arXiv:1103.2167v3 [cs.DS] 21 Aug 2014

Improved space-time tradeoffs for approximate
full-text indexing with one edit error*

Djamal Belazzougui

Helsinki Institute for Information Technology (HIIT), Department of
Computer Science, University of Helsinki, Finland.

November 19, 2018

Abstract

In this paper we are interested in indexing texts for substring matching queries
with one edit error. That is, given a text T" of n characters over an alphabet of
size o, we are asked to build a data structure that answers the following query:
find all the occ substrings of the text that are at edit distance at most 1 from a
given string ¢ of length m. In this paper we show two new results for this prob-
lem. The first result, suitable for an unbounded alphabet, uses O(n log® n) (where
€ is any constant such that 0 < € < 1) words of space and answers to queries
in time O(m + occ). This improves simultaneously in space and time over the
result of Cole et al. The second result, suitable only for a constant alphabet, re-
lies on compressed text indices and comes in two variants: the first variant uses
O(nlog® n) bits of space and answers to queries in time O(m + occ), while the
second variant uses O(n loglogn) bits of space and answers to queries in time
O((m + occ) loglogn). This second result improves on the previously best re-
sults for constant alphabets achieved in Lam et al. and Chan et al.

1 Introduction

The problem of approximate string matching over texts has been intensively studied.
The problem consists in, given a pattern g, a text 7" (the characters of T" and ¢ are drawn
from the same alphabet of size o), and a parameter k, to find the starting points of all
the substrings of 7" that are at distance at most k from g. There exist many different
distances that can be used for this problem. In this paper, we are interested in the edit
distance, in which the distance between two strings = and y is defined as the minimal
number of edit operations needed to transform x into y, where the considered edit

*Most of this work was done when the author was a student at LIAFA, University Paris Diderot - Paris
7. The work was partially supported by the French ANR project MAPPI (project number ANR-2010-COSI-
004).

operations are deletion of a character, substitution of a character by another and, finally,
insertion of a character at some position in the string. Generally two variants of the
problem are considered, depending on which of the pattern and the text is considered
as fixed. In our case we are interested in the second variant, in which the text is fixed
and can thus be processed in advance so as to efficiently answer to queries that consist
of a pattern and a parameter k. Further, we restrict our interest to the case k = 1.

1.1 Related Work

The best results we have found in the literature with reference to our problem follow.
We only consider the results with worst case space and time bounds. We thus do not
consider results like the one in Maal} and Nowak [26] in which either the query time or
the space usage only hold on average on the assumption that the text and/or the patterns
are drawn from some random distribution. For a general integer alphabet (unbounded
alphabet) a result by Amir et al. [[1] further improved by Buchsbaum et al. [7] has led
to O(nlog®n) bits of space with query time O(mloglogm + occ). Later Cole et
al. [11]] described an index for an arbitrary number of errors k, which for the case k = 1
uses O(n log? n) bits of space and answers to queries in O(m + log nloglog n + occ)
time. For the special case of constant-sized alphabets, a series of results culminated
with those of Lam et al. [25]], Chan et al. [9] and Chan et al. [8]] with various tradeoffs
between the occupied space and query time.

Belazzougui [2]] presented a solution to an easier problem: build a data structure for
dictionaries so as to support approximate queries with one edit error. In that problem
the indexed elements are not text substrings but are, instead, strings coming from a
dictionary. Then Belazzougui used his solution to the easier dictionary problem to
solve the harder full-text indexing problem. His solution used a brute-force approach:
build the proposed dictionary on all sufficiently short text substrings (more precisely,
factors with length less than log n log log n) and use it to answer queries for sufficiently
short query patterns. Queries for longer patterns are answered using the index of Cole
et al. [11]. The main drawback of that solution is that it incurs a large polylogarithmic
factor in the space usage (due to the large space needed to index short text substrings).

By adapting some ideas of Belazzougui [2] and combining with two indices de-
scribed in Chan et al. [9]] we are able to remove the additive polylogarithmic term from
the query times associated with some of the best previously known results while using
the same space (or even less in some cases). When compared with Belazzougui [2]]
our query time is identical but our space usage is much better. The reader can refer to
Tables [T|and 2| for a full comparison between our new results and the previous ones.

As can be seen from the tables, both our indices improve on the state of the art.
We should mention that the second result attributed to Lam et al. [25]] in Table 1 is not
stated in that paper, but can be easily deduced from the main result in Lam et al. [25]
by using a different time/space tradeoff for the compressed text index implementations.
The results in Table 1 are all unsuitable for large alphabets as all their query times have

UIn this paper log z stands for [log, (max(z, 2)].

Data structure Space usage (in bits) | Query time

Lametal. [25] | O(n) O((mloglogn + occ) log® n)
Lametal. [25] | O(nloglogn) O((mloglogn + occ) loglog n)
Lametal. [25] | O(nlog®n) O(mloglogn + occ)
Chanetal. [9] | O(n) O(m + log™™ n + occlog® n)
Chan et al. [8] O(nlogn) O(m + lognloglogn + occ)
Belazzougui [2] | O(nlog” nloglogn) | O(m + occ)

This paper O(nloglogn) O((m + occ) loglog n)

This paper O(nlog®n) O(m + occ)

Table 1: Comparison of existing solutions for constant alphabet sizes

Data structure Space usage (in bits) | Query time

Buchsbaum et al. [7] | O(nlog” n) O(mloglogn + occ)

Cole et al. [[11] O(nlog®n) O(m + lognloglogn + occ)
Belazzougui [2] O(nlog® nloglogn) | O(m + occ)

This paper O(nlog'™= n) O(m + occ)

Table 2: Comparison of existing solutions for arbitrary alphabets

a hidden linear dependence on o (which for simplicity is not shown in the table). This
means that for very large alphabets of size o = ©(,/n) for example, the query time of
those algorithms will be unreasonable. By contrast the query times of the algorithms in
Table 2 do not have any dependence on the alphabet size. Our result in Table 2 always
dominates Cole et al.’s result in both space and time.

2 Preliminaries and OQutline of the Results

At the core of our paper is a result for indexing all substrings of the text of length
bounded by a given parameter b. In particular, we prove the following two theorems:

Theorem 1 For any text T of length n characters over an alphabet of constant size,
given a parameter b, we can build an index of size O(n(b° + log® n)/e) bits (where £
is any constant such that 0 < € < 1) so that for any given string q of length m < b
we can report all of the occ substrings of the text that are at edit distance at most
1 from q in time O((m + occ)/e). Alternatively we can build a data structure that
occupies O(n(log b+ loglogn)) bits of space and answers to queries in time O((m +
occ)(log b + loglogn)).

Theorem [I]is obtained by combining ideas from Belazzougui [2] with a recent result of
Belazzougui et al. [3]] (weak prefix search) and with known results on compressed text
indices. The following theorem is an extension of Theorem [I|to unbounded alphabets:

Theorem 2 For any text T of length n characters over an alphabet of size 0 < n, given
a parameter b, we can build an index of size O(nlog n(b¢ +log® n)/e) bits (where ¢ is

any constant such that 0 < € < 1) such that for any given string q of length m < b we
can report all of the occ substrings of the text that are at edit distance at most 1 from q
in time O((m + occ) /€).

Theorem [2]is obtained by using one crucial idea that was used in Cole et al.’s result [11]]
(heavy-light decomposition of the suffix tree) in combination with the weak prefix
search result of Belazzougui et al. [3]] and a recent result of Sadakane [33]] (1D-colored
rangeed reporting).

Theorem [2] can be used for any alphabet size while Theorem [I] holds only for
a constant-sized alphabet. Both theorems can only be used for matching strings of
bounded length but provide an improvement when used in combination with previous
results that are efficient only for long strings.

Theorem [T] gives an immediate improvement for constant-sized alphabets when
combined with a result appearing in Chan et al. [9]:

Theorem 3 For any text T' of length n over an alphabet of size 0 = O(1) we can build
the following indices, which are both able to return for any query string q of length m,
the occ occurrences of substrings of T' that are at edit distance at most 1 from q:

e An index that occupies O(nlog® n/e) bits of space and answers to queries in
time O((m + occ)/€) where € is any constant such that 0 < ¢ < 1.

e An index that occupies O(nloglogn) bits of space and answers to queries in
time O((m + occ) loglog n).

Theorem [2] can also be combined with another result that has appeared in Chan et
al. [9]] to get the following result suitable for arbitrary alphabet sizes:

Theorem 4 For any text T of length n over any integer alphabet of size 0 < n we can
build an index that occupies O(n log'™n /€) bits of space and is able to return for
any query string q of length m, all the occ occurrences of substrings of T that are at
edit distance at most 1 from q in time O((m + occ) /€).

Our new methods for proving Theorems (1| and [2] make use of some ideas intro-
duced in Belazzougui [2] combined with tools which were recently proposed in Be-
lazzougui et al. [3] and Sadakane [33] and with compressed text indices proposed
in [15} [18]. In Belazzougui [2] a new dictionary for approximate queries with one
error was proposed. A naive application of that dictionary to the problem of full-
text indexing was also proposed in that paper. However while this leads to the same
O(m + occ) query time achieved in this paper, the space usage was too large, namely
O(n(log nloglogn)?log o) bits of space for alphabet of size o. Nonetheless we will
borrow some ideas from that paper and use them to prove our main results.

The paper is organized as follows: we begin with the data structure suitable for
constant-sized alphabets (Theorems|I]and[3) in Section[3|before showing the data struc-
ture for large alphabets (Theorems |2| and [4) in Section |4 We conclude the paper in
Section[3]

2.1 Model and Notation

In the remainder, we note by T the reverse of the string x. That is T is the string x
written in reverse order. For a given string s, we note by s[i,] or by s[i..j] the substring
of s spanning the characters ¢ through j. We assume that the reader is familiar with
the trie concept [[17, 23] and with classical text indexing data structures like suffix trees
and suffix arrays (although we provide a brief recall in the next subsection). The model
assumed in this paper is the word RAM model with word length w = ©(log n) where
n is the size of the considered problem. We further assume that standard arithmetic
operations including multiplications can be computed in constant time. We assume
that the text 7" to be indexed is of length n and its alphabet is of size ¢ < n. At the end
of the paper, we show how to handle the extreme case o > n.

2.2 Basic Definitions

We now briefly recall some basic (and standard) text indexing data structures that will
be extensively used in this paper.

2.2.1 Suffix array

A suffix array [27] (denoted S A[1..n]) built on a text T" of length n just stores the point-
ers to the suffixes of 7" in sorted order (where by order we mean the usual lexicographic
order defined for strings). Clearly a suffix array occupies nlogn bits. A suffix array
example is illustrated in FigurelT]

SAl 6| 4] 211|513

T B A| N| A| N| A

Figure 1: Suffix array for the text banana

2.2.2 Suffix tree

A suffix tree [34, 28] is a compacted trie built on the suffixes of a text T' appended
with #, a special character outside of the original alphabet and smaller than all the
characters of the original alphabet. A suffix tree has the following properties:

e Every suffix of 7" is associated with a leaf in the tree.

e A factor p of T is associated with an internal node in the tree iff there exist two
characters a and b such that pa and pb are also factors of T'. Each internal has

thus at least two children, one associated with a factor that starts with pa and
another associated with a factor that starts with pb.

e The subtree rooted at any internal node associated with a prefix p contains (in its
leaves) all the suffixes of T'# which have p as a prefix.

e Suppose that an edge connects an internal node z associated with a factor p to
a node y (which could be a leaf or an internal node) associated with a string
s = pes’ (which could either be a suffix or another factor) where c is a character
and s is string. Then the character ¢ will be called the label of y and s’ will be
called the compacted path of y.

The essential property of a suffix tree is that it can be implemented in such a way that
it occupies O(n) pointers (that is O(n log n) bits) in addition to the text and that given
any factor p of 7' it is possible to find all the suffixes of 7" which are prefixed by p in
O(|p|) time. A suffix tree can also be augmented in several ways so as to support many
other operations, but in this paper we will use very few of them. A suffix tree example
is illustrated in Figure[2]

For a more detailed description of the suffix array or the suffix tree, the reader can
refer to any book on text indexing algorithms [19} [12].

Ho S0 o

O

Figure 2: Suffix tree for the text banana

3 Solution for Constant-Sized Alphabets

In this section we give a proof of Theorems|[TJand[3] Theorem[3]is proved in Section[3.1]
This theorem uses the data structure of Theorem [I} which is described in Section
Then we describe how the queries are executed on the data structure in Section [3.3]
Finally, in Section [3.4 we show how we deal with duplicate occurrences.

3.1 Solution for Arbitrary Pattern Length

We use the following lemma proved by Chan et al. [9, Section 3.2].

Lemma 1 [9 Section 3.2] For any text T of length n characters over an alphabet
of constant-size we can build an index of size O(n) bits so that we can report all of
the occ substrings of the text which are at edit distance 1 from any pattern q of length
m > log* nloglog n in time O(m + occ).

The solution for Theorem [3] is easily obtained by combining Theorem [I] with
Lemma(I]in the following way: we first build the index of Chan et al. [9]] whose query
time is upper bounded by O(m + occ) whenever m > log* nloglogn and whose
space usage is O(n) bits. Then we build the data structure of Theorem in which we
set b = logn*loglogn and ¢ = §/5 where § is any constant that satisfies 0 < § < 1.
In the case where we have a string of length less than b, we use the index of Theo-
rem|[I|to answer the query in time O((m + occ)/e) = O((m + occ) /§) when using the
first variant, or in time O((m + occ) loglogn) when using the second variant. In the
case where we have a string of length at least b = log® nloglogn, we use the index
of Chan et al. [9] answering to queries in time O(m + occ). The space is thus domi-
nated by our index, which uses either O(n(log* nloglogn)¢/e) = O(nlog® n/d) or
O(nlog(log® nloglogn)) = O(nloglogn) bits of space.

3.2 Data Structure for Short Patterns

Our data structure for short patterns relies on a central idea used in Belazzougui [2].
That paper was concerned with building an approximate dictionary that had to support
searching queries that tolerate one edit error. The idea for obtaining the result was that
of using a hash-based dictionary combined with a trie and a reverse trie, so that finding
all the strings in the dictionary which are at distance 1 from a pattern ¢ of length m
can be done in constant time (amortized) per pattern character and constant time per
reported occurrence. This constant time derives from two facts:

1. If the dictionary uses some suitable perfect hash function H, then after we have
done a preprocessing step on ¢ in O(m) time, the computation of H(p) takes
constant time for any string p at distance 1 from q.

2. Using the trie and reverse trie, the matching of any candidate string p at distance
1 from ¢ can be verified in constant time (this idea has frequently been used
before, for example by Brodal and Gasieniec [0]).

In our case we will use different techniques from the ones used in Belazzougui [2].
As we are searching in a text rather than a dictionary, we will be looking for suffixes
prefixed by some string p instead of finding exact matching entries in a dictionary. For
that purpose we will replace the hash-based dictionary with a weak prefix search data
structure [3]], which will allow us to find a range of candidate suffixes prefixed by any
given string p at edit distance 1 from ¢. For checking the candidate suffixes, we will
replace the trie and reverse trie with compressed suffix arrays built on the text and the
reverse of the text. Both the weak prefix search and the compressed suffix arrays have
the advantage of achieving interesting tradeoffs between space and query time.

We now describe in greater detail the data structure we use to match patterns of
bounded length over small alphabets (Theorem|[T)). This data structure uses the follow-
ing components:

1. A suffix array S A built on the text 7T'.

2. A suffix tree S built on the text 7". In each node of the suffix tree representing a
factor p of T', we store the range of suffixes which start with p. That is we store a
range [i, j] such that any suffix starts with p iff its rank % in lexicographic order
is included in [, j].

3. A reverse suffix tree S built on the text T, the reverse of the text T' (we could call
S a prefix tree as it actually stores prefixes of T'). In each node of S representing
a factor p we store the range of suffixes of 7' which start with p. That is we store
arange [i, j] such that any suffix of T starts with p iff its rank in lexicographic
order among all the suffixes of T is included in [4, j].

4. A table SA™![1..n]. This table stores for each suffix 7'[i..n] for all 1 < i < n,
the rank of the suffix T'[i..n] in lexicographic order among all the suffixes of 7.

5. A table PA~![1..n]. This table stores for each prefix 7'[1..i] the rank of the
reverse of prefix T'[1..4] in lexicographic order among the reverses of all prefixes
of T.

6. A polynomial hash function H [22] parameterized with a prime P > n* and
an integer r € [1, P — 1] (a seed). For a string we have H(x) = (z[1] - r +
z[2]-72 + ... +z[|z|] - 1*l) mod P. The details of the construction are described
below. The hash function essentially uses just O(log n) bits of space to store the
numbers P and r.

7. A weak prefix search data structure (which we denote by Wj) built on the set
U, the set of substrings (factors) of 7" of fixed length b characters (to which we
add b — 1 artificial factors obtained by appending #°~* to every suffix of 7" of
length i < b). Note that |[U| < n. This data structure, which is described
in Belazzougui et al. [3], comes in two variants. The first one uses O(n(b° +
loglog o)) bits of space for any constant 0 < ¢ < 1 and answers to queries in
O(1) time. The second one uses space O(n(logb + loglog o)) and has query
time O(logb). We note the query time of the weak prefix search data structure
by tw,. The details are described below.

8. Finally a prefix-sum data structure V{ built on top of an array Cy[1..|U|] which
stores for every p € U sorted in lexicographic order, the number of suffixes
of T prefixed by p (for each of the artificial strings this number is set to one).
This prefix-sum data structure uses O(|U|) = O(n) bits of space and answers
in constant time to the following queries: given an index ¢ return the sum
> 1<j<i Co[1..|U]]. The details are given below.

Note that the total space usage is dominated by the text indexing data structures
(the suffix and prefix trees and the structures SASA-1,PA,PA~1) which occupy
O(nlog n) bits of space. These data structures are illustrated in Figures[3|and

We now describe in detail the results from the literature that will be used to imple-
ment the data structures above.

SAl 6| 4|21 |53 |PAl5|3|1]6]|4]2

SA1 4 3 6 2 5 1 | PA 3 6 2 5 1 4

HO DSOS Do

O

Figure 4: The suffix tree (on the left) and the prefix tree (on the right) for the string
banana

3.2.1 Text indexing data structures

The only operation we need to do on the prefix tree is, for a given pattern g, to de-
termine for each prefix p of ¢ the range of all prefixes of 1" which have p as a suffix.
Similarly for the suffix tree we only need to know for each suffix s of ¢ the range of
suffixes which are prefixed by s. The classical representations for our text indexing
data structures (SA,SA™!,PA, suffix and prefix trees) all occupy O(nlogn) bits of
space. However in our case, we need to use less than the O(n log n) bits needed by the
classical representations. We will thus make use of compressed representations of the
text indexing data structures [[15} [18]. In particular we use the following results:

1. For every prefix p; = ¢[1, 7] of g of length ¢ determine the range [pl;, pr;] of pre-
fixes of 1" which are suffixed by p;. This can be accomplished incrementally in
O(m) time by following the suffix links in the prefix tree S. That is, deducing
the range corresponding to the prefix of ¢ of length ¢ from the range of the prefix
of g of length ¢ + 1 in O(1) time (following a suffix link at each step takes O(1)
time). In the context of compressed data structures, this can be accomplished

2A suffix link connects a suffix tree node associated with a factor cp (with ¢ being a character) to the
suffix tree node associated with the factor p.

using the backward search on the compressed representation of the prefix array
PA [15] still in time O(m) and representing PA in O(n) bits only (assuming
a constant alphabet) E} In this case the range corresponding to the prefix of ¢ of
length ¢ + 1 (that is, p;41) is deduced from the range corresponding to the prefix
of q of length : (that is, p;).

2. Forevery suffix s; = ¢[m—i+1, m] of ¢ of length ¢ determine the range [sl;, sr;]
of suffixes of 7" which are prefixed by s;. This can be done in a similar way in
total O(m) time by either following suffix links in a standard representation of
the suffix tree S or by backward search [[15] in a compressed representation of
the suffix array SA. The compressed representation occupies O(n) bits only.

3. For any i we need to have a fast access to SA[i],SA~1[i],PA[i],PA~[i]. In case
those four tables are represented explicitly in O(n log n) bits of space, the access
time is trivially O(1). However in the context of compressed representation, we
need to use less than O(n logn) bits of space and still be able to have fast access
to the arrays.

The first two results can be summarized with the following lemma:

Lemma 2 [15] Given a text T of length n over a constant-sized alphabet, we can
build a data structure with O(n) bits of space such that given a pattern q of length m,
we can in O(m) time determine:

o the range of suffixes of T' (sorted in lexicographic order) prefixed by s; for all
suffixes s; of q of length i € [1..m].

o the range of prefixes of T' (sorted in reverse lexicographic order) suffixed by p;
for all prefixes p; of q of length i € [1..m].

If the alphabet is non constant, then we can obtain the same results using O(nlog o)
bits of space [4]].

The third needed text indexing result is summarized with the following lemma:

Lemma 3 [1832|124] Assuming a constant alphabet size, we can compress the arrays
PASAPA~" and SA~" with the following tradeoffs :

e space O(nloglogn) bits with access time tg4 = O(loglogn) time.
e space O(nlog® n/e) bits with access time tga = O(1/e) time, where ¢ is any
constant such that 0 < € < 1.
3.2.2 Weak prefix search data structure

A weak prefix search data structure built on a set of strings U (sorted by increasing
lexicographic order) permits, given a prefix p of any element in U, to return the range
of elements of U prefixed by p. If given an element which is not prefix of any element
in U, it returns an arbitrary range. We will use the following result:

3 P A can be represented in compressed suffix array representation of [I5], since PA is actually the suffix
array of the reverse of the text.

10

Lemma 4 [3] Given a set of n strings of fixed length b each over the alphabet [1..0],
we can build a weak prefix search data structure with the following time/space trade-

offs:

e Query time tyy = O(c) with a data structure which uses O(nc(b*/¢(logb +
loglog 0))) bits ofspacﬁfor any integer constant ¢ > 1.

e Query time tyy = O(logb) with a data structure which uses O(n(logb +
loglog o)) bits of space.

The weak prefix search data structure of the lemma above needs to use a perfect hash
function H and assumes that after preprocessing a query string p, the computation of
H(p[1,1]) for any i takes constant time. This is essential to achieve ty query time,
since a query involves either ©(c) or ©(logb) computations of the hash function on
prefixes of p.

In our case, the weak prefix search data structure will be built on U, the set of fac-
tors of 7" = T#%~! of fixed length b, where # is a special character lexicographically
smaller than all the characters which appear in T'. The only reason we use 7" instead
of T in the weak prefix search is to ensure that the last suffixes of length less than b
are all present in the weak prefix (a suffix s of length ¢ < b will be stored in the weak
prefix search as the string s#° 7).

3.2.3 Hash function

As described above we will use a polynomial hash function H [22] parameterized with
a prime number P and a seed r. The parameter P is fixed but the seed 7 is chosen
randomly. Our goal is to build a hash function H such that all the hash values of the
substrings of 7" used by the weak prefix search are all distinct (that is, H is a perfect
hash function for the considered set if substrings). For a randomly chosen r this is the
case with high probability. If it is not the case, we randomly choose a new 7 and repeat
the construction until all the needed substrings of T" are mapped to distinct hash values.
We notice that the hash function H can be evaluated on any string s in deterministic
linear time in the length of s. However the time to find a suitable r is randomized only,
as we may in the worst case do many trials before finding a suitable r (although the
number of trials is on average only 14-0(1) as each trial succeeds with high probability).

3.2.4 Prefix-sum data structure

A succinct prefix-sum data structure is a data structure that permits the succinct encod-
ing of an array A[l..n] of integers of total sum D in space n(2 + [log(D/n)]) bits,
so that the sum } 3, A[j] for any i can be computed in constant time. This can
be obtained by combining fast indexed bitvector implementations [21} |29} [10] with
Elias-Fano coding [[13}114].

4 Actually the result in Belazzougui et al. [3] states a space usage O(nbl/ ¢log b) but assumes a constant
alphabet size. However, it is easy to see that the same data structure just works for arbitrary o in which case
it uses O(n(b1/<(log b + loglog o)) bits of space.

11

3.3 Queries
3.3.1 Preprocessing

To make a query on our full-text index for a string ¢ of length m, we will proceed
in a preprocessing step which takes O(m) time. The preprocessing consists in the
following phases:

1. We fill two arrays L[0..m] and R[1..m + 1] by using Lemma [3| on the string
g. More precisely L[i] stores the range of prefixes suffixed by ¢[1..7] and R][¢]
stores the range of suffixes prefixed by ¢[i, m] (we naturally associate the range
L[0] = R[m+ 1] = [1, n] with the empty strings ¢[1..0] and ¢[m + 1..m] which,
are respectively suffix and prefix of any other string). This step takes time O(m)
as stated in Lemma[3]

2. We precompute an array which stores all the values of 7% for all 0 < i < m.

3. We precompute all the values H(g[1,1]) for all 1 < ¢ < m. That is all the hash
values for all the prefixes of g. This can easily be done incrementally as we have
H(q[1,1]) = ¢[1] - and then H(¢[1,i + 1]) = H(q[1,4]) + q[i + 1] - 7" for
alll <7 < m.

4. We precompute all the values H(g[m — i + 1,m]) for all 1 < i < m. That
is all the hash values for all the suffixes of ¢g. This can also easily be done
incrementally as we have H(q[m,m]) = q¢[m] - r and then H(q[i,m]) =
(H(g[i +1,m]) +q[i]) -rforall 1 <i < m.

3.3.2 Hash function computation

We now describe some useful properties of the hash function H which will be of in-
terest for queries. An interesting property of the hash function H is that after the pre-
computation phase, computing H (p) for any p at edit distance 1 from ¢ takes constant
time:

1. Deletion at position i: computing the hash value of p = ¢[1,i — 1]¢[i + 1,m]
(note that g[1, ¢] is defined as the empty string when ¢ = 0) is done by the formula
H(p) = H(q[1,i —1]) + H(q[i + 1,m]) - 7'~ (note that H(g[1,i — 1]) = 0 if
1=1).

2. Substitution at position i: computing the hash value of p = ¢[1,i— 1]eg[i+1,m)]
is done by the formula H(p) = H(q[1,i — 1]) + (¢ + H(q[i + 1,m])) - r’.

3. Insertion after position i: computing the hash value of p = g[1,i]cq[i + 1, m][]
is done by the formula H (p) = H(q[1,1]) + (c + H(q[i + 1,m])) - r+1.

It can easily be seen that the computation of H(p) takes constant time in each case.
The reason is that the three values involved in each computation have all been obtained
in the precomputation phase.

SNote that insertion before position 1 is equivalent to insertion after position 0 in which case q[1, 4] will
be the empty string.

12

Moreover, computing H (p’) for any prefix p’ of a string p at edit distance 1 from ¢
also takes constant time:

e The hash value for a prefix p’ of length j of a string p obtained by deletion at
position i in q can be obtained by H(p') = H(p) — H(q[j + 2,m]) - 7 (note
that H(q[j + 2,m] = 0if j + 2 > m) whenever j > i or H(p') = H(q[1, j])
otherwise.

e The hash value for a prefix p’ of length j of a string p obtained by substitution
at position 4 in ¢ can be obtained by H(p') = H(p) — H(q[j + 1,m]) - 7 (note
that H(g[j + 1,m] = 0if j + 1 > m) whenever j > i or H(p') = H(q[1,j])
otherwise.

e The hash value for a prefix p’ of length j of a string p obtained by insertion after
position i in ¢ can be obtained by H(p') = H(p) — H(q[j,m]) - 7 (note that
H(q[j, m] = 0if j > m) whenever j > i or H(p') = H(q[1, j]) otherwise.

3.3.3 Checking occurrences

Suppose we have found a potential occurrence of a matching substring of the text ob-
tained by one deletion, one insertion or one substitution. There exists a standard way
to check for the validity of the matching (this has been used several times before,
for example in Chan et al. [8]) using the arrays PA~! and SA~!. Suppose we have
found a potential occurrence of a string p obtainable by deletion of the character at
position 4 in the query string g. In this case we have p = ¢[1,i — 1]g[i + 1, m]. More-
over, suppose we have found for p a potentially matching location j in the text. Then
checking whether this matching location is correct is a matter of just checking that
PA7j+i—2] € L[i — 1] and, SA~'[j + i — 1] € R[i + 1]. That is, checking
whether T'[j..; + m — 2] = p = q[1,i — 1]q[¢é + 1,m] is just a matter of check-
ingthat T[j.j +i—2] = ¢q[l.i—1],and T[j+ ¢ — 1. + m — 2] = ¢[i + 1,m)]
which amounts to checking that the prefix of 7" ending at T'[j + ¢ — 2] is suffixed by
q[1,i — 1], and the suffix of T starting at T'[j + ¢ — 1] is prefixed by ¢[i + 1, m].
Those two conditions are equivalent to checking that PA=1[j +i — 2] € L[i — 1], and
SA~Y[j+1i—1] € R[i+1] respectively. Checking a matching location for an insertion
or a substitution can be done similarly. For checking a matching