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Abstract

We present a new parameterized algorithm for the feedback vertex set problem (fvs) on undirected
graphs. We approach the problem by considering a variation of it, the disjoint feedback vertex set
problem (disjoint-fvs), which finds a feedback vertex set of size k that has no overlap with a given
feedback vertex set F of the graph G. We develop an improved kernelization algorithm for disjoint-
fvs and show that disjoint-fvs can be solved in polynomial time when all vertices in G \ F have
degrees upper bounded by three. We then propose a new branch-and-search process on disjoint-

fvs, and introduce a new branch-and-search measure. The process effectively reduces a given graph
to a graph on which disjoint-fvs becomes polynomial-time solvable, and the new measure more
accurately evaluates the efficiency of the process. These algorithmic and combinatorial studies enable
us to develop an O∗(3.83k)-time parameterized algorithm for the general fvs problem, improving all
previous algorithms for the problem.

1 Introduction

All graphs in our discussion are undirected and simple, i.e., they contain neither self-loops nor multiple

edges. A feedback vertex set (FVS) F in a graph G is a set of vertices in G whose removal results in an

acyclic graph. The problem of finding a minimum feedback vertex set in a graph is one of the classical

NP-complete problems [17]. It has been intensively studied for several decades. The problem is known to

be solvable in time O(1.7548n) for a graph of n vertices [14], and admit a polynomial-time approximation

algorithm of ratio 2 [1, 3].

An important application of the feedback vertex set problem is Bayesian inference in artificial intelli-

gence [2, 3], where the size k of a minimum FVS F (i.e., the number of vertices in F ) of a graph can be

expected to be fairly small. This motivated the study of the parameterized version of the problem, which

we will name fvs: given a graph G and a parameter k, either construct a FVS of size bounded by k in

G or report no such a FVS exists. Parameterized algorithms for fvs have been extensively studied that

find a FVS of size k in a graph of n vertices in time f(k)nO(1) for a fixed function f (thus, the algorithms

become practically efficient when the value k is small). The existence of such an algorithm for fvs is

implied in [13]. The first group of constructive algorithms for this problem was given by Downey and

Fellows [10] and by Bodlaender [4]. Since then a chain of improvements has been obtained (see Figure 1).1

All algorithms summarized in Figure 1 are deterministic. There is also an active research line on ran-

domized parameterized algorithms for fvs, based on very different algorithmic techniques. A randomized

algorithm of time O∗(4k) for fvs has been known for more than a decade [2]. More recently, Cygan et

al. [7] developed an improved randomized algorithm of time O∗(3k). As pointed out in [7], however, the

techniques employed by this randomized algorithm do not seem to be easily de-randomized.
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Authors Complexity Year

Downey and Fellows [10] O∗((2k + 1)k) 1992
Bodlaender[4] O∗(17(k4)!) 1994
Raman et al.[23] O∗(max{12k, (4 log k)k}) 2002
Kanj et al.[19] O∗((2 log k + 2 log log k + 18)k) 2004
Raman et al.[24] O∗((12 log k/ log log k + 6)k) 2006
Guo et al.[18] O∗(37.7k) 2006
Dehne et al.[8] O∗(10.6k) 2007
Chen et al.[6] O∗(5k) 2008
This paper O∗(3.83k)

Figure 1: The history of parameterized algorithms for fvs.

The main result of the current paper is a deterministic algorithm of time O∗(3.83k) for fvs.

We give an outline to explain how our algorithm achieves the improvement over previous algorithms.

As most recent algorithms, our algorithm is based on the technique of iterative compression [25], which

reduces the fvs problem to a closely related disjoint feedback vertex set problem (disjoint-fvs).

On an instance (G, k, F ), where F is a FVS in the graph G and k is the parameter, the disjoint-fvs

problem asks whether there is a FVS F ′ of size k in G such that F ′ ∩ F = ∅.

The disjoint-fvs problem can be solved based on a branch-and-search process on vertices w in G\F ,

whose complexity depends on the number of neighbors of w that are in F [6]. In particular, the more

neighbors w has in F , the more effective the branching on w is. A major step of the fastest algorithm [6],

before our algorithm, is to show that such a branch-and-search process can always branch on a vertex in

G\F that has at least two neighbors in F . Therefore, in order to further speedup this process, we should

branch only on vertices in G \ F that have more than two neighbors in F . For this, however, two issues

must be addressed: (1) during the branch-and-search process, we must be able to continuously maintain

the condition that such vertices always exist; and (2) when the branch-and-search process cannot be

further applied, we must be able to efficiently solve the problem for the remaining structure.

To address issue (2), we develop a polynomial-time algorithm for the disjoint-fvs problem for

instances (G, k, F ) in which all vertices in G \ F have degree upper bounded by three. This algorithm

is based on a nontrivial reduction from disjoint-fvs to a polynomial-time solvable matroid matching

problem, the cographic matroid parity problem [22]. This result, however, does not give a direct

solution to issue (1): vertices in G \ F that have degree larger than three in G do not necessarily have

more than two neighbors in F . To resolve this problem, we observe that there are always vertices in G\F
on which a branching may not be very effective but will produce structures in G \ F that are favored for

the polynomial-time algorithm we developed for addressing issue (2). To catch this observation, we use

the measure-based method and introduce a new measure to evaluate the effectiveness of our branch-and-

search process more accurately. These new techniques, combined with the iterative compression method,

yield an improved algorithm for the fvs problem.

The main results of this paper are summarized as follows: (i) a new technique that produces an

improved kernelization algorithm for the disjoint-fvs problem, which is based on a branch-and-search

algorithm for the problem. This, to our best knowledge, is the first time such a technique is used in

the literature of kernelization; (ii) a polynomial-time algorithm that solves a restricted version of the

disjoint-fvs problem; (iii) a new branch-and-search process that effectively reduces an input instance of

disjoint-fvs to an instance that is solvable by the algorithm developed in (ii); and (iv) a new measure

that more accurately evaluates the efficiency of the branch-and-search process in (iii).
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2 disjoint-fvs and its kernel

We start with a formal definition of our first problem.

disjoint-fvs. Given a graph G = (V,E), a FVS F in G, and a parameter k, either construct

a FVS F ′ of size k in G such that F ′ ∩ F = ∅, or report that no such a FVS F ′ exists.

The disjoint-fvs problem was motivated by the iterative compression method [25] that has become

a standard framework for the development of parameterized algorithms for the fvs problem. In this

method, a critical step is to construct a solution to an instance (G,F, k) of the disjoint-fvs problem in

which the FVS F satisfies |F | = k + 1 (see, e.g., [6]). However, in the following discussion, we consider a

slightly more generalized version in which we do not require |F | = k + 1.

Let V1 = V \F . Since F is a FVS, the subgraph induced by V1 is a forest. Moreover, if the subgraph

induced by F is not a forest, then it is impossible to have a FVS F ′ in G such that F ′∩F = ∅. Therefore,

an instance of disjoint-fvs can be written as (G;V1, V2; k), and consists of a partition (V1, V2) of the

vertex set of the graph G and a parameter k such that both V1 and V2 induce forests (where V2 = F ).

We will call a FVS entirely contained in V1 a V1-FVS. Thus, the instance (G;V1, V2; k) of disjoint-fvs

is looking for a V1-FVS of size k in the graph G.

For a subgraph G′ of G and a vertex v in G′, we will denote by dG′(v) the degree of the vertex v in

G′. Thus, dG(v) is the degree of the vertex v in the original graph G, and dG[V1](v) for a vertex v ∈ V1

is the degree of the vertex v in the induced subgraph G[V1].

Given an instance (G;V1, V2; k) of disjoint-fvs, we apply the following two simple rules:

Rule 1. Remove all vertices v with dG(v) ≤ 1;

Rule 2. For a vertex v in V1 with dG(v) = 2,

• if the two neighbors of v are in the same component of G[V2], then include v into the

objective V1-FVS, G = G− v, and k = k − 1;

• else either (2.1) move v from V1 to V2: V1 = V1 \ {v}, V2 = V2 ∪ {v}; or (2.2) smoothen v:

replace v and the two incident edges with a new edge connecting the two neighbors of v.

Note that the second case in Rule 2 includes the cases where the two neighbors of v are both in V1, or

both in V2, or one in V1 and one in V2. In this case, we can pick any of the rules 2.1 and 2.2 and apply it.

The correctness of Rule 1 is trivial: no degree-0 or degree-1 vertices can be contained in any cycle.

On the other hand, although Rule 2 is also easy to verify for the general fvs problem [6] (because any

cycle containing a degree-2 vertex v must also contain the two neighbors of v), it is much less obvious for

the disjoint-fvs problem – the two neighbors of the degree-2 vertex v may not be in V1 and cannot be

included in the objective V1-FVS. For this, we have the following lemmas.

Lemma 2.1 For any degree-2 vertex v in V1 whose two neighbors are not in the same component of

G[V2], if G has a V1-FVS of size k, then G has a V1-FVS of size k that does not contain the vertex v.

Proof. Let F ′ be a V1-FVS of size k that contains v. If one neighbor u1 of v is in V1, then the set

(F ′ \ {v})∪{u1} will be a V1-FVS of size bounded by k that does not contain the vertex v. Thus, we can

assume that the two neighbors u1 and u2 of v are in two different components in G[V2]. Since G− F ′ is

acyclic, there is either no path or a unique path in G−F ′ between u1 and u2. If there is no path between

u1 and u2 in G− F ′, then adding v to G− F ′ does not create any cycle. Therefore, in this case, the set

F ′ \ {v} is a V1-FVS of size k − 1 that does not contain v. If there is a unique path P between u1 and

u2 in G− F ′, then the path P must contain at least one vertex w in V1 (since u1 and u2 are in different

components in G[V2]). Every cycle C in G − (F ′ \ {v}) must contain v, thus, also contain u1 and u2.

Therefore, the partial path C \ v from u1 to u2 in C must be the unique path P between u1 and u2 in

G−F ′, which contains the vertex w. This shows that w must be contained in all cycles in G− (F ′ \ {v}).

In consequence, the set (F ′ \ {v}) ∪ {w} is a V1-FVS of size bounded by k that does not contain v.
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Lemma 2.2 Rule 2 is safe. That is, suppose that Rule 2 applied on (G;V1, V2; k) produces (G′;V ′
1 , V

′
2 ; k′),

then the graph G′ has a V ′
1 -FVS of size k′ if and only if the graph G has a V1-FVS of size k.

Proof. If the two neighbors of the degree-2 vertex v are contained in the same component in G[V2],

then v and some vertices in V2 form a cycle. Therefore, in order to break this cycle, the vertex v must

be contained in the objective V1-FVS. This justifies the first case for Rule 2.

If the two neighbors of the degree-2 vertex v are not in the same component in G[V2], then (G′;V ′
1 , V

′
2 ; k′)

is obtained by applying either Rule 2.1 or Rule 2.2 on (G;V1, V2; k). By Lemma 2.1, the graph G has a

V1-FVS of size k if and only if G has a V1-FVS F1 of size k that does not contain the vertex v. Now it is

easy to verify that no matter which of Rule 2.1 and Rule 2.2 is applied, we have k′ = k, and the V1-FVS

F1 for G becomes a V ′
1 -FVS of size k for the graph G′. This justifies the second case for Rule 2.

Note that the second case of Rule 2 cannot be applied simultaneously on more than one vertex in V1.

For example, let v1 and v2 be two degree-2 vertices in V1 that are both adjacent to two vertices u1 and

u2 in V2. Then it is obvious that we cannot move both v1 and v2 to V2. In fact, if we first apply the

second case of Rule 2 on v1, then the first case of Rule 2 will become applicable on the vertex v2.

Definition 1 An instance (G;V1, V2; k) of disjoint fvs is V1-irreducible if none of the Rules 1-2 can

be applied on vertices in the set V1, or, equivalently, if all vertices in V1 have degree larger than 2. An

instance (G;V1, V2; k) is nearly V1-irreducible if in the set V1 there is at most one vertex of degree 2 and

all other vertices in V1 are of degree larger than 2.

For an instance (G;V1, V2; k) that is V1-irreducible or nearly V1-irreducible, in case there is no ambi-

guity, we will simply say that the graph G is V1-irreducible or nearly V1-irreducible, respectively. In the

following, we show that a nearly V1-irreducible instance is necessarily small.

We start with a simple branch-and-search algorithm for nearly V1-irreducible instances of disjoint-

fvs, as given in Figure 2, which is similar to the one presented in [6], but gives degree-2 vertices a higher

priority when selecting a vertex for branching. The basic step of the algorithm is to pick a vertex v in V1

and branch on either including or excluding v in the objective V1-FVS F . Note that in certain situations,

the algorithm directly takes one of the two actions in the branching (see the footnotes in the algorithm).

Algorithm FindFVS
input: a nearly V1-irreducible instance (G;V1, V2; k) of disjoint-fvs.
output: a V1-FVS F of size ≤ k in G, or report that no such V1-FVS exists.

1. F = ∅;
2. while |V1| > 0 and k ≥ 0 do
3. if there are vertices in V1 that have degree 2 in G

3. then let v be a vertex in V1 that has degree 2 in G

3. else let v be a vertex in V1 that has degree ≤ 1 in the induced subgraph G[V1]
4. branching
5. case 1: \\ v is in the objective V1-FVS F .
6. add v to F and delete v from G; k = k − 1;†

7. case 2: \\ v is not in the objective V1-FVS F .
8. move v from V1 to V2;

‡

9. if |V1| = 0 then return F else return “no V1-FVS of size ≤ k”.

† this action will not be taken if dG(v) = 2 and the two neighbors of v are not in the same
component of G[V2].

‡ this action will not be taken if two neighbors of v are in the same component of G[V2].

Figure 2: A simple branch-and-search algorithm for disjoint-fvs
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We will use algorithm FindFVS to count the number of vertices in the set V1. Note that Rules 1-2

are not applied during the process of the algorithm. Initially, the input graph is V1-irreducible. Thus,

the selection of the vertex v in step 3 is always possible. In later steps, the selection of the vertex v in

step 3 can be argued with the following lemma.

Lemma 2.3 Each execution of steps 4-8 of algorithm FindFVS results in a nearly V1-irreducible instance.

Proof. Since the input instance is nearly V1-irreducible, it suffices to prove that on a nearly V1-

irreducible instance, the execution of steps 4-8 of the algorithm produces a nearly V1-irreducible instance.

Let (G;V1, V2; k) be a nearly V1-irreducible instance of disjoint-fvs before the execution of steps 4-8 of

the algorithm, and let v be the vertex in V1 selected by steps 3 of the algorithm.

Steps 4-8 either deletes the vertex v from the graph (case 1, steps 5-6) or moves v from set V1 to set

V2 (case 2, steps 7-8). Moving v from V1 to V2 does not change the degree of any vertex remaining in V1.

Therefore, steps 7-8 keep the resulting instance nearly V1-irreducible.

Now consider steps 5-6 in the algorithm that delete the vertex v from the graph. If dG(v) = 2 and

the two neighbors of v are in the same component of G[V2], or if v has degree 0 in G[V1], then deleting

v does not affect the degree of any vertex remaining in V1. Therefore, in these cases steps 5-6 in the

algorithm produce a nearly V1-irreducible instance. Note that by the first footnote in the algorithm, if

dG(v) = 2 and the two neighbors of v are not in the same component of G[V2], then steps 5-6 of the

algorithm will not be taken. Therefore, the only remaining case we need to examine is that dG(v) ≥ 3

and dG[V1](v) ≥ 1. By step 3 of the algorithm, in this case, we must have dG[V1] = 1. Let w be the unique

neighbor of v in G[V1]. By the way we picked the vertex v and by our assumption dG(v) ≥ 3, no vertex

in V1 has degree 2 in G. In particular, dG(w) ≥ 3. Therefore, deleting the vertex v can result in at most

one degree-2 vertex in V1 (i.e., w) and will keep all other vertices in V1 with degree at least 3. Thus, in

this case steps 5-6 of the algorithm again produce a nearly V1-irreducible instance.

Finally, note that the second footnote in the algorithm ensures that steps 7-8 will not be taken if the

two neighbors of v are in the same component in G[V2]. Moreover, steps 4-8 keep G a simple graph since

they never smoothen vertices. These ensure that steps 4-8 produce a valid instance of disjoint-fvs.

We make some comments on the algorithm FindFVS. First of all, if there is no vertex in V1 that has

degree 2 in G, then the third line in step 3 must be able to find a vertex of degree ≤ 1 in the subgraph

G[V1] since V1 induces a forest. Now consider the correctness of the actions taken in branching steps 4-8.

By the footnotes given in the algorithm FindFVS, if the selected vertex v has degree 2 in G, then no

branching is taken and only one of the cases 1-2 is executed: (1) if both neighbors of v are in the same

component of G[V2], then only steps 5-6 for case 1 are executed, i.e., the vertex v is directly included in

the objective FVS F ; and (2) if the two neighbors of v are not in the same component of G[V2], then

only steps 7-8 for case 2 are executed, i.e., the vertex v is moved from V1 to V2. The correctness of the

algorithm FindFVS for these cases is guaranteed by Lemma 2.2, which ensures the safeness of Rule 2.

When the selected vertex v has a degree different from 2, then the branching steps 4-8 are exhaustive

and consider both the cases where v is and is not in the objective FVS. Thus, one of these actions must

be correct. Therefore, if the graph G has a V1-FVS of size k, then one of the computational paths in the

search tree corresponding to the algorithm FindFVS must correctly find such a V1-FVS.

Theorem 2.4 Let (G;V1, V2; k) be a nearly V1-irreducible instance of the disjoint-fvs problem, and let

τ1 and τ2 be the number of components in the induced subgraphs G[V1] and G[V2], respectively. Let δ2 be

the number of vertices in V1 that have degree 2 in G. If |V1| > δ2 + 2k + τ2 − τ1 − 1, then there is no

V1-FVS of size bounded by k in the graph G.

Proof. We prove the theorem by induction on the number |V1| of vertices in the set V1. For |V1| = 1,

we have τ1 = 1, and the condition |V1| > δ2+2k+τ2−τ1−1 implies δ2+2k+τ2 ≤ 2. Let w be the unique

vertex in V1. If τ2 = 0, then the vertex w in V1 would have degree 0 in G (note that by our assumption,
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G is a simple graph), contradicting the assumption that the graph G is nearly V1-irreducible. Thus, we

must have 1 ≤ τ2 ≤ 2, which implies k = 0. If τ2 = 1, then since the vertex w in V1 has degree at

least 2, two neighbors of w must be in the same (and unique) component of G[V2]. If τ2 = 2, then from

δ2 + 2k + τ2 ≤ 2 we have δ2 = 0, and the vertex w has degree at least 3, which implies again that at least

two neighbors of w are in the same component of G[V2]. Thus, for both cases of τ2 = 1 and τ2 = 2, the

vertex w in V1 must be included in every V1-FVS for G, which concludes that no V1-FVS of G can have

size bounded by k = 0. This verifies the theorem for the case |V1| = 1.

Now consider the general case of |V1| > 1. Let (G;V1, V2; k) be a nearly V1-irreducible instance of

disjoint-fvs and suppose that the graph G has a V1-FVS of size bounded by k. Since the algorithm

FindFVS solves disjoint-fvs correctly, there is a computational path P of the algorithm that returns a

V1-FVS F with |F | ≤ k. We consider how the path P changes the values of an instance when it executes

(correctly) the action of one of the cases in steps 4-8 in the algorithm. Let |V1|, δ2, k, τ1, and τ2 be the

values before the execution of steps 4-8, and let |V ′
1 |, δ′2, k′, τ ′1, and τ ′2 be the corresponding values after

the execution of steps 4-8. The relations between these values are summarized in Figure 3, where many

are obvious. We give below explanations for some less obvious ones in the figure.

We first consider the case where the computational path P takes the action of case 2 in the algorithm,

i.e., moving the vertex v from set V1 to set V2. See Table I in Figure 3.

If dG(v) = 2 and both neighbors w1 and w2 of v are in the set V2 (see the 3rd line in Table I in Figure 3),

then by the second footnote in the algorithm, w1 and w2 must belong to two different components of

G[V2]. Therefore, moving v from V1 to V2 must decrease τ1 by 1 (because v by itself makes a component

in G[V1]) and merge the two components of G[V2] into one (i.e., τ ′2 = τ2 − 1).

If dG(v) ≥ 3 and v has no neighbor in V1 (see the 5th line in Table I in Figure 3), then all neighbors

of v (there are at least 3) are in V2. Moreover, by the second footnote in the algorithm, no two neighbors

of v are in the same component of G[V2]. Therefore, moving v from V1 to V2 decreases the value τ1 by 1

(i.e., τ ′1 = τ1 − 1) and merges at least three components of G[V2] into one (i.e., τ ′2 ≤ τ2 − 2).

If dG(v) ≥ 3 and N(v) ∩ V1 6= ∅, then by step 3 of the algorithm, v has exactly one neighbor in V1

and at least two neighbors in V2. Therefore, if v is moved from V1 to V2 (see the 6th line in Table I

in Figure 3), then the value τ1 is unchanged (i.e., τ ′1 = τ1), and again by the second footnote in the

algorithm, the value τ2 is decreased by at least 1 (i.e., τ ′2 ≤ τ2 − 1).

Now consider the case where the computational path P takes the action of case 1 in the algorithm,

i.e., deleting the vertex v from the graph G. See Table II in Figure 3. First note that by the first footnote

in the algorithm, if v has degree 2 and if the two neighbors of v do not belong to the same component of

G[V2], then the action of case 1 in the algorithm is not taken. In particular, the action of case 1 in the

algorithm is not applicable under the conditions of the 2nd line and the 4th line in Table II in Figure 3.

If dG(v) ≥ 3 and if v has no neighbors in V1 (see the 5th line in Table II in Figure 3), then deleting v

does not change the number of degree-2 vertices in V1 (i.e., δ′2 = δ2 = 0) but decreases the value τ1 by 1

(i.e., τ ′1 = τ1 − 1, because v by itself makes a component in G[V1]).

Finally, if dG(v) ≥ 3 and N(v) ∩ V1 6= ∅ (see the 6th line in Table II in Figure 3), then by the way

we picked the vertex v, we must have |N(v) ∪ V1| = 1. Let w be the unique neighbor of v in V1. Then,

deleting v may create at most one degree-2 vertex (i.e., w) in the set V1 (i.e., δ′2 ≤ δ2 + 1), while not

changing the values of τ1 and τ2.

This verifies all relations in Tables I and II in Figure 3.

Let (G′;V ′
1 , V

′
2 ; k′) be the instance produced by the computational path P on the nearly V1-irreducible

instance (G;V1, V2; k). By our assumption, the graph G has a V1-FVS of size k. Since we also assume

that the computational path P is correct, the graph G′ must have a V ′
1 -FVS of size bounded by k′. Since

|V ′
1 | = |V1| − 1 and by Lemma 2.3, the instance (G′;V ′

1 , V
′
2 ; k′) is nearly V ′

1 -irreducible, we can apply the

induction on the instance (G′;V ′
1 , V

′
2 ; k′), which gives |V ′

1 | ≤ δ′2 + 2k′ + τ ′2 − τ ′1 − 1. This gives

|V1| = |V ′
1 | + 1 ≤ δ′2 + 2k′ + τ ′2 − τ ′1 − 1 + 1.
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Table I. Moving the vertex v from set V1 to set V2

degree of v neighbors of v δ′2 k′ τ ′1 τ ′2 V ′
1

dG(v) = 2 w1, w2 ∈ V1 δ2 − 1 k τ1 + 1 τ2 + 1 V1 − {v}
with neighbors w1, w2 ∈ V2 δ2 − 1 k τ1 − 1 τ2 − 1 V1 − {v}
w1 and w2 w1 ∈ V1, w2 ∈ V2 δ2 − 1 k τ1 τ2 V1 − {v}
dG(v) ≥ 3 |N(v) ∩ V1| = 0 δ2 k τ1 − 1 ≤ τ2 − 2 V1 − {v}
dG(v) ≥ 3 |N(v) ∩ V1| = 1 δ2 k τ1 ≤ τ2 − 1 V1 − {v}

Table II. Deleting the vertex v in V1 from the graph G

degree of v neighbors of v δ′2 k′ τ ′1 τ ′2 V ′
1

dG(v) = 2 w1, w2 ∈ V1

with neighbors w1, w2 ∈ V2 δ2 − 1 k − 1 τ1 − 1 τ2 V1 − {v}
w1 and w2 w1 ∈ V1, w2 ∈ V2

dG(v) ≥ 3 |N(v) ∩ V1| = 0 δ2 k − 1 τ1 − 1 τ2 V1 − {v}
dG(v) ≥ 3 |N(v) ∩ V1| = 1 ≤ δ2 + 1 k − 1 τ1 τ2 V1 − {v}

Figure 3: Results of applying the steps 4-8 of algorithm FindFVS on vertex v
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Figure 4: An example showing the tightness of Corollary 2.5.

Using this inequality to examine each situation in Figure 3, we can easily verify that the inequality

|V1| ≤ δ2 + 2k + τ2 − τ1 − 1

holds true. Therefore, if |V1| > δ2 + 2k + τ2 − τ1 − 1, then the graph G has no V1-FVS of size bounded

by k. This completes the proof of the theorem.

Since a V1-irreducible instance is also nearly V1-irreducible in which δ2 = 0, we get immediately

Corollary 2.5 Let (G;V1, V2; k) be a V1-irreducible instance of the disjoint-fvs problem. If |V1| >

2k + τ2 − τ1 − 1, then there is no V1-FVS of size bounded by k in the graph G.

The bound given in Corollary 2.5 is in fact tight, which can be seen as follows. Consider the graph G

in Figure 4, which consists of 2k+1 vertices w1, w2, v1, v2, . . ., v2k−1, where k ≥ 2 is an arbitrary positive

integer. The vertices of G are partitioned into two sets V1 = {v1, v2, . . . , v2k−1} and V2 = {w1, w2}, and

(G;V1, V2; k) is a V1-irreducible instance of the disjoint-fvs problem. Note that τ1 = τ2 = 1. We have

|V1| = 2k−1 = 2k+τ2−τ1−1, while the graph G has a V1-FVS F of k vertices: F = {v1, v3, v5, . . . , v2k−1}.

A particularly interesting class of instances of the disjoint-fvs problem was motivated by the iter-

ative compression method for solving the fvs problem, in which each instance (G;V1, V2; k) satisfies an

additional condition |V2| = k+1. Call this restricted version of disjoint-fvs the disjoint-smaller-fvs

problem. For this important version of disjoint-fvs, we have the following kernelization result.
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Theorem 2.6 The disjoint-smaller-fvs problem has a 4k-vertex kernel: there is a polynomial-time

algorithm that, on an instance (G;V1, V2; k) of disjiont-smaller-fvs, produces an equivalent instance

(G′;V ′
1 , V

′
2 ; k′) of disjiont-smaller-fvs such that k′ ≤ k and the graph G′ contains at most 4k′ vertices.

Proof. On an instance (G;V1, V2; k) of disjoint-smaller-fvs, we apply Rule 1 and Rule 2 on vertices

in V1. However, for a degree-2 vertex v in V1 with neighbors u1 and u2 not in the same component of

G[V2], we smoothen v except in the case where u1 is in V1, u2 is in V2, and [u1, u2] is an edge in G. In this

case we instead include u1 in the objective FVS, and remove both u1 and v. This change can be justified

as follows. By Lemma 2.2, we can move v from V1 to V2, which will make u1 a vertex in V1 that has two

neighbors v and u2 in the same component in G[V2]. Thus, u1 can be included directly in the objective

FVS, and removed. The removal of u1 makes v become a degree-1 vertex so can also be removed.

The reason for this change is that we want to keep G a simple graph without changing the vertex

set V2. Smoothening a degree-2 vertex v in V1 with neighbors u1 and u2 such that [u1, u2] is an edge

will create multiple edges. Note that in this case, (1) u1 and u2 cannot be both in V1 since V1 induces

a forest; and (2) u1 and u2 cannot be both in V2 because otherwise, v would have two neighbors in the

same component of G[V2] and v would be included in the objective FVS. Thus, the only possibility that

this may happen is that one of u1 and u2 is in V1 and the other is in V2. Thus, the process in the previous

paragraph avoids creating multiple edges, keeps the graph G a simple graph, and keep the vertex set V2

unchanged (although it may add edges between vertices in V2 when smoothening degree-2 vertices in V1).

We repeat this process until it is no longer applicable. Let (G′′;V ′′
1 , V ′′

2 ; k′′) be the resulting instance.

By Lemma 2.2 and the above discussion, (G′′;V ′′
1 , V ′′

2 ; k′′) is a YES-instance of disjoint-fvs if and only

if (G;V1, V2; k) is a YES-instance of disjoint-small-fvs. Moreover, k′′ ≤ k, V ′′
2 = V2, and all vertices

in V ′′
1 have degree at least 3 in G′′. Thus, (G′′;V ′′

1 , V ′′
2 ; k′′) is V ′′

1 -irreducible. By Corollary 2.5, we can

assume |V ′′
1 | ≤ 2k′′ + τ ′′2 − τ ′′1 − 1, where τ ′′1 and τ ′′2 are the number of components in G′′[V ′′

1 ] and G′′[V ′′
2 ],

respectively, for which we have τ ′′2 ≤ |V ′′
2 | = |V2| = k + 1 and τ ′′1 ≥ 1. Thus, the total number |G′′| of

vertices in the graph G′′ is |V ′′
1 | + |V ′′

2 | ≤ (2k′′ + (k + 1) − 2) + (k + 1) = 2(k′′ + k).

However, (G′′;V ′′
1 , V ′′

2 ; k′′) may not be an instance of disjoint-smaller-fvs because we may have

|V ′′
2 | = |V2| = k + 1 > k′′ + 1. If this is the case, let h = k − k′′, and we add a disjoint simple path

P2h = (w1, . . . w2h) of 2h vertices to G′′ and let these 2h vertices be adjacent to a fixed vertex u in V ′′
2 .

Let the new graph be G′, with the vertex partition (V ′
1 , V

′
2), where V ′

1 = V ′′
1 ∪{w1, . . . , w2h} and V ′

2 = V ′′
2 .

Now consider the instance (G′;V ′
1 , V

′
2 ; k′) of disjoint-fvs, where k′ = k. It is easy to verify that the

graph G′ has a V ′
1 -FVS of k′ = k vertices if and only if the graph G′′ has a V ′′

1 -FVS of k′−h = k−h = k′′

vertices. Moreover, since |V ′
2 | = |V ′′

1 | = |V2| = k + 1 = k′ + 1, (G′;V ′
1 , V

′
2 ; k′) is a valid instance

for disjoint-smaller-fvs. Therefore, (G′;V ′
1 , V

′
2 ; k′) is a YES-instance of disjoint-smaller-fvs if

and only if (G;V1, V2; k) is a YES-instance of disjoint-smaller-fvs: this holds true because both of

these conditions are equivalent to the condition that (G′′;V ′′
1 , V ′′

2 ; k′′) is a YES-instance of disjoint-fvs.

Finally, the number of vertices in G′ is equal to |G′′| + 2h ≤ 2(k′′ + k) + 2(k − k′′) = 4k = 4k′.

Finally, we remark that this kernelization result was obtained based on the branch-and-search al-

gorithm FindFVS for the problem, instead of on an analysis of the resulting structure after applying

reduction rules. This technique, to our best knowledge, had not been used in the literature of kerneliza-

tion.

3 A polynomial-time solvable case for disjoint-fvs

In this section we consider a special class of instances for disjoint-fvs. This approach is closely related to

the classical study on graph maximum genus embeddings [5, 15]. However, the study on graph maximum

genus embeddings that is related to our approach is based on general spanning trees of a graph, while our

approach must be restricted to only spanning trees that are constrained by the vertex partition (V1, V2)

of an instance (G;V1, V2; k) of disjoint-fvs. We start with a simple lemma.
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Lemma 3.1 Let G be a connected graph and let H be a subgraph of G such that H is a forest. There

is a spanning tree in G that contains the entire subgraph H, and can be constructed in time O(mα(n)),

where α(n) is the inverse of Ackermann function.

Proof. The lemma can be proved based on a process that is similar to the well-known Kruskal’s

algorithm for constructing a minimum spanning tree for a given graph, which runs in time O(mα(n)) if

we do not have to sort the edges. Starting from a structure G0 that initially consists of the forest H and

all vertices in G that are not in H , we repeatedly add each of the remaining edges (in an arbitrary order)

to the structure G0 as long as the edge does not create a cycle. The resulting structure of this process

must be a spanning tree that contains the entire subgraph H .

Let (G;V1, V2; k) be an instance for disjoint-fvs. Since the induced subgraph G[V2] is a forest, by

Lemma 3.1, there is a spanning tree T of the graph G that contains G[V2]. Call a spanning tree that

contains G[V2] a G[V2]-spanning tree.

For a graph H , denote by E(H) the set of edges in H , and for an edge subset E′ in H , denote by

H − E′ the graph H with the edges in E′ removed (the end vertices of these edges are not removed).

Let T be a G[V2]-spanning tree of the graph G. By the construction, every edge in G − E(T ) has

at least one end in V1. Two edges in G − E(T ) are V1-adjacent if they have a common end in V1. A

V1-adjacency matching in G−E(T ) is a partition of the edges in G−E(T ) into groups of one or two edges,

called 1-groups and 2-groups, respectively, such that two edges in the same 2-group are V1-adjacent. A

maximum V1-adjacency matching in G− E(T ) is a V1-adjacency matching in G− E(T ) that maximizes

the number of 2-groups.

Definition 2 Let (G;V1, V2; k) be an instance of the disjoint-fvs problem. The V1-adjacency matching

number ν(G, T ) of a G[V2]-spanning tree T in G is the number of 2-groups in a maximum V1-adjacency

matching in G − E(T ). The V1-adjacency matching number ν(G) of the graph G is the largest ν(G, T )

over all G[V2]-spanning trees T in the graph G.

An instance (G;V1, V2; k) of disjoint-fvs is V1-cubic if every vertex in the set V1 has degree exactly

3. Let fV1
(G) be the size of a minimum V1-FVS for G. Let β(G) be the Betti number of G that is the

total number of edges in G−E(T ) for any spanning tree T in G. Note that the edge set G−E(T ) forms

a basis of the fundamental cycles for the graph G such that every cycle in G contains at least one edge

in G− E(T ). In this sense, β(G) is the number of fundamental cycles in the graph G [15].

Lemma 3.2 For any V1-cubic instance (G;V1, V2; k) of disjoint-fvs, we have fV1
(G) = β(G) − ν(G).

Moreover, a minimum V1-FVS of the graph G can be constructed in linear time from a G[V2]-spanning

tree whose V1-adjacency matching number is ν(G).

Proof. First note that a maximum V1-adjacency matching in G − E(T ) for a G[V2]-spanning tree T

can be constructed in linear time, as follows. Since each vertex in V1 has degree 3 and T is a spanning

tree in G, each vertex in G − E(T ) has degree bounded by 2. Thus, each component of G − E(T ) is

either a simple (possibly trivial) path or a simple cycle. Therefore, a maximum V1-adjacency matching in

G−E(T ) can be constructed trivially by maximally pairing the edges in every component of G−E(T ).

Let T be a G[V2]-spanning tree such that there is a V1-adjacency matching M in G − E(T ) that

contains ν(G) 2-groups. Let U be the set of edges that are in the 1-groups in M . We construct a V1-FVS

F as follows: (1) for each edge e in U , arbitrarily pick an end of e that is in V1 and include it in F ; and

(2) for each 2-group of two V1-adjacent edges e1 and e1 in M , pick the vertex in V1 that is a common

end of e1 and e2 and include it in F . Note that every cycle in the graph G contains at least one edge

in G − E(T ), while now every edge in G − E(T ) has at least one end in F . Therefore, F is a FVS.

By the above construction, F is a V1-FVS. The number of vertices in F is equal to |U | + ν(G). Since
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|U | = |G− E(T )| − 2ν(G) = β(G) − 2ν(G), we have |F | = β(G) − ν(G). This concludes that

fV1
(G) ≤ β(G) − ν(G). (1)

Now consider the other direction. Let F be a minimum V1-FVS for the graph G = (V,E), i.e.,

|F | = fV1
(G). By Lemma 3.1, there is a spanning tree T in G that contains the entire subgraph G− F ,

which is a forest. We construct a V1-adjacency matching in G−E(T ) and show that it contains at least

(β(G) − |F |) 2-groups. Since T contains G − F , each edge in G − E(T ) has at least one end in F . Let

E2 be the set of edges in G − E(T ) that have their both ends in F , and let E1 be the set of edges in

G− E(T ) that have exactly one end in F .

Claim. Each end of an edge in E2 is shared by exactly one edge in E1. In particular, no two

edges in E2 share a common end.

To prove the above claim, first note that since T is a spanning tree in G, each vertex in F ⊆ V1, which

has degree 3 in G, can be incident to at most two edges in G−E(T ) = E1 ∪E2. In particular, if u is an

end of an edge [u, v] in E2 (i.e., u, v ∈ F ), then there is at most one other edge in E1 ∪E2 that is incident

to u. Now assume to the contrary of the claim that the vertex u is not shared by an edge in E1. Then

for the other two edges e1 and e2 in G that are incident to u, either both e1 and e2 are in T or exactly

one of e1 and e2 is in E2. If both e1 and e2 are in T , then every edge in G− E(T ) (including [u, v]) has

at least one end in F \ {u}. Similarly, if exactly one [u,w] of the edges e1 and e2 is in E2, where w is

also in F , then again every edge in G−E(T ) (including [u, v] and [u,w]) has at least one end in F \ {u}.

Thus, in either case, F \ {u} would make a smaller V1-FVS, contradicting the assumption that F is a

minimum V1-FVS. This proves the claim.

Suppose that there are m2 vertices in F that are incident to two edges in G−E(T ). Thus, each of the

rest |F | −m2 vertices in F is incident to at most one edge in G − E(T ). By counting the total number

of incidencies between the vertices in F and the edges in G− E(T ), we get

2|E2| + |E1| = 2|E2| + (β(G) − |E2|) ≤ 2m2 + (|F | −m2),

or equivalently,

m2 − |E2| ≥ β(G) − |F |. (2)

Now we construct a V1-adjacency matching in G − E(T ), as follows. For each edge e in E2, by the

above claim, we can make a 2-group that consists of e and an edge in E1 that shares an end in V1 with e

(note that this grouping will not put an edge in E1 in two different 2-groups because if the edge e in E2

shares an end with an edge e′ in E1, then e′ cannot share an end with any other edges in E2). Besides

the ends of the edges in E2, there are m2 − 2|E2| vertices in F that are incident to two edges in E1. For

each v of these vertices, we make a 2-group that consists of the two edges in E1 that are incident to v.

Note that this construction of 2-groups never uses any edges in G−E(T ) more than once. Therefore, the

construction gives |E2|+(m2−2|E2|) = m2−|E2| disjoint 2-groups. We then make each of the rest edges

in G − E(T ) a 1-group. This gives a V1-adjacency matching in G − E(T ) that has m2 − |E2| 2-groups.

By Inequality (2) and by definition, we have

ν(G) ≥ ν(G, T ) ≥ m2 − |E2| ≥ β(G) − |F | = β(G) − fV1
(G). (3)

Combining (1) and (3), we conclude with fV1
(G) = β(G) − ν(G).

The first two paragraphs in this proof also illustrate how to construct in linear time a minimum

V1-FVS from a G[V2]-spanning tree whose V1-adjacency matching number is ν(G).

By Lemma 3.2, in order to construct a minimum V1-FVS for a V1-cubic instance (G;V1, V2, k) of

disjoint-fvs, we only need to construct a G[V2]-spanning tree in the graph G whose V1-adjacency

matching number is ν(G). The construction of an unconstrained maximum adjacency matching in terms
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of general spanning trees has been considered by Furst et al. [15] in their study of graph maximum genus

embeddings. We follow a similar approach, based on cographic matroid parity, to construct a G[V2]-

spanning tree in G whose V1-adjacency matching number is ν(G). We start with a quick review on the

related concepts in matroid theory. More detailed discussion on this problem can be found in [22].

A matroid is a pair (E,ℑ), where E is a finite set and ℑ is a nonempty collection of subsets of E

that contains the empty set ∅ and satisfies the following properties (note that the collection ℑ may not

be explicitly given but is defined in terms of certain subset properties):

(1) If A ∈ ℑ and B ⊆ A, then B ∈ ℑ;

(2) If A,B ∈ ℑ and |A| > |B|, then there is an element a ∈ A \B such that B ∪ {a} ∈ ℑ.

The matroid parity problem is stated as follows: given a matroid (E,ℑ) and a perfect pairing {[a1, a1],

[a2, a2], . . . , [an, an]} of the elements in the set E, find a largest subset M in ℑ such that for all i,

1 ≤ i ≤ n, either both ai and ai are in M , or neither of ai and ai is in M .

Each connected graph G is associated with a cographic matroid (EG,ℑG), where EG is the edge set

of G, and an edge set S is in ℑG if and only if G− S is connected. It is well-known that matroid parity

problem for cographic matroids can be solved in polynomial time [22]. The fastest known algorithm for

cographic matroid parity problem is by Gabow and Xu [16], which runs in time O(mn log6 n).

In the following, we explain how to reduce our problem to the cographic matroid parity problem. Let

(G;V1, V2; k) be a V1-cubic instance of the disjoint-fvs problem. Without loss of generality, we make

the following assumptions: (1) the graph G is connected (otherwise, we simply work on each component

of G); and (2) for each vertex v in V1, there is at most one edge from v to a component in G[V2] (otherwise,

we can directly include v in the objective V1-FVS).

Recall that two edges are V1-adjacent if they share a common end in V1. For an edge e in G, denote

by dV1
(e) the number of edges in G that are V1-adjacent to e (note that an edge can be V1-adjacent to

the edge e from either end of e).

We construct a labeled subdivision G2 of the graph G as follows.

1. shrink each component of G[V2] into a single vertex; let the resulting graph be G1;

2. assign each edge in G1 a distinguished label;

3. for each edge labeled e0 in G1, suppose the edges V1-adjacent to e0 are labeled by e1, e2, . . ., ed (in

arbitrary order), where d = dV1
(e0); subdivide e0 into d segment edges by inserting d − 1 degree-2

vertices in e0, and label the segment edges by (e0e1), (e0e2), . . ., (e0ed). Let the resulting graph be

G2. The segment edges (e0e1), (e0e2), . . ., (e0ed) in G2 are said to be from the edge e0 in G1.

There are a number of interesting properties for the graphs constructed above. First, each of the edges

in the graph G1 corresponds uniquely to an edge in G that has at least one end in V1. Thus, without

creating any confusion, we will simply say that the edge is in the graph G or in the graph G1. Second,

because of the assumptions we made on the graph G, the graph G1 is a simple and connected graph.

In consequence, the graph G2 is also a simple and connected graph. Finally, because each edge in G1

corresponds to an edge in G that has at least one end in V1, and because each vertex in V1 has degree 3,

every edge in G1 is subdivided into at least two segment edges in G2.

Now in the labeled subdivision graph G2, pair the segment edge labeled (e0ei) with the segment edge

labeled (eie0) for all segment edges (note that (e0ei) is a segment edge from the edge e0 in G1 and that

(eie0) is a segment edge from the edge ei in G1). By the above remarks, this is a perfect pairing P of

the edges in G2. Now with this edge pairing P in G2, and with the cographic matroid (EG2
,ℑG2

) for

the graph G2, we call Gabow and Xu’s algorithm [16] for the cographic matroid parity problem. The

algorithm produces a maximum edge subset M in ℑG2
that, for each segment edge (e0ei) in G2, either

contains both (e0ei) and (eie0), or contains neither of (e0ei) and (eie0).
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Lemma 3.3 From the edge subset M in ℑG2
constructed above, a G[V2]-spanning tree for the graph G

with a V1-adjacency matching number ν(G) can be constructed in time O(mα(n)), where n and m are

the number of vertices and the number of edges, respectively, of the original graph G.

Proof. Suppose that the edge subset M consists of the edge pairs {[(e1e
′
1), (e′1e1)], . . . , [(ehe

′
h), (e′heh)]}

in G2. Since M ∈ ℑG2
, G2 −M is connected. Thus, for each edge ei in G1, there is at most one segment

edge in M that is from ei. Therefore, the edge subset M corresponds to an edge subset M ′ of exactly

2h edges in G1 (thus exactly 2h edges in G): M ′ = {e1, e′1; . . . , eh, e′h}, where for 1 ≤ i ≤ h, the edges

ei and e′i are V1-adjacent. Since G2 −M is connected, it is easy to verify that the graph G1 −M ′ (thus

the graph G −M ′) is also connected. Also note that the graph G −M ′ contains the induced subgraph

G[V2] because no edge in G1 has its both ends in V2. Therefore, by Lemma 3.1, we can construct, in time

O(mα(n)), a G[V2]-spanning tree T1 for the graph G −M ′, which is also a G[V2]-spanning tree for the

graph G. Now if we make each pair [ei, e
′
i] a 2-group for 1 ≤ i ≤ h, and make each of the rest edges in

G− E(T1) a 1-group, we get a V1-adjacency matching with h 2-groups in G− E(T1).

To complete the proof of the lemma, we only need to show that h = ν(G). For this, it suffices to

show that no G[V2]-spanning tree can have a V1-adjacency matching with more than h 2-groups. Let

T2 be a G[V2]-spanning tree with q 2-groups [e1, e
′
1], . . ., [eq, e

′
q] in G − E(T2). Since G − ⋃q

i=1{ei, e′i}
entirely contains T2, it is connected. In consequence, the graph G1−

⋃q
i=1{ei, e′i} is also connected. From

this, it is easy to verify that the graph G2 −
⋃q

i=1{(eie
′
i), (e

′
iei)} is also connected. Therefore, the edge

subset {(e1e
′
1), (e′1e1); . . . , (eqe

′
q), (e′qeq)} is in ℑG2

. Now since M is the the solution of the matroid parity

problem for the cographic matroid (EG2
,ℑG2

) and since M consists of h edge pairs, we must have h ≥ q.

This completes the proof of the lemma.

Now we are ready to present our main result in this section, which is a nontrivial generalization of a

result in [28] (the result in [28] can be viewed as a special case of Lemma 3.2 in which all vertices in the

set V2 have degree 2).

Theorem 3.4 There is an O(n2 log6 n)-time algorithm that on a V1-cubic instance (G;V1, V2; k) of

disjoint-fvs, either constructs a V1-FVS of size bounded by k, if such a V1-FVS exists, or reports

correctly that no such a V1-FVS exists.

Proof. For the V1-cubic instance (G;V1, V2; k) of disjoint-fvs, we first construct the graph G1

in linear time by shrinking each component of G[V2] into a single vertex. Note that since each vertex

in V1 has degree 3, the total number of edges in G1 is bounded by 3|V1|. From the graph G1, we

construct the labeled subdivision graph G2. Again since each vertex in V1 has degree 3, each edge in

G1 is subdivided into at most 4 segment edges in G2. Therefore, the number n2 of vertices and the

number m2 of edges in G2 are both bounded by O(|V1|) = O(n). From the graph G2, we apply Gabow

and Xu’s algorithm [16] on the cographic matroid (EG2
,ℑG2

) that produces the edge subset M in ℑG2

in time O(m2n2 log6 n2) = O(n2 log6 n). By Lemma 3.3, from the edge subset M , we can construct in

time O(mα(n)) a G[V2]-spanning tree T for the graph G whose V1-adjacency matching number is ν(G).

Finally, by Lemma 3.2, from the G[V2]-spanning tree T , we can construct a minimum V1-FVS F in linear

time. Now the solution to the V1-cubic instance (G;V1, V2; k) of disjoint-fvs can be trivially derived by

comparing the size of F and the parameter k. Summarizing all these steps gives the proof of the theorem.

Combining Theorem 3.4 and Lemma 2.2, we have

Corollary 3.5 There is an O(n2 log6 n)-time algorithm that on an instance (G;V1, V2; k) of disjoint-

fvs where all vertices in V1 have degree bounded by 3, either constructs a V1-FVS of size bounded by k,

if such a FVS exists, or reports correctly that no such a V1-FVS exists.
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We remark that Corollary 3.5 is the best possible in terms of the maximum vertex degree in the set

V1. This can be reasoned as follows. It is known that the fvs problem on graphs of maximum degree

4 is NP-hard [26]. Given an instance G of the fvs problem on graphs of maximum degree 4, we add a

degree-2 vertex to the middle of each edge in G. Let the new graph be G′. Let V1 be the set of vertices

in G′ that correspond to the original vertices in G, and let V2 be the set of new degree-2 vertices in G′.

Now it is rather straightforward to see that a minimum V1-FVS in G′ corresponds to a minimum FVS in

the original graph G. Moreover, the maximum vertex degree in the set V1 in G′ is bounded by 4. This

proves that the disjoint-fvs problem is NP-hard even when restricted to graphs in which the maximum

vertex degree in the set V1 is 4.

4 An improved algorithm for disjoint-fvs

Now we consider disjoint-fvs in general. Let (G;V1, V2; k) be an instance of disjoint-fvs, for which

we are looking for a V1-FVS of size bounded by k. Our algorithm for solving the disjoint-fvs problem

is presented in Figure 5.

Algorithm Feedback(G,V1, V2, k)
input: an instance (G;V1, V2; k) of disjoint-fvs.
\\ p = the number of nice V1-vertices; τ2 = the number of components in G[V2].
output: a V1-FVS F of size bounded by k in G if such a V1-FVS exists, or “No” otherwise.

1. if (k < 0) or (k = 0 and G is not a forest) or (2p ≥ 2k + τ2) then return “No”;
2. if (k ≥ 0 and G is a forest) or (p = |V1|) then solve the problem in polynomial time;
3. if a vertex w ∈ V1 has degree ≤ 1 then return Feedback(G−w, V1 \ {w}, V2, k);
4. if a vertex w ∈ V1 has two neighbors in the same component in G[V2]

then return {w} ∪ Feedback(G− w, V1 \ {w}, V2, k − 1);
5. if a vertex w ∈ V1 has degree 2 then

return Feedback(G′, V1, V2, k), where G′ = G with the vertex w smoothened;
6. if a leaf w in G[V1] is not a nice V1-vertex and has ≥ 3 neighbors in V2 then
6.1 F1 = Feedback(G− w, V1 \ {w}, V2, k − 1);
6.2 if F1 6= “No” then return F1 ∪ {w}
6.3 else return Feedback(G,V1 \ {w}, V2 ∪ {w}, k);
7. pick a lowest parent w in any tree in G[V1] and let v be a child of w;
7.1 F1 = Feedback(G− w, V1 \ {w, v}, V2 ∪ {v}, k − 1);
7.2 if F1 6= “No” then return F1 ∪ {w}
7.3 else return Feedback(G,V1 \ {w}, V2 ∪ {w}, k).

Figure 5: Algorithm for disjoint-fvs

We first give some explanations to the terminologies used in the algorithm. A vertex v in the set

V1 is a nice V1-vertex if v is of degree 3 and if all its neighbors are in the set V2. We will denote by

p the number of nice V1-vertices in G, and, as before, by τ2 the number of components in the induced

subgraph G[V2]. We have slightly abused the use of the set union operation in step 4 in the sense that when

Feedback(G−w, V1\{w}, V2, k−1) returns “No,” then the union {w}∪Feedback(G−w, V1\{w}, V2, k−1)

is also interpreted as a “No.” In step 5, by “smoothening” a degree-2 vertex w, we mean replacing the

vertex w and the two edges incident to w with a new edge connecting the two neighbors of w. In step 6,

by a “leaf” in G[V1], we mean a vertex w that has at most one neighbor in the set V1. Finally, in step 7,

we assume that we have picked an (arbitrary) vertex in each tree in G[V1] and designate it as the root of

the tree so that a parent-child relationship is defined in the tree. A “lowest parent” w in a tree in G[V1]

is a vertex in the tree that has children and all its children are leaves.

We start with the following lemma.
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Lemma 4.1 If 2p ≥ 2k + τ2, then there is no V1-FVS of size bounded by k in the graph G.

Proof. Suppose that there is a V1-FVS F of size k′ ≤ k. Let V ′
1 be the set of any p−k′ nice V1-vertices

that are not in F . Then the subgraph G′ = G[V2∪V ′
1 ] induced by the vertex set V2∪V ′

1 is a forest. On the

other hand, the subgraph G′ can be constructed from the induced subgraph G[V2] and the p− k′ isolated

vertices in V ′
1 , by adding the 3(p− k′) edges that are incident to the vertices in V ′

1 . Since k′ ≤ k, we have

2(p− k′) ≥ 2(p− k) ≥ τ2. This gives 3(p− k′) = 2(p− k′) + (p− k′) ≥ τ2 + (p− k′). This contradicts the

fact that G′ is a forest—in order to keep G′ a forest, we can add at most τ2 + (p− k′) − 1 edges to the

structure that consists of the induced subgraph G[V2] of τ2 components and the p − k′ isolated vertices

in V ′
1 . This contradiction proves the lemma.

Now we are ready to analyze the algorithm Feedback(G, V1, V2, k) for the disjoint-fvs problem in

Figure 5. We first prove the correctness of the algorithm.

Lemma 4.2 The algorithm Feedback solves the disjoint-fvs problem correctly.

Proof. The correctness of step 1 follows from Lemma 4.1 and other trivial facts. If k ≥ 0 and the

graph G is a forest, then obviously the empty set ∅ is a solution to the input instance. If p = |V1|,
then by definition, all vertices in the set V1 have degree 3. By Corollary 3.5, this case can be solved in

polynomial time. This verifies the correctness of step 2. The correctness of step 3 follows from the fact

that no vertices of degree bounded by 1 can be contained in any cycle. Step 4 is correct because in this

case, the vertex w is the only vertex in the set V1 in a cycle in the graph G, so it must be included in the

objective V1-FVS. Step 5 follows from Lemma 2.2 and the fact that step 4 does apply to the vertex w.

Step 6 is correct because it simply branches on either including or excluding the vertex w in the

objective V1-FVS. Note that after passing steps 3-5, all vertices in the set V1 have degree at least 3, and

after passing steps 3-6, each vertex in the set V1 either is a nice V1-vertex or has at least one neighbor

in V1. In particular, after steps 3-6, if a leaf v in G[V1] is not a nice V1-vertex, then v has exactly two

neighbors in V2 that belong to two different components of G[V2]. Now consider step 7. As remarked

above (also noting step 2), at this point there must be a tree with more than one vertex in the induced

subgraph G[V1]. Therefore, we can always find a lowest parent w in a tree in G[V1]. Step 7 branches on

this lowest parent w. In case w is included in the objective V1-FVS, w is deleted from the graph, and

the parameter k is decreased by 1. Note that after the vertex w is deleted, the child v of w becomes of

degree 2 with its two neighbors in two different components of G[V2]. By Lemma 2.1, the vertex v can

be excluded from the objective V1-FVS. Thus, it is safe to move the vertex v from set V1 to set V2. This

verifies the correctness of steps 7.1-7.2. Step 7.3 is simply to exclude the vertex w from the objective

V1-FVS.

Observe that before making recursive calls, each of the steps 3-7 decreases the number of vertices in

the set V1 by at least 1. Therefore, the algorithm must terminate in a finite number of steps. Summarizing

all the above discussion, we conclude with the correctness of the algorithm Feedback(G, V1, V2, k).

Now we analyze the complexity of the algorithm Feedback. The recursive execution of the algorithm

can be depicted as a search tree T , whose complexity can be analyzed by counting the number of leaves in

the search tree. For an input instance (G, V1, V2, k), we, as before, let p be the number of nice V1-vertices

in G, and let τ2 be the number of components in the induced subgraph G[V2]. To analyze the complexity

of the algorithm more precisely, we introduce a new measure, defined as µ = 2(k − p) + τ2. Let T (µ) be

the number of leaves in the search tree T for the algorithm on the input (G, V1, V2, k).

Theorem 4.3 The algorithm Feedback(G, V1, V2, k) correctly solves the disjoint-fvs problem in time

O(2k+τ2/2n2 log6 n), where n is the number of vertices in the graph G, and τ2 is the number of components

in the induced subgraph G[V2].
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Proof. We have verified the correctness of the algorithm in Lemma 4.2. Herein we analyze its

complexity, i.e., we consider the value T (µ).

Each of steps 1-5 of the algorithm proceeds without branching; hence it suffices to verify that neither

of them increases the value of the measure µ. Step 3 does not change the values of k, p, and τ2, thus

neither that of µ. Step 4 does not change the value τ2, but decreases the value k by 1. Moreover, step

4 may also decrease the value p by at most 1 (in case the vertex w is a nice V1-vertex). Overall, step 4

does not increase the value µ = 2(k − p) + τ2. Step 5 does not change the value of k. Moreover, it will

never decrease the value of p or increase the value of τ2. Note that step 5 may increase the value of p

(e.g., a neighbor of w in V1 may become a nice V1-vertex after smoothening w) or decrease the value of

τ2 (e.g., when the two neighbors of w are in two different components in G[V2]). In any case, step 5 does

not increase the value µ = 2(k − p) + τ2.

Now we study the branching steps. First consider step 6. The branch of steps 6.1-6.2 decreases the

value k by 1 and does not change the value of τ2. Moreover, the steps may increase the value of p (e.g., a

neighbor of w in V1 may become a nice V1-vertex after deleting w from the graph) but will never decrease

the value of p. Therefore, the branch of steps 6.1-6.2 will decrease the value µ = 2(k− p) + τ2 by at least

2. On the other hand, because w has at least three neighbors in V2, step 6.3 will decrease the value of

τ2 by at least 2, while neither changing the value of k nor decreasing the value of p. Thus, step 6.3 also

decreases the value µ = 2(k − p) + τ2 by at least 2. In summary, if step 6 is executed in the algorithm,

then the function T (µ) satisfies the recurrence relation T (µ) ≤ 2T (µ− 2).

Similarly, the branch of steps 7.1-7.2 deletes the vertex w from the graph and decreases the value of

k by 1. As we pointed out before, since the algorithm has passed steps 3-6, the leaf v has exactly three

neighbors: one is w and the other two are in two different components in G[V2]. Therefore, after deleting

w from the graph, moving the degree-2 vertex v from set V1 to set V2 decreases the value of τ2 by 1. Also

note that in this branch, the value of p is not changed (because of step 6, the vertex w cannot have a

neighbor that is a leaf in G[V1] but has three neighbors in V2). In summary, the branch of steps 7.1-7.2

decreases the value µ = 2(k − p) + τ2 by at least 3. Now consider step 7.3 that moves the vertex w from

set V1 to set V2. We break this case into two subcases:

Subcase 7.3.1. The vertex w has at least one neighbor in V2. Then moving w from V1 to V2 neither

changes the value of k nor increases the value of τ2. On the other hand, it creates at least one new nice

V1-vertex (i.e., the vertex v) thus increases the value of p by at least 1. Therefore, in this subcase, step

7.3 decreases the value of µ = 2(k − p) + τ2 by at least 2.

Subcase 7.3.2. The vertex w has no neighbor in V2. Because the degree of w is larger than 2 and w

is a lowest parent in G[V1], w has at least two children in V1, each is a leaf in G[V1] with exactly two

neighbors that are in two different components of G[V2]. Note that after moving w from V1 to V2, all

children of w in G[V1] will become nice V1-vertices. Therefore, moving w from V1 to V2 increases the

value of τ2 by 1, and increases the value of p by at least 2, with the value of k unchanged. Therefore, in

this subcase, step 7.3 decreases the value of µ = 2(k − p) + τ2 by at least 3.

Summarizing the above discussion, we conclude that if step 7 is executed in the algorithm, then the

function T (µ) satisfies the recurrence relation T (µ) ≤ T (µ− 2) + T (µ− 3).

Therefore, the function T (µ), which is the number of leaves in the search tree T , in the worst case

satisfies the recurrence relation T (µ) ≤ 2T (µ− 2). Also note that Lemma 4.1, if µ = 2(k − p) + τ2 ≤ 0,

then we can conclude immediately without branching that the input instance is a “No.” Therefore,

T (µ) = 1 for µ ≤ 0. Now the recurrence relation T (µ) ≤ 2T (µ − 2) with T (µ) = 1 for µ ≤ 0 can

be solved using the well-known techniques in parameterized computation (see, for example, [11]), as

follows. The characteristic polynomial for the recurrence relation T (µ) = 2T (µ − 2) is x2 − 2, which

has a unique positive root
√

2. From this, we derive T (µ) = (
√

2)µ = 2µ/2. Moreover, it is fairly easy

to see that each computational path in the search tree T has its time bounded by O(n2 log6 n), and

µ/2 = k − p + τ2/2 ≤ k + τ2/2. Therefore, the running time of the algorithm Feedback(G, V1 , V2, k) is

O(2k+τ2/2n2 log6 n)
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5 An improved algorithm for fvs

The results in previous sections lead to an improved algorithm for the general fvs problem. Following

the idea of iterative compression proposed by Reed et al. [25], we formulate the following problem:

fvs reduction: given a graph G and a FVS F of size k + 1 for G, either construct a FVS

of size bounded by k for G, or report that no such a FVS exists.

Lemma 5.1 The fvs reduction problem can be solved in time O∗(3.83k).

Proof. The proof goes similar to that for Lemma 2 in [3]. Let G = (V,E) be a graph and let Fk+1 be a

FVS of size k+1 in G. Suppose that the graph G has a FVS F ′
k of size k, and let the intersection Fk+1∩F ′

k

be a set Fk−j of k − j vertices, for some j, 0 ≤ j ≤ k. Let Fj+1 = Fk+1 \ Fk−j and F ′
j = F ′

k \ Fk−j .

Construct the graph G′ = G − Fk−j . Note that both Fj+1 and F ′
j are FVS for G′, and that Fj+1 and

F ′
j are disjoint. Thus, if we let V ′

1 = V \ Fk+1 and V ′
2 = Fj+1, then F ′

j is a solution to the instance

(G′, V ′
1 , V

′
2 , j) of the disjoint-fvs problem. On the other hand, it is also easy to see that any solution to

the instance (G′, V ′
1 , V

′
2 , j) of disjoint-fvs plus the subset Fk−j makes a FVS of no more than k vertices

for the original graph G.

Therefore, to solve the instance (G,Fk+1) for the fvs reduction problem, it suffices to find the

subset Fk−j = Fk+1 ∩ F ′
k of k − j vertices in Fk+1 for some integer j, 0 ≤ j ≤ k, then to solve the

instance (G′, V ′
1 , V

′
2 , j) for the disjoint-fvs problem. To find the subset Fk−j of Fk+1, we enumerate all

subsets of k − j vertices in Fk+1 for all 0 ≤ j ≤ k. To solve the corresponding instance (G′, V ′
1 , V

′
2 , j) for

disjoint-fvs derived from the subset Fk−j of Fk+1, we call the algorithm Feedback(G′, V ′
1 , V

′
2 , j). By

Theorem 4.3 (note that τ2 ≤ |V ′
2 | = j + 1), the instance (G′, V ′

1 , V
′
2 , j) for disjoint-fvs can be solved in

time O(2j+(j+1)/2n2 log6 n) = O(2.83jn2 log6 n). Applying this procedure for every integer j (0 ≤ j ≤ k)

and all subsets of size k−j in Fk+1 will successfully find a FVS of size k in the graph G, if such a FVS exists.

This algorithm solves the fvs reduction problem in time
∑k

j=0

(

k+1
k−j

)

· O(2.83jn2 log6 n) = O∗(3.83k).

Finally, by combining Lemma 5.1 with the iterative compression technique [25, 6], we obtain the main

result of this paper, which solves the fvs problem, formally defined as follows:

fvs: given a graph G and a parameter k, either construct a FVS of size bounded by k for the

graph G, or report that no such FVS exists.

Theorem 5.2 The fvs problem is solvable in time O∗(3.83k).

Proof. To determine if a given graph G = (V,E) has a FVS of size bounded by k, we start by applying

the polynomial-time approximation algorithm of approximation ratio 2 for the minimum feedback

vertex set problem [1]. This algorithm runs in O(n2) time, and either returns a FVS F ′ of size at most

2k, or verifies that no FVS of size bounded by k exists. Thus, if no FVS is returned by the algorithm,

then no FVS of size bounded by k exists. In the case of the opposite result, we use any subset V ′ of

k vertices in F ′, and put V0 = V ′ ∪ (V \ F ′). Obviously, the induced subgraph G[V0] has a FVS V ′

of size k. Let F ′ \ V ′ = {v1, v2, . . . , v|F ′|−k}, and let Vi = V0 ∪ {v1, . . . , vi} for i ∈ {0, 1, . . . , |F ′| − k}.

Inductively, suppose that we have constructed a FVS Fi for the graph G[Vi], where |Fi| = k. Then the

set F ′
i+1 = Fi ∪ {vi+1} is a FVS for the graph G[Vi+1], and |F ′

i+1| = k + 1.

Now the pair (G[Vi+1], F ′
i+1) is an instance for the fvs reduction problem. Therefore, in time

O∗(3.83k), we can either construct a FVS Fi+1 of size k for the graph G[Vi+1], or report that no such

a FVS exists. Note that if the graph G[Vi+1] does not have a FVS of size k, then the original graph G

cannot have a FVS of size k. In this case, we simply stop and claim the non-existence of a FVS of size

k for the original graph G. On the other hand, with a FVS Fi+1 of size k for the graph G[Vi+1], our

induction proceeds to the next graph G[Vi+1], until we reach the graph G = G[V|F ′|−k]. This process

runs in time k · O∗(3.83k) = O∗(3.83k) since |F ′| − k ≤ k, and solves the fvs problem.
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6 Concluding remarks

We developed an O∗(3.83k)-time parameterized algorithm for the fvs problem. Our algorithm was

obtained by a nontrivial combination of several known techniques in algorithm research and their gen-

eralizations. This includes iterative compression, branch-and-search, and efficient algorithms for graphs

of low vertex-degrees. For branch-and-search processes for dealing with the fvs problem, we introduced

new branching rules and new branching measures, which allow us to more effectively reduce a general

instance into a polynomial-time solvable instance of the problem and to more accurately evaluate the

efficiency of the branch-and-search process. For efficient algorithms for graphs of low vertex-degrees, we

use a nontrivial reduction that transforms the fvs problem to a polynomial-time solvable version of the

matroid matching problem. Note that using matroid matching to solve the fvs problem for 3-regular

graphs has been observed previously [27, 28, 15], while we extended the techniques to solve the disjoint-

fvs problem on a larger graph class in which not all vertices are required to have degree bounded by

3.

Further faster algorithms for fvs have drawn much attention in the recent research in parameterized

computation [9]. Following our approach with a new reduction rule introduced, Kociumaka and Pilipczuk

[20] have announced a revision of our algorithm that has an improved running time O∗(3.62k) for the

fvs problem. On the other hand, the study on the lower bound of the fvs problem has made significant

progress. Based on the Strong Exponential Time Hypothesis (see [21]), Cygan et al. [7] have reported a

lower bound on the complexity of the fvs problem in terms of the pathwidth pw of a graph, which states

that the fvs problem cannot be solved in time O∗((3− ǫ)pw) for any positive constant ǫ > 0. This result

does not yet directly lead to a lower bound for the fvs problem in terms of the parameter k, which is

the size of the objective FVS (to see this, observe that the ladder graph Pl × P2 has a pathwidth 2 but

its minimum FVS has a size ⌊l/2⌋, where Pi denotes the simple path of i vertices). On the other hand,

studying the complexity of the fvs problem in terms of graph pathwidth or treewidth seems to have very

interesting connection to the complexity of the original fvs problem. For example, the O∗(3tw)-time

randomized algorithm for the fvs problem proposed in [7], where tw is the treewidth of the input graph,

directly implies an O∗(3k)-time randomized algorithm for fvs. In particular, this has motivated an

interesting open problem whether there is a deterministic O∗(3k)-time algorithm for the fvs problem [9].

It is interesting to observe that the research on parameterized algorithms and that on approximation

algorithms for the fvs problem have undergone a similar process. Early algorithms used the cycle

packing-covering duality, and hence ended with O∗(log kO(k))-time parameterized algorithms [23, 19] and

O(log n)-ratio approximation algorithms [12], respectively. Later algorithms turned to the observation on

graph vertex-degrees, which resulted in O∗(2O(k))-time parameterized algorithms [6, 8] and constant-ratio

approximation algorithms [1, 3], respectively. However, constant-ratio approximation algorithms for fvs

do not seem to rely on a process that is related to the iterative compression process [25], which, on the

other hand, seems to have played a critical role in the development of all O∗(2O(k))-time parameterized

algorithms for the fvs problem. A parameterized algorithm based on iterative compression for the fvs

problem runs in time O∗((1 + α)k), where α is a constant such that the disjoint-fvs problem can be

solved in time O∗(αk). Since the disjoint-fvs problem is NP-hard, the constant α has to be larger than

1. In other words, using the iterative compression technique excludes the possibility of solving the fvs

problem in time O∗(2k). An interesting research direction and a possible approach to developing further

improved algorithms for the fvs problem is to explore new algorithmic techniques that are not based on

iterative compression.
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