
ar
X

iv
:0

80
6.

09
83

v2
 [

cs
.D

S]
 1

2
O

ct
 2

01
2

A Comparison of

Performance Measures for Online Algorithms∗

Joan Boyar† Sandy Irani‡ Kim S. Larsen†

October 23, 2018

Abstract

This paper provides a systematic study of several proposed mea-
sures for online algorithms in the context of a specific problem, namely,
the two server problem on three colinear points. Even though the
problem is simple, it encapsulates a core challenge in online algorithms
which is to balance greediness and adaptability. We examine Competi-
tive Analysis, the Max/Max Ratio, the Random Order Ratio, Bijective
Analysis and Relative Worst Order Analysis, and determine how these
measures compare the Greedy Algorithm, Double Coverage, and Lazy
Double Coverage, commonly studied algorithms in the context of server
problems. We find that by the Max/Max Ratio and Bijective Analysis,
Greedy is the best of the three algorithms. Under the other measures,
Double Coverage and Lazy Double Coverage are better, though Rela-
tive Worst Order Analysis indicates that Greedy is sometimes better.
Only Bijective Analysis and Relative Worst Order Analysis indicate
that Lazy Double Coverage is better than Double Coverage. Our re-
sults also provide the first proof of optimality of an algorithm under
Relative Worst Order Analysis.

∗A preliminary version of this paper appeared in 11th International Algorithms and
Data Structures Symposium (WADS 2009), volume 5664 of Lecture Notes in Computer
Science, pages 119-130, Springer, 2009.

†Department of Mathematics and Computer Science, University of Southern Denmark,

Campusvej 55, DK-5230 Odense M, Denmark, {joan,kslarsen}@imada.sdu.dk. Supported

in part by the Danish Council for Independent Research. Part of this work was carried out

while these authors were visiting the University of California, Irvine, and the University

of Waterloo, Canada.
‡Department of Computer Science, University of California, Irvine, CA 92697, USA,

irani@ics.uci.edu. Supported in part by NSF Grants CCR-0514082 and CCF-0916181.

1

http://arxiv.org/abs/0806.0983v2

1 Introduction

Since its introduction by Sleator and Tarjan in 1985 [19], Competitive Anal-
ysis has been the most widely used method for evaluating online algorithms.
A problem is said to be online if the input to the problem is given a piece
at a time, and the algorithm must commit to parts of the solution over time
before the entire input is revealed to the algorithm. Competitive Analysis

evaluates an online algorithm in comparison to the optimal offline algo-
rithm which receives the input in its entirety in advance and has unlimited
computational power in determining a solution. Informally speaking, one
considers the worst-case input which maximizes the ratio of the cost of the
online algorithm for that input to the cost of the optimal offline algorithm
on that same input. The maximum ratio achieved is called the Competitive

Ratio. Thus, one factors out the inherent difficulty of a particular input (for
which the offline algorithm is penalized along with the online algorithm) and
measures what is lost in making decisions with partial information and/or
limited power.

Despite the popularity of Competitive Analysis, researchers have been well
aware of its deficiencies and have been seeking better alternatives almost
since the time that it came into wide use. (See [10] for a fairly recent survey.)
Many of the problems with Competitive Analysis stem from the fact that it
is a worst case measure and fails to examine the performance of algorithms
on instances that would be expected in a particular application. It has
also been observed that Competitive Analysis sometimes fails to distinguish
between algorithms which have very different performance in practice and
intuitively differ in quality.

Over the years, researchers have devised alternatives to Competitive Anal-
ysis, each designed to address one or all of its shortcomings. There are ex-
ceptions, but it is fair to say that many alternatives are application-specific,
and very often, the papers in which they are introduced only present a direct
comparison between a new measure and Competitive Analysis.

This paper is a study of several generally-applicable alternative measures for
evaluating online algorithms that have been suggested in the literature. We
perform this comparison in the context of a particular problem: the 2-server
problem on the line with three possible request points, nick-named here the
baby server problem. Investigating simple k-server problems to shed light on
new ideas has also been done in [3], for instance.

We focus on three algorithms, Greedy, Double Coverage (Dc) [9], and

2

Lazy Double Coverage (Ldc), and four different analysis techniques
(performance measures): Bijective Analysis, the Max/Max Ratio, the Ran-
dom Order Ratio, and Relative Worst Order Analysis.

In investigating the baby server problem, we find that according to some
quality measures for online algorithms, Greedy is better than Dc and
Ldc, whereas for others, Dc and Ldc are better than Greedy. In ad-
dition, for some measures Ldc is better than Dc, while for others they are
indistinguishable.

The analysis methods that conclude that Dc and Ldc are better than
Greedy are focused on a worst-case sequence for the ratio of an algorithm’s
cost compared to Opt. In the case of Greedy vs. Dc and Ldc, this conclu-
sion makes use of the fact that there exists a family of sequences for which
Greedy’s cost is unboundedly larger than the cost of Opt, whereas for each
of Dc and Ldc, the cost is always at most a factor of two larger than the
cost of Opt.

On the other hand, the measures that conclude thatGreedy is best compare
two algorithms based on the multiset of costs stemming from the set of all
sequences of a fixed length. In the case of Greedy and Ldc, this makes use
of the fact that for any fixed n, both the maximum as well as the average
cost of Ldc over all sequences of length n are greater than the corresponding
values for Greedy.

Using Relative Worst Order Analysis a more nuanced result is obtained,
concluding that Ldc can be at most a factor of two worse than Greedy,
while Greedy can be unboundedly worse than Ldc.

The analysis methods that distinguish between Dc and Ldc (Bijective Anal-
ysis and Relative Worst Order Analysis) take advantage of the fact that Ldc
performs at least as well as Dc on every sequence and performs better on
some. The others (Competitive Analysis, the Max/Max Ratio, and the Ran-
dom Order Ratio) cannot distinguish between them, due to the intermediate
comparison to Opt, i.e., algorithms are compared to Opt and then the re-
sults of this comparison are compared. On some sequences where Dc and
Ldc do worst in comparison with Opt, they perform identically, so these
worst case measures conclude that the two algorithms perform identically
overall. This phenomenon occurs in other problems also. For example, some
analysis methods fail to distinguish between the paging algorithms LRU and
FWF, even though the former is clearly better and is at least as good on
every sequence.

The simplicity of the baby server problem also enables us to give the first

3

proof of optimality in Relative Worst Order Analysis: Ldc is an optimal
algorithm for this problem.

Though our main focus is the greediness/adaptability issue that we inves-
tigate through the analyses of Greedy and Ldc over a broad collection
of quality measures, we also include some results about the balance algo-
rithm [18], Bal. Because of the interest for this server algorithm in the
literature, we find it natural to mention the results for Bal that can be
obtained relatively easily within our framework.

2 Preliminaries

In this section, we define the server problem used throughout this paper as
the basis for our comparison. We also define the server algorithms used, and
the quality measures which are the subject of this study.

2.1 The Server Problem

Server problems [5] have been the objects of many studies. In its full gen-
erality, one assumes that some number k of servers are available in some
metric space. Then a sequence of requests must be treated. A request is
simply a point in the metric space, and a k-server algorithm must move
servers in response to the request to ensure that at least one server is placed
on the request point. A cost is associated with any move of a server (this
is usually the distance moved in the given metric space), and the objective
is to minimize total cost. The initial configuration (location of servers) may
or may not be a part of the problem formulation.

In investigating the strengths and weaknesses of the various measures for
the quality of online algorithms, we define the simplest possible nontrivial
server problem:

Definition 1 The baby server problem is a 2-server problem on the line with
three possible request points A, B, and C, in that order from left to right,
with distance one between A and B and integral distance d ≥ 2 between B
and C. The cost of moving a server is defined to be the distance it is moved.
We assume that initially the two servers are placed on A and C. ✷

As a side remark, we have considered most proofs in this paper in the con-
text of a non-integral distance d between B and C. The main conclusions

4

remain the same, but many of the proofs become longer and the formulas
less readable. In a few places, we consider variants of Ldc, where the right-
most server moves at a speed a times faster than the left-most server. Also
in this case we assume that d/a is integral in order to highlight the core
findings.

All results in the paper pertain to the baby server problem. Even though the
problem is simple, it requires balancing greediness and adaptability which
is a central problem in all k-server settings and many online problems in
general. This simple problem we consider is sufficient to show the non-
competitiveness of Greedy with respect to Competitive Analysis [5].

2.2 Server Algorithms

First, we define some relevant properties of server algorithms:

Definition 2 A server algorithm is called

• noncrossing if servers never change their relative position on the line.

• lazy [18] if it never moves more than one server in response to a request
and it does not move any servers if the requested point is already
occupied by a server.

A server algorithm fulfilling both these properties is called compliant. ✷

Given an algorithm, A, we define the algorithm lazy A, LA, as follows: LA
will maintain a virtual set of servers and their locations as well as the real
set of servers in the metric space. There is a one-to-one correspondence
between real servers and virtual servers. The virtual set will simulate the
behavior of A. The initial server positions of the virtual and real servers are
the same.

When a request arrives, the virtual servers are moved in accordance with
algorithm A. After this happens, there will always be at least one virtual
server on the requested point. Then the real servers move to satisfy the
request: If there is already a real server on the requested point, nothing
more happens. Otherwise, the real server corresponding to the virtual server
on the requested point moves to the requested point. If there is more than
one virtual server on the requested point, tie-braking rules may be applied.
In our case, we will pick the closest server to move to the requested point.

5

General k-server problems that are more complicated than the baby server
problem may need more involved tiebreaking rules to be deterministically
defined. Note that as a special case of the above, a virtual move can be of
distance zero, while still leading to a real move of non-zero distance.

In [9], it was observed that for any 2-server algorithm, there exists a non-
crossing algorithm with the same cost on all sequences. In [18], it was
observed that for an algorithm A and its lazy version LA, for any sequence
I of requests, A(I) ≥ LA(I) (we refer to this as the laziness observation).
Note that the laziness observation applies to the general k-server problem,
so the results that depend only on this observation can also be generalized
beyond the baby server problem.

We define a number of algorithms by specifying their behavior on the next
request point, p. For all algorithms considered here, no moves are made if a
server already occupies the request point (though internal state changes are
sometimes made in such a situation).

Greedy moves the closest server to p. Note that due to the problem for-
mulation, ties cannot occur (and the server on C is never moved).

If p is in between the two servers, Double Coverage (Dc), moves both servers
at the same speed in the direction of p until at least one server reaches the
point. If p is on the same side of both servers, the nearest server moves to
p.

We define a-Dc to work in the same way as Dc, except that the right-most
server moves at a speed a ≤ d times faster than the left-most server. We
refer to the lazy version of Dc as Ldc and the lazy version of a-Dc as
a-Ldc.

The balance algorithm [18], Bal, makes its decisions based on the total
distance travelled by each server. For each server, s, let ds denote the total
distance travelled by s from the initiation of the algorithm up to the current
point in time. On a request, Bal moves a server, aiming to obtain the
smallest possible maxs ds value after the move. In case of a tie, Bal moves
the server which must move the furthest.

As an example, showing that some care must be taken when defining the
lazy algorithms, consider the following server problem which is slightly more
complicated than the one we consider in the rest of the paper. We illustrate
the example in Figure 1. There are four points A = 0, B = 2, C = 6, and
D = 11 in use, and three servers, initially on A, B, and D. We consider
the request sequence CBC, served by Ldc. After the first request to C,

6

0 1 2 3 4 5 6 7 8 9 10 11

A

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

B

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

C

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

D

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

Request B

Request C

Initial

Figure 1: Illustration of the 3-server example. The server positions are given
in black and the virtual positions in grey.

we have the configuration A (A), C (C), D (7), where the server positions
are listed from left to right with their virtual positions in parentheses. At
the request to B, it becomes B (B), C (4), D (7). Now, when requesting
C again, note that virtually, the right-most server is closest, but the middle
server is actually on C.

2.3 Quality Measures

In analyzing algorithms for the baby server problem, we consider input se-
quences I of request points. An algorithm A, which treats such a sequence
has some cost, which is the total distance moved by the two servers. This
cost is denoted by A(I). Since I is of finite length, it is clear that there
exists an offline algorithm with minimal cost. By Opt, we refer to such an
algorithm and Opt(I) denotes the unique minimal cost of processing I.

All of the measures described below can lead to a conclusion as to which
one of two algorithms is better. In contrast to the others, Bijective Analysis
does not quantify how much better one algorithm is than another.

7

2.3.1 Competitive Analysis:

In Competitive Analysis [13, 19, 15], we define an algorithm A to be c-
competitive if there exists a constant α such that for all input sequences I,
A(I) ≤ cOpt(I) + α.

2.3.2 The Max/Max Ratio:

The Max/Max Ratio [4] compares an algorithm’s worst cost for any sequence
of length n to Opt’s worst cost for any sequence of length n. The Max/Max
Ratio of an algorithm A, wM (A), is M(A)/M(Opt), where

M(A) = lim sup
t→∞

max
|I|=t

A(I)/t.

2.3.3 The Random Order Ratio:

Kenyon [16] defines the Random Order Ratio to be the worst ratio obtained
over all sequences I, comparing the expected value of an algorithm, A, with
respect to a uniform distribution of all permutations of I, to the value of
Opt on I:

lim sup
Opt(I)→∞

Eσ [A(σ(I))]

Opt(I)

The original context for this definition is Bin Packing for which the optimal
packing is the same, regardless of the order in which the items are presented.
Therefore, it does not make sense to take an average over all permutations
for Opt. For server problems, however, the order of requests in the sequence
may very well change the cost of Opt, so we compare to Opt’s performance,
also on a random permutation of the input sequence. In addition, taking
the limit as Opt(I) → ∞, causes a problem with analyzing Greedy on the
baby server problem (and presumably other algorithms for other problems),
since there is an infinite family of sequences, In, where Opt’s cost on In
is the same constant for all n, but Greedy’s cost grows with n. Thus, we
consider the limit as the length of the sequence goes to infinity, as in another
alternative definition of the Random Order Ratio in [14]. We choose to
modify the Random Order Ratio as shown to the left, but for the results
presented here, the definition to the right would give the same:

lim sup
|I|→∞

Eσ [A(σ(I))]

Eσ [Opt(σ(I))]
lim sup
|I|→∞

Eσ

[

A(σ(I))

Opt(σ(I))

]

8

2.3.4 Bijective Analysis and Average Analysis:

In [1], Bijective and Average Analysis are defined, as methods of comparing
two online algorithms directly. We adapt those definitions to the notation
used here. As with the Max/Max Ratio and Relative Worst Order Analysis,
the two algorithms are not necessarily compared on the same sequence.

In Bijective Analysis, the sequences of a given length are mapped, using
a bijection, onto the same set of sequences. The performance of the first
algorithm on a sequence, I, is compared to the performance of the second
algorithm on the sequence I is mapped to. If In denotes the set of all input
sequences of length n, then an online algorithm A is no worse than an online
algorithm B according to Bijective Analysis if there exists an integer n0 ≥ 1
such that for each n ≥ n0, there is a bijection f : In → In satisfying
A(I) ≤ B(f(I)) for each I ∈ In. A is strictly better than B if A is no worse
than B, and there is no bijection showing that B is no worse than A.

Average Analysis can be viewed as a relaxation of Bijective Analysis. An
online algorithm A is no worse than an online algorithm B according to
Average Analysis if there exists an integer n0 ≥ 1 such that for each n ≥ n0,
ΣI∈InA(I) ≤ ΣI∈InB(I). A is strictly better than B if this inequality is
strict.

2.3.5 Relative Worst Order Analysis:

Relative Worst Order Analysis was introduced in [6] and extended in [7].
It compares two online algorithms directly. As with the Max/Max Ratio,
it compares two algorithms on their worst sequence in the same part of a
partition. The partition is based on the Random Order Ratio, so that the
algorithms are compared on sequences having the same content, but possibly
in different orders.

Definition 3 Let I be any input sequence, and let n be the length of I. If
σ is a permutation on n elements, then σ(I) denotes I permuted by σ. Let
A be any algorithm. Then A(I) is the cost of running A on I, and

AW(I) = max
σ

A(σ(I)).

✷

9

Definition 4 For any pair of algorithms A and B, we define

cl(A,B) = sup {c | ∃b : ∀I : AW(I) ≥ cBW(I)− b} and

cu(A,B) = inf {c | ∃b : ∀I : AW(I) ≤ cBW(I) + b} .

If cl(A,B) ≥ 1 or cu(A,B) ≤ 1, the algorithms are said to be comparable

and the Relative Worst Order Ratio WRA,B of algorithm A to algorithm B

is defined. Otherwise, WRA,B is undefined.

If cl(A,B) ≥ 1, then WRA,B = cu(A,B), and

if cu(A,B) ≤ 1, then WRA,B = cl(A,B) .

If WRA,B < 1, algorithms A and B are said to be comparable in A’s favor.
Similarly, if WRA,B > 1, the algorithms are said to be comparable in B’s

favor.

If at least one of the ratios cu(A,B) and cu(B,A) is finite, then the algorithms
A and B are called (cu(A,B), cu(B,A))-related.

Algorithms A and B are weakly comparable in A’s favor, 1) if A and B are
comparable in A’s favor, 2) if cu(A,B) is finite and cu(B,A) is infinite, or 3)
if cu(A,B) ∈ o(cu(B,A)). ✷

An informal summary, comparing these measures is given in Table 1. Note
that some details are missing, including the additive constants for asymp-
totic analysis.

Table 2 is a summary of the results comparing Ldc and Greedy on the
baby server problem using each of the measures defined. Additionally, it
lists the effect of laziness applied to Dc.

3 Competitive Analysis

The k-server problem has been studied using Competitive Analysis starting
in [17]. In [9], it is shown that on the real line, the Competitive Ratios of
Dc and Ldc are k, which is optimal, and that Greedy is not competitive.
The result in [17], showing that the Competitive Ratio of Bal is n − 1 on
a metric space with n points if k = n − 1, shows that Bal has the same
Competitive Ratio of 2 as Dc and Ldc on the baby server problem.

10

Measure Value

Competitive Ratio CRA = max
I

A(I)

Opt(I)

Max/Max Ratio MRA =
max|I|=nA(I)

max|I′|=nOpt(I ′)

Random Order Ratio RRA = max
I

Eσ

[

A(σ(I))
]

Eσ [Opt(σ(I))]

Relative Worst Order Ratio WRA,B = max
I

maxσ A(σ(I))

maxσ′ B(σ′(I))

Table 1: Comparison of those measures which give a ratio.

4 The Max/Max Ratio

In [4], a concrete example is given with two servers and three non-colinear
points. It is observed that the Max/Max Ratio favors the greedy algorithm
over the balance algorithm, Bal.

Bal behaves similarly to Ldc and identically on Ldc’s worst case sequences.
The following theorem shows that the same conclusion is reached when the
three points are on the line.

Theorem 1 Greedy is better than Dc and Ldc on the baby server prob-
lem with respect to the Max/Max Ratio, with wM (Dc)

wMGreedy) = wM (Ldc)
wM (Greedy) =

1 + d−1
d+1 .

Proof Given a sequence of length n, Greedy’s maximum cost is n, so
M(Greedy) = 1.

Since Opt is at least as good as Greedy, its cost is at most n. Thus,
M(Opt) ≤ 1. To obtain a lower bound for M(Opt), we consider request
sequences consisting of repetitions of the sequence ((BA)dC)k. In each such
repetition, Opt must incur a cost of at least 2d. Thus, we can bound
M(Opt) by M(Opt) ≥ 2d

2d+1 .

We now determine M(Ldc), and the same argument holds for M(Dc).

11

Measure Favored Algorithm Dc vs. Ldc

Competitive Ratio Ldc identical

Max/Max Ratio Greedy identical

Random Order Ratio Ldc identical

Bijective Analysis Greedy Ldc best

Average Analysis Greedy Ldc best

Relative Worst Order Ratio Ldc weakly favored Ldc best

Table 2: The second column summarizes the results comparing Ldc and
Greedy on the baby server problem using each of the measures defined.
In addition to the information in the column, Greedy is uniquely opti-
mal according to Bijective and Average Analysis, and Ldc and Greedy

are (2,∞)-related according to Relative Worst Order Analysis. The third
column lists which measures distinguish between Dc and its lazy variant,
Ldc.

For any positive integer n, we define the sequence In = ((BA)dBC)pX of
length n, where the length of the alternating A/B-sequence before the C is
2d + 1, X is a possibly empty alternating sequence of As and Bs starting
with a B, |X| = n mod (2d+ 2), and p = n−|X|

2d+2 .

First, we claim that In is a sequence of length n where Ldc has the largest
average cost per move. Each move that the right-most server, originally on
C, makes costs d > 1 and the left-most server’s moves cost only one. For
every move the right-most server makes from C to B, there are d moves
by the left-most server from A to B and thus d moves back from B to A.
The subsequence (BA)d does this with cost one for Ldc for every move.
Since the move after every C has cost one, it is impossible to define another
sequence with a larger average cost per move.

If |X| < 2d + 1, then the server on C does not move again, and Ldc(s) =

p(2d+ 2d) + |X| = n+ (d−1)(n−|X|)
d+1 .

Otherwise, |X| = 2d + 1, the server on C is moved to B, and we obtain

12

Ldc(In) = p(2d+ 2d) + |X|+ d− 1 = n+ (d−1)(n−|X|)
d+1 + d− 1.

Since we are taking the supremum, we restrict our attention to sequences

where |X| = 0. Thus, M(Ldc) =
n+ (d−1)n

d+1

n
= 1 + d−1

d+1

Finally,

wM (Greedy) =
M(Greedy)

M(Opt)
=

1

M(Opt)
,

while

wM (Ldc) =
M(Ldc)

M(Opt)
=

1 + d−1
d+1

M(Opt)
.

Since M(Opt) is bounded, wM (Ldc)
wM (Greedy) = 1+ d−1

d+1 , which is greater than one
for d > 1. ✷

It follows from the proof of this theorem that Greedy is close to optimal
with respect to the Max/Max Ratio, since the cost of Greedy divided by
the cost of Opt tends toward one for large d.

Since Ldc and Dc perform identically on their worst sequences of any given
length, they also have the same Max/Max Ratio.

5 The Random Order Ratio

The Random Order Ratio categorizes Dc and Ldc as being equally good.
The proof is structured into several lemmas below.

In the following, we use the term run to mean a sequence of the same item in
a longer sequence, and it is maximal if it cannot be made longer by including
a possible neighboring item. For example, the three maximal runs of As in
AAABAAAABBA have lengths 3, 4, and 1, respectively.

The Random Order Ratio is the worst ratio obtained over all sequences,
comparing the expected value of an algorithm over all permutations of a
given sequence to the expected value of Opt over all permutations of the
given sequence. The intuition in establishing the following result is that if
one chooses a random permutation of a sequence with many more As and Bs
than Cs, then, with high probability, there will be sufficiently many switches
between requests to As and Bs in between each two successive occurrences
of Cs that both Dc and Ldc will experience the full penalty compared to
OPT, i.e., after each request to C, they will use one server to serve requests

13

to both A and B before eventually moving the server from C to B, where
it will stay until the next request to C.

The two main components in the proof are the following: First, even though
we choose a sequence with many more As and Bs than Cs, we must prove
that with high probability, there are enough requests between any two Cs.
If there are just a small constant fraction of pairs of successive Cs that do
not have enough As and Bs in between them, we will not get the Random
Order Ratio of two that we are trying to obtain. Second, even though there
are many requests to As and Bs in between two consecutive Cs, if the As or
Bs, respectively, appear as runs too frequently (many As in a row, followed
by many Bs in a row), then there will not be sufficiently many switches
between requests to As and Bs to pull a server from C to B. Again, we
cannot afford to have this problem occur a constant fraction of the times if
we want a ratio of two.

In the proof, we choose to use n requests to As as well as Bs and ⌊log n⌋
requests to Cs. In addition, we limit the successive requests to As and
Bs separately to ⌊√n⌋ with high probability. The choice of the functions
n, log n, and

√
n is mostly to work with familiar functions in the lemmas

below. Many other choices of functions would work, as long as their rates
of growth are similar. It is not quite sufficient that they are different, since
we also need to use, for instance, that

√
n log2 n ∈ o(n).

We use the notation [n]r, where r ≤ n, for the expression n(n − 1)(n −
2) · · · (n − r + 1).

The following result is from [8], using the index for the last term of the
summation from [2, page 56]. We have substituted in our variable names:

Proposition 1 In a random permutation of n As and n Bs, the probability
that the longest run of As (or Bs) is shorter than r is

P (r) = 1−
(

n+1
1

) [n]r
[2n]r

+
(

n+1
2

) [n]2r
[2n]2r

−
(

n+1
3

) [n]3r
[2n]3r

+ . . .

+(−1)⌊n

r
⌋
(

n+ 1
⌊

n
r

⌋

)

[n](⌊n
r ⌋r)

[2n](⌊n
r ⌋r)

We first derive a simple lower bound on this probability.

Lemma 1 If r ≥ log n, then in a random permutation of n As and n Bs,
the probability P (r) that the longest run of Bs is shorter than r is at least
1− n+1

2r .

14

Proof We first prove that the absolute value of the terms in the expression
for P (r) from Proposition 1 are non-increasing. Let 1 ≤ i ≤

⌊

n
r

⌋

− 1. We
consider two successive terms and show that the absolute value of the first is
at least as large as the absolute value of the second, provided that r ≥ log n.

(

n+1
i

) [n]ir
[2n]ir

≥
(

n+1
i+1

) [n](i+1)r

[2n](i+1)r

m
(

n+1
i

) n(n−1)···(n−ir+1)
2n(2n−1)···(2n−ir+1) ≥

(

n+1
i+1

) n(n−1)···(n−(i+1)r+1)
2n(2n−1)···(2n−(i+1)r+1)

m
(

n+1
i

)

≥
(

n+1
i+1

) (n−ir)(n−ir−1)···(n−(i+1)r+1)
(2n−ir)(2n−ir−1)···(2n−(i+1)r+1)

⇑
(n+1)!

i!(n+1−i)! ≥
(n+1)!

(i+1)!(n−i)!

(

n−ir
2n−ir

)ir

⇑
1 ≥ n−i+1

i+1

(

1
2

)ir

m
2ir ≥ n−i+1

i+1

⇑
r ≥ log n

where the first implication follows from considering the fractions of corre-
sponding factors from the numerator and denominator and choosing the
largest.

Having shown that the terms are non-increasing, it follows that P (r) ≥ 1−
(

n+1
1

) [n]r
[2n]r

, i.e., dropping all but the first two terms. Since, for corresponding

factors in [n]r and [2n]r, we have that n−j
2n−j

≤ 1
2 , we can conclude that

P (r) ≥ 1− n+1
2r . ✷

We can use this lemma to show that switches between As and Bs occur
quite often.

Lemma 2 Let In = AnBn. For any ε > 0, there exists an n0 such that for
all n ≥ n0, the probability when selecting a random permutation of In that
all maximal runs of As (or Bs) have lengths at most ⌊√n⌋ is at least 1− ε.

Proof By Lemma 1, for any given n, the probability is at least 1− n+1

2⌊
√

n⌋ .

Since n + 1 ∈ o(2
√
n), this probability approaches one for increasing values

of n. ✷

15

Now we show that when having so few Cs compared to As and Bs, we can be
almost certain to find a large number of As and Bs between two successive
occurrences of Cs.

Lemma 3 For any ε > 0, there exists an n0 such that for all n ≥ n0, the
probability when selecting a random permutation of In = AnBnC⌊logn⌋ that
all maximal runs of As and Bs (looking at As and Bs as the same item)
have length at least (2d + 2) ⌊√n⌋ is at least 1− ε.

Proof We do not distinguish between As and Bs here, so we just use that
there are a total of 2n of them, and refer to all of them as Xs.

To compute the probability, we consider the number of ways the Cs can be
placed as dividers into a sequence of 2n Xs, creating ⌊log n⌋+1 groups. The
standard method is to consider 2n + ⌊log n⌋ positions and place the Cs in

⌊log n⌋ of these, which can be done in
(2n+⌊logn⌋

⌊logn⌋
)

ways. Similarly, if we want

(2d+2) ⌊√n⌋Xs in each group, we may reserve these (2d+2) ⌊√n⌋ (⌊log n⌋+
1) Xs and just consider the division of the remaining Xs. Thus, this can be

done in

(

2n− (2d+ 2) ⌊√n⌋ (⌊log n⌋+ 1) + ⌊log n⌋
⌊log n⌋

)

ways.

We now find a lower bound on the probability of there being this many As
and Bs between Cs using the above counting argument:

(

2n − (2d+ 2) ⌊√n⌋ (⌊log n⌋+ 1) + ⌊log n⌋
⌊log n⌋

)

(

2n + ⌊log n⌋
⌊log n⌋

)

=
[(2n − (2d+ 2) ⌊√n⌋ (⌊log n⌋+ 1) + ⌊log n⌋)]⌊logn⌋

[(2n + ⌊log n⌋)]⌊logn⌋

≥
(

2n− (2d + 2) ⌊√n⌋ (⌊log n⌋+ 1) + 1

2n+ 1

)⌊logn⌋

=

(

1− (2d+ 2) ⌊√n⌋ (⌊log n⌋+ 1)

2n+ 1

)⌊logn⌋

where the inequality follows from considering corresponding factors in the
numerator and denominator, and using the smallest fraction of these.

16

Using the binomial theorem, this last expression can be written

⌊logn⌋
∑

i=0

(⌊log n⌋
i

)(−(2d+ 2) ⌊√n⌋ (⌊log n⌋+ 1)

2n + 1

)i

= 1− ⌊log n⌋
(

(2d + 2) ⌊√n⌋ (⌊log n⌋+ 1)

2n+ 1

)

+ T

where T contains the additional terms of the binomial expansion.

We now argue that the absolute values of successive terms in T decrease for
large enough n:

(⌊logn⌋
i

)

(

(2d+2)⌊√n⌋(⌊logn⌋+1)

2n+1

)i

>
(⌊logn⌋

i+1

)

(

(2d+2)⌊√n⌋(⌊logn⌋+1)

2n+1

)i+1

m
[⌊logn⌋]i

i! >
[⌊logn⌋]i+1 (2d+2)⌊√n⌋(⌊logn⌋+1)

(i+1)!(2n+1)

m
1 >

(⌊logn⌋−i)(2d+2)⌊√n⌋(⌊logn⌋+1)

(i+1)(2n+1)

Since
√
n log2 n ∈ o(n), this holds when n is sufficiently large.

For n large enough, this means that T ≥ 0 and the probability we are

computing will be bounded from below by 1−⌊log n⌋
(

(2d+2)⌊√n⌋(⌊logn⌋+1)

2n+1

)

.

Again, since
√
n log2 n ∈ o(n), the probability approaches one as n increases.

✷

With the use of the lemmas above, we can establish the theorem.

Theorem 2 Dc and Ldc both have the Random Order Ratio two.

Proof The upper bounds follow directly from the fact that their Compet-
itive Ratios are two. Thus, if that is the factor on worst case sequences,
clearly the expected ratio cannot be worse, since the averages for these al-
gorithms and Opt is over the same set of sequences.

For the lower, let In = AnBnC⌊logn⌋. We show that for any ε > 0, there
exists an n0 so that for n ≥ n0, the probability of Dc and Ldc incurring a
cost of a factor two more thanOpt is at least 1−ε. This immediately implies
that the expected cost of the two algorithms cannot be smaller, giving us
the result.

17

By Lemma 3, there exists an n′ so that for all n ≥ n′, the probability that
all maximal runs of As and Bs have length at least (2d+2) ⌊√n⌋ is at least
1− ε

2 .

Considering only the As and Bs, by Lemma 2, there exists an n′′ so that for
all n ≥ n′′, the probability that all maximal runs of As and Bs, respectively,
have lengths at most ⌊√n⌋ is at least 1− ε

2 .

Thus, for all n ≥ max{n′, n′′}, the probability of having both properties is
at least 1− ε, and we argue that in this case, the cost of Dc and Ldc are a
factor two larger than the cost of Opt.

Since the number of As and Bs between two Cs is at least (2d + 2) ⌊√n⌋
and the length of maximal runs of As and Bs, respectively, is at most ⌊√n⌋,
there must at least 2d + 2 runs in between two successive Cs, and at least
2d+ 1 runs if we want to count from the first run of Bs.

For both algorithms, this is sufficient for the algorithm to move the server
from C to B. Dc will have both servers on B after the dth run of Bs has
been processed, whereas for Ldc, the right-most server will only virtually
be at B at that point, but will be moved there at the (d+ 1)st run of Bs.

For each C, Opt incurs the cost 2d of moving a server from C to B and
back again, and it incurs cost d after the last C. The online algorithms have
the same cost, plus the additional cost of moving a server back and forth
between A and B until the server from C is moved to B. This additional
cost consists of 2d complete moves from A to B and back.

Asymptotically, the requests after the last C can be ignored, so this gives
the ratio 4d/2d = 2. ✷

This result, saying that Ldc and Dc are equivalent according the Random
Order Ratio, is an example of where a counter-intuitive result is clearly due
to the intermediate comparison to Opt, because on some of the sequences
where Ldc and Dc do worst compared to Opt, they do equally badly com-
pared to Opt. We illustrate this problem with the intermediate comparison
to Opt by showing below how avoiding this comparison could give the result
that Ldc is better than Dc.

If the definition was modified in the most straightforward manner to allow
direct comparison of algorithms, one would first note that for any sequence
I, Eσ[Dc(σ(I))] ≥ Eσ[Ldc(σ(I))], by the laziness observation. Then, one
would consider some families of sequences with relatively large numbers of
Cs and show that Ldc’s cost is some constant fraction better than Dc’s on
random permutations of that sequence.

18

For example, let I = (CABC)n. Whenever the subsequence CABC occurs
in σ(I), Dc moves a server from C towards B and back again, while moving
the other server from A to B. In contrast, Ldc lets the server on C stay
there, and has cost two less than Dc.

One can show that the expected number of occurrences of CABC in σ(I)
is at least n

16 (any constant fraction of n would illustrate the point) by
considering any of the possible starting locations for this pattern, 1 ≤ i ≤
4n−3, and noting that the probability that the pattern CABC begins there
is 1

2 · n
4n−1 · n

4n−2 · 2n−1
4n−3 . By the linearity of expectations, the expected number

of occurrences of CABC is (12 · n
4n−1 · n

4n−2 · 2n−1
4n−3) ·(4n−3) = 1

2 · 12 · n2

4n−1 ≥ n
16 .

The expected costs of both Opt and Ldc on σ(I) are also bounded above
and below by some constants times n. Thus, Ldc’s “modified random order
ratio” will be less than Dc’s.

It is easier to compare Greedy and Ldc using the (original) Random Order
Ratio, getting a result very similar to that of Competitive Analysis: Ldc is
strictly better than Greedy.

Theorem 3 Dc and Ldc are better than Greedy on the baby server prob-
lem with regards to the Random Order Ratio.

Proof As noted in the proof of Theorem 2, since the Competitive Ratios
of both Dc and Ldc are two, their Random Order Ratios are also at most
two.

Consider all permutations of the sequence In = (BA)
n

2 . We consider po-
sitions from 1 through n in these sequences. We again refer to a maximal
consecutive subsequence consisting entirely of either As or Bs as a maximal

run.

Given a sequence containing h As and t Bs, one can see from well known
results that the expected number of maximal runs is 1 + 2ht

h+t
: In [12, Prob-

lem 28, Chapter 9, Page 240], it is stated that the expected number of runs

of As is h(t+1)
h+t

, so the expected number of runs of Bs is t(h+1)
h+t

. One can
see that this holds for As by considering the probability that a run of As
starts at some index i in the sequence. The probability that it starts at the
beginning of the sequence, at index i = 1, is the probability that the first
element is an A, h

h+t
. The probability that it starts at some index i > 1

is the probability that there is a B at index i − 1 and an A at index i,
t

h+t
· h
h+t−1 . By the linearity of expectations, the expected number of runs

19

of As is thus h
h+t

+
∑h+t

i=2
th

(h+t)(h+t−1) =
h(t+1)
h+t

. Adding the expectations for

As and Bs gives the result 1+ 2ht
h+t

. Thus, with h = t = n
2 , we get that

n
2 +1

is the expected number of runs.

The cost of Greedy is equal to the number of runs if the first run is a run
of Bs. Otherwise, the cost is one smaller. Thus, Greedy’s expected cost
on a permutation of In is n

2 + 1
2 .

The cost of Opt for any permutation of In is d, since it simply moves the
server from C to B on the first request to B and has no other cost after
that.

Thus, the Random Order Ratio is
n

2
+ 1

2
d

, which, as n tends to infinity, is
unbounded. ✷

The same argument shows that Bal is better than Greedy with respect to
the Random Order Ratio.

6 Bijective Analysis

Bijective analysis correctly distinguishes between Dc and Ldc, indicating
that the latter is the better algorithm. This follows from the following
general theorem about lazy algorithms, and the fact that there are some
sequences where one of Dc’s servers repeatedly moves from C towards B,
but moves back to C before ever reaching B, while Ldc’s server stays on C.

Theorem 4 The lazy version of any algorithm for the baby server problem
is at least as good as the original algorithm according to both Bijective
Analysis and Average Analysis.

Proof By the laziness observation, the identity function, id, is a bijection
such that LA(I) ≤ A(id(I)) for all sequences I. If an algorithm is better
than another algorithm with regards to Bijective Analysis, then it is also
better with regards to Average Analysis [1]. ✷

We first show that Greedy is at least as good as any other lazy algorithm;
including Ldc and Bal.

Theorem 5 Greedy is at least as good as any other lazy algorithm Lazy

for the baby server problem according to Bijective Analysis.

20

Proof Since Greedy has cost zero for the sequences consisting of only the
point A or only the point C and cost one for the point B, it is easy to define a
bijection f for sequences of length one, such that Greedy(I) ≤ Lazy(f(I)).
Suppose that for all sequences of length k we have a bijection, f , from
Greedy’s sequences to Lazy’s sequences, such that for each sequence I of
length k, Greedy(I) ≤ Lazy(f(I)). To extend this to length k+1, consider
the three sequences formed from a sequence I of length k by adding one of
the three requests A, B, or C to the end of I, and the three sequences formed
from f(I) by adding each of these points to the end of f(I). At the end of
sequence I, Greedy has its two servers on different points, so two of these
new sequences have the same cost for Greedy as on I and one has cost
exactly 1 more. Similarly, Lazy has its two servers on different points at
the end of f(I), so two of these new sequences have the same cost for Lazy
as on f(I) and one has cost either 1 or d more. This immediately defines a
bijection f ′ for sequences of length k + 1 where Greedy(I) ≤ Lazy(f ′(I))
for all I of length k + 1. ✷

Corollary 1 Greedy is the unique optimal algorithm with regards to Bi-
jective and Average Analysis.

Proof Note that the proof of Theorem 5 shows that Greedy is strictly
better than any lazy algorithm which ever moves the server away from C, so
it is better than any other lazy algorithm with regards to Bijective Analysis.
By Theorem 4, it is better than any algorithm. Again, since separations with
respect to Bijective Analysis also hold for Average Analysis, the result also
holds for Average Analysis. ✷

According to Bijective Analysis, there is also a unique worst algorithm
among compliant server algorithms for the baby server problem: If p is
in between the two servers, the algorithm moves the server that is furthest
away to the request point. If p is on the same side of both servers, the near-
est server moves to p. Again, due to the problem formulation, ties cannot
occur (and the server on A is never moved). The proof that this algorithm
is unique worst is similar to the proof of Theorem 5, but now with cost d
for every actual move.

Lemma 4 If a ≤ b, then there exists a bijection

σn : {A,B,C}n → {A,B,C}n

such that a-Ldc(I) ≤ b-Ldc(σn(I)) for all sequences I ∈ {A,B,C}n.

21

Proof We use the bijection from the proof of Theorem 5, showing that
Greedy is the unique best algorithm, but specify the bijection completely,
as opposed to allowing some freedom in deciding the mapping in the cases
where we are extending by a request where the algorithms already have
a server. Suppose that the bijection σn is already defined. Consider a
sequence In of length n and the three possible ways, InA, InB and InC,
of extending it to length n + 1. Suppose that a-Ldc has servers on points
Xa, Ya ∈ {A,B,C} after handling the sequence In, and b-Ldc has servers on
points Xb, Yb ∈ {A,B,C} after handling σn(In). Let Za be the point where
a-Ldc does not have a server and Zb the point where b-Ldc does not. Then
σn+1(InZa) is defined to be σn(In)Zb. In addition, since the algorithms are
lazy, both algorithms have their servers on two different points of the three
possible, so there must be at least one point P where both algorithms have
a server. Let Ua be the point in {Xa, Ya} \ {P} and Ub be the point in
{Xb, Yb} \ {P}. Then, σn+1(InP) is defined to be σn(In)P and σn+1(InUa)
to be σn(In)Ub.

Consider running a-Ldc on a sequence In and b-Ldc on σn(In) simultane-
ously. The sequences are clearly constructed so that, at any point during
this simultaneous execution, both algorithms have servers moving or neither
does.

The result follows if we can show that b-Ldc moves away from and back
to C at least as often as a-Ldc does. By construction, the two sequences,
In and σn(In), will be identical up to the point where b-Ldc (and possibly
a-Ldc) moves away from C for the first time. In the remaining part of the
proof, we argue that if a-Ldc moves away from and back to C, then b-Ldc
will also do so before a-Ldc can do it again. Thus, the total cost of b-Ldc
will be at least that of a-Ldc.

Consider a request causing the slower algorithm, a-Ldc, to move a server
away from C.

If b-Ldc also moves a server away from C at this point, both algorithms
have their servers on A and B, and the two sequences continue identically
until the faster algorithm again moves a server away from C (before or at
the same time as the slower algorithm does).

If b-Ldc does not move a server away from C at this point, since, by con-
struction, it does make a move, it moves a server from A to B. Thus, the
next time both algorithms move a server, a-Ldc moves from B to C and
b-Ldc moves from B to A. Then both algorithms have servers on A and C.
Since a-Ldc has just moved a server to C, whereas b-Ldc must have made

22

at least one move from A to B since it placed a server at C, b-Ldc must,
as the faster algorithm, make its next move away from C strictly before
a-Ldc does so. In conclusion, the sequences will be identical until the faster
algorithm, b-Ldc, moves a server away from C. ✷

Theorem 6 According to Bijective Analysis and Average Analysis, slower
variants of Ldc are better than faster variants for the baby server problem.

Proof Follows immediately from Lemma 4 and the definition of the mea-
sures. ✷

Thus, the closer a variant of Ldc is to Greedy, the better Bijective and
Average Analysis predict that it is.

7 Relative Worst Order Analysis

Similarly to the Random Order Ratio and Bijective Analysis, Relative Worst
Order Analysis correctly distinguishes between Dc and Ldc, indicating that
the latter is the better algorithm. This follows from the following general
theorem about lazy algorithms, and the fact that there are some sequences
where one of Dc’s servers repeatedly moves from C towards B, but moves
back to C before ever reaching B, while Ldc’s server stays on C.

Let IA denote a worst ordering of the sequence I for the algorithm A.

Theorem 7 The lazy version of any algorithm for the baby server problem
is at least as good as the original algorithm according to Relative Worst
Order Analysis.

Proof By the laziness observation, for any request sequence I, LA(ILA) ≤
A(ILA) ≤ A(IA). ✷

Theorem 8 Dc (Ldc) andGreedy are (2,∞)-related and are thus weakly
comparable in Dc’s (Ldc’s) favor for the baby server problem according to
Relative Worst Order Analysis.

Proof We write this proof for Dc, but exactly the same holds for Ldc.
First we show that cu(Greedy,Dc) is unbounded. Consider the sequence

23

(BA)
n

2 . As n tends to infinity, Greedy’s cost is unbounded, whereas Dc’s
cost is at most 3d for any permutation.

Next we turn to cu(Dc,Greedy). Since the Competitive Ratio of Dc is
2, for any sequence I and some constant b, Dc(IDc) ≤ 2Opt(IDc) + b ≤
2Greedy(IDc) + b ≤ 2Greedy(IGreedy) + b. Thus, cu(Dc,Greedy) ≤ 2.

For the lower bound, consider a family of sequences

Ip = (BABA...BC)p,

where the length of the alternating A/B-sequence before the C is 2d+ 1.

Dc(Ip) = p(4d).

A worst ordering for Greedy alternates As and Bs. Since there is no cost
for the Cs and the A/B sequences start and end with Bs, Greedy(σ(Ip)) ≤
p(2d) + 1 for any permutation σ.

Then, cu(Dc,Greedy) ≥ p(4d)
p(2d)+1 . As p goes to infinity, this approaches 2.

Thus, Dc and Greedy are weakly comparable in Dc’s favor. ✷

Recall in the following that for clarity in the exposition, we assume that
a divides d. By the definition of a-Ldc, a request for B is served by the
right-most server if it is within a virtual distance of no more than a from
B and the other server is at A. Thus, when the left-most server moves and
its virtual move is over a distance of l, then the right-most server virtually
moves a distance al. When the right-most server moves and its virtual move
is over a distance of al, then the left-most server virtually moves a distance
of l.

In the results that follow, we frequently look at the worst ordering of an
arbitrary sequence.

Definition 5 The canonical worst ordering of a sequence, I, for an algo-
rithm A is the sequence produced by allowing the cruel adversary (the one
which always lets the next request be the unique point where A does not
currently have a server) to choose requests from the multiset defined from I.
This process continues until there are no requests remaining in the multiset
for the point where A does not have a server. The remaining points from
the multiset are concatenated to the end of this new request sequence in any
order. ✷

The canonical worst ordering of a sequence for a-Ldc is as follows.

24

Proposition 2 Consider an arbitrary sequence I containing nA As, nB Bs,
and nC Cs. A canonical worst ordering of I for a-Ldc is

Ia = (BABA...BC)paX,

where the length of the alternating A/B-sequence before the C is 2d
a
+ 1

(recall that we assume that d
a
is integral). Here, X is a possibly empty

sequence. The first part of X is an alternating sequence of As and Bs,
starting with a B, until there are not both As and Bs left. Then we continue
with all remaining As or Bs, followed by all remaining Cs. Finally,

pa = min

{⌊

nA

d
a

⌋

,

⌊

nB

d
a
+ 1

⌋

, nC

}

.

Lemma 5 Let Ia be the canonical worst ordering of I for a-Ldc. Ia is a
worst permutation of I for a-Ldc, and the cost for a-Ldc on Ia is ca, where
pa(2

d
a
+ 2d) ≤ ca ≤ pa(2

d
a
+ 2d) + 2d

a
+ d.

Proof Consider a request sequence, I. Between any two moves from B to
C, there must have been a move from C to B. Consider one such move.
Between the last request to C and this move, the other server must move
from A to B exactly d

a
times, which requires some first request to B in

this subsequence, followed by at least d
a
occurrences of requests to A, each

followed by a request to B, the last one causing the move from C to B.
(Clearly, extra requests to A or B could also occur, either causing moves or
not.) Thus, for every move from B to C, there must be at least d

a
+ 1 Bs,

d
a
As and one C. Thus, the number of moves from B to C is bounded from

above by pa. There can be at most one more move from C to B than from B
to C. If such a move occurs, there are no more Cs after that in the sequence.
Therefore, the sequences defined above give the maximal number of moves of
distance d possible. More As or Bs in any alternating A/B-sequence would
not cause additional moves (of either distance one or d), since each extra
point requested would already have a server. Fewer As or Bs between two
Cs would eliminate the move away from C before it was requested again.
Thus, the canonical worst ordering is a worst ordering of I.

Within each of the pa repetitions of (BABA...BC), each of the requests for
A and all but the last request for B cause a move of distance one, and the
last two requests each cause a move of distance d, giving the lower bound
on ca. Within X, each of the first 2d

a
requests could possibly cause a move

25

of distance one, and this could be followed by a move of distance d. After
that, no more moves occur. Thus, adding costs to the lower bound gives the
upper bound on ca. ✷

Theorem 9 If a ≤ b, then a-Ldc and b-Ldc are
(

1+ 1
a

1+ 1
b

, b+1
a+1

)

-related for

the baby server problem according to Relative Worst Order Analysis.

Proof By Lemma 5, in considering a-Ldc’s performance in comparison
with b-Ldc’s, the asymptotic ratio depends only on the values pa and pb
defined for the canonical worst orderings Ia and Ib for a-Ldc and b-Ldc,
respectively. Since a ≤ b, the largest value of pa

pb
occurs when pa = nC ,

since more Cs would allow more moves of distance d by b-Ldc. Since the
contribution of X to a-Ldc’s cost can be considered to be a constant, we
may assume that nA = nC

d
a
and nB = nC

(

d
a
+ 1

)

.

When considering b-Ldc’s canonical worst ordering of this sequence, all the
Cs will be used in the initial part. By Lemma 5, we obtain the following
ratio, for some constant c:

(2d
a
+ 2d)nC

(2d
b
+ 2d)nC + c

=
(1
a
+ 1)nC

(1
b
+ 1)nC + c

2d

Similarly, a sequence giving the largest value of pb
pa

will have pb =

⌊

nA

d

b

⌋

, since

more As would allow a-Ldc to have a larger pa. Since the contribution of X
to b-Ldc can be considered to be a constant, we may assume that nA = nC

d
b
,

nB = nC

(

d
b
+ 1

)

, and pb = nC .

Now, when considering a-Ldc’s worst permutation of this sequence, the
number of periods, pa, is restricted by the number of As. Since each period

has d
a
As, pa =

⌊

nA
d

a

⌋

=

⌊

nC
d

b
d

a

⌋

. After this, there are a constant number of

As remaining, giving rise to a constant additional cost c′.

Thus, the ratio is the following:

(2d
b
+ 2d)nC

(2d
a
+ 2d)

⌊

nC
a
b

⌋

+ c′
=

(1
b
+ 1)nC

(1
a
+ 1)

⌊

nC
a
b

⌋

+ c′
2d

=
(1 + b)nC

(1 + a)nC + c′′
,

for some constant c′′. Considering the two ratios relating b-Ldc’s and
a-Ldc’s worst permutations asymptotically as nC goes to infinity, we obtain

that a-Ldc and b-Ldc are
(

1+ 1
a

1+ 1
b

, b+1
a+1

)

-related. ✷

26

Although with the original definition of relatedness in Relative Worst Order
Analysis, the values are not interpreted further, one could use the concept of
better performance (see [11]) from Relative Interval Analysis to compare two
algorithms using Relative Worst Order Analysis. Using the previous result,
we show that Ldc has better performance than b-Ldc for b 6= 1. Again, for
clarity, we consider integral cases in the following result.

Theorem 10 Consider the baby server problem evaluated according to Rel-
ative Worst Order Analysis. For b > 1 such that d

b
is integral, Ldc and

b-Ldc are (r, rb)-related for some r and rb where 1 < r < rb. For a < 1
such that 1

a
is integral, a-Ldc and Ldc are (ra, r)-related for some ra and

r where 1 < r < ra.

Proof By Theorem 9, a-Ldc and b-Ldc are
(

1+ 1
a

1+ 1
b

, b+1
a+1

)

-related.

To see that
1+ 1

a

1+ 1
b

< b+1
a+1 when 1 = a < b, note that this holds if and only if

(1 + 1
a
)(a+ 1) = 4 < (1 + 1

b
)(b+ 1), which clearly holds for b > 1. Hence, if

Ldc and b-Ldc are (c1, c2)-related, then c1 < c2.

To see that
1+ 1

a

1+ 1
b

> b+1
a+1 when a < b = 1, note that this holds if and only if

(1 + 1
a
)(a + 1) > 4 = (1 + 1

b
)(b + 1). This clearly holds for a < 1. Thus,

a-Ldc and Ldc are (c1, c2)-related, where c1 > c2. ✷

The algorithms a-Ldc and 1
a
-Ldc are in some sense of equal quality:

Corollary 2 If 1
a
and d

b
are integral and b = 1

a
, then a-Ldc and b-Ldc are

(b, b)-related

Theorem 10 shows that Ldc is in some sense optimal among the a-Ldc
algorithms. We now set out to prove that Ldc is an optimal algorithm in
the following sense: there is no other algorithm A such that Ldc and A

are comparable and A is strictly better or such that Ldc and A are weakly
comparable in A’s favor.

Theorem 11 Ldc is optimal for the baby server problem according to Rel-
ative Worst Order Analysis.

Proof In order for Ldc and A to be comparable in A’s favor, A has to be
comparable to Ldc and perform more than an additive constant better on
some infinite family of sequences.

27

Assume that there exists a family of sequences S1, S2, . . . such that for any
positive c there exists an i such that LdcW (Si) ≥ AW (Si) + c. Then we
prove that there exists another family of sequences S′

1, S
′
2, . . . such that for

any positive c′ there exists an i such that AW (S′
i) ≥ LdcW (S′

i) + c′.

This establishes that if A performs more than a constant better on its worst
permutations of some family of sequences than Ldc does on its worst per-
mutations, then there exists a family where Ldc has a similar advantage
over A, which implies that the algorithms are not comparable.

Now assume that we are given a constant c. Since we must find a value
greater than any constant to establish the result, we may assume without
loss of generality that c is large enough that 3dc ≥ 3d+1

d−1 (3d) + 3d.

Consider a sequence S from the family S1, S2, . . . such that LdcW (S) ≥
AW (S) + 3dc. From S we create a member S′ of the family S′

1, S
′
2, . . . such

that AW (S′) ≥ LdcW (S′) + c.

The idea behind the construction is to have the cruel adversary against A

choose requests from the multiset defined from S as in the definition of
canonical worst orderings. This process continues until the cruel adversary
has used all of either the As, Bs, or Cs in the multiset, resulting in a
sequence S′. If the remaining requests from the multiset are concatenated
to S′ in any order, this creates a permutation of S. The performance of A
on this permutation must be at least as good as its performance on its worst
ordering of S.

We now consider the performance of Ldc and A on S′ and show that Ldc
is strictly better.

Let n′
A, n

′
B , and n′

C denote the number of As, Bs, and Cs in S′, respectively.

Let p = min
{⌊

n′
A

d

⌋

,
⌊

n′
B

d+1

⌋

, n′
C

}

.

By Lemma 5, the cost of Ldc on its canonical worst ordering of S′ is at
most p(4d) + 3d.

The cost of A is 2dn′
C + n′

A + n′
B − n′

C , since every time there is a request
for C, this is because a server in the step before moved away from C. These
two moves combined have a cost of 2d. Every request to an A or a B has
cost one, except for the request to B immediately followed by a request to
C, which has already been counted in the 2dn′

C term. A similar argument
shows that Ldc’s cost is bounded from above by the same term.

Assume first that
n′
A

d
=

n′
B

d+1 = n′
C . Then S′ can be permuted so that it is

a prefix of Ldc’s canonical worst ordering on S (see Lemma 5 with a = 1).

28

Since, by construction, we have run out of either As, Bs, or Cs (that is,
one type is missing from S minus S′ as multisets), Ldc’s cost on its worst
ordering of S is at most its cost on its worst ordering on S′ plus 3d. Thus,
LdcW (S) ≥ AW (S) + c does not hold in this case, so we may assume that
these values are not all equal.

We compare Ldc’s canonical worst orderings of S and S′. For both se-
quences, the form is as in Lemma 5, with a = 1. Thus, for S′ the form
is ((BA)dBC)pX, and for S, it is ((BA)dBC)p+lY for some nonnegative
integer l. The sequence X must contain all of the As, all of the Bs or all
of the Cs contained in ((BA)dBC)l, since after this the cruel adversary has
run out of something. Thus, it must contain at least ld As, l(d + 1) Bs
or l Cs. The extra cost that Ldc has over A on S is at most its cost on
((BA)dBC)lY minus cost ld for the As, Bs or Cs contained in X, so at most
l(2d + 2d) + 3d− ld = 3dl + 3d. Thus, LdcW (S)− AW (S) ≤ 3dl + 3d.

Since we could assume that not all of
n′
A

d
,

n′
B

d+1 , and n′
C were equal, we have

the following cases:

Case n′
A > dp: Ldc’s cost on S′ is at most the cost of A minus (n′

A − dp)
plus 3d.

Case n′
B > (d + 1)p: Ldc’s cost on S′ is at most the cost of A minus

(n′
B − (d+ 1)p) plus 3d.

Case n′
C > p: Ldc’s cost on S′ is at most the cost of Aminus (2d−1)(n′

C−p)
plus 1.

Thus, AW (S′)− LdcW (S′) ≥ dl − 3d.

From the choice of c, the definition of the Si family, and the bound on the
difference between the two algorithms on S, we find that

3d+ 1

d− 1
(3d) + 3d ≤ 3dc ≤ LdcW (S)− AW (S) ≤ 3dl + 3d

Thus, l ≥ 3d+1
d−1 , which implies the following:

l ≥ 3d+ 1

d− 1
⇔ ld− 3d ≥ l + 1 ⇔ ld− 3d ≥ 3dl + 3d

3d

Now,

AW (S′)− LdcW (S′) ≥ ld− 3d ≥ 3dl + 3d

3d
≥ 3dc

3d
= c.

Finally, to show that Ldc and A are not weakly comparable in A’s favor,
we show that cu(Ldc,A) is bounded. Since the Competitive Ratio of Ldc

29

is 2, for any algorithm A and any sequence I, there is a constant b such
that Ldc(ILdc) ≤ 2Opt(ILdc) + b ≤ 2A(ILdc) + b ≤ 2A(IA) + b. Thus,
cu(Ldc,A) ≤ 2. ✷

Considering the request sequence as constructed by the cruel adversary
against some algorithm A, it consists of a first part, where the cruel ad-
versary keeps requesting unoccupied points, and a second part which are all
remaining requests. The proof of optimality depends on Ldc performing
as well as any algorithm on the first part, and having constant cost on the
second part. Since the first part consists of subsequences where A at some
point has a server pulled away from C and then right back again, it is easy
to see that if the distribution of As, Bs, and Cs in those subsequences is
different from the distribution in a canonical worst ordering for Ldc, Ldc
will simply do better. On the second part, if there are only requests to two
points, Ldc will have its two servers on those two points permanently after
a cost of at most 3d. Thus, similar proofs will show that a-Ldc and Bal

are also optimal algorithms, whereas Greedy is not.

In the definitions of Ldc and Bal given in Section 2, different decisions are
made as to which server to use in cases of ties. In Ldc the server which is
really closer is moved in the case of a tie (with regard to virtual distances
from the point requested). The rationale behind this is that the server which
would have the least cost is moved. In Bal the server which is further away
is moved to the point. The rationale behind this is that, since d > 1, when
there is a tie, the total cost for the closer server is already significantly higher
than the total cost for the other, so moving the server which is further away
evens out how much total cost they have. With these tie-breaking decisions,
the two algorithms behave very similarly.

Theorem 12 Ldc and Bal are equivalent for the baby server problem
according to Relative Worst Order Analysis.

Proof Consider any request sequence I. Ldc’s canonical worst ordering
has a prefix of the form ((BA)dBC)k, while Bal’s canonical worst ordering
has a prefix of the form

(BA)⌊ d

2⌋BC((BA)dBC)k
′
,

such that the remaining parts have constant costs. These prefixes of Ldc’s
and Bal’s canonical worst orderings of I are identical, except for the con-
stant cost sequence that Bal starts with. This also leads to a small constant

30

cost difference at the end. Thus, their performance on their respective worst
orderings will be identical up to an additive constant. ✷

8 Concluding Remarks

The purpose of quality measures is to give information for use in practice,
to choose the best algorithm for a particular application. What properties
should such quality measures have?

First, it may be desirable that if one algorithm does at least as well as an-
other on every sequence, then the measure decides in favor of the better
algorithm. This is especially desirable if the better algorithm does signifi-
cantly better on important sequences. Bijective Analysis and Relative Worst
Order Analysis have this property, but Competitive Analysis, the Max/Max
Ratio, and the Random Order Ratio do not. This was seen here in the lazy
vs. non-lazy version of Double Coverage for the baby server problem (and
the more general metric k-server problem). Similar results have been pre-
sented previously for the paging problem—LRU vs. FWF and look-ahead vs.
no look-ahead. See [7] for these results under Relative Worst Order Analysis
and [1] for Bijective Analysis. It appears that analysis techniques that avoid
a comparison to Opt have an advantage in this respect.

Secondly, it may be desirable that, if one algorithm does unboundedly worse
than another on some important families of sequences, the quality measure
reflects this. For the baby server problem, Greedy is unboundedly worse
than Ldc on all families of sequences which consist mainly of alternating
requests to the closest two points. This is reflected in Competitive Analysis,
the Random Order Ratio, and Relative Worst Order Analysis, but not by
the Max/Max Ratio or Bijective Analysis. Similarly, according to Bijective
Analysis, LIFO and LRU are equivalent for paging, but LRU is often signif-
icantly better than LIFO, which keeps the first k − 1 pages it sees in cache
forever. In both of these cases, Relative Worst Order Analysis says that the
algorithms are weakly comparable in favor of the “better” algorithm.

Another desirable property would be ease of computation for many different
problems, as with Competitive Analysis and Relative Worst Order Analysis.
It is not clear that the Random Order Ratio or Bijective Analysis have this
property.

In this paper, we have initiated a systematic comparison of quality measures
for online algorithms. We hope this will inspire researchers to similarly

31

investigate a range of online problems to enable the community to draw
stronger conclusions on the relative strengths of the different measures.

Acknowledgements

The authors would like to thank Christian Kudahl for calling their attention
to two oversights in a previous version of this paper, one in the definition of
the lazy version of an algorithm, and another in the modified definition of
the Random Order Ratio.

References

[1] Spyros Angelopoulos, Reza Dorrigiv, and Alejandro López-Ortiz. On
the separation and equivalence of paging strategies. In 18th ACM-SIAM

Symposium on Discrete Algorithms, pages 229–237, 2007.

[2] N. Balakrishnan and Markos V. Koutras. Runs and Scans with Appli-

cations. John Wiley & Sons, Inc., 2002.

[3] Wolfgang W. Bein, Kazuo Iwama, and Jun Kawahara. Randomized
competitive analysis for two-server problems. In 16th Annual European

Symposium on Algorithms, volume 5193 of Lecture Notes in Computer

Science, pages 161–172. Springer, 2008.

[4] Shai Ben-David and Allan Borodin. A new measure for the study of
on-line algorithms. Algorithmica, 11(1):73–91, 1994.

[5] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive

Analysis. Cambridge University Press, 1998.

[6] Joan Boyar and Lene M. Favrholdt. The relative worst order ratio
for on-line algorithms. ACM Transactions on Algorithms, 3(2), 2007.
Article No. 22.

[7] Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. The relative worst
order ratio applied to paging. Journal of Computer and System Sci-

ences, 73(5):818–843, 2007.

[8] E. J. Burr and Gwenda Cane. Longest run of consecutive observatons
having a specified attribute. Biometrika, 48(3/4):461–465, 1961.

32

[9] Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vish-
wanathan. New results on server problems. SIAM Journal on Discrete

Mathematics, 4(2):172–181, 1991.

[10] Reza Dorrigiv and Alejandro López-Ortiz. A survey of performance
measures for on-line algorithms. SIGACT News, 36(3):67–81, 2005.

[11] Reza Dorrigiv, Alejandro López-Ortiz, and J. Ian Munro. On the rel-
ative dominance of paging algorithms. Theoretical Computer Science,
410(38–40):3694–3701, 2009.

[12] William Feller. An Introduction to Probability Theory and Its Appli-

cations, volume 1. John Wiley & Sons, Inc., New York, 3rd edition,
1968.

[13] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell

Systems Technical Journal, 45:1563–1581, 1966.

[14] Edward G. Coffman Jr., János Csirik, Lajos Rónyai, and Ambrus
Zsbán. Random-order bin packing. Discrete Applied Mathematics,
156(14):2810–2816, 2008.

[15] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D.
Sleator. Competitive snoopy caching. Algorithmica, 3:79–119, 1988.

[16] Claire Kenyon. Best-fit bin-packing with random order. In 7th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 359–364, 1996.

[17] Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Com-
petitive algorithms for on-line problems. In 20th Annual ACM Sympo-

sium on the Theory of Computing, pages 322–333, 1988.

[18] Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator.
Competitive algorithms for server problems. Journal of Algorithms,
11(2):208–230, 1990.

[19] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM, 28(2):202–208,
1985.

33

	1 Introduction
	2 Preliminaries
	2.1 The Server Problem
	2.2 Server Algorithms
	2.3 Quality Measures
	2.3.1 Competitive Analysis:
	2.3.2 The Max/Max Ratio:
	2.3.3 The Random Order Ratio:
	2.3.4 Bijective Analysis and Average Analysis:
	2.3.5 Relative Worst Order Analysis:

	3 Competitive Analysis
	4 The Max/Max Ratio
	5 The Random Order Ratio
	6 Bijective Analysis
	7 Relative Worst Order Analysis
	8 Concluding Remarks

