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Optimal Point Movement for Covering Circular Regions

Danny Z. Chen∗ Xuehou Tan† Haitao Wang∗‡ Gangshan Wu§

Abstract

Given n points in a circular region C in the plane, we study the problems of moving the
n points to its boundary to form a regular n-gon such that the maximum (min-max) or the
sum (min-sum) of the Euclidean distances traveled by the points is minimized. The problems
have applications, e.g., in mobile sensor barrier coverage of wireless sensor networks. The min-
max problem further has two versions: the decision version and optimization version. For the
min-max problem, we present an O(n log2 n) time algorithm for the decision version and an
O(n log3 n) time algorithm for the optimization version. The previously best algorithms for the
two problem versions take O(n3.5) time and O(n3.5 logn) time, respectively. For the min-sum
problem, we show that a special case with all points initially lying on the boundary of the
circular region can be solved in O(n2) time, improving a previous O(n4) time solution. For the
general min-sum problem, we present a 3-approximation O(n2) time algorithm, improving the
previous (1 + π)-approximation O(n2) time algorithm. A by-product of our techniques is an
algorithm for dynamically maintaining the maximum matching of a circular convex bipartite
graph; our algorithm can handle each vertex insertion or deletion on the graph in O(log2 n)
time. This result is interesting in its own right.

1 Introduction

Given n points in a circular region C in the plane, we study the problems of moving the n points

to its boundary to form a regular n-gon such that the maximum (min-max) or the sum (min-sum)

of the Euclidean distances traveled by the points is minimized. The problems have applications,

e.g., in mobile sensor barrier coverage of wireless sensor networks. The problems have been studied

before. In this paper we present new algorithms that significantly improve the previous solutions

for the problems.

1.1 Problem Definitions

Let |ab| denote the Euclidean length of the line segment with two endpoints a and b in the plane.

Let C be a circular region in the plane. Given a set of n points S = {A0, A1, . . . , An−1} in C (i.e.,

in its interior or on its boundary), we wish to move all sensors to n points A′
0, A

′
1, . . . , A

′
n−1 on the

boundary of C that form a regular n-gon. The min-max problem aims to minimize the maximum

Euclidean distance traveled by all points, i.e., max0≤i≤n−1{|AiA
′
i|}. The min-sum problem aims to

minimize the sum of the Euclidean distances traveled by all points, i.e.,
∑n−1

i=0 |AiA
′
i|.

Further, given a value λ ≥ 0, the decision version of the min-max problem is to determine

whether it is possible to move all points in S to the boundary of C to form a regular n-gon such

that the distance traveled by each point is no more than λ. Indeed, let λC be the maximum distance

traveled by the points in an optimal solution for the min-max problem. Then, the answer to the
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feasibility problem is “yes” if and only if λC ≤ λ. For discrimination, we refer to the original

min-max problem as the optimization version of the min-max problem.

For the min-sum problem, if the points in S are given initially all lying on the boundary of C,

then this case is referred to as the boundary case of the min-sum problem.

1.2 Applications in Wireless Sensor Networks

A Wireless Sensor Network (WSN) is composed of a large number of sensors which monitor some

surrounding environmental phenomenon. Usually, the sensors are densely deployed either inside the

target phenomenon or are very close to it [1]. Each sensor is equipped with a sensing device with

limited battery-supplied energy. The sensors process data obtained and forward the data to a base

station. A typical type of WSN applications is concerned with security and safety systems, such as

detecting intruders (or movement thereof) around infrastructure facilities and regions. Particularly,

it is often used to monitor a protected area so as to detect intruders as they penetrate the area or

as they cross the area border. For example, research efforts have been under way to extend the

scalability of wireless sensor networks to the monitoring of international borders [10, 13].

The study of barrier coverage using mobile sensors was originated in [5, 13] and later in [2].

Different from the traditional concept of full coverage, it seeks to cover the deployment region by

guaranteeing that there is no path through the region that can be traversed undetectedly by an

intruder, i.e., all possible crossing paths through the region are covered by the sensors [2, 5, 13].

Hence, an interesting problem is to reposition the sensors quickly so as to repair the existing security

hole and thereby detect intruders [2]. Since barrier coverage requires fewer sensors for detecting

intruders, it gives a good approximation of full area coverage. The planar region on which the

sensors move is sometimes represented by a circle. Since sensors have limited battery-supplied

energy, we wish to minimize their movement. Thus, if each sensor is represented as a point, the

problem is exactly our optimal point movement min-max (the optimization version) or min-sum

problem. Further, if each sensor has energy λ and we want to determine whether this level of

energy is sufficient to form a barrier coverage, then the problem becomes the decision version of

the min-max problem.

1.3 Previous Work and Our Results

For the min-max problem, Bhattacharya et al. [2] proposed an O(n3.5) time algorithm for the

decision version and an O(n3.5 log n) time algorithm for the optimization version, where the decision

algorithm is based on some observations and brute force and the optimization algorithm is based

on parametric search approach [7, 15]. Recently, it was claimed in [17] that these two problem

versions were solvable in O(n2.5) time and O(n2.5 log n) time, respectively. However, it seems that

the announced algorithms in [17] contain errors (which might be fixed, say, by using the methods

given in this paper). In this paper, we solve the decision version in O(n log2 n) time and the

optimization version in O(n log3 n) time, which significantly improve the previous results. The

improvements of our algorithms are based on new observations and interesting techniques.

A by-product of our techniques that is interesting in its own right is an algorithm for dynamically

maintaining the maximum matchings of circular convex bipartite graphs. Our algorithm handles

each (online) vertex insertion or deletion on an n-vertex circular convex bipartite graph in O(log2 n)

time. This matches the performance of the best known dynamic matching algorithm for convex

bipartite graphs [3]. Note that convex bipartite graphs are a subclass of circular convex bipartite

graphs [14]. To our best knowledge, no dynamic matching algorithm for circular convex bipartite
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graphs was known before. Since dynamically maintaining the maximum matching of a graph is a

basic problem, our result may find other applications.

For the min-sum problem, an O(n2) time approximation algorithm with approximation ratio

1+π was given in [2]. A PTAS approximation algorithm, which has a substantially larger polynomial

time bound, was also given in [2]. In this paper, we present an O(n2) time approximation algorithm

with approximation ratio 3, which improves the (1 + π)-approximation result in [2]. However,

whether the general min-sum problem is NP-hard is still left open.

For the boundary case of the min-sum problem, an O(n4) time (exact) algorithm was given in

[17]. We show that the time bound of that algorithm can be reduced to O(n2).

The rest of this paper is organized as follows. Our algorithm for the decision version of the

min-max problem is given in Section 2, and our algorithm for the optimization version is presented

in Section 3. The min-sum problem is discussed in Section 4.

To distinguish from a normal point in the plane, in the following paper we refer to each point

Ai ∈ S as a sensor.

2 The Decision Version of the Min-max Problem

For simplicity, we assume the radius of the circle C is 1. Denote by ∂C the boundary of C. Let

λC be the maximum distance traveled by the sensors in S in an optimal solution for the min-max

problem, i.e., λC = min{max0≤i≤n−1{|AiA
′
i|}}. Since the sensors are all in C, λC ≤ 2. In this

section, we consider the decision version of the min-max problem on C: Given a value λ, determine

whether λC ≤ λ. We present an O(n log2 n) time algorithm for this problem.

2.1 An Algorithm Overview

We first discuss some concepts. A bipartite graph G = (V1, V2, E) with |V1| = O(n) and |V2| = O(n)

is convex on the vertex set V2 if there is a linear ordering on V2, say, V2 = {v0, v1, . . . , vn−1}, such

that if any two edges (v, vj) ∈ E and (v, vk) ∈ E with vj , vk ∈ V2, v ∈ V1, and j < k, then (v, vl) ∈ E

for all j ≤ l ≤ k. In other words, for any vertex v ∈ V1, the subset of vertices in V2 connected to v

forms an interval on the linear ordering of V2. For any v ∈ V1, suppose the subset of vertices in V2

connected to v is {vj , vj+1, . . . , vk}; then we denote begin(v,G) = j and end(v,G) = k. Although

E may have O(n2) edges, it can be represented implicitly by specifying begin(v,G) and end(v,G)

for each v ∈ V1. A vertex insertion on G is to insert a vertex v into V1 with an edge interval

[begin(v,G), end(v,G)] and implicitly connect v to every vi ∈ V2 with begin(v,G) ≤ i ≤ end(v,G).

Similarly, a vertex deletion on G is to delete a vertex v from V1 as well as all its adjacent edges.

A bipartite graph G = (V1, V2, E) is circular convex on the vertex set V2 if there is a circular

ordering on V2 such that for each vertex v ∈ V1, the subset of vertices in V2 connected to v forms

a circular-arc interval on that ordering. Precisely, suppose such a clockwise circular ordering of V2

is v0, v1, . . . , vn−1. For any two edges (v, vj) ∈ E and (v, vk) ∈ E with vj , vk ∈ V2, v ∈ V1, and

j < k, either (v, vl) ∈ E for all j ≤ l ≤ k, or (v, vl) ∈ E for all k ≤ l ≤ n− 1 and (v, vl) ∈ E for all

0 ≤ l ≤ j. For each v ∈ V1, suppose the vertices of V2 connected to v are from vj to vk clockwise

on the ordering, then begin(v,G) and end(v,G) are defined to be j and k, respectively. Vertex

insertions and deletions on G are defined similarly.

A maximum matching in a convex bipartite graph can be found in O(n) time [9, 11, 16]. The

same time bound holds for a circular convex bipartite graph [14]. Brotal et al. [3] designed a data

structure for dynamically maintaining the maximum matchings of a convex bipartite graph that can
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support each vertex insertion or deletion in O(log2 n) amortized time. For circular convex bipartite

graphs, however, to our best knowledge, we are not aware of any previous work on dynamically

maintaining their maximum matchings.

The main idea of our algorithm for the decision version of the min-max problem is as follows.

First, we model the problem as finding the maximum matchings in a sequence of O(n) circular con-

vex bipartite graphs, which is further modeled as dynamically maintaining the maximum matching

of a circular convex bipartite graph under a sequence of O(n) vertex insertion and deletion oper-

ations. Second, we develop an approach for solving the latter problem. Specifically, we show that

the maximum matching of a circular convex bipartite graph of O(n) vertices can be dynamically

maintained in O(log2 n) time (in the worst case) for each vertex insertion or deletion. Note that

this result is of independent interest.

In the following, we first present the problem modeling and then give our algorithm for dynam-

ically maintaining the maximum matching of a circular convex bipartite graph.

2.2 The Problem Modeling

Recall that in the decision version of the min-max problem, our goal is to determine whether

λC ≤ λ. Let P be an arbitrary regular n-gon with its vertices P0, P1, . . . , Pn−1 ordered clockwise

on ∂C. We first consider the following sub-problem: Determine whether we can move all sensors

to the vertices of P such that the maximum distance traveled by the sensors is at most λ. Let GP

be the bipartite graph between the sensors A0, . . . , An−1 and the vertices of P , such that a sensor

Ai is connected to a vertex Pj in GP if and only if |AiPj | ≤ λ. The next lemma is immediate.

Lemma 1 The bipartite graph GP is circular convex.

Proof: This simply follows from the fact that the boundary of any circle of radius λ can intersect

∂C at most twice. ✷

To solve the above sub-problem, it suffices to compute a maximum matching M in the circular

convex bipartite graph GP (by using the algorithm in [14]). If M is a perfect matching, then the

answer to the sub-problem is “yes”; otherwise, the answer is “no”. Thus, the sub-problem can be

solved in O(n) time (note that the graph GP can be constructed implicitly in O(n) time, after

O(n log n) time preprocessing). If the answer to the sub-problem is “yes”, then we say that P is

feasible with respect to the value λ.

If P is feasible, then clearly λC ≤ λ. If P is not feasible, however, λC > λ does not necessarily

hold, because P may not be positioned “right” (i.e., P may not be the regular n-gon in an optimal

solution of the optimization version of the min-max problem). To further decide whether λC ≤ λ,

our strategy is to rotate P clockwise on ∂C by an arc distance at most 2π/n. Since the perimeter of

C is 2π, the arc distance between any two neighboring vertices of P is 2π/n. A simple yet critical

observation is that λC ≤ λ if and only if during the rotation of P , there is a moment (called a

feasible moment) at which P becomes feasible with respect to λ. Thus, our task is to determine

whether a feasible moment exists during the rotation of P .

Consider the graph GP . For each sensor Ai, denote by E(Ai) = {Pj , Pj+1, . . . , Pk} the subset of

vertices of P connected to Ai in GP , where the indices of the vertices of P are taken as module by

n. We assume that E(Ai) does not contain all vertices of P (otherwise, it is trivial). Since the arc

distance from Pj−1 to Pj is 2π/n, during the (clockwise) rotation of P , there must be a moment

after which Pj−1 becomes connected to Ai, and we say that Pj−1 is added to E(Ai); similarly, there

must be a moment after which Pk becomes disconnected to Ai, and we say that Pk is removed

from E(Ai). Note that these are the moments when the edges of Ai (and thus the graph GP ) are
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changed due to the rotation of P . Also, note that during the rotation, all vertices in E(Ai) \ {Pk}

remain connected to Ai and all vertices in P \ {E(Ai)∪{Pj−1}} remain disconnected to Ai. Hence

throughout this rotation, there are totally n additions and n removals on the graph GP . If we sort

all these additions and removals based on the time moments when they occur, then we obtain a

sequence of 2n circular convex bipartite graphs, and determining whether there exists a feasible

moment is equivalent to determining whether there is a graph in this sequence that has a perfect

matching. With the O(n) time maximum matching algorithm for circular convex bipartite graphs

of n vertices in [14], a straightforward solution for determining whether there is a feasible moment

would take O(n2) time.

To obtain a faster algorithm, we further model the problem as follows. Consider the addition of

Pj−1 to E(Ai). This can be done by first deleting the vertex of GP corresponding to Ai and then

inserting a new vertex corresponding to Ai with its edges connecting to the vertices in {Pj−1} ∪

E(Ai). The removal of Pk from E(Ai) can be handled similarly. Thus, each addition or removal

on E(Ai) can be transformed to one vertex deletion and one vertex insertion on GP . If we sort

all vertex updates (i.e., insertions and deletions) by the time moments when they occur, then the

problem of determining whether there is a feasible moment is transformed to determining whether

there exists a perfect matching in a sequence of vertex updates on the graph GP . In other words,

we need to dynamically maintain the maximum matching in a circular convex bipartite graph to

support a sequence of 2n vertex insertions and 2n vertex deletions. This problem is handled in the

next subsection.

2.3 Dynamic Maximum Matching in a Circular Convex Bipartite Graph

In this subsection, we consider the problem of dynamically maintaining the maximum matching in

a circular convex bipartite graph to support vertex insertions and deletions. We treat all vertex

updates in an online fashion.

Let G = (V1, V2, E) with |V1| = O(n) and |V2| = O(n) be a circular convex bipartite graph

on the vertex set V2, i.e., the vertices of V2 connected to each vertex in V1 form a circular-arc

interval on the sequence of the vertex indices of V2. Suppose V2 = {v0, v1, . . . , vn−1} is ordered

clockwise. Recall that a vertex insertion on G is to insert a vertex v into V1 with an edge interval

[begin(v,G), end(v,G)] such that v is (implicitly) connected to all vertices of V2 from begin(v,G)

clockwise to end(v,G). A vertex deletion is to delete a vertex v from V1 and all its adjacent edges

(implicitly). Our task is to design an algorithm for maintaining the maximum matching of G to

support such update operations (i.e., vertex insertions and deletions) efficiently. Below, we present

an algorithm with an O(log2 n) time per update operation.

Our approach can be viewed as a combination of the data structure in [3] for dynamically

maintaining the maximum matching in a convex bipartite graph and the linear time algorithm in

[14] for computing a maximum matching in a circular convex bipartite graph. We refer to them as

the BGHK data structure [3] and the LB algorithm [14], respectively. We first briefly describe the

BGHK data structure and the LB algorithm.

The BGHK data structure [3] is a binary tree T , and each node of T maintains a balanced

binary tree. This data structure can be constructed in O(n log2 n) time and can support each

vertex insertion or deletion in O(log2 n) amortized time. Consider a vertex insertion, i.e., inserting

a vertex v into V1. Let M
′ (resp., M) be the maximum matching in the graph before (resp., after)

the insertion. Let |M | denote the number of matched pairs in M . After the data structure is

updated (in O(log2 n) amortized time), the value |M | can be reported in O(1) time and M can

be reported in O(|M |) time. We can also determine in O(1) time whether v is matched in M .
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Further, if another vertex v′ ∈ V1 was matched in M ′ but is not matched in M , then it is easy to

see that v must be matched in M . When this case occurs, we say that v replaces v′ and v′ is called

the replacement, and the data structure is able to report the replacement in O(1) time. Note that

as shown in [3], although an update on the graph can cause dramatic changes on the maximum

matching, the sets of the matched vertices in V1 (and V2) can change by at most one vertex. Thus,

there is at most one such replacement v′. Similarly, consider deleting a vertex v from V1. After the

data structure is updated, the value |M | can be reported in O(1) time and M can be reported in

O(|M |) time. We can also find out whether v was matched in M ′ in O(1) time. If a vertex v′ ∈ V1

was not matched in M ′ but is matched in M , then it is easy to see that v must be matched in M ′.

When this case occurs, we say v′ is the supplement, which can be determined in O(1) time.

The LB algorithm [14] finds a maximum matching in a circular convex bipartite graph G =

(V1, V2, E) by reducing the problem to two sub-problems of computing the maximum matchings

in two convex bipartite graphs G1 and G2. Some details are summarized below. For any vertex

v ∈ V1, if begin(v,G) ≤ end(v,G), then v is called a non-boundary vertex. Otherwise, v is a

boundary vertex; the edges connecting v to vbegin(v,G), vbegin(v,G)+1, . . . , vn−1 in V2 are called lower

edges, and the other edges connecting v are upper edges. Based on the graph G, a convex bipartite

graph G1 = (V1, V2, E1) is defined as follows. Both its vertex sets are the same as those in G.

For each vertex v ∈ V1 in G, begin(v,G1) = begin(v,G); if v is a non-boundary vertex, then

end(v,G1) = end(v,G), and otherwise end(v,G1) = n − 1 + end(v,G) (note that this value of

end(v,G1) is used only for comparison in the algorithm although there are not so many vertices

in V2). The LB algorithm has two main steps. The first step is to compute a maximum matching

in G1, which can be done in O(n) time [9, 11, 16]. Let M(G1) be the maximum matching of

G1. Next, another convex bipartite graph G2 = (V1, V2, E2) is defined based on M(G1) and

G, as follows. Both its vertex sets are the same as those in G. For each non-boundary vertex

v ∈ V1 in G, begin(v,G2) = begin(v,G) and end(v,G2) = end(v,G). For each boundary vertex

v ∈ V1 in G, there are two cases: If v is matched in M(G1), then begin(v,G2) = begin(v,G) and

end(v,G2) = n − 1; otherwise, begin(v,G2) = 0 and end(v,G2) = end(v,G). The second step of

the LB algorithm is to compute a maximum matching in G2 (in O(n) time), denoted by M(G2).

It was shown in [14] that M(G2) is also a maximum matching of the original graph G.

We now discuss our algorithm for dynamically maintaining a maximum matching in the circular

convex bipartite graph G. As preprocessing, we first run the LB algorithm on G, after which both

the convex bipartite graphs G1 and G2 of G are available. We then build two BGHK data struc-

tures for G1 and G2, denoted by T (G1) and T (G2), respectively, for maintaining their maximum

matchings. This completes the preprocessing, which takes O(n log2 n) time. In the following, we

discuss how to perform vertex insertions and deletions.

Consider a vertex insertion, i.e., inserting a vertex v into V1 with the edge interval [begin(v,G),

end(v,G)]. To perform this insertion, intuitively, we need to update the two BGHK data structures

T (G1) and T (G2) in a way that mimics some behavior of the LB algorithm. Specifically, we first

insert v into the graph G1 by updating T (G1). Based on the results on G1 (e.g., whether there is a

replacement) and the behavior of the LB algorithm, we modify G2 by updating T (G2) accordingly.

In this way, the maximum matching maintained by T (G2) is the maximum matching of G after the

insertion. The details are given below.

Let G′
1 and G′

2 be the two graphs that would be produced by running the LB algorithm on G

with the new vertex v (and its adjacent edges). Let M(G1),M(G2),M(G′
1), and M(G′

2) be the

maximum matchings of G1, G2, G
′
1, and G′

2, respectively. Depending on whether v is a boundary

vertex, there are two main cases.
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• If v is a non-boundary vertex (i.e., begin(v,G) ≤ end(v,G)), then G′
1 can be obtained by

inserting v into G1. Hence we insert v into T (G1). Depending on whether there is a replace-

ment, there are two cases.

– If no replacement, then G′
2 can be obtained by inserting v into G2. Thus, we simply

insert v into T (G2) and we are done.

– Otherwise, let v′ be the replacement. So v′ was matched in M(G1) but is not matched

in M(G′
1). Depending on whether v′ is a boundary vertex, there are two subcases.

∗ If v′ is a non-boundary vertex, then again, G′
2 can be obtained by inserting v into

G2. We thus insert v into T (G2) and we are done.

∗ If v′ is a boundary vertex, then since v′ was matched in M(G1), according to the LB

algorithm, v′ with the edge interval [begin(v′, G), n− 1] is in G2. After the insertion

of v into G1, v
′ is not matched in M(G′

1). Thus, according to the LB algorithm,

G′
2 can be obtained by deleting v′ (with the edge interval [begin(v′, G), n− 1]) from

G2, inserting v′ with the edge interval [0, end(v′, G)] into G2, and finally inserting v

into G2.

In summary, for this subcase, we delete v′ (with the edge interval [begin(v′, G), n−1])

from T (G2) and insert v′ with the edge interval [0, end(v′, G)] into T (G2). Finally,

we insert v into T (G2), and we are done.

• If v is a boundary vertex (i.e., begin(v,G) > end(v,G)), then according to the LB algorithm,

G′
1 can be obtained by inserting v with the edge interval [begin(v,G), n − 1 + end(v,G)]

into G1. Thus we insert v with the edge interval [begin(v,G), n − 1 + end(v,G)] into T (G1).

Depending on whether there is a replacement, there are two cases.

– If no replacement, then depending on whether v is matched in M(G′
1), there are two

subcases.

∗ If v is matched, then according to the LB algorithm, G′
2 can be obtained by inserting

v with the edge interval [begin(v,G), n−1] into G2. Thus, we insert v with the edge

interval [begin(v,G), n − 1] into T (G2), and we are done.

∗ If v is not matched, then according to the LB algorithm, G′
2 can be obtained by

inserting v with the edge interval [0, end(v,G)] into G2. We thus insert v with the

edge interval [0, end(v,G)] into T (G2), and we are done.

– Otherwise, there is a replacement v′. So v′ was matched in M(G1) but is not matched

in M(G′
1), and v is matched in M(G′

1). Depending on whether v′ is a boundary vertex,

there are two subcases.

∗ If v′ is a non-boundary vertex, then since v is matched inM(G′
1), G

′
2 can be obtained

by inserting v with the edge interval [begin(v,G), n − 1] into G2. We thus insert v

with the edge interval [begin(v,G), n − 1] into T (G2).

∗ If v′ is a boundary vertex, then according to the LB algorithm, G′
2 is the graph

obtained by deleting v′ (with the edge interval [begin(v′, G), n−1]) fromG2, inserting

v′ with the edge interval [0, end(v′, G)] into G2, and finally inserting v with the edge

interval [begin(v,G), n − 1] into G2.

Thus, we delete v′ (with the edge interval [begin(v′, G), n − 1]) from T (G2), and

insert v′ with the edge interval [0, end(v′, G)] into T (G2). Finally, we insert v with

the edge interval [begin(v,G), n − 1] into T (G2).
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This completes the description of our procedure for handling a vertex insertion.

Next, consider a vertex deletion, i.e., deleting a vertex v from V1 of G. Our procedure for this

operation proceeds in a manner symmetric to the insertion procedure, and we briefly discuss it

below. Define the two graphs G′
1 and G′

2 similarly as above.

• If v is a non-boundary vertex, then we delete v from T (G1). If no supplement, then we delete

v from T (G2) and we are done. Otherwise, let v′ be the supplement. So v′ was not matched

in M(G1) but is matched in M(G′
1). Depending on whether v′ is a boundary vertex, there

are two cases.

– If v′ is a non-boundary vertex, then we delete v from T (G2) and we are done.

– If v′ is a boundary vertex, then we delete v′ with the edge interval [0, end(v′, G)] from

T (G2) and insert v′ with the edge interval [begin(v′, G), n−1] into T (G2). Finally, delete

v from T (G2), and we are done.

• If v is a boundary vertex, then we delete v (with the edge interval [begin(v,G), n − 1 +

end(v,G)]) from T (G1). Depending on whether there is a supplement, there are two cases.

– If no supplement, then depending on whether v was matched in M(G1), there are two

subcases. If v was matched, then we delete v (with the edge interval [begin(v,G), n−1])

from T (G2); otherwise, we delete v (with the edge interval [0, end(v,G)]) from T (G2).

– Otherwise, let v′ be the supplement. So v′ was not matched in M(G1) but is matched

in M(G′
1), and v was matched in M(G1). Since v was matched in M(G1), according to

the LB algorithm, G2 contains v with the edge interval [begin(v,G), n − 1]. If v′ is a

non-boundary vertex, then we delete v (with the edge interval [begin(v,G), n− 1]) from

T (G2) and we are done. Otherwise, since v′ was not matched in M(G1), according to the

LB algorithm, G2 contains v′ with the edge interval [0, end(v′, G)]; since v′ is matched

in M(G′
1), according to the LB algorithm, G′

2 should contain v′ with the edge interval

[begin(v′, G), n− 1]. Therefore, we delete v′ (with the edge interval [0, end(v′, G)]) from

T (G2), insert v
′ with the edge interval [begin(v′, G), n−1] into T (G2), and finally delete

v (with the edge interval [begin(v,G), n − 1]) from T (G2).

This completes the description of our vertex deletion procedure.

As shown in Subsection 2.2, the decision version of the min-max problem can be transformed

to the problem of dynamically maintaining the maximum matching in a circular convex bipar-

tite graph subject to a sequence of vertex insertions and deletions. Hence, the correctness of our

algorithm for the decision version hinges on the correctness of our dynamic maximum matching

algorithm for circular convex bipartite graphs. Yet, the correctness of our (online) dynamic max-

imum matching algorithm for circular convex bipartite graphs can be seen quite easily. This is

because our procedures for performing vertex insertions and deletions are both based on the fact

that they simply mimic the behavior of the LB algorithm (while implementing their processing by

the means of the BGHK data structures).

For the running time of our algorithm, each update operation involves at most two vertex

insertions and two vertex deletions on T (G1) and T (G2), each of which takes O(log2 n) amortized

time [3]; thus, it takes O(log2 n) amortized time in total. Actually, the BGHK data structure in

[3] supports vertex insertions and deletions not only on V1 but also on V2. Inserting vertices on V2

may make the tree unbalanced, and that is why its running time is amortized. However, if vertices
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Figure 1: (a) The points Xi and Yi on ∂C for Ai; (b) |AiA
′
i| = |AjA

′
j|.

are inserted only on V1, then the tree will never become unbalanced and thus each update takes

O(log2 n) time in the worst case. In our problem formulation, the vertex updates indeed are only

on V1. Denote by M(G) the maximum matching in G. We then have the following result.

Theorem 1 A data structure on a circular convex bipartite graph G = (V1, V2, E) can be built in

O(n log2 n) time for maintaining its maximum matching M(G) so that each online vertex insertion

or deletion on V1 can be done in O(log2 n) time in the worst case. After each update operation,

|M(G)| can be reported in O(1) time and M(G) can be reported in O(|M(G)|) time.

Since the decision version of the min-max problem has been reduced to dynamically maintaining

the maximum matching in a circular convex bipartite graph under a sequence of 2n vertex insertions

and 2n vertex decisions, we solve the dynamic maximum problem as follows. After each update

operation, we check whether |M(G)| = n, and if this is true, then we report λC ≤ λ and halt the

algorithm. If all 4n updates have been processed but it is always |M(G)| < n, then we report

λC > λ. Based on Theorem 1, we have the result below.

Theorem 2 Given a value λ, we can determine whether λC ≤ λ in O(n log2 n) time for the decision

version of the min-max problem.

3 The Optimization Version of the Min-max Problem

In this section, we consider the optimization version of the min-max problem, and present an

O(n log3 n) time algorithm for it. The main task is to compute the value λC .

Let o be the center of C. For simplicity of discussion, we assume that no sensor lies at o. Denote

by Xi and Yi the two points on ∂C which are closest and farthest to each sensor Ai, respectively.

Clearly, Xi and Yi are the two intersection points of ∂C with the line passing through Ai and the

center o of C (see Figure 1(a)). The lemma below has been proved in [17], and for self-containment

of this paper, we include that proof in Appendix A.

Lemma 2 [17] Suppose an optimal solution for the min-max optimization problem is achieved with

λC = |AiA
′
i| for some i ∈ {0, . . . , n− 1}. Then either A′

i is the point Xi, or there is another sensor

Aj (j 6= i) such that λC = |AjA
′
j | also holds. In the latter case, any slight rotation of the regular

n-gon that achieves λC in either direction causes the value of λC to increase (i.e., it makes one of

the two distances |AiA
′
i| and |AjA

′
j | increase and the other one decrease).

The points on ∂C satisfying the conditions specified in Lemma 2 may be considered as those

defining candidate values for λC , i.e., they can be considered as some vertices of possible regular
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n-gons on ∂C in an optimal solution. The points Xh of all sensors Ah (0 ≤ h ≤ n − 1) can be

easily determined. Define D1 = ∪n−1
h=0{|AhXh|}, which can be computed in O(n) time. But, the

challenging task is to handle all the pairs (Ai, Aj) (i 6= j) such that the distance from Ai to a

vertex of a regular n-gon is equal to the distance from Aj to another vertex of that n-gon and a

slight rotation of the n-gon in either direction monotonically increases one of these two distances

but decreases the other. We refer to such distances as the critical equal distances. Denote by

D2 the set of all critical equal distances. Let D = D1 ∪ D2. By Lemma 2, λC ∈ D. Thus, if

D is somehow available, then λC can be determined by using our algorithm in Theorem 2 in a

binary search process. Since D1 is readily available, the key is to deal with D2 efficiently. An easy

observation is max0≤h≤n−1 |AhXh| ≤ λC . We can use the algorithm in Theorem 2 to check whether

λC ≤ max0≤h≤n−1 |AhXh|, after which we know whether λC = max0≤h≤n−1 |AhXh|. Below, we

assume max0≤h≤n−1 |AhXh| < λC (otherwise, we are done). Thus, we only need to focus on finding

λC from the set D2.

It has been shown in [17] that |D2| = O(n3). Of course, our goal is to avoid an O(n3) time

solution. To do so, first we determine a subset D′
2 of D2 such that λC ∈ D′

2 but with |D′
2| = O(n2).

Furthermore, we do not compute D′
2 explicitly. Specifically, our idea is as follows. We show that

the elements of D′
2 are the y-coordinates of a subset of intersection points among a set F of O(n)

functional curves in the plane such that each curve is x-monotone and any two such curves intersect

in at most one point at which the two curves cross each other. (Such a set of curves is sometimes

referred to as pseudolines in the literature.) Let AF be the arrangement of F and |AF | be the

number of vertices of AF . Without computing AF explicitly, we will generalize the techniques in

[8] to compute the k-th highest vertex of AF for any integer k with 1 ≤ k ≤ |AF | in O(n log2 n)

time. Consequently, with Theorem 2, the value λC can be computed in O(n log3 n) time. The

details are given below.

Let P be an arbitrary regular n-gon with its vertices P0, P1, . . ., Pn−1 clockwise on ∂C. Suppose

the distances of all the pairs between a sensor and a vertex of P are d1 ≤ d2 ≤ · · · ≤ dn2 in sorted

order. Let d0 = 0. Clearly, d0 < λC ≤ dn2 (the case of λC = 0 is trivial). Hence, there exists an

integer k with 0 ≤ k < n2 such that λC ∈ (dk, dk+1]. One can find dk and dk+1 by first computing

all these n2 distances explicitly and then utilizing our algorithm in Theorem 2 in a binary search

process. But that would take Ω(n2) time. In the following lemma, we give a faster procedure

without having to compute these n2 distances explicitly.

Lemma 3 The two distances dk and dk+1 can be obtained in O(n log3 n) time.

Proof: We apply a technique, called binary search in sorted arrays [6], as follows. Given M arrays

Ai, 1 ≤ i ≤ M , each containing O(N) elements in sorted order, the task is to find a certain element

δ ∈ A = ∪M
i=1Ai. Further, assume that there is a “black-box” decision procedure Π available, such

that given any value a, Π reports a ≤ δ or a > δ in O(T ) time. An algorithm is given in [6] to find

the sought element δ in A = ∪M
i=1Ai in O((M + T ) log(NM)) time. We use this technique to find

dk and dk+1, as follows.

Consider a sensor Ai. Let S(Ai) be the set of distances between Ai and all vertices of P . In

O(log n) time, we can implicitly partition S(Ai) into two sorted arrays in the following way. By

binary search, we can determine an index j such that Xi lies on the arc of ∂C from Pj to Pj+1

clockwise (the indices are taken as module by n). Recall that Xi is the point on ∂C closest to Ai.

If a vertex of P is on Xi, then define j to be the index of that vertex. Similarly, we can determine

an index h such that Yi (i.e., the farthest point on ∂C to Ai) lies on the arc from Ph to Ph+1

clockwise. If a vertex of P is on Yi, then define h to be the index of that vertex. Both j and
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h can be determined in O(log n) time, after which we implicitly partition S(Ai) into two sorted

arrays: One array consists of all distances from Ai to Pj, Pj−1, . . . , Ph+1, and the other consists of

all distances from Ai to Pj+1, Pj+2, . . . , Ph (again, all indices are taken as module by n). Note that

both these arrays are sorted increasingly and each element in them can be obtained in O(1) time

by using its index in the corresponding array.

Thus, we obtain 2n sorted arrays (represented implicitly) for all n sensors in O(n log n) time,

and each array has no more than n elements. Therefore, by using the technique of binary search in

sorted arrays, with our algorithm in Theorem 2 as the black-box decision procedure, both dk and

dk+1 can be found in O(n log3 n) time. The lemma thus follows. ✷

By applying Lemma 3, we have λC ∈ (dk, dk+1]. Below, for simplicity of discussion, we as-

sume λC 6= dk+1. Thus λC ∈ (dk, dk+1). Since max0≤h≤n−1 |AhXh| < λC , we redefine dk :=

max{dk,max0≤h≤n−1 |AhXh|}. We still have λC ∈ (dk, dk+1). Let D
′
2 be the set of all critical equal

distances in the range (dk, dk+1). Then λC ∈ D′
2. We show below that |D′

2| = O(n2) and λC can

be found in O(n log3 n) time without computing D′
2 explicitly.

Suppose we rotate the regular n-gon P = (P0, P1, . . . , Pn−1) on ∂C clockwise by an arc distance

2π/n (this is the arc distance between any two adjacent vertices of P ). Let Ai(Ph(t)) denote the

distance function from a sensor Ai to a vertex Ph of P with the time parameter t during the

rotation. Clearly, the function Ai(Ph(t)) increases or decreases monotonically, unless the interval

of ∂C in which Ph moves contains the point Xi or Yi; if that interval contains Xi or Yi, then we

can further divide the interval into two sub-intervals at Xi or Yi, such that Ai(Ph(t)) is monotone

in each sub-interval. The functions Ai(Ph(t)), for all Ph’s of P , can thus be put into two sets Si1

and Si2 such that all functions in Si1 monotonically increase and all functions in Si2 monotonically

decrease. Let m = |Si1|. Then m ≤ n. Denote by di1 < di2 < · · · < dim the sorted sequence of the

initial values of the functions in Si1. Also, let di0 = 0 and dim+1 = 2 (recall that the radius of C

is 1). It is easy to see that the range (dk, dk+1) obtained in Lemma 3 is contained in [dij , d
i
j+1] for

some 0 ≤ j ≤ m. The same discussion can be made for the distance functions in the set Si2 as well.

Since we rotate P by only an arc distance 2π/n, during the rotation of P , each sensor Ai can

have at most two distance functions (i.e., one decreasing and one increasing) whose values may

vary in the range (dk, dk+1). We can easily identify these at most 2n distance functions for the n

sensors in O(n log n) time. Denote by F ′ the set of all such distance functions. Clearly, all critical

equal distances in the range (dk, dk+1) can be generated by the functions in F ′ during the rotation

of P . Because every such distance function either increases or decreases monotonically during the

rotation of P , each pair of one increasing function and one decreasing function can generate at most

one critical equal distance during the rotation. (Note that by Lemma 2, a critical equal distance

cannot be generated by two increasing functions or two decreasing functions.) Since |F ′| ≤ 2n, the

total number of critical equal distances in (dk, dk+1) is bounded by O(n2), i.e., |D′
2| = O(n2). For

convenience of discussion, since we are concerned only with the critical equal distances in (dk, dk+1),

for each function in F ′, we restrict it to the range (dk, dk+1) only.

Let the time t be the x-coordinate and the function values be the y-coordinates of the plane.

Then each function in F ′ defines a curve segment that lies in the strip of the plane between the

two horizontal lines y = dk and y = dk+1. We refer to a function in F ′ and its curve segment

interchangeably, i.e., F ′ is also a set of curve segments. Clearly, a critical equal distance generated

by an increasing function and a decreasing function is the y-coordinate of the intersection point of

the two corresponding curve segments. Note that every function in F ′ has a simple mathematical

description. Below, we simply assume that each function in F ′ is of O(1) complexity. Thus, many

operations on them can each be performed in O(1) time, e.g., computing the intersection of a
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decreasing function and an increasing function.

The set D′
2 can be computed explicitly in O(n2) time, after which λC can be easily found by

binary search. Below, we develop a faster solution without computing D′
2 explicitly, by utilizing

the property that each element of D′
2 is the y-coordinate of the intersection point of a decreasing

function and an increasing function in F ′ and generalizing the techniques in [8].

A slope selection algorithm for a set of points in the plane was given in [8]. We will extend this

approach to solve our problem. The following lemma is needed.

Lemma 4 For any two increasing (resp., decreasing) functions in F ′, if the curve segments defined

by them are not identical to each other, then the two curve segments intersect in at most one point

and they cross each other at their intersection point (if any).

Proof: We only prove the decreasing case. The increasing case can be proved similarly. Let

Ai(Pa(t)) and Aj(Pb(t)) be two decreasing curves in F ′, where Ai(Pa(t)) (resp., Aj(Pb(t))) is the

distance function between the sensor Ai (resp., Aj) and the vertex Pa (resp., Pb) of the regular

n-gon P , and the two curve segments defined by Ai(Pa(t)) and Aj(Pb(t)) are not the same. Since

each sensor has at most one decreasing function in F ′, we have Ai 6= Aj . We assume that during

the (clockwise) rotation of P , Ai(Pa(t)) = Aj(Pb(t)) at the moment t = t1 and t1 is the first such

moment. Below, we prove that Ai(Pa(t)) = Aj(Pb(t)) cannot happen again for any t > t1 in the

rotation. There are two cases: Pa = Pb and Pa 6= Pb.

For any two points p and q, let l(p, q) denote the line passing through the two points and pq

denote the line segment with endpoints p and q whose length is |pq|. Recall that o is the center of

the circle C. Let Pa(t1) and Pb(t1) be the positions of Pa and Pb at the moment t1, respectively.

• Pa = Pb. Clearly, Pa(t1) = Pb(t1). Let l be the perpendicular bisector of the line segment

AiAj. At the moment t1, since |AiPa(t1)| = |AjPa(t1)|, Pa(t1) is at one of the two intersection

points of l and ∂C. Further, since Ai(Pa(t)) is a decreasing function, Pa(t1) must be on the

right side of the line l(Ai, o) if we walk from Ai to o (see Fig. 2(a)). Similarly, Pa(t1) must

be on the right side of the line l(Aj , o) (going Aj to o). Let z be the other intersection point

of l and ∂C. It is easy to see that z is on the left side of either the line l(Ai, o) or the line

l(Aj , o). Note that dk ≥ max0≤h≤n−1 |AhXh|. Thus, dk ≥ |AiXi| and dk ≥ |AjXj |. During

the rotation of P , since both Ai(Pa(t)) and Aj(Pb(t)) are always larger than dk, Pa(t) cannot

pass any of Xi and Xj , and thus Pa(t) cannot arrive to the position z during the rotation.

Hence, Ai(Pa(t)) = Aj(Pb(t)) cannot happen again after t1.

Further, recall that t1 is the first moment from the beginning of the rotation with Ai(Pa(t)) =

Aj(Pb(t)). Without loss of generality, we assume Ai(Pa(t)) < Aj(Pb(t)) for any time t < t1
(as the example shown in Fig. 2(a)). It is easy to see that Ai(Pa(t)) > Aj(Pb(t)) for any time

t > t1, which implies that the two functions cross each other at their intersection point.

• Pa 6= Pb. At the moment t1, we have |AiPa(t1)| = |AjPb(t1)|. Assume to the contrary that

at some moment t2 > t1, we also have Ai(Pa(t2)) = Aj(Pb(t2)). Suppose at the moment t2,

Pa(t2) is at the position P ′
a and Pb(t2) is at the position P ′

b (see Fig. 2(b)). Then |AiP
′
a| =

|AjP
′
b|. Since Pa and Pb are rotated simultaneously, the arc distance from Pa(t1) to P ′

a is

equal to the arc distance from Pb(t1) to P ′
b, and thus |Pa(t1)P

′
a| = |Pb(t1)P

′
b|. Consider the

two triangles △Pb(t1)AjP
′
b and △Pa(t1)AiP

′
a (shown with red solid segments in Fig. 2(b)).

Since |AiPa(t1)| = |AjPb(t1)|, |AiP
′
a| = |AjP

′
b|, and |Pa(t1)P

′
a| = |Pb(t1)P

′
b|, △Pb(t1)AjP

′
b is

congruent to △Pa(t1)AiP
′
a. Thus, the two angles ∠AiPa(t1)P

′
a = ∠AjPb(t1)P

′
b. Further, it is

easy to see ∠oPa(t1)P
′
a = ∠oPb(t1)P

′
b. Consequently, we have ∠oPa(t1)Ai = ∠oPb(t1)Aj .
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Figure 2: Illustrating the proof of Lemma 4: (a) Pa = Pb; (b) Pa 6= Pb.

But, if ∠oPa(t1)Ai = ∠oPb(t1)Aj , then we can show that the two functions Ai(Pa(t)) and

Aj(Pb(t)) define exactly the same curve segment. The proof is nothing but the inverse

of the above argument. Specifically, consider any time moment t3 > t1 before the end

of the rotation. Suppose at the moment t3, Pa is at the position P ′′
a and Pb is at the

position P ′′
b . Since ∠oPa(t1)Ai = ∠oPb(t1)Aj and ∠oPa(t1)P

′′
a = ∠oPb(t1)P

′′
b , we have

∠AiPa(t1)P
′′
a = ∠AjPb(t1)P

′′
b . Further, since |AiPa(t1)| = |AjPb(t1)| and |Pa(t1)P

′′
a | =

|Pb(t1)P
′′
b |,△Pb(t1)AjP

′′
b is congruent to△Pa(t1)AiP

′′
a . Thus, |AiP

′′
a | = |AjP

′′
b |, i.e., Ai(Pa(t)) =

Aj(Pb(t)) at any time t = t3 > t1. Similarly, we can also show that at any time moment

t3 < t1, Ai(Pa(t3)) = Aj(Pb(t3)). Hence, Ai(Pa(t)) and Aj(Pb(t)) define exactly the same

curve segment. But this contradicts with the fact that the curve segments defined by these

two functions are not the same. This implies that Ai(Pa(t)) = Aj(Pb(t)) cannot happen again

at any moment t > t1.

Further, without loss of generality, we assume Ai(Pa(t)) < Aj(Pb(t)) for any time t < t1 (as

the example shown in Fig. 2(b)). We then show that Ai(Pa(t3)) > Aj(Pb(t3)) for any time

t3 > t1, which means that the two functions cross each other at their intersection point. We

briefly discuss this. Again, suppose at the moment t3, Pa is at the position P ′′
a and Pb is at the

position P ′′
b . First, since Ai(Pa(t)) < Aj(Pb(t)) for any time t < t1, it must be |oAj | > |oAi|

(this can be proved by similar techniques as above and we omit the details). Consider the

two triangles △oAiPa(t1) and △oAjPb(t1) (at the moment t1). Since |AiPa(t1)| = |AjPb(t1)|,

|oPa(t1)| = |oPb(t1)|, and |oAj | > |oAi|, we have ∠oPb(t1)Aj > ∠oPa(t1)Ai, which further

implies ∠AjPb(t1)P
′′
b < AiPa(t1)P

′′
a . Consider the triangles △Pb(t1)AjP

′′
b and △Pa(t1)AiP

′′
a .

Due to |AiPa(t1)| = |AjPb(t1)|, |Pa(t1)P
′′
a | = |Pb(t1)P

′′
b |, and ∠AjPb(t1)P

′′
b < AiPa(t1)P

′′
a , it

must be |AjP
′′
b | < |AiP

′′
a |. In other words, Ai(Pa(t)) > Aj(Pb(t)) at any time t = t3 > t1.

The lemma thus follows. ✷

We further extend every curve segment in F ′ into an x-monotone curve, as follows. For each

increasing (resp., decreasing) curve segment, we extend it by attaching two half-lines with slope 1

(resp., −1) at the two endpoints of that curve segment, respectively, such that the resulting new

curve is still monotonically increasing (resp., decreasing). Denote the resulting new curve set by

F . Obviously, an increasing curve and a decreasing curve in F intersect once and they cross each

other at their intersection point. For any two different increasing (resp., decreasing) curves in F ,

by Lemma 4 and the way we extend the corresponding curve segments, they can intersect in at

most one point and cross each other at their intersection point (if any). In other words, F can be

viewed as a set of pseudolines. Let AF be the arrangement of F . Observe that the elements in D′
2

are the y-coordinates of a subset of the vertices of AF . Since λC ∈ D′
2, λC is the y-coordinate of a

vertex of AF . Denote by |AF | the number of vertices in AF . Of course, we do not want to compute

13



the vertices of AF explicitly. By generalizing some techniques in [8], we have the following lemma.

Lemma 5 The value |AF | can be computed in O(n log n) time. Given an integer k with 1 ≤ k ≤

|AF |, the k-th highest vertex of AF can be found in O(n log2 n) time.

Proof: First of all, because every function in F ′ is of O(1) complexity, we can determine in O(1)

time whether a curve segment in F ′ intersects a given horizontal line, and if “yes”, then compute the

intersection. Thus, for every curve in F , we can also compute its intersection with any horizontal

line in O(1) time. Let N = |F | ≤ 2n.

Recall that the curve segments in F ′ are all in the horizontal strip between y = dk and y =

dk+1. Thus, all vertices of AF above the horizontal line y = dk+1 are intersections of the newly

attached half-lines. We can easily determine the highest vertex of AF in O(n log n) time, e.g.,

by using the approach in [8]. Let l be a horizontal line higher than the highest vertex. Denote

by f1, f2, . . . , fN the sequence of the curves of F sorted in increasing order of the x-coordinates

of their intersections with l. Similarly, we can determine the lowest vertex of AF in O(n log n)

time. Let fπ(1), fπ(2), . . . , fπ(N) be the sequence of the curves of F sorted in increasing order of

the x-coordinates of their intersections with a horizontal line below the lowest vertex of AF . Since

the curves in F can be viewed as a set of pseudolines, as in [8], the number of inversions in the

permutation π, which can be computed in O(n log n) time, is equal to |AF |. In summary, we can

compute |AF | in O(n log n) time.

To compute the k-th highest vertex ofAF , we choose to generalize theO(n log2 n) time algorithm

in [8]. Let L be a set of n lines in the plane and AL be the arrangement of L. An O(n log2 n)

time algorithm was given in [8] for computing the k-th highest vertex of AL (1 ≤ k ≤ |AL|) in

O(n log2 n) time based on parametric search [7, 15]. The main property used in the algorithm [8] is

the following one. Denote by l1, l2, . . . , ln the sequence of lines in L sorted in increasing order of their

intersections with a horizontal line above the highest vertex of AL. Given any horizontal line l′,

let lπ(1), lπ(2), . . . , lπ(n) be the sequence of lines of L sorted in increasing order of their intersections

with l′. Then, the number of vertices of AL above l′ is equal to the number of inversions in the

permutation π.

In our problem, since any two curves in F can intersect each other in at most one point and

they cross each other at their intersection point, the above property still holds for AF . Thus, the

O(n log2 n) time algorithm in [8] is applicable to our problem. Therefore, we can find the k-th

highest vertex of AF in O(n log2 n) time, and the lemma follows. ✷

A remark: An optimal O(n log n) time algorithm was also given in [8] (and in [12]) for finding

the k-th highest vertex of AL. However, these algorithms are overly complicated. Although we

think that the O(n log n) time approach in [8] may be made work for our problem, it does not

benefit our overall solution for the optimization version of the min-sum problem because its total

time is dominated by other parts of the algorithm. Hence, the much simpler O(n log2 n) time

solution (for finding the k-th highest vertex of AF ) suffices for our purpose.

Recall that λC is the y-coordinate of a vertex of AF . Our algorithm for computing λC then

works as follows. First, compute |AF |. Next, find the (|AF |/2)-th highest vertex of AF , and denote

its y-coordinate by λm. Determine whether λC ≤ λm by the algorithm in Theorem 2, after which

one half of the vertices of AF can be pruned away. We apply the above procedure recursively on

the remaining vertices of AF , until λC is found. Since there are O(log n) recursive calls to this

procedure, each of which takes O(n log2 n), the total time for computing λC is O(n log3 n).

Theorem 3 The min-max optimization problem is solvable in O(n log3 n) time.
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4 The Min-sum Problem

In this section, we present our new algorithms for the min-sum problem. We show that the boundary

case of this problem is solvable in O(n2) time, which improves the O(n4) time result in [17]. We

also give an O(n2) time approximation algorithm with approximation ratio 3, which improves the

(1 + π)-approximation O(n2) time algorithm in [2].

For the boundary case, the O(n4) time algorithm in [17] uses the O(n3) time Hungarian algo-

rithm to compute a minimum weight perfect matching in a complete bipartite graph. However, the

graph for this case is very special in the sense that all its vertices lie on the boundary of a circle.

By using the result in [4], we can actually find a minimum weight perfect matching in such a graph

in O(n) time. Therefore, if we follow the algorithmic scheme in [17] but replace the Hungarian al-

gorithm by the algorithm in [4], the boundary case can be solved in O(n2) time. For completeness,

more details on the proof of the following theorem are given in Appendix B.

Theorem 4 The boundary case of the min-sum problem can be solved in O(n2) time.

Next, we discuss our approximation algorithm for the general min-sum problem.

Let A0, . . . , An−1 be the sensors in C. Our approximation algorithm works as follows. (1) For

each sensor Ai, i = 0, . . . , n − 1, compute the point Xi on ∂C that is closest to Ai. (2) By using

the algorithm in Theorem 4, solve the following min-sum boundary case problem: Viewing the n

points X0,X1, . . . ,Xn−1 as pseudo-sensors (which all lie on ∂C), find n points on ∂C as the goal

positions for the pseudo-sensors such that the sum of the distances traveled by all n pseudo-sensors

is minimized. Let X ′
i be the goal position for each Xi (0 ≤ i ≤ n− 1) in the optimal solution thus

obtained. We then let X ′
i be the goal position for each sensor Ai, 0 ≤ i ≤ n − 1, for our original

min-sum problem. This completes the description of our approximation algorithm.

Clearly, with Theorem 4, the time complexity of the above approximation algorithm is O(n2).

The lemma below shows that the approximation ratio of this algorithm is 3.

Lemma 6 The approximation ratio of our approximation algorithm is 3.

Proof: Let ∆ =
∑n−1

i=0 |AiX
′
i|. Let A

∗
0, A

∗
1, . . . , A

∗
n−1 be the goal positions of all sensors (i.e., A∗

i is

the goal position for each sensor Ai, 0 ≤ i ≤ n−1) in an optimal solution for the min-sum problem.

Let ∆C =
∑n−1

i=0 |AiA
∗
i |. Our task is to prove ∆ ≤ 3 ·∆C .

First,
∑n−1

i=0 |XiX
′
i| ≤

∑n−1
i=0 |XiA

∗
i |, and |AiXi| ≤ |AiA

∗
i | holds for each 0 ≤ i ≤ n− 1. Then,

∆ =

n−1∑

i=0

|AiX
′
i| ≤

n−1∑

i=0

(|AiXi|+ |XiX
′
i|) (triangle inequality)

=

n−1∑

i=0

|AiXi|+

n−1∑

i=0

|XiX
′
i| ≤

n−1∑

i=0

|AiXi|+

n−1∑

i=0

|XiA
∗
i |

≤ 2 ·

n−1∑

i=0

|AiXi|+

n−1∑

i=0

|AiA
∗
i | (triangle inequality)

≤ 3 ·

n−1∑

i=0

|AiA
∗
i | = 3 ·∆C .

The lemma thus follows. ✷

Hence, we conclude with the following result.
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Theorem 5 There exists an O(n2) time approximation algorithm for the min-sum problem with

approximation ratio 3.
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Appendix

A The Proof of Lemma 2

Lemma 2 [17] Suppose an optimal solution for the min-max optimization problem is achieved with
λC = |AiA

′
i| for some i ∈ {0, . . . , n− 1}. Then either A′

i is the point Xi, or there is another sensor
Aj (j 6= i) such that λC = |AjA

′
j | also holds. In the latter case, any slight rotation of the regular

n-gon that achieves λC in either direction causes the value of λC to increase (i.e., it makes one of
the two distances |AiA

′
i| and |AjA

′
j | increase and the other one decrease).

Proof: First assume that in an optimal solution, the sensor Ai is the only one satisfying λC =
|AiA

′
i|, but A′

i is not the point Xi. Thus |AiXi| < |AiA
′
i| holds (see Figure 1(a)). Then, we

rotate the regular n-gon that achieves λC by moving the vertex A′
i towards Xi, with a very small

distance ǫ. Clearly, the distance function between Ai and A′
i decreases monotonically during this

rotation of that n-gon. Denote by A′′
0, A

′′
1, . . ., A

′′
n−1 the new positions of the sensors after the

rotation stops. Since ǫ is arbitrarily small and Ai is the only sensor satisfying λC = |AiA
′
i|, we

have |AiA
′′
i | ≥ |AkA

′′
k| for all k 6= i; moreover, |AiA

′′
i | < |AiA

′
i| holds. But, this contradicts with

the assumption that λC = |AiA
′
i| gives an optimal solution to the min-max optimization problem.

Suppose now there exists another sensor Aj such that the optimal value λC = |AjA
′
j| (j 6= i) also

holds (see Figure 1(b)). A slight rotation of the regular n-gon that achieves λC in either direction
cannot make |AiA

′′
i | < |AiA

′
i| and |AjA

′′
j | < |AjA

′
j | both occur, where A′′

i and A′′
j are the new

positions of A′
i and A′

j after the rotation stops (otherwise, it would contradict with the assumption
that λC = |AiA

′
i| = |AjA

′
j| gives an optimal solution). Hence, the rotation of the regular n-gon

that achieves λC increases one of the two distances |AiA
′
i| and |AjA

′
j|, while decreasing the other.

The proof is thus complete. ✷

B The Proof of Theorem 4

Recall that in the boundary case of the min-sum problem, all sensors are on the boundary ∂C
of C. Let A0, A1, . . ., An−1 denote the initial positions of the n sensors on ∂C, and A′

0, A′
1,

. . ., A′
n−1 denote their goal positions on ∂C that form a regular n-gon. Denote by ∆C the sum

of the distances traveled by all n sensors in an optimal solution of the min-sum problem, i.e.,
∆C = min

∑n−1
i=0 |AiA

′
i|. The following lemma has been proved in [17].

Lemma 7 [17] There exists an optimal solution for the boundary case of the min-sum problem
with the following property: There exists a sensor Ai which does not move, i.e., Ai = A′

i.

Based on Lemma 7, the boundary case can be solved as follows. For each sensorAi, 0 ≤ i ≤ n−1,
let P (Ai) be the regular n-gon on ∂C such that Ai is one of its vertices. Denote by Hi the complete
bipartite graph between the set of all sensors and the set of all vertices of P (Ai) such that the
weight of an edge connecting a sensor and a vertex of P (Ai) is defined as their Euclidean distance.
We compute a minimum weight perfect matching Mi in Hi, for each 0 ≤ i ≤ n−1, and the one that
gives the minimum weight defines an optimal solution for our original problem. Here, the weight
of a perfect matching is the sum of all edge weights of the matching.

The running time of the above algorithm is dominated by the step of computing the minimum
weight perfect matchings in the graphs Hi. The algorithm in [17] uses the O(n3) time Hungarian
algorithm for computing such matchings in the graphs Hi.
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Let H be a complete bipartite graph with two vertex sets of cardinalities n1 and n2, respectively,
such that all its vertices lie on the boundary of a circle and each edge weight is the Euclidean distance
between two such vertices (the edges are represented implicitly). A maximum cardinality matching
of H consists of min{n1, n2} edges. An algorithm was given in [4] for computing a minimum weight
maximum cardinality matching in H in O(n1 + n2) time (i.e., the total sum of edge weights in the
output maximum cardinality matching is as small as possible).

Since in our algorithm, all vertices of every complete bipartite graph Hi lie on ∂C, the linear
time algorithm in [4] can be applied to compute a minimum weight maximum cardinality matching
of Hi in O(n) time, for 0 ≤ i ≤ n − 1. (Note that a maximum cardinality matching in the graph
Hi is a perfect matching, and vice versa.) Consequently, the total running time of our algorithm is
O(n2). Theorem 4 thus follows.

18


	1 Introduction
	1.1 Problem Definitions
	1.2 Applications in Wireless Sensor Networks
	1.3 Previous Work and Our Results

	2 The Decision Version of the Min-max Problem
	2.1 An Algorithm Overview
	2.2 The Problem Modeling
	2.3 Dynamic Maximum Matching in a Circular Convex Bipartite Graph

	3 The Optimization Version of the Min-max Problem
	4 The Min-sum Problem
	A The Proof of Lemma ??
	B The Proof of Theorem ??

