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Abstract. We prove that all planar graphs have an open/closed (1, €2)-rectangle
of influence drawing for e1 > 0 and €2 > 0, while there are planar graphs
which do not admit an open/closed (g1, 0)-rectangle of influence drawing and
planar graphs which do not admit a (0, 2)-rectangle of influence drawing. We
then show that all outerplanar graphs have an open/closed (0, e2)-rectangle of
influence drawing for any €2 > 0. We also prove that if e2 > 2 an open/closed
(0, e2)-rectangle of influence drawing of an outerplanar graph can be computed
in polynomial area. For values of €2 such that e2 < 2, we describe a drawing
algorithm that computes (0, 2)-rectangle of influence drawings of binary trees
in area O(n?*/(#2)), where f(e2) is a logarithmic function that tends to infinity
as €2 tends to zero, and n is the number of vertices of the input tree.

1 Introduction

A proximity drawing of a graph is a straight-line drawing that satisfies a set of proximity
constraints. The proximity constraints apply to each pair u, v of vertices in the drawing
and establish whether u, v are close to one another according to some definition of
closeness. A typical approach to define the closeness of u, v in a proximity drawing is
to use the concept of region of influence, defined as a suitable region of the plane whose
size only depends on the coordinates of u and v. Vertices u and v are said to be close if
and only if their region of influence is empty, i.e., it does not contain other vertices of
the drawing except than, possibly, u and v themselves. In a strong proximity drawing
two vertices are adjacent if and only if they are close to one another. A weak proximity
drawing only guarantees the closeness of any pair of adjacent vertices, while the region
of influence of non-adjacent vertices may or may not be empty (see, e.g. [SU7412])).
Clearly, by varying the definition of region of influence and by adopting either the
strong or the weak definition of proximity drawing, a same graph may or may not be
representable. For example, the relative neighborhood region of u, v is the intersection
of the two disks having center at u and at v and with radius the distance d(u,v). It
is known that all trees having vertices of degree at most five admit a strong proximity
drawing such that the region of influence is the relative neighborhood region. However,
if the closeness is defined by using the disk having v and v as antipodal points (the
well-known Gabriel region of u,v) then a tree with vertices of degree five does not
have a strong proximity drawing [6]]. On the other hand, all trees have a weak proximity
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drawing with both the Gabriel region and the relative neighborhood region [7]. See
also [[12]] for a survey on the proximity drawability problem.

The notions of strong proximity drawing and of weak proximity drawing have been
recently extended by Evans et al. who introduce the concept of approximate proximity
drawing, also called (e1, £2)-proximity drawing [9]. Intuitively, given two real non neg-
ative numbers €1 and €2 and a definition of region of influence, an (¢1, £2)-proximity
drawing is such that for any pair of adjacent vertices their region of influence “shrunk”
by the factor , +1€1 is empty, while for any pair of non-adjacent vertices their region of
influence “expanded” by the factor (1 + £2) is not empty. By making £; and e5 arbitrar-
ily small, it is possible to arbitrarily approximate a strong proximity drawing; namely, a
strong proximity drawing is an (&1, €2 )-proximity drawing such that e; = 2 = 0. Also,
a (0, co)-proximity drawing is such that any two adjacent vertices have their region of
influence empty, while for any pair of non-adjacent vertices their proximity region is ex-
tended to the whole plane and it is never empty (for graphs with at least three vertices).
Hence, a weak proximity drawing is a (0, co)-proximity drawing.

In this paper we study approximate rectangle of influence drawings, i.e., approxi-
mate proximity drawings whose region of influence is the rectangle of influence. The
rectangle of influence of two points u and v is the axis-aligned rectangle having u and
v at diagonally opposite corners. Besides graph drawing applications, rectangles of in-
fluence have been studied in the context of rectangular visibility that has applications,
for example, in art gallery and pattern recognition problems (see, e.g., [4/11417]). De-
pending on whether the rectangle of influence of v and v is assumed to be an open or
a closed set, the graph drawing literature distinguishes between (strong or weak) open
rectangle of influence drawings and closed rectangle of influence drawings, also called
open RIDs and closed RIDs, for short.

Compared with weak rectangle of influence drawings, (£1, £2)-RIDs not only guar-
antee that adjacent vertices are relatively close to one another, but also have the desirable
aesthetic property that pairs of non-adjacent vertices are relatively far apart. Compared
with strong RIDs, (1, £2)-rectangle of influence drawings have the advantage of signif-
icantly enlarging the family of the representable graphs. In order to help better locating
our results within the existing literature, we briefly recall some of the most relevant
papers about strong and weak rectangle of influence drawings.

Classes of graphs that admit open or closed strong rectangle of influence drawings
are characterized in [13]]. The paper shows that even for structurally simple planar
graphs such as cycles, wheels, trees, and outerplanar graphs, the existence of open/closed
RIDs imposes severe restrictions on the combinatorial properties that the representable
graphs must satisfy. On the other hand, Biedl et al. [5]] show that all planar graphs with-
out filled 3-cycles (i.e., planar embedded graphs such that the interior of every 3-cycle
does not contain vertices) have a weak RID both with the open and with the closed
rectangle of influence. They also show that a planar graph has a weak closed RID if and
only if it is without filled 3-cycles, and leave unanswered the question of characterizing
those planar graphs that have a weak open RID. Miura, Matsuno, and Nishizeki [14]
partially answer this question by characterizing those triangulated plane graphs that ad-
mit an open weak rectangle of influence drawing. They also give a sufficient condition
for the weak open rectangle of influence drawability of the inner triangulated plane
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graphs, expressed in terms of labeling of angles of a suitable subgraph, called frame
graph. The frame graph is obtained by removing all vertices and edges in the proper
inside of every maximal filled triangle. Alamdari and Bied]l [1]] further elaborate on the
ideas by Miura, Matsuno, and Nishizeki and characterize the inner triangulated plane
graphs that admit a weak open rectangle of influence drawing such that no two vertices
of the frame graph have the same x-coordinate or the same y-coordinate. A significant
research effort has also been devoted to the area required by open/closed weak rectangle
of influence drawings, including [S{15/16418U19].

The main goal of this paper is to establish what graphs admit an (g1, £2)-rectangle
of influence drawing for different values of £; and €2 and to design area efficient algo-
rithms for some graph families. Our results can be listed as follows.

— We show in Section[2] that every planar graph has an open/closed (g1, €2)-RID for
every €1, 2 > 0. Also, we show that if one of the two parameters €; and e is equal
to 0, not all planar graphs admit an open/closed (g1, £2)-RID. These results extend
to approximate rectangle of influence drawings similar results that Evans et al. [9]
proved for other types of approximate proximity drawings.

— In Section ] we study the (1, e2)-rectangle of influence drawability for 1 = 0
and €2 > 0. We concentrate on outerplanar graphs and prove that they admit a
(0, 2)-RID for any positive value of 2. Note that if the region of influence is the
Gabriel region and €2 < 2, not all outerplanar graphs admit an (0, £5)-proximity
drawing [9]. Furthermore, it is known that even simple outerplanar graphs do not
have a (0, 0)-RID, while every outerplanar graph has a (0, co)-RID [5I13].

— Since the drawing technique of the bullet above requires exponential area, we de-
vote Section M to computing area efficient (0, 2)-RIDs of outerplanar graphs. We
prove that if e5 > 2 an open/closed (0, £2)-rectangle of influence drawing of an
outerplanar graph can be computed in polynomial area. For values of €5 such that
g9 < 2, we describe a drawing algorithm that computes (0, 2)-rectangle of influ-
ence drawings of binary trees in area O(n?*/(¢2)), where f(e5) is a logarithmic
function that tends to infinity as €9 tends to zero, and n is the number of ver-
tices of the input tree. We recall that the study of the area required by proximity
drawings of trees has received much attention in the graph drawing literature (see,
e.g., [2U8I100). Also, the design of area-efficient algorithms for approximate prox-
imity drawings is one of the open problems stated by Evans et al. [9]].

Open problems can be found in Section 5l In this section we also report some pre-
liminary results that extend known techniques and that may be starting points for the
proposed open problems. Some proofs are sketched or omitted for reasons of space.

2 (&1, €2)-Rectangle of Influence Drawings

We say that a region of the plane is open if it is an open set, closed otherwise. Let u =
(z(u),y(u)) and w = (z(v),y(v)) be two points in the plane.
Letw = (I(“);I(U), y(“);y(v)) andletd, = |z(u)—x(v)| and d, = |y(u)—y(v)|. The
open (closed) rectangle of influence of u and v is the open (closed) axis-aligned rect-
angle centered at w with the horizontal side of length d, and the vertical side of length
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Fig. 1. (a) Rectangle of influence of u and v; (b) e2-expanded rectangle of influence of u and v;
(c) e2-shrunk rectangle of influence of w and v.

d,. The open (closed) e-expanded rectangle of influence of v and v is the open (closed)
axis-aligned rectangle centered at w with the horizontal side of length (1 + £)d,, and
the vertical side of length (1 + ¢)d,,. The open (closed) e-shrunk rectangle of influence
of u and v is the axis-aligned open (closed) rectangle centered at w with the horizontal
side of length (, _)d, and the vertical side of length (,}_)d,.

The open (resp., closed) rectangle of influence of v and v is denoted as p(u, v) (resp.,
plu, v]). The open (resp., closed) expanded rectangle of influence of u and v is denoted
as R.(u,v) (resp., R:[u,v]). The open (resp., closed) shrunk rectangle of influence of
u and v is denoted as . (u, v) (resp., r:[u, v]).

Let G be a planar graph. A open (closed) (1,¢2) rectangle of influence drawing I’
of G is a planar straight-line drawing of G such that: (i) for every pair of vertices u and
v that are adjacent in G, 7, (u,v) (e, [u,v]) does not contain any other vertex of G,
(ii) for every pair of vertices v and v that are not adjacent in G, R, (u, v) (R, [u, v])
contains at least one vertex of G. A rectangle of influence drawing will be called in the
following a RID. Note that if two vertices are either horizontally or vertically aligned,
then their rectangle of influence as well as its expanded and shrunk versions are degen-
erate rectangles. As a consequence, in the open model all such rectangles are empty
sets. Following the assumption made by Liotta et al. [13] we assume that if u, v and
w are points on the same horizontal (vertical) line and if w lies between u and v then
p(u,v) contains w and R.(u,v) contains w for every € > 0, while r.(u, v) contains
w if w lies between the two endpoints of the segment representing r. (u, v). In other
words, dealing with degenerate rectangles, we treat the open ones like the closed ones.

By extending techniques of Evans et al. [9] to £;-shrunk rectangle of influence and
e2-expanded rectangle of influence we can prove that every planar graph has both an
open and closed (g1, €2)-RID for every €1,2 > 0. On the other hand if one of the two
parameters €, and 5 is equal to 0, then an (g1, £2)-RID may not exist.

Theorem 1. Every planar graph admits both an open and closed (€1, €2)-RID for every
positive values of €1, €2. Also, there exist planar graphs that do not have a closed (open)
(€1,0)-RID and graphs that do not have a closed (open) (0, £2)-RID.

Sketch of Proof: In this sketch of proof we only describe how to compute a (closed
and open) (£1,2)-RID of a planar graph G, for every positive values of €1, 2. The
drawing is constructed a vertex per time processing, vertices according to the canonical
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order. Augment GG to a maximal planar graph G’ and compute a canonical ordering
V1,2, ..., U, of G’ such that the edge (v, v2) is an edge of G. Let G; be the subgraph
of G’ induced by V; = {vy,va,...,v;}. We construct a drawing I'; of G; by induction
so that for every ¢ > 2: (a) I; is an embedding preserving open and closed (£1,¢€2)-
RID of G;; (b) all the vertices on the external face of (G; are visible from the north-east
direction, i.e., the straight line with slope one passing through each vertex v; on the
external face of I'; does not contain any vertex distinct from v; to the right of v;. These
properties can be satisfied for i = 2 by placing v1 at (—1,1) and v at (1, —1). Assume
we have a drawing I; of G, satisfying the above properties; we show how to compute
a drawing 511 of G,y satisfying the same properties. Let d be the diameter of the
smallest disk D enclosing I, and let o} and o, be a horizontal and a vertical line
such that D is contained in the third quadrant with respect to the point p common to
oy, and o,. We place vertex v;+1 in the first quadrant with respect to p far enough to
guarantee that: (i) for every vertex v; € V;, 7, [vi+1,v;] does not contain any vertex
distinct from v; ;1 and vj; (ii) for every vertex v; € V;, R.,(vi+1,v;) contains at least
one vertex distinct from v, 1 and vy; (iii) for every pair of vertices v;, vy € V;, we
have r¢, [v;, vx] does not contain v;41. Notice that properties (i) and (ii) imply that
every vertex v; € V; can be both adjacent and non adjacent to v;41; thus we can make
v;+1 adjacent to the vertices of V; that are adjacent to v;41 in GG, and not adjacent to the
others. Let uy, ug, . . ., uy, be the vertices on the boundary of the external face of GG; that
are adjacent to v; 41 in G4 in their clockwise order along the boundary of the external
face. Let o be the straight-line with slope one passing through u; (j = 1,2,...,k); we
place v;4+1 within the strip bounded by o1 and oy, (this choice guarantees property (b))
so that its horizontal and vertical distance from p is at least max{ 522 d, 2(1;251) d}. In
addition we place v;11 far enough in order to guarantee planarity (note that there must
exist a distance that guarantee planarity because I'; satisfies property (b)). The proof
that (i) , (ii), and (iii) hold for I'; is omitted. a

Based on Theorem[d] it is worth investigating subclasses of the planar graphs that admit
(e1,€2)-RIDs for either e1 = 0 or eo = 0. In the following we describe different
techniques to compute (0, €2)-RIDs of outerplanar graphs that are a classical subject of
investigation in proximity drawability [12].

3 (0, e2)-RIDs of Outerplanar Graphs: A General Technique

In this section we prove that every outerplanar graph admits both an open and a closed
(0,e2)-RID for every €5 > 0. Our technique draws an outerplanar graph G by first
computing a drawing of a BFS tree of G and by then adding the remaining edges. For
this reason we first prove that every tree admits both an open and a closed (0, £2)-RID
for every 5 > 0.

Lemma 1. Let T be a star. For every €2 > 0, T admits both a closed and an open
(0,e2)-RID I such that: (i) no leaf of T is on the bottom or left side of the bounding
box B of I'; (ii) the internal vertex of T is on the bottom-left corner of .

Proof. Let u be the unique internal vertex of 7" and let uy, us, . . ., u be the leaves of
T in the clockwise order around w. Let p be a real number such that p > 522 + 1. Place
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u at (0,0) and each vertex u; (1 < i < k) at (p'~%, p*~%). Properties (i) and (i7) hold
by construction. We show that the drawing is both an open and a closed (0, €2)-RID.

Consider an edge (u,u;) of T. We prove that p[u, u;] does not contain any vertex
distinct from u and u;. This implies that also p(u, u;) does not contain any vertex dis-
tinct from u and w;. A point ¢ belongs to p[u, u;] if its z-coordinate z(q) is such that
0 < 2(q) < p*~! and its y-coordinate y(q) is such that 0 < y(q) < p*~*. Each vertex
u; with j < i has y(u;) = p*=9 > p*~* and therefore u; ¢ p[u,u;]. Each vertex u;
with j > i has z(u;) = p/ =1 > p*~! and therefore u; & plu, u;].

Let u; and u; with j > 4 be two vertices that are not adjacent in 7. We prove that
R., (u;,u;) contains at least one vertex distinct from u; and u;. This implies that also
R.,[u;, uj] contains at least one vertex distinct from u; and u;. Let ¢ be the bottom-left
corner of Re, (u;, uit1); we have (q) = x(u;) — Ay, where Ay = 7 (2(uy) — 2(ui)),
which can be rewritten as z(q) = p'~* — 2 (p/~' — p'~!). Since j > i + 1, we have
2(q) <p Tt =20 —p) =p (1= % (p—1)). Fromp > 2 + 1 it follows
x(q) < 0. Analogously, we have y(q) = y(u;) — A, with Ay, = 2 (y(us) — y(u;)),

which gives y(q) = p*=7 — % (pF~" — pF79). Since j > i + 1, we have y(q) <
phTI — 2 (phITt — pkTd) = pFI(1 — % (p — 1)). So, also in this case y(q) < 0.

follows that R., (u;, u;) contains the point (0, 0) and therefore .

o=l

Lemma 2. Every tree admits both an open and a closed (0, e2)-RID for every g2 > 0.

Sketch of Proof: We prove by induction that 7" admits both a (closed and open) (0, €3)-
RID I' with the following additional properties: (i) no vertex except for the root is
drawn on the bottom or left side of the bounding box of I'; (ii) the root of T" is drawn
at the bottom-left corner of the bounding box of I'. The induction is on the number of
internal vertices n; of T'.

If n; = 1, then T is a star and therefore it admits a (closed or open) (0,e2)-RID
with properties (¢) and (ii) by Lemmal[ll If n; > 1, let u be the root of T" and let

Uy, Usg, ..., ur be the children of uw. The subtree T, induced by u and its children is a
star and can be drawn according to Lemmal[ll Let v, be the drawing of T, and let T,
(i = 1,2,...,k) be the subtree rooted at u;. By induction, every T; admits a (closed

and open) (0, e3)-RID I with properties (¢) and (4¢). Each I75 is scaled down so that
its bounding box has width W; < ,52 p’~!(p — 1) and height H; < ,52 p*~*(p — 1)
and it is placed so that it bottom-left corner coincides with the point representing u; in
I, (by property (i7) u; is represented by a unique point in the resulting drawing). The
proof of the correctness of this drawing technique is omitted. Properties (¢) and (i7)

hold by construction. O

Lemma 3. Every connected outerplanar graph admits both an open and a closed
(0,e2)-RID for every 2 > 0.

Sketch of Proof: Let G be an outerplanar graph. Consider an outerplanar embedding
of G and perform a BFS traversal of G such that the neighbors of each vertex are
scanned according to the counterclockwise order defined by the embedding of G. Let T’
be the resulting BFS tree. We compute a (closed and open) (0, e3)-RID of T by using
the technique described in the proof of Lemma [2l Denote by u; 1, 2,...,u;p, the
vertices at depth ¢ in T" ordered according to their left-to-right order (corresponding to
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counterclockwise order around each vertex defined by the planar embedding of GG). Let
(v, w) be an edge of G thatis notin T'. It is easy to see that two cases are possible: Case
1l.v = Us, 5 and w = Us,j+1 (Z > 0, 0 < j < ni); Case 2. v = Us, 5 and w = Ui—1,k>»
where u;_1 1 is the parentof u; ; (1 > 1,1 < k < n;_1, 0 < j < ny). In this case
u;,; is the rightmost child of u;_1 1. It is possible to show that in both cases the edge
(v, w) can be added to the drawing. O

Lemma [3] states that an outerplanar graph admits a (closed and open) (0, €2)-RID if it
is connected; for a non-connected outerplanar graph G, it is possible to prove that if all
the connected components of G admit a (closed and open) (0, £2)-RID and G has at
least one edge, then G admits a (closed and open) (0, €3)-RID. The following theorem
holds.

Theorem 2. Every outerplanar graph with at least one edge admits both a closed and
an open (0, e2)-RID for every 2 > 0.

We conclude the section by recalling that there exist outerplanar graphs that do not have
a (0,0)-RID both in the open and closed model, while all outerplanar graphs have a
(0, 00)-RID [[5I13]. Hence, TheoremPlextends the (0, £2)-rectangle of influence drawa-
bility of outerplanar graphs to all positive values of 5.

4 (0,e2)-RIDs of Outerplanar Graphs: Polynomial Area
Constructions

The drawing construction in the proof of Theorem 2] produces drawings whose area is
exponential in the number of vertices of the input graph. In this section we give two
different polynomial area drawing techniques for (0, e2)-RIDs of outerplanar graphs.
The first one applies to every outerplanar graph (it is indeed even more general) but it
works only for €2 > 2; the second one assumes that 0 < €2 < 2 but it can be applied
only to trees with maximum vertex degree three.

A k-track graph G = (V, E, ¢) is an undirected graph with a level assignment ¢ :
V= {1,2,...,k} 1 <k <|V][3]. Each set V; = {v € V|p(v) = i} is called a
level. A E-track graph is proper if |p(u) — ¢(v)| < 1 for every edge (u,v) € E. A k-
track graph G is k-track planar (or simply track planar) if there exist a planar drawing
I such that the vertices of level V; are drawn on the horizontal line y = <. The set of
the linear orderings of the vertices of each level is the k-track planar embedding (or
simply track-planar embedding) of I'. Let 01, 09, ..., 0 be a set of parallel lines. It is
easy to see that, given a k-track-planar embedding v of a k-track-planar graph G, any
drawing of GG such that the vertices level V; are drawn on o; (1 < i < k) according to
the linear ordering defined by + is planar. Also, if v and v are vertices of the same level
and they are adjacent then in any track-planar embedding u and v are consecutive. It is
easy to see that an outerplanar graph is a k-track graph. Namely, if we perform a BFS
traversal of an outerplanar graph G as described in the proof of Lemmal[3] we obtain a
track planar embedding of G whose levels corresponds to the levels of the BFS tree.

Theorem 3. Every proper track planar graph with n vertices admits both an open and
a closed (0, e2)-RID in O(n*) area for every g3 > 2.
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Sketch of Proof: Let G be a proper k-track planar graph and let v be a k-track planar
embedding of G. Assume G is connected and there is no level with exactly two vertices.
Denote by u; 1,2, ...,u;n, the vertices of level ¢ (1 < ¢ < k) according to the
linear ordering defined by . Draw vertex u; ; at point (N;—1 + j, N; — j + 1), where
N; = 22:1 np if ¢ > 0 and Ny = 0. It is easy to check that the resulting drawing is
both an open and a closed (0, £2)-RID for every g2 > 2 and that the area is O(n*). The
proof when G is not connected and/or it has a level with exactly two vertices follows a
similar approach. g

We describe now another drawing technique that computes (0, £2)-RIDs of trees with
maximum vertex degree three in area that is polynomial for every given 5. We decom-
pose the tree into subtrees of smaller size by means of a greedy path decomposition. Let
T be a rooted tree such that each vertex has at most d children (d > 2), and let u; be
the root of T'. A greedy path of T is a path uq, us, ..., u, connecting the root u; to a
leaf u, and such that w; is the root of the largest subtree rooted at u;—; (2 < i < h). A
greedy path decomposition of a rooted tree 1" consists of recursively identifying greedy
paths and on removing them so to decompose the tree into rooted subtrees of smaller
size. The decomposition ends when the tree is a path (possibly consisting of a single
vertex). Greedy paths decompositions of rooted trees have been used in many papers to
compute compact drawings of binary trees (see, e.g., [8110]).

Let T be a tree with a given greedy path decomposition and let 7”7 be a subtree
of T'. The greedy depth of T’ (with respect to the given decomposition) is denoted as
~(T"), and defined as follows: (7) If 7" is a path, v(T") = 1; (ii) otherwise, v(T") =
max;{y(T;)} + 1, where each T is a tree obtained from 7” by removing its greedy path
for the given decomposition. Intuitively, the greedy depth of a tree for a given greedy
path decomposition is the depth of the recursion in the decomposition process.

Theorem 4. Every tree with n vertices and vertex degree at most three admits both an

. 8
open and a closed (0,£2)-RID in O (n2+31°g2 <1+ e2 > area for every 0 < g5 < 2.

Sketch of Proof: We describe a drawing algorithm assuming that 7" is rooted and each
internal vertex of 7" has at most two children. This assumption is not restrictive. Indeed,
if T is a tree of degree at most three, we can always root 7" at a leaf. In this way every
internal vertex of 7" has at most two children.

Lete = ¢, letc. = (14 %) and let W(n) and H(n) be defined as follows:

2 ifn=0 crEm
W(n) = og, n H(n) =ncloe2m [ 14+4°°
() {4nclgg2 ifn>0 (n) € ( ce — 1 >

The drawing algorithm applies a recursive construction based on a greedy path decom-
position. Let 77 = (V’/, E’) be a subtree of T such that v(7") =i (1 < i < [logyn]).
Let IT be the greedy path of T". The algorithm constructs a drawing I’ of T” by com-
posing the drawings of all trees obtained from 7" by removing IT. Let n’ be the number
of vertices of T”. The algorithm maintains the following invariants for I"’: (I1) I is
both an open and closed (0, 2)-RID of 7”; (I2) the root v’ of 7" is drawn on the left
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border of I’ and no vertex is drawn on the same border below v'; (I3) I is completely
contained in a bounding box of size W (I"') < W(n') and height H(I"") < H(n’).

We now prove that I/ can be constructed. The proof is by induction on the greedy
depth i of T”. Denote by uy,us, ..., uy the vertices of the greedy path IT of T”, and
let v; be the child of u; thatis notin I7 (1 < j < h). We denote as n; the number
of vertices in the subtree rooted at v;. If vertex v; (and the corresponding subtree)
does not exist for some j, we set n; = 0. In particular, if the greedy depth of 7" i is
one (i.e., we are in the base case of the induction) n; = 0 for every j. The vertices
U, Usg, ..., u, are drawn along a straight line r with slope —1, in this order from left
to right. The horizontal and vertical distance between u; and u;11 (1 < j < h —1)
is denoted by ¢; and it is equal to W(n;) + 2 max{W(n;), W(n;+1)}. If i = 1, ie.,
we are in the base case of the induction, 7" coincides with the greedy path IT and
thus 7" is completely drawn. Notice that, in this case, the vertices of 7" are equispaced
along r and the horizontal and vertical distance between two consecutive vertices is
t; =W(n;) + 2 max{W(n;),W(nj41)} = 2(1 + 2) because W(0) = 2.

If ¢ > 1, i.e., we are in the inductive case, assume that each subtree with greedy
depth i —1 (z > 1) admits a drawing satisfying Invariants (I1), (I2),and (I3).We
complete the construction of I as follows (see also Figure[2)). Forevery 1 < j < h—1,
if n; > 0, denote by I'; the drawing of the subtree rooted at v; (1 < j < h — 1). Each
drawing I'; is placed above the line r. More precisely, if n; = 1, then I} is placed one
unit above and one unit to the left of u;; if n; > 1, then I is placed in such a way that
v; is vertically aligned with u; and above it; the length of the edge (u;, v;) is denoted as
d; and is defined as follows. Let j~ be the largest index such that j~ < j and n;- > 1.
Notice that 7~ may not exist for some values of j. If 7~ is defined, then he value of d;
is chosen in such a way that the bottommost vertex of I'; is above the topmost vertex
of I';- at a vertical distance of > max{#(n;), H(n;-)}; if j~ is not defined, then d;
is chosen in such a way that the bottommost vertex of I'; is above the horizontal line
y = y(u1) at a distance of >H(n;).

The proof that I is both an open and a closed (0, e3)-RID of 77, i.e., that Invari-
ant (I1) holds are omitted. Invariant (I2) holds by construction because nothing
is drawn below the line r that contains the greedy path. We now prove that Invariant
(I3) holds. If we are in the base case of the induction, then 7" coincides with the
greedy path and therefore both the width and the height of I are equal to the width of
the greedy path which is 37~ Yo = Z;:ll 2(14 2) =2(n—1)(1+ 2). We have
2(n — 1)(1 + i) < 4n(1 + )1°g2" = 4nclgog2n = W(n) for every n > 0; also,
2(n — 1)(1+ 2) < ne®" (1 fqco
(I3) holds in the base case of the 1nduct10n.

Consider now the inductive case. The width W (I") of I is equal to the width of

the greedy path which is Zh Lo = Z?_ll(W(n]) + 2 max{W(n;), W(n;11)}) <

ST W(ng) + 2302 1W( ) I W) < Y W) +
?Zj:l W(n;) = ( E) Zj:l W(n;) = ce Z]‘:1 W(n;).

Let J = {j|1<j<hAn; >0}tandlet o, ={j|1<j<hAn; =
0}; we have: W(I'") < ¢ Z;lzl W(n;) = ce(X e, Wy) + X ey, Wing)) =

= H(n) for every n > 0. Thus Invariant
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Wi(na)

o

max{H(n1), H(ns)} = 2H(ns)

max{H(ng), H(n1)} = 2H(n1)

€

gr;la;(b/\/(nl), W(na)} = 2W(ny
|

- ‘ | ‘
Wins) + f max{W(ns), W(n4)} =2+ fW(n4)

-
%W(mj

Fig. 2. Illustration of the drawing technique to compute a (closed or open) (0, £2)-RID of a tree
with maximum vertex degree three
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ce(Xjern 4njcE cE2 M N jes, 2)- According to the definition of greedy path n;
5. Also, Zj€J2 2 < Zj€J2 40180‘%2 ® because ¢e > 1land n > 1. Thus, W(I")
Ae2B " (N ey i+ e sy 1) <422 (0 — h+ h) = dnc® " = W(n).

The height H(I") is equal to the width of I/ plus an extra amount given by the
height occupied by the subtrees of size larger than one which are above the horizontal
line y = y(uq). Thus,

H(I") < W(I') + Xjeg, Hing) + 23 ey, max{H(n;), H(n;-)} < W(I) +
Zjejl H(ng) + 451 Zjejl H(ng) =W(I") +ce Zje]l H(ny) <

logg n;
log, log, nj Ce i1 log, n log, nj
4Ance +e D jeq, Njce 1-+4+4°% 1 = 4nce +eed jeg, NjcCe +

<
<

1o n;
10%2 nj el ®2" 1 - ) n ) ’
Ce D iey, dnjce ® 1 Agam n; < jand} . ; n; <n.Therefore H(I") <
log, n logy n log, n Cs 82 3 -1 log, n CIEO’Q 5 1 .
4dnce + nce +4ne. 1 T MCe 5+4%, 1 . By simple cal-

271

_1_1 <1+ 4 for n > 2, which is

’ logy n clogz ™ —1
always true in the inductive case. Hence H (I"") < nce 2 (1 +4°% ) = H(n)
and Invariant (I3) holds also in the inductive case.

In order to prove the bound on the area of the drawing we observe that W(n) =
Ancl® " = dplHloss e — O(plHloes ¢ and, recalling that ¢, > 1, H(n) < nc®2 ™ (1+
482y = pltlogsce(1 4 4plogace) = O(nl+21082¢) The area is at most W(n) x
H(n) = O(n2+31082(1+2)) = O(p2 3108201+ 5)y 0

culations it can be proved that 5 + 4‘5 ”

5 Open Problems

It would be interesting to study other families of planar graphs that admit a (0, £2)-RID
for e2 > 0. For example, Biedl et al. prove that all graphs with no filled 3-cycles (NF3
graphs) have an open/closed (0, 00)-RID [5]]. Since outerplanar graphs have no filled
3-cycles, Theorem 2] partially extends the result by Biedl et al. to all positive values of
9. Do all NF3 graphs admit a (0, £2)-rectangle of influence drawing for all values of &9
such that 2 > 0? A preliminary result in this direction is the following theorem, whose
proof is an adaptation of the technique in [J5].

Theorem 5. Every 4-connected internally triangulated plane graph whose outerface
has at least 4 vertices admits both a closed and a open (0, €2)-RID for every €2 > 0.

Since (1, €2)-RIDs exist for every planar graph if £; > 0 and e > 0 (see Section[2)),
we focused on the case when ¢; is zero. It is natural to investigate the problem for
€2 = 0and e; > 0. A preliminary result in this direction is as follows.

Theorem 6. Every biconnected outerplanar graph admits both a closed and an open
(€1,0)-RID for every 1 > 0.

The area required by the drawing techniques of Theorem [3 and [6] is exponential. Thus
it is worth studying polynomial area drawing constructions.
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Finally, for any given value e5 < 2, Theorem[] shows how to compute a polynomial

area drawing of a binary tree. It would be interesting to extend the result of Theorem 4]
to larger families of outerplanar graphs.
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