2, 2012.

[16] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combi-
natorics, Vol.24, Springer, Berlin, 2003.

[17] D.P.Williamson and D.B.Shmoys, The Design of Approximation Algorithms, Cambridge Uni-
versity Press, New York, NY, 2011.

15



A Appendix: Analysis of the Dual Growing Phase

We bound the cost of J as follows.

∑

e∈J
ce =

∑

e∈J




∑

Q∈Q
e∈δ(Q)

yQ +
∑

R∈R
R*I,e∈δ(R)

yR


 =

∑

Q∈Q
|δJ(Q)|yQ +

∑

R∈R
R*I

|δJ (R)|yR

The first equation holds because the edges in J are tight. That the inner sum over subsets
R ∈ R can be restricted to subsets * I follows because no subset of nodes contributing to the dual
constraint for an edge e ∈ J is contained in I. The second equation follows by rearranging the
sums.

Now consider a step in the execution with corresponding partition P of V (G). Add the edges
of J to the graph (V, ∅), and then contract each of the sets S belonging to the partition P. The
resulting graph is a tree plus some isolated nodes, because each contracted set S of P induces a tree
of (V, F ) and so the subgraph of (V, J) induced by S consists of a tree plus some isolated nodes,
see [9, 17]. Let C denote the T -odd active sets in P, let Ĉ denote the T -even active sets in P which
are not contained in I, and let Î denote the inactive sets B ∈ P with δJ(B) 6= ∅ (P could contain
inactive sets B with δJ(B) = ∅, but such sets are not relevant for the arguments below). We can
identify these sets with nodes in the contracted graph. It can be seen that each B ∈ Î, except for
one, has degree at least 2 in this contracted graph by our pruning phase; if a set in Î contains the
root, then its degree could be one, see [17, Chapter 14.1]. Notice also that |C| ≤ |T | − 1 because
each T -odd active set must contain a node in T − t⋆. By counting degrees, we have

2|C|+ 2|Ĉ|+ 2|Î | − 2 =
∑

Q∈C
|δJ (Q)|+

∑

R∈Ĉ

|δJ(R)|+
∑

B∈Î

|δJ (B)|

≥
∑

Q∈C
|δJ (Q)|+

∑

R∈Ĉ

|δJ(R)|+ 2|Î | − 1,

hence,
∑

Q∈C
|δJ(Q)| +

∑

R∈Ĉ

|δJ (R)| ≤ 2|C|+ 2|Ĉ| − 1 ≤

(
2−

1

|T | − 1

)
· |C|+ 2|Ĉ|,

where the last inequality holds because |C| ≤ |T | − 1. Suppose that the dual variables of the active
sets were raised by ∆ during this phase. Then

∑

Q∈C
∆|δJ (Q)|+

∑

R∈Ĉ

∆|δJ (R)| ≤

(
2−

1

|T | − 1

)
∆|C|+ 2∆|Ĉ|.

Since this holds over each phase of the primal-dual algorithm, then by applying induction on the
number of phases in the execution, we have

∑

Q∈Q
|δJ(Q)|yQ +

∑

R∈R,R*I

|δJ (R)|yR ≤

(
2−

1

|T | − 1

) ∑

Q∈Q
yQ + 2

∑

R∈R,R*I

yR.

This proves the bound on the cost of J .

16


	1 Introduction
	1.1  New Contributions on Min-Cost Connected T-Joins

	2 Preliminaries 
	2.1 An LP Relaxation

	3 A 53-Approximation Algorithm 
	4 An Improved Approximation For |T|4 
	4.1 The Algorithm 
	4.2 Constructing the Fractional D-Join
	4.3 Tight Example for 
	4.4 The Correction Vector

	5 Prize-Collecting Connected T-Joins  
	5.1 The Primal-Dual Algorithm
	5.2 Analysis of the Primal-Dual Algorithm

	6 Conclusions
	A Appendix: Analysis of the Dual Growing Phase 

