
ETH Library

Pure Nash Equilibria in Graphical
Games and Treewidth

Journal Article

Author(s):
Thomas, Antonis; van Leeuwen, Jan

Publication date:
2015-03

Permanent link:
https://doi.org/10.3929/ethz-b-000088298

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Algorithmica 71(3), https://doi.org/10.1007/s00453-014-9923-3

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000088298
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00453-014-9923-3
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Algorithmica (2015) 71:581–604
DOI 10.1007/s00453-014-9923-3

Pure Nash Equilibria in Graphical Games
and Treewidth

Antonis Thomas · Jan van Leeuwen

Received: 21 November 2013 / Accepted: 24 July 2014 / Published online: 22 August 2014
© Springer Science+Business Media New York 2014

Abstract We treat PNE-GG, the problem of deciding the existence of a Pure Nash
Equilibrium in a graphical game, and the role of treewidth in this problem. PNE-GG is
known to be N P-complete in general, but polynomially solvable for graphical games
of bounded treewidth. We prove that PNE-GG is W [1]-Hard when parameterized by
treewidth. On the other hand, we give a dynamic programming approach that solves
the problem in O∗(αw) time, where α is the cardinality of the largest strategy set and w

is the treewidth of the input graph (and O∗ hides polynomial factors). This proves that
PNE-GG is in F PT for the combined parameter (α,w). Moreover, we prove that there
is no algorithm that solves PNE-GG in O∗((α − ε)w) time for any ε > 0, unless the
Strong Exponential Time Hypothesis fails. Our lower bounds implicitly assume that
α ≥ 3; we show that for α = 2 the problem can be solved in polynomial time. Finally,
we discuss the implication for computing pure Nash equilibria in graphical games
(PNE-GG) of O(log n) treewidth, the existence of polynomial kernels for PNE-GG
parameterized by treewidth, and the construction of a sample and maximum-payoff
pure Nash equilibrium.

Keywords Nash equilibria · Graphical games · Parameterized complexity ·
Treewidth

A. Thomas (B)
Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland
e-mail: athomas@inf.ethz.ch

J. van Leeuwen
Department of Information and Computing Sciences, Utrecht University,
3584 CC Utrecht, The Netherlands
e-mail: J.vanLeeuwen1@uu.nl

123

582 Algorithmica (2015) 71:581–604

1 Introduction

The computation of Nash equilibria in finite games is a fundamental class of problems
in algorithmic game theory. Several recent breakthroughs have settled the complexity
of computing (mixed) Nash equilibria for any number of players ≥ 2 [6,7]. These
equilibria are guaranteed to exist, but their suitability as models of behavior and ratio-
nality can be debated as they involve deliberate randomization by players and are
based on the assumption that all players are risk neutral [8]. In this paper we consider
pure Nash equilibria (PNE), which are more intuitive even though they do not exist
in all games.

We especially focus on the computational aspects of pure Nash equilibria in so-
called graphical games, introduced by Kearns et al. [25]. A graphical game consists
of a graph and a collection of matrices—one for each player. A player is represented
by a vertex in the input graph and her payoff is determined entirely by her action and
that of her neighbors. Graphical games are a prime example of a class of games that
are ‘succinct represented’ and computationally meaningful [30].

Let PNE-GG denote the problem of deciding the existence of a pure Nash equi-
librium in a graphical game. PNE-GG was proved to be N P-complete by Gottlob et
al. [17], even in the restricted case of neighborhoods of size at most 3 and at most 3
strategies per player. On the other hand, they proved that the problem is tractable when
the underlying graph has bounded treewidth. Treewidth is a widely studied structural
parameter that measures the extent to which a graph deviates from a basic tree structure
(cf. Sect. 2).

In this paper we give an extensive analysis of the computational complexity of
PNE-GG as it depends on the treewidth of the underlying graph. We will especially
position PNE-GG in the class of problems that are fixed parameter tractable, using
treewidth as the parameter. Various related questions will be addressed. This paper
extends the first presentation of our results in [35].

Our results can be summarized as follows. As a first main result we prove that PNE-
GG is W [1]-hard for the parameter treewidth (Sect. 4). Next, we develop a tedious
dynamic programming method to compute pure Nash equilibria in games of bounded
treewidth (Sect. 5). Our algorithm runs in O∗(αw) time, where α is the size of the
largest strategy set and w is the treewidth of the input graph (and O∗ hides polynomial
factors). It follows that PNE-GG is in F PT for the combined parameter (α,w), hence
notably so when the cardinality of the strategy sets is bounded. Subsequently, we
discuss the implications of our algorithm for games of O(log n) treewidth and we
argue that PNE-GG for graphs of bounded treewidth and constant strategy sets does
not admit a polynomial kernel unless N P ⊆ coN P/poly. In addition, we show
how our algorithm is able to efficiently construct a sample or the maximum-payoff
equilibrium (Sect. 7).

Finally, we note that the time bound of our algorithm is most likely tight. We prove
that any improvement of the running time to a bound of the sort O∗((α − ε)w), for
some ε > 0, would cause the Strong Exponential Time Hypothesis to fail (Sect. 6).
This is considered unlikely. Note that our lower bounds (from both Sects. 4 and 6)
implicitly assume that α ≥ 3, while the proof of the N P-completeness of PNE-GG

123

Algorithmica (2015) 71:581–604 583

has the same assumption. We justify this by showing that for α = 2, PNE-GG can be
solved in polynomial time (Sect. 3).

1.1 Related Work

Gottlob et al. [17] proved PNE-GG to be polynomial on graphs of bounded treewidth.
They proved this by mapping a graphical game to a constraint satisfaction problem
(CSP) while maintaining pure Nash equilibria as solutions of the resulting instance.
The time complexity of their procedure is O(||G||w+1 · log ||G||), thus exponential in
w, where ||G|| is the size of the description of the game instance and w the treewidth of
the underlying graph. Marx showed that the algorithm for solving CSP is essentially
optimal under the Exponential Time Hypothesis [28] and thus, faster algorithms are
not expected using this approach.

A different approach was provided by Daskalakis and Papadimitriou [8]. They
attacked the problem by providing a reduction from graphical games to Markov random
fields. This yields a unified proof to the previously known tractable cases with time
complexity O(n · |Mp|w+1) = O(n · αΔ·(w+1)), where n is the number of players, p
is the player with the largest neighborhood (of size Δ) and Mp its local game matrix
(cf. Sect. 2). Their result implies that the class of games with O(log n) treewidth and
bounded Δ and α, is tractable. We show that the dependence on Δ can be greatly
simplified, removing it from the exponent in the running time and thus obtaining
tractability regardless of the value of Δ.

Furthermore, Jiang and Leyton-Brown [22] provide an algorithm for another class
of succinctly represented games, namely action graph games, that is polynomial for
symmetric action graph games of bounded treewidth. It is known that any graphical
game can be mapped to a non-symmetric action graph game [23]. For bounded cardi-
nality strategy sets this mapping keeps the treewidth bounded. However, computing
pure Nash equilibria for non-symmetric action-graph games is N P-complete even
when the treewidth is 1 [9].

Greco and Scarcello build on [17] and provide a dynamic programming approach
that decides, in polynomial time, the existence of constrained pure Nash equilibria
for graphical games of bounded treewidth with a bounded number of constraints
[18]. Their approach is based on a non-deterministic algorithm, implicitly provided
in [25], that associates pure with approximate mixed equilibria. A quite different
approach is provided by Jiang and Safari in [24]. The parameter they consider is the
representational size of the graph, say p = |V | + |E |. They show that for every
recursively enumerable class of graphical games with bounded treewidth, deciding
p-PNE-GG is in FPT if and only if deciding PNE-GG is in P . Observe that none of
the known methods implies fixed-parameter tractability of PNE-GG with treewidth of
the input graph as the parameter.

Finally, there are recent papers that treat game-theoretic problems from the per-
spective of parameterized complexity as well. Estevill-Castro and Parsa [12] initiated
the study of computing Nash equilibria of bimatrix games from the perspective of
parametrized complexity theory. Define the support of a player as the collection of
strategies which she plays with non-zero probability. Estevill-Castro and Parsa [12]
proved that for bimatrix games, both the existence of a k-uniform Nash equilibrium

123

584 Algorithmica (2015) 71:581–604

(with strategies having either zero or uniform probabilities for each action) and find-
ing a k-minimal Nash equilibrium (one of minimal support), are W[2]-hard, where
the parameter k is the size of the support. In a subsequent study [13] they show that
the existence of a k-uniform Nash equilibrium is in F PT for a restricted class of
symmetric 0, 1-win-lose bimatrix games, where the parameter is the treewidth of the
undirected graph that arises when one interprets the payoff matrix of a player as an
adjacency matrix [13]. Supplementing these results, Hermelin et al. [19] show, among
other things, that computing a Nash equilibrium of an �-sparse bimatrix game is in
F PT time for the combined parameter (�, k) (where k is, again, the size of the support).

2 Preliminaries

2.1 Graphical Games

In a graphical game with graph G = (V, E) we have n = |V | players and each
player p ∈ V has a finite set of strategies, each strategy St (p) being a finite set of
actions with |St (p)| ≥ 2. The cardinality of the largest strategy set is denoted with
α = maxp∈V |St (p)|. For a non-empty set of players P ⊆ V a joint strategy or
configuration C is a set containing exactly one strategy for each player p ∈ P . The set
of all joint strategies of players in P is denoted as St (P) and thus we write C ∈ St (P).
For a player p, Cp denotes the strategy of player p with respect to configuration C and
C−p denotes the configuration resulting from removing the strategy suggested for p in
C. Additionally, for every ap ∈ St (p) and C−p ∈ St (V \{p}) we denote by (C−p; ap)

the configuration in which p plays ap and every other player p′ �= p plays according
to C. Abusing notation, we use C∪{ap} to denote the configuration resulting by adding
strategy ap ∈ St (p) to configuration C ∈ St (P ′) where p /∈ P ′. A configuration C is
termed global if it is over the set of all players (C ∈ St (V)). The global configurations
are the possible outcomes of the game. We define the neighborhood of player p ∈ V
as N (p) = {u ∈ V |(p, u) ∈ E}.
Definition 1 ([25]) A graphical game is a pair (G,M), where G = (V, E) is an
undirected graph and M is a set of n = |V | local matrices. For any joint strategy C,
the local game matrix Mp ∈M specifies the payoff Mp(C) for player p ∈ V , which
depends only on the actions taken by p and the players in N (p).

Note that for graphical games on undirected graphs, players’ interests are neces-
sarily symmetric, i.e. for any pair of players p1 and p2, p1 ∈ N (p2) if and only if
p2 ∈ N (p1). Let the size of the collection of matrices be |M| =∑

p∈V |Mp|.
Definition 2 The best response function of a player p is a function βp : St (N (p))→
2St (p), with respect to a (global) configuration C, such that:

βp(C) = {ap|ap ∈ St (p) and ∀a′p ∈ St (p) : Mp(C−p; ap) ≥ Mp(C−p; a′p)}

Intuitively, βp(C) is the set of strategies that maximize the payoff of player p
when the players in p’s neighborhood play according to (global) configuration C.

123

Algorithmica (2015) 71:581–604 585

Consequently, a pure Nash equilibrium (PNE for short) is a global configuration C
such that for every player p ∈ V, Cp ∈ βp(C−p). Alternatively:

Definition 3 A global configuration C is a pure Nash equilibrium if for every player
p and strategy ap ∈ St (p) we have Mp(C) ≥ Mp(C−p; ap).

2.2 Treewidth and Mixed Search Games

First we give the definition of a tree decomposition and of treewidth.

Definition 4 ([31]) A tree decomposition of a graph G = (V, E) is a pair ({Xi |i ∈
I }, T = (I, F)), where T is a tree and each node i ∈ I has associated to it a subset of
vertices Xi ⊆ V , called the bag of i , such that:

1. Each vertex belongs to at least one bag, ∪i∈I Xi = V ;
2. ∀{v, u} ∈ E, ∃i ∈ I with v, u ∈ Xi ;
3. ∀v ∈ V , the set of nodes {i ∈ I |v ∈ Xi } induces a subtree of T .

The width of a tree decomposition T is maxi∈I |Xi | − 1. The treewidth of a graph
G,twd(G), is the minimum width over all tree decompositions of G. If Definition 4
is restricted to paths instead of trees, we speak of the pathwidth of a graph G, denoted
by pwd(G).

As an alternative way to characterize treewidth we use the notion of a mixed search
game. The game is played on a graph G by placing tokens, called searchers, on the
vertices of the graph and moving them along the edges to other vertices. The edges of
the graph are initially contaminated by a gas. They get cleared if either (i) a searcher
goes through the edge or (ii) two searchers are simultaneously placed at the two
endpoints of that edge. In addition, a cleared edge gets re-contaminated if there is a
path from a contaminated edge to the cleared edge with no searchers on its vertices. A
search strategy consists of the operations of adding/removing searchers to the graph
vertices and of sliding searchers across edges to neighboring vertices. If after the
termination of the strategy all edges are cleared then we have a winning strategy. The
mixed search number of a graph G,msn(G) is the minimum number of searchers
needed for a winning strategy. Our interest here lies in bounding the treewidth by
describing a mixed search strategy. It is known thatpwd(G) ≤ msn(G) ≤ pwd(G)+1
[34]. It also holds that twd(G) ≤ pwd(G) which gives us mixed search games as a
tool to bound the treewidth of a graph (cf. proof of Lemma 8).

2.3 Complexity

We give the definitions of some basic concepts from the theory of parameterized
complexity [10,16,29].

Definition 5 ([10,16,29]) A parameterized problem is a language L ⊆ Σ∗ × Σ∗,
where Σ is a finite alphabet. The second component is called the parameter of the
problem.

123

586 Algorithmica (2015) 71:581–604

The only parameters we consider here are nonnegative integers, hence we write L ∈
Σ∗×N from now on. For (x, k) ∈ L , the two dimensions of parameterized complexity
are the input size n, n = |(x, k)|, and the parameter value k.

Definition 6 ([10,16,29]) A parameterized problem L is fixed-parameter tractable
if, for all (x, k), it can be determined in f (k) · nO(1) time whether (x, k) ∈ L , where
f is a computable function depending only on k.

The class of parameterized problems of the form (x, k), that are solvable in time
f (k)·nO(1), is denoted as F PT . In order to prove hardness for parameterized problems
we also need a reducibility concept.

Definition 7 ([10,16,29]) Let (Q, k) and (Q′, k′) be parameterized problems over the
alphabets Σ and Σ ′. An fpt-reduction from (Q, k) to (Q′, k′) is a mapping R : Σ∗ →
(Σ ′)∗ such that:

– ∀x ∈ Σ∗ we have (x ∈ Q ⇔ R(x) ∈ Q′);
– R is computable in F PT time (with respect to k);
– there exists a computable function g : N→ N such that for all x ∈ Σ∗, if k is the

parameter of x and k′ is the parameter of R(x), then k′ ≤ g(x).

Fixed-parameter intractability beyond F PT is captured in the W -hierarchy (cf. [10,
16,29]). A parameterized problem is W [1]-hard if Weighted 3SAT is reducible to
it by an fpt-reduction. Weighted 3SAT is the problem of deciding whether a 3-CNF
formula has a satisfying assignment of Hamming weight k, with k as the parameter.
The Hamming weight of an assignment is the number of literals set to true. While it
is known that F PT ⊆ W [1], it is currently open whether F PT ⊂ W [1].

It is known that every parameterized problem in FPT has a kernel [10], i.e. every
instance of the problem can be reduced by a polynomial-time parameterized reduc-
tion to an equivalent instance whose size only depends on the parameter. This gives
a potentially very powerful way of preprocessing a problem, reducing instances in
polynomial time to a smaller kernel which can be solved by an algorithm that we can
afford to be inherently exponential. Bounding the size of kernels of problems in F PT
has been the subject of extensive research. We refer to Kratsch [26] for an excellent
introduction to the relevant notions and for many recent results.

Finally, we describe the (Strong) Exponential Time Hypothesis, (S)ETH, originally
conjectured by Impalliagzo et al. [21]. Consider k-SAT, a version of the SAT problem
where each clause of the given formula φ has at most k literals. Let sk = inf{δ | k-SAT
is solvable in time 2δn}. Then, the ETH asserts that s3 > 0. In [21] it was shown that
the ETH is robust in the sense that s3 > 0 if and only if there is k ≥ 3 such that sk > 0.
Moreover, in [20], it was shown that the sequence s3, s4, . . . increases infinitely often.
Finally, the SETH asserts that limk→∞ sk = 1.

3 Graphical Games with 2 Strategies

Here we prove that PNE-GG can be solved in polynomial time when each player has
exactly two strategies available (2PNE-GG). For this we present a reduction from

123

Algorithmica (2015) 71:581–604 587

2PNE-GG to UTVIP. The latter stands for Unit Two Variable Integer Programming.
This is a restricted version of Integer Programming that is solvable in polynomial time.
The problem statement is as follows: Let A ∈ Z

m×n such that
∑n

j=1 |ai j | ≤ 2,∀i =
1, 2, . . . m, and let b ∈ Z

m . Is there x ∈ Z
n such that Ax ≤ b?

The restriction on A means that for every inequality there are at most two non-zero
coefficients with values in {−1, 1} or at most one non-zero coefficient with absolute
value 2. UTVIP is known to be solvable in polynomial time by Schrijver (Proposition
6 in [32]). Later, it was shown to be solvable in O(n log n+m), where n is the number
of variables and m the number of inequalities [33].

Theorem 1 2PNE-GG is solvable in polynomial time.

Proof We give a polynomial time reduction from 2PNE-GG to UTVIP. Let G =
(G,M) be an instance of 2PNE-GG. Consider {0, 1} as the strategy set for each
player of the game. We take a variable xi for each of the n players of G and two
inequalities for each variable: 0 ≤ xi ≤ 1,∀i = 1, 2, . . . , n.

Now let (i, j) be an edge of G. We take at most two inequalities per edge, for
each of the players i, j . If s is a strategy {0, 1} with s̄ we mean the opposite strategy.

In addition, we introduce the notation β
C j=s
i to simplify the presentation (β

C j=s
i is

defined if and only if i, j are neighbors in G):

β
C j=s
i =

⋃

{C|C∈St (N (i)) and C j=s}
βi (C)

We perform a case distinction which we present from i’s perspective. First consider
the trivial cases, when i is indifferent to what j plays:

1. ∀s ∈ {0, 1}, βC j=s
i = {0, 1}. Then, we take no inequality.

2. ∀s ∈ {0, 1}, βC j=s
i = k ∈ {0, 1}. Then, we take the equality xi = k.

Subsequently, we consider the more involved cases which are being considered
only if case 2 above does not apply:

3. ∃s ∈ {0, 1} such that s = β
C j=s
i (coordination). Then, we take the inequalities

li j ≤ xi − x j ≤ ui j , where li j ∈ {−1, 0} and ui j ∈ {0, 1}.
If s = 0, then ui j = 0; li j = 0 if s̄ = β

C j=s̄
i and li j = −1 if β

C j=s̄
i = {0, 1}.

If s = 1, then li j = 0; ui j = 0 if s̄ = β
C j=s̄
i and ui j = 1 if β

C j=s̄
i = {0, 1}.

4. ∃s ∈ {0, 1} such that s̄ = β
C j=s
i (anti-coordination). Then, we take the inequalities

li j ≤ xi + x j ≤ ui j , where li j ∈ {0, 1} and ui j ∈ {1, 2}.
If s = 0, then li j = 1; ui j = 1 if s = β

C j=s̄
i and ui j = 2 if β

C j=s̄
i = {0, 1}.

If s = 1, then ui j = 1; li j = 1 if s = β
C j=s̄
i and li j = 0 if β

C j=s̄
i = {0, 1}.

In total, we take at most 4 inequalities per edge of G and exactly 2 inequalities per
player/vertex of G. It follows from the reduction that the resulting UTVIP instance has
a solution that satisfies all the constraints if and only if G admits a PNE. In addition,
if a solution x ∈ Z

n exists it holds that xi is a PNE strategy for player i . ��

123

588 Algorithmica (2015) 71:581–604

0 1
0 +1 +1
1 -1 +1

0 1
0 -1 +1
1 +1 -1

a

c

b

Ma

Mb

−1 ≤ xa − xc ≤ 0

1 ≤ xb + xc ≤ 1

Fig. 1 An example of the reduction described in the proof of Theorem 1

Finally, we include a simple example in Fig. 1 to illustrate the proof presented above.
The game consists of only three players, a, b, c, connected in a path. The matrices for
the players a, b are included in the middle column. At the right column, we present
the inequalities formed for the edges (a, c) and (b, c) from player a’s and player b’s
perspective. The former is a coordination (falls in case 3): for s = 0 we have that
β

Cc=0
a = {0} and β

Cc=1
a = {0, 1}. The latter is an anti-coordination (falls in case 4):

for s = 0 we have that β
Cc=0
a = {1} and β

Cc=1
a = {0}.

4 W[1]-Hardness

Treewidth plays an important role in the study of pure Nash equilibria for graphical
games (cf. [17]). However, none of the previous results implies the existence of a fixed-
parameter tractable algorithm with respect to the treewidth of the input graph. Here
we argue that this is not surprising. Consider the following parameterized problem:

w-PNE-GG
Input: G = (G,M), T a tree decomposition of G.
Parameter: w - the width of T .
Question: Does G admit a PNE?

We will prove that w-PNE-GG is W [1]-hard. For this, a reduction from the W [1]-hard
problem k-Multicolor Clique will be used. The input of this problem is a graph
G = (V, E) and a vertex coloring c : V → {1, . . . , k}, k is the parameter and the
question is whether G contains a clique with vertices of all k colors. Hardness follows
easily by reduction from k-Clique [15].

Before proceeding to the reduction, we introduce some useful notation. Let G be
the input graph, and c : V → {1, . . . , k} a k-coloring of G. We let Va denote the
vertices colored a, i.e. Va = {v ∈ V |c(v) = a}, and we let Eci ,c j be the set of edges
(u, v) ∈ E such that {c(u), c(v)} = {ci , c j }. Observe that w.l.o.g we can assume that
the input coloring is proper, i.e. for any color c, Ec,c = ∅, as any such edge can be
removed from G [15]. W.l.o.g. we can also assume that the color classes of G, and the
edge sets between them, have uniform sizes, i.e |Vc| = N for all c and |Eci ,c j | = M
for all ci < c j [14].

Theorem 2 w-PNE-GG is W [1]-hard.

Proof Given an instance of Multicolor Clique, graph G = (V, E) with k-coloring
c, we construct an instance G = (G ′ = (P, E ′),M) of PNE-GG as follows: The

123

Algorithmica (2015) 71:581–604 589

a b e f

d c g h

1 2 1 2

3 4 3 4

(a) Multicolor Clique

1 2

3

4

{a, e} {b, f}

{d, g}

{c, h}

(b) PNE-GG

Fig. 2 An example of the reduction, where the numbers correspond to different colors. In (b) the strategy
sets are shown in curly brackets (omitting N A) and the auxiliary players are represented as black vertices

players of G are separated in two distinct sets, the colorful Pc and the auxiliary Pa

players, P = Pc ∪ Pa . Each colorful player corresponds to a distinct color and each
auxiliary player to a distinct pair of colors. Every c ∈ Pc is connected to all the other
colorful players c′ ∈ Pc, through an auxiliary vertex a ∈ Pa . Thus, G ′ arises by
taking a k-clique and adding one auxiliary player on each edge. By construction, the
treewidth of G ′ is exactly k and thus the parameter is preserved.

The strategy sets are defined in the following manner: For a player c ∈ Pc, the
possible strategies are all the vertices of G that are colored c plus an extra N A strategy,
that stands for non-adjacent. Formally, St (c) = {v ∈ V |c(v) = c} ∪ {N A}. An
auxiliary player a ∈ Pa has only two possible strategies, St (p) = {A, N A}, that
stand for adjacent and non-adjacent respectively. Observe that G ′ is built such that
all colorful vertices neighbor only with auxiliary vertices and each auxiliary vertex is
neighbor to exactly 2 colorful ones. An example reduction can be found in Fig. 2.

The payoffs of G are as follows. For each player p ∈ P we describe a payoff
function1 u p : St (P) → {0, 1}. Let C be a global configuration. For an auxiliary
player a ∈ Pa let i, j be the two neighboring colorful players, i.e. i, j ∈ N (a). Then,
the utility function ua is such that:

1. ua(C) = 1 if a plays A and i, j play v, u such that (v, u) ∈ E or at least one of
i, j plays N A;

2. ua(C) = 1 if a plays N A and i, j play v, u such that (v, u) /∈ E and neither of i, j
plays N A;

3. ua(C) = 0 in all other cases.

For each player c ∈ Pc, her utility function uc is such that:

4. uc(C) = 1 if c plays a strategy in St (c)\{N A}, and all of her neighbors play A;
5. uc(C) = 1 if c plays N A and at least one of her neighbors plays N A;
6. uc(C) = 0 in all other cases.

In the following paragraphs we will show that G has a clique including all k colors
if and only if G has a pure Nash equilibrium. Let (v1, . . . , vk) be a k-clique of G that

1 Here we give the payoffs as a utility function over the global configurations. Of course, the only relevant
part of the global configuration is the one referring to N (p) for a player p ∈ P . The only reason we use
St (P) as the domain of the function is to simplify the presentation. The same convention will be used in
the proof of Theorem 4.

123

590 Algorithmica (2015) 71:581–604

contains all k colors. Consider the global strategy C where each player c ∈ Pc plays
the strategy that corresponds to vertex vc (the vertex from the clique that is colored c)
and each auxiliary vertex plays A. Observe that in this case all players receive payoff
1 which is the maximum they can receive and thus x is a pure Nash equilibrium.

To prove the opposite direction of the claim we will first argue that there is no pure
Nash equilibrium of G where there is an auxiliary vertex that plays N A. Assume that
C is a PNE and ∃a ∈ Pa that plays N A, with neighbor j ∈ N (a). Then, j would have
an incentive to play N A and get payoff 1 rather than a strategy in St (j)\{N A}. Conse-
quently, a would prefer A over N A which contradicts our assumption that C is a PNE.

Now, let C be a global configuration and a pure Nash equilibrium of G. From the
previous paragraph, every a ∈ Pa plays A and thus every c ∈ Pc plays a strategy
in St (j)\{N A}. Consider the set of vertices K = (v1, . . . , vk) where each vc corre-
sponds to the strategy of player c ∈ Pc. Since each auxiliary vertex plays A, it means
that all vertices in K are pairwise connected to each other and therefore form a clique.
In addition, they all belong to a different color class because of the construction of G.
Therefore, K is a multicolored k-clique of G.

To conclude our proof we need to show that the reduction takes at most time of
the form f (k) · p(|G|, k) for some computable function f and polynomial p(X).
The time of the construction is dominated by the computation of the matrix col-
lection M, whose size is the summation of the sizes of the individual matrices
|M| =∑

c∈Pc
|Mc| +∑

a∈Pa
|Ma |.

As mentioned earlier, we assume that the color classes of the Multicolor Clique

instance have uniform size N and thus N = n
k and for c ∈ Pc, |St (c)| = N + 1. In

addition, observe that |Pc| = k, that each player c ∈ Pc has k − 1 auxiliary neighbors
with 2 available strategies each, and that |Pa | = k(k−1)

2 since we have one auxiliary
vertex for each edge of the k-clique. Then the above summation can be rewritten as

k · ((N + 1) · 2k−1)+ k(k − 1)

2
2 · (N + 1)2

≤ 2k−1 · (n + k)+ k2 · (N + 1)2

≤ 2k · n + 4n2

The 2k−1 term corresponds to the number of possible configurations over the neighbor-
hood of a colorful player, i.e. |St (N (c))| = 2k−1, for all c ∈ Pc. Therefore, the time
we need for the whole reduction is at most f (k) · p(|G|) which concludes our proof. ��

We conclude that w-PNE-GG does not admit a fixed-parameter tractable algorithm,
unless F PT = W [1]. It is worth to mention that our construction proves hardness for a
more general parameter, namely the number of vertices (which is k+(k

2

)
). Nevertheless,

in the next section we will demonstrate an algorithm that becomes F PT for games
with a bounded number of available strategies per player.

5 Towards Tractability

When the input graph of a graphical game is a tree, a relatively simple algorithm can
answer the question of existence of a PNE in time linear in the input. The idea is

123

Algorithmica (2015) 71:581–604 591

a, b, c

a, b, c,d

Xj

Xi

(a) Introduce

a, b, c,d

a, b, c

Xj

Xi

(b) Forget

a, b, c a, b, c

a, b, c

Xj1 Xj2

Xi

(c) Join

Fig. 3 An illustration of the three non-trivial type of nodes found in a nice tree decomposition

that every vertex is able to compute the best response(s) for each configuration of its
children, while ignoring its parent. Then, visiting the vertices in a bottom–up manner
the parent will be taken into account in a subsequent step. The details of the algorithm
and the proof of the result below are omitted as they are subsumed by the algorithm
that runs on tree decompositions.

Proposition 1 Given a graphical game (T,M), where T is a tree, one can compute
a PNE in time O(|M|).

The idea of the tree algorithm will now be generalized to tree decompositions; the
problem under consideration is w-PNE-GG as defined in the previous section. The
intuition is to go through all possible configurations for each bag of the tree, which
count to αw+1. Then we put together this information on the tree decomposition in
polynomial time. The analysis we provide, is based on a nice tree decomposition. In
such a decomposition, one node in T is considered to be the root and each node i ∈ I
is one of the following four types:

– Leaf: node i is a leaf of T and |Xi | = 1;
– Join: node i has exactly two children, say j1, j2 and Xi = X j1 = X j2 ;
– Introduce: node i has exactly one child, say j , and ∃v ∈ V with Xi = X j ∪ {v};
– Forget: node i has exactly one child, say j , and ∃v ∈ V with X j = Xi ∪ {v}.

An illustration of the three non-trivial node types can be found in Fig. 3. It is known
that if a graph G = (V, E) has a tree decomposition with width at most w, then it also
has a nice tree decomposition of width at most w and O(w|V |) nodes. A given tree
decomposition can be turned into a nice one in linear time [5].

5.1 A Dynamic Programming Approach

Suppose we are given an instance of a graphical game; a graph G = (V, E), a collection
of matrices M-one matrix Mp for each node p ∈ V —and a tree decomposition T .
We assume w.l.o.g. that the tree decomposition ({Xi |i ∈ I }, T = (I, F)) is nice. Each
node i ∈ I is associated to a graph Gi = (Vi , Ei). Vi is the union of all bags X j , with
j equaling i or a descendant of i in T , and Ei = E ∩ (Vi × Vi). In other words, Gi is
the subgraph of G induced by Vi .

123

592 Algorithmica (2015) 71:581–604

A table Ai is to be computed for each node i ∈ I and contains an integer value
for each possible configuration C ∈ St (Xi). Therefore, when the treewidth is w, table
Ai contains at most α|Xi | ≤ αw+1 values. Given configuration C ∈ St (Xi), the table
value Ai (C) corresponds to the (maximum) number of players in best-response in
Gi w.r.t. C. Thus, Ai (C) = |Vi | if and only if ∃C′ ∈ St (Vi) such that C′ ⊇ C and
∀p ∈ Vi , C′p ∈ βp(C′−p). Note that the strategy for the players in Vi − Xi is not
explicitly mentioned at this point (where the algorithm is treating bag Xi) but has
been treated at an earlier time of the execution of the algorithm. Table Ai is computed
for all nodes i ∈ I in bottom–up order; for each non-leaf node we use the tables of its
children to compute table Ai .

In addition, we have a 0, 1-table Fp for each p ∈ V that has the same number
of entries as matrix Mp. Initially, Fp has the value 1 at all entries. For the sake of
simplicity, we will assume that |Fp| = |Mp| (same description size) for all p ∈ V .
Essentially, Fp is where we mark which joint strategies are allowed at PNE over
the neighborhood of p, with respect to the neighbors of p that have been forgotten
(through a forget node). It follows that F tables will be updated at forget nodes—when
a player is forgotten, her neighbors will update their F tables. At introduce nodes the
F table will be examined—when a player is introduced, her neighbors will check their
F tables for joint strategies that are allowed with regards to their forgotten neighbors.
Formally: Let i ∈ T be a forget node of the tree decomposition. Then, after i is
examined and corresponding F tables updated, we have that: For every p ∈ Xi and
C ∈ St (N (p) ∪ {p}), Fp(C) has the value 0 if and only if ∃u ∈ N (p) ∩ Vi such that
Cu /∈ βu(C−u). We repeat that the F tables are only modified at forget nodes and their
initial state is to have the value 1 at all entries.

The algorithm presented here will use the best response function in a more general-
ized fashion than Definition 2: the input might be a configuration over a subset of the
neighborhood of the player under consideration. Let p ∈ V, P ′ be subset of the neigh-
borhood of p, P ′ ⊂ N (p), and C a configuration over the players in P ′, C ∈ St (P ′).
In this case, βp(C) contains ap ∈ St (p) if and only if ∃C′ ∈ St (N (p)) such that
C′ ⊃ C and ap ∈ βp(C′). Similarly, let C ∈ St (P ′ ∪ {p}). Then, by Fp(C) we mean
all entries Fp(C′) such that C′ ⊃ C. Also, if the configuration given as input includes
strategies for players that are not in N (p), these strategies are ignored. First we briefly
argue about the complexity of the best response function and then we provide a case
analysis based on the type of the node under examination.

The complexity of the best response function. Let G = (G,M) be a graphical game
and p ∈ V a player of the game. In addition, let P ′ = N (p) ⊆ V and C ∈ St (P ′). To
compute βp(C) we need to perform |St (p)| steps; that is, to examine each row of the
column corresponding to C in order to find the strategies of p that constitute the best
responses to C. Now, let C′ ⊂ C, so that C′ is a configuration for only a subset of the
neighbors of p. In this case βp(C) contains ap ∈ St (p) if and only if ∃C′ ∈ St (N (p))

such that ap ∈ βp(C′). The worst case is when C′ contains information only for one
player v (thus, C′ = C′v). Then, computing βp(C′) takes 1

|St (v)| · |Mp| computational
steps, since |St (N (p))| = |St (v)| · |St (N (p)/{v})|.

123

Algorithmica (2015) 71:581–604 593

5.1.1 Leaf Nodes

Suppose node i is a leaf of T with Xi = {p}. Then, table Ai has only |St (p)| entries.
The value 1 will be attributed to these entries since a single player can be in PNE, no
matter what strategy it follows, when there is no other player to compete with. Hence,
for each configuration C over the vertices of Xi (in this case St (Xi) = St (p)) we set
Ai (C) = 1.

5.1.2 Forget Nodes

Suppose i is a forget node of T with child j . In this case, Gi and G j is the same
graph but Xi and X j differ by one vertex. Suppose this vertex is p ∈ X j − Xi . To
compute the tables of a forget node we use the procedure suggested by Lemma 1. For
each of the α|Xi | possible configurations we perform a number of α steps for a total
of O(α|Xi |+1).

Lemma 1 Let C ∈ St (Xi), Ai (C) = maxap∈St (p) A j (C ∪ {ap}).
In the case of a forget node we additionally have to update the Fu table for each

u ∈ Xi ∩N (p). While computing the maximizing values for the procedure suggested
by Lemma 1 we encounter all the possible combinations of joint strategies over the
players in X j (the bag including p). For each C ∈ St (Xi) and ap ∈ St (p), if ap /∈
βp(C) then we set Fu(C ∪ {ap}) = 0. Information about the preferences of forgotten
players propagates this way.

For each u ∈ X j we read the table Mp (to conclude if ap /∈ βp(C)) and table Fu

once (to update it). Since Xi is a forget node we have |Xi | ≤ w. Thus, the time needed
to compute the values of the table Ai and to update the tables F is O(αw · (|Mp|+∑

u∈N (p)∩X j
|Mu |)).

5.1.3 Introduce Nodes

Suppose i is an introduce node of T with child j and that Xi = X j ∪ {p}. It is known
that there is no vertex u ∈ Vj − X j such that {p, u} ∈ E [5]. Hence, Gi is formed
from G j by adding p and zero or more edges from p to vertices in X j .

Lemma 2 Let C ∈ St (X j). If ∀u ∈ X j , {p, u} /∈ E, then Ai (C ∪ {ap}) = A j (C)+ 1
for all strategies ap ∈ St (p).

In the case above, p is not connected to any vertex in Gi . For the other case we have
to be more elaborate. Assume that there is u ∈ X j such that {p, u} ∈ E . We use
Algorithm 1 which proceeds in the following manner: Given C ∈ St (X j) and a best
response for p ∈ Xi − X j , ap ∈ βp(C), for each player u ∈ X j ∩N (p) it checks if
u is in best-response with respect to configuration C ∪ {ap}. If Cu ∈ βu(C ∪ {ap}) it
also checks that Fu(C ∪ {ap}) = 1 and thus that the suggested joint strategy C ∪ {ap}
is allowed from the perspective of u with regards to her forgotten neighbors. In the
positive case it adds player u to the set Pi . In the end of the iteration if all players
in N (p) ∩ X j are also in Pi it means that all players in Gi connected to p are in

123

594 Algorithmica (2015) 71:581–604

best-response with respect to the current configuration. Hence, for Ai (C ∪ {ap}) we
take the value A j (C)+ 1.

Algorithm 1 IntroNode
Input: C ∈ St (X j), p ∈ Xi − X j , ap ∈ βp(C)

Output: Ai (C ∪ {av})
1: Initiate set Pi = ∅
2: for u ∈ N (p) ∩ X j do
3: if Cu ∈ βu(C ∪ {ap}) and Fu(C ∪ {ap}) = 1 then
4: Pi ← Pi ∪ {u}
5: end if
6: end for
7: if Pi = N (p) ∩ X j then
8: Ai (C ∪ {ap})← A j (C)+ 1
9: else
10: Ai (C ∪ {ap})← A j (C)

11: end if

Lemma 3 Given an introduce node i ∈ T with child j ∈ T such that p ∈ Xi − X j ,
we can compute Ai (C) for all configurations C ∈ St (Xi) in time O(α|Xi | · (|Mp| +∑

u∈N (p)∩X j
|Mu |)).

Proof Before we start the procedure we compute the set N (p) ∩ X j in at most |X j |
steps. This happens only once for each introduce node. In the case �u ∈ X j such that
{p, u} ∈ E we compute the table value for each configuration in constant time and
thus the total time needed is O(α|Xi |).

In the other case, we use Algorithm 1 for each configuration C ∈ St (X j). Com-
puting βp(C) takes at most |Mp| steps. The loop at lines 2–6 is through all vertices
u ∈ N (p)∩ X j and for each vertex u, βu(C ∪ {ap}) is computed once and table Fu is
checked once at line 3 in at most 2 · |Mu | steps. The operation at line 7 takes one step.
For each of the α|X j | = α|Xi |−1 configurations Algorithm 1 has to be run at most α

times (for each ap ∈ St (p)). The lemma follows. ��
The algorithm and lemma above show us how to compute the Ai table for an intro-

duce node using information found in the table of the child node. For the introduced
vertex p, we have that the matrix Mp and at most other |Xi | − 1 matrices are read
once for each configuration. Note that adjacency is only checked once since it does
not change for different entries.

5.1.4 Join Nodes

Suppose i is a join node of T with children j1 and j2. Remember that Xi = X j1 = X j2 .
Then, Gi can be interpreted as a union of G j1 and G j2 . What we need to capture here,
is that a configuration C for the players of Xi may be part of a PNE for Gi if and
only if it also is for both G j1 and G j2 . Given a configuration C the computation of
Ai (C) for a join node takes only constant time as described by Lemma 4. Therefore,
the computation of the whole table for a join node takes place in time O(α|Xi |).

123

Algorithmica (2015) 71:581–604 595

Lemma 4 Let C ∈ St (Xi), Ai (C) = A j1(C)+ A j2(C)− |Xi |.
Proof By adding the values of the two subtrees we add the vertices found in Xi two
times and thus we have to subtract |Xi | from the total sum. When v ∈ Vj1 , w ∈ Vj2
and v,w /∈ Xi , then {v,w} /∈ E [5]. Assuming every vertex not in Xi is in PNE, all
the vertices in Xi have to be in PNE in both subtrees in order to have PNE for the
whole graph Gi . ��

5.2 Combining the Tables

The algorithm proposed in the previous section is a bottom–up tree walk that finds
partial configurations for each bag of the tree decomposition, that could be part of a
PNE configuration. Then, these configurations are synthesized together on every step
of the tree walk and an answer can be achieved when the root of the tree decomposition
is reached.

Lemma 5 Graphical game (G,M) has a PNE if and only if ∃C ∈ St (Xr) such that
Ar (C) = |V |.

In addition, note that during the bottom–up tree walk, if there exists a bag Xi such
that ∀C ∈ St (Xi): Ai (C) < |Vi |, then we can stop the execution of the algorithm and
reply NO. The tables of all bags of the tree decomposition have to be computed to
verify a YES instance since any partial PNE configuration might be jeopardized by a
newly introduced vertex. Upper time bounds of the algorithm suggested in this section
are provided by the theorem below.

Theorem 3 Given a graphical game (G,M) and a tree decomposition T of width w,
there is an algorithm that determines the existence of a PNE in O(αw · n · |M|) time.

Proof As discussed above, the computationally expensive nodes are the forget and
introduce nodes. Both types have asymptotically the same upper bound. Thus, here
we assume that every node i ∈ T is an introduce node2 with child j and vertex
p ∈ Xi − X j . We derive the following upper bound:

αw+1 ·
∑

i∈T

⎛

⎝|Mp| +
∑

u∈N (p)∩X j

|Mu |
⎞

⎠ ≤ αw+1 · (|M| + (n − 1)|M|)

The summation over all matrices |Mp| gives |M|. In addition, the second summation
is over at most n − 1 elements which in turn are upper bounded by |M| because of
the first summation. The theorem follows. ��

Our algorithm improves significantly on the previous known bounds, since the
base of the exponent is only the number of available strategies and not the whole

2 Observe that in the case of a clique all the nodes of T but one are introduce nodes. The treewidth of an
n-clique is n − 1.

123

596 Algorithmica (2015) 71:581–604

game description. For example, if we assume that the number of available strategies is
bounded by a constant, our algorithm becomes fixed-parameter tractable with respect
to treewidth.

5.3 O(log n) Treewidth

Let us consider the implications that our algorithm has for games where the input graph
has logarithmically-bounded treewidth. Daskalakis and Papadimitriou [8] proved that
deciding the existence of a PNE is in P for all classes of games with O(log n)

treewidth, bounded number of strategies and bounded neighborhood size. Our algo-
rithm improves on their results in the following ways: First, it is polynomial for graph-
ical games of O(log n) treewidth and bounded number of strategies, even without
the bounded neighborhood size assumption. Second, if the size of the neighbor-
hood is bounded we achieve an upper bound that is polynomial3 in n. Our bound
improves on the time complexity of the algorithms presented in [8] by removing
Δ = maxp∈V |N (p)| from the exponent.

Corollary 1 Given a graphical game with O(log n) treewidth and bounded number of
strategies, there is an algorithm that decides the existence of a PNE in time polynomial
in the description of the game. Moreover, if the size of the neighborhood is bounded
the algorithm becomes polynomial in the number of players.

Proof Suppose that the treewidth of the input graphical game is w = O(log n); we use
a modified version of the algorithm presented by Becker and Geiger in [1] as discussed
in [8]. This algorithm runs in time poly(n) · 24.67·k , when the input graph consists of
n vertices, and either outputs a legitimate tree decomposition T of width 3.67w or
outputs that the treewidth is larger than w; for w = c log n, where c is a constant, the
algorithm either returns T of width 3.67c log n or outputs that the treewidth of G is
larger than c log n. Assuming the positive case, we have a tree decomposition T of
the input graph of size 3.67c log n. When T is fed to our algorithm presented in the
previous sections it results in an upper bound of

α3.67·c·log n · 3.67 · c · log n · |M|
= n3.67·c · 3.67 · c · log n · |M|

computational steps, which is poly(|M|). Since |M| ≤ n · |MΔ| = n ·αΔ, if the size
of the neighborhood is bounded we have that the above time bound is poly(n). ��

5.4 Final Remarks

We give some further comments on the results we have obtained in this section. First,
we consider our assumption—present in Sect. 5.1—that the tree decomposition is part

3 Note that if the degree of the graph is bounded, then the description of the graphical game is polynomial
in the number of players.

123

Algorithmica (2015) 71:581–604 597

of the input. This assumption is justified by virtue of the celebrated treewidth algorithm
of Bodlaender [2]. This algorithm computes a tree decomposition of a given graph
in fixed-parameter tractable time, where the parameter is the treewidth of the graph.
However, it is known to be of little practical use due to very large constants in the
running time. Recently, Bodlaender et al. gave the first algorithm providing a constant
approximation of treewidth which runs in time 2O(w)n, where w is the treewidth of
the given graph and n the number of vertices [4]. Given a graph G and an integer k,
this algorithm either outputs that the treewidth of G is larger than k or gives a tree
decomposition of width at most 5k + 4. Therefore, if we combine this algorithm with
ours, the asymptotic running time of the latter does not change.

An immediate consequence of Theorem 3 is that PNE-GG is in F PT , for the com-
bined parameter (α,w). It follows that (α,w)-PNE-GG is kernelizable (cf. Sect. 2.3)
and it is natural to ask whether (α,w)-PNE-GG admits a polynomial kernel. A poly-
nomial kernel means that given an instance of (α,w)-PNE-GG, we can obtain, in
time polynomial in the size of the instance and the value of the parameter, an equiv-
alent instance whose size and parameter value are both polynomially bounded in
(α,w). We sketch how the method of AND-Distillation, described in [3], can be used
to prove the non-existence of a polynomial kernel for our problem. In [3], AND-
Distillation was formulated as a conjecture, but recently, Drucker proved that AND-
Distillation holds unless N P ⊆ coN P/poly [11]. It is easy to prove that (α,w)-
PNE-GG is AND-Compositional by taking the disjoint union of m instances of the
problem. Note that each instance is assumed to have a constant number of available
strategies for every player (otherwise the problem is W [1]-hard, cf. Sect. 4). The
resulting AND-Composition instance has the same number of strategies and, in addi-
tion, it has treewidth w and there exists a PNE if and only if all m instances have a
PNE. This implies that (α,w)-PNE-GG does not admit a polynomial kernel, unless
N P ⊆ coN P/poly. The relevant definitions can be found in [3].

6 O∗(αw) is Probably Optimal

We now prove a lower bound of the following form: one cannot improve the O∗(αw)

exponential dependency on treewidth for solving PNE-GG unless SETH fails. The for-
mal statement is presented below at Theorem 4. We prove this by giving a reduction
from SAT to PNE-GG, in the spirit of [27]. Our reduction is inspired from the one to
q-Coloring, described in Sect. 6 of [27]. Note that PNE-GG can be seen as a general-
ization of q-Coloring: Given a q-Coloring instance, one could argue that it is decidable
by solving a PNE-GG instance on the same graph, where all players have q strategies
and their payoffs are such that they want to pick a different strategy than their neighbors
(anti-coordination game). However, in such a game the payoff matrices would have
size exponential in the size of the neighborhood (even if we only allow 0,1 payoffs).
Thus, we cannot directly use the aforementioned reduction for q-Coloring to prove
Theorem 4 below. In this section we describe a new reduction suitable for PNE-GG.

Theorem 4 If, for some α ≥ 3 and ε > 0, PNE-GG can be solved in time O∗((α −
ε)w), then SAT can be solved in time O∗((2− δ)n), for some δ > 0.

123

598 Algorithmica (2015) 71:581–604

Let φ be the input SAT formula with n the number of variables and m the number of
clauses. Parameter p is chosen w.r.t. α and ε in a way to be explained later. Given a SAT
formula φ the reduction described below outputs a graphical game G = (G,M), G =
(V, E), which admits a PNE if and only if φ is satisfiable. First we describe the
construction of the graph G:

1. Group the variables of φ into t groups F1, . . . , Ft of size �log α p�. An assignment
of values to the variables of a group Fi is called a group assignment. The number
of groups is t = � n

�log α p� �.
2. For each group Fk we have a set Vk that consists of p paths, μ1, . . . , μp. Each

such path contains m vertices and from now on these paths will be called m-
chains (to distinguish from the other type of path to appear in the next steps of
the construction). Each vertex of a set Vk is denoted as vi

k where i ∈ [m] and has
St (vi

k) = [α]. With V i
k ⊂ Vk we mean the set which consists of the i th vertex of

each m-chain in Vk, V i
k = {vi

k |vi
k ∈ Vk}.

Let Ck ∈ St (Vk) be a configuration where for all m-chains of Vk, μ ∈ Vk , we have
that ∀v, u ∈ μ, Ck[v] = Ck[u] (all vertices of an m-chain play the same strategy).
Such configurations are called the valid configurations of Vk . We have α p ≥ 2|Fk |
possible valid configurations. Each group assignment of Fk corresponds to a unique
valid configuration of Vk (note that there might be some valid configurations that
do not correspond to any group assignment of Fk).

3. For each clause Ci of φ we take a gadget Ĉi that consists of a a path Pi and two
extra vertices. On Pi we take one vertex for each satisfying group assignment of Ci .
The total number of group assignments are t2�log α p� ≤ tα p which is O(n) since
α, p are constants independent of the input φ. Each vertex of Pi is denoted as wk

i
and has St (wk

i) = {na1,na2,active} (the first two strategies can be thought
of as not-active). With wk

i we mean a vertex of Pi that corresponds to a group
assignment of Fk . The corresponding configuration of Vk is denoted as S(wk

i).
The two extra vertices are denoted as wstart

i and wend
i ; the former is connected to

the leftmost vertex and the latter to the rightmost vertex of Pi and have {na1,na2}
as their strategy set.

4. The last step is to connect vertices of paths Pi to vertices of sets Vk . For each
wk

i ∈ Pi and vi
k ∈ V i

k we take an edge in G.

An illustration of the construction can be found in Fig. 4.

Secondly, we define the payoff matrices M. In the resulting game we only have
0, 1 payoffs which we describe in terms of a payoff function uv : St (V)→ {0, 1}, for
each player v ∈ V . Let C ∈ St (V) be a global configuration.

For every gadget Ĉi we have that: uwstart
i

(C) = 1 when wstart
i plays na1 and 0

otherwise, regardless of the strategies of her neighbors; uwend
i

(C) = 1 when wend
i plays

nal and 0 for the other available strategy. Here, l is 1 if V (Pi) is even and 2 otherwise.
The payoffs for the vertices wk

i ∈ Pi are such that they play an anti-coordination
game with their neighbors on Ĉi . By that we mean that each vertex wk

i wants to play
a strategy different from the ones the vertices in N (wk

i) ∩ Pi play. Then, by a parity
argument there is at least one vertex of Pi that plays active (also, one is enough).

123

Algorithmica (2015) 71:581–604 599

pstart
1 pend

1P1

pstart
2 pend

2
P2

Vl Vl+1 Vl+2

Fig. 4 Sample construction, derived from a formula with only two clauses. We depict the two paths P1, P2
and three sets of vertices Vl , Vl+1, Vl+2 corresponding to groups Fl , Fl+1, Fl+2. We have C1 being satisfied
by two different assignments of Fl (similarly C2 by two different assignments of Fl+2) while for the rest
of the groups both clauses are satisfied by only one assignment

Following we describe the payoffs for vertices of a path Pi , w
k
i ∈ Pi .

– uwk
i
(C) = 1 if wk

i plays active, none of the players in N (wk
i)∩Pi play active

and vertices in N (wk
i) ∩ Vk play according to S(wk

i);
– uwk

i
(C) = 1 if wk

i plays nal and none of the players in N (wk
i) ∩ Pi play nal ;

– uwk
i
(C) = 0 in all other cases.

Intuitively, a vertex wk
i ∈ Pi plays active while anti-coordinating with her neigh-

bors on Pi and the vertices of in V k
i play according to the corresponding configuration

S(wk
i). Then, Ci is satisfied by the group assignment to which wk

i corresponds. It
remains to define the payoffs for players of sets Vk . Let v ∈ Vk ∩ μ be a player that
plays action s ∈ [α] (and lies on m-chain μ). Her payoff is defined as:

– uv(C) = 1 if all of players in N (v) ∩ μ play s.
– uv(C) = 0 in all other cases.

It follows, that x is a PNE only if x is a valid configuration.

Lemma 6 The construction takes polynomial time.

Proof The number of vertices of each path are at most tα p which is O(n) and the
number of vertices in sets Vi are at most mp which is O(m). In addition, the degrees
of all the vertices are bounded: Every vertex wk

i ∈ Pi has degree at most p + 2
which is constant; every vertex vk ∈ Vk has degree at most α p + 2 which is also
constant. Since the degrees are bounded by constants, the size of the matrices are also
constant.4 ��
Lemma 7 φ is satisfiable if and only if G has a PNE.

Proof A satisfying assignment to φ corresponds to a group assignment for each group
Fk , which in turn corresponds to a valid configuration C ∈ St (Vk). Let C′ ⊂ C be

4 The actual size of the matrices are |M
wk

i
| ≤ 33α p and |Mvk | ≤ α33α p

.

123

600 Algorithmica (2015) 71:581–604

such that C′ ∈ St (V i
k). Then, there exists a vertex wk

i ∈ Pi , such that C′ = S(wk
i).

We let wk
i play active . Note that a path Pi might have more than one vertices

that play active if the satisfying assignment corresponds to more than one group
assignments (for different groups) that satisfy Ci . The rest of the vertices on Pi play
alternatingly na1,na2 in order to anti-coordinate. Finally, all gadgets Ĉi are pairwise
disjoint; therefore, we can repeat the same procedure for each of them until we end up
with a global configuration C ∈ St (V). C is a PNE because ∀v ∈ V, uv(C) = 1 and 1
is the maximum payoff that v could receive.

For the opposite direction let C ∈ St (V) be a PNE. Then, C′ ∈ St (Vk), C′ ⊂ C is a
valid configuration, ∀k. In addition, we know that there is at least one vertex wk

i ∈ Pi

that playsactive (because of the parity argument we discuss above) and the vertices
in V i

k play according to S(wk
i)—thus the vertices in Vk play Ck ∈ St (Vk), the valid

configuration corresponding S(wk
i). For each group Fk , we take the group assignment

that corresponds to Ck and satisfies Ci . The resulting assignment satisfies each clause
Ci and thus it satisfies φ. If the configuration C′ ∈ St (Vk) does not correspond to a
satisfying assignment for Fk then we set all the variables of Fk in f alse. This is safe
as all clauses are satisfied by group assignments of other groups. ��

Lemma 8 The mixed search number of the resulting graph is at most pt + 1.

Proof We describe a mixed search strategy where we use a distinguished searcher
and a set of pt searchers that we call blockers. For every i we place a blocker on the
first vertex of every m-chain, which are pt in total. Initially, we place the searcher at
wstart

1 . The strategy then develops as follows:
The searcher goes through all the vertices of path Pi (from wstart

i to wend
i). At the

same all the blockers are placed on the vertices of the sets V i
k ,∀k ∈ [t]. During this

all the edges of the path Pi get cleaned. Also the edges between Pi and the sets Vk get
cleaned because at the time the searcher reaches a vertex with edges towards Vk the
blockers are on the other side of these edges.

In the next round, the searcher moves to the next path Pi+1 and the blockers move
accordingly to the vertices of sets V i+1

k . During this move no edge of the graph gets
recontaminated because there is no path to a contaminated edge (any such path is
blocked by a blocker). So after m rounds the whole graph will be cleaned: the searcher
will clean all the paths, the blockers will clean all the m-chains and the combination
of the two will clean the edges in between. ��

Lemma 9 If α-PNE-GG can be solved in O∗((α − ε)w) for some 0 < ε < 1, then
SAT can solved in O∗((2− δ)n) for some 0 < δ < 1.

Proof We have O∗((α − ε)w) = O∗(αλw), where λ = logα (α − ε) < 1. Next, we
describe how we choose the parameter p. We need p be to be sufficiently large such
that p+1

p−1λ = δ′ < 1. Based on the construction described above, given a SAT formula
φ we construct a graphical game G. According to Lemma 7, we can decide satisfi-
ability of φ by deciding the existence of a PNE for G. W.r.t. Lemma 8 the treewidth
of G is at most pt + 2. Thus, we can solve G in time O∗(αλ(pt+2)) = O∗(αλpt). We

123

Algorithmica (2015) 71:581–604 601

have that:

λpt = λp� n

�p log α�� ≤ λ(p + 1)
n

(p − 1) log α
= δ′ n

log α
= δ′′n

for some δ′′ < 1. Therefore, we can solve the SAT formula (by solving G) in time
O∗(2δ′′n) for some δ′′ < 1, which is equal to O∗((2− δ)n) for for some δ > 0. ��
This concludes the proof of Theorem 4.

7 Constructing a PNE

In this section we discuss the construction of pure Nash equilibria. When a PNE exists
all tables Ai ,∀i ∈ T are computed; we are able to use these tables to construct a
configuration that corresponds to a PNE. Note that the collection of tables A = {Ai |i ∈
T } contains information about all the PNE of the game instance. Since all PNE can
be exponentially many to the input size, it should suffice to have a structure that is
bounded polynomially to the input size. Consider the following definition (similar to
the one used in [8]).

Definition 8 (Succinct Description) Given a game G = (G,M), let SG be the set of
all PNE. A succinct description of SG is a string y such that |y| is polynomial in |G|
and SG = f (y) for some function f computable in time polynomial to |G| + |y|.

We notice that A constitutes a succinct description of all PNE since |A| is polyno-
mial to G and the set of all PNE can be computed in time polynomial in |G| + |A|.
Subsequently, we prove that constructing a sample or the maximum-payoff PNE does
not require additional computational effort.

Theorem 5 Given a graphical game (G,M) and a tree decomposition T of width w,
there is an algorithm that constructs a PNE, if one exists, or answers NO otherwise in
O(αw · n · |M|) time. Moreover, the same algorithm computes a succinct description
of all PNE.

Proof First we execute the algorithm of Sect. 5, which will either output NO or give
us the tables Ai ,∀i ∈ T . To construct a sample PNE we use a table S, with |S| =
n, to represent the solution of the problem. With Sp we denote the position of the
table that is indexed by player p. Begin at the root r of T and choose an arbitrary
configuration C ∈ St (Xr) such that Ar (C) = |V |. For each player p ∈ Xr we set
Sp = Cp. Then we iterate through the vertices of the tree decomposition in a breadth
first manner. This top–down iteration terminates when all vertices p ∈ V have been
visited at least once. Let X j be the bag under consideration. Observe that X j possibly
contains an unvisited vertex only if its parent Xi is a forget node. Let this player
be p ∈ X j − Xi . We find configuration C ∈ St (X j) such that ∀u ∈ Xi , Cu = Su

and A j (C) = Ai (C\{Cp}) (remember that Gi = G j) and set Sp = Cp. Assume
that the maximizing configurations have been marked when computing the values of
the tables Ai and thus the enumeration at the root does not need to go through all

123

602 Algorithmica (2015) 71:581–604

αw+1 possible configurations. The procedure at the children of forget nodes does not
increase the time complexity: the configuration C ∈ St (X j) that intersects with S and
contains additionally strategy ap such that A j (C) = Ai (C\{Cp}) can be found in a
constant number of steps (this can be arranged, e.g. by ordering the configurations
that maximize A j lexicographically while the algorithm is executed). Therefore the
top–down iteration takes at most O(n) steps. ��

Note that for the above computations no information from the payoff matrices is read.
However, this cannot be the case if our interest lies in specific PNE. The following is
a corollary of Theorems 3 and 5: Given game G and integer k, there is an algorithm
that can decide the existence and construct a maximum-payoff PNE configuration C
(i.e. such that Mp(C) ≥ k,∀p ∈ V). In order to be able to do this we need to slightly
modify the algorithm of Sect. 5. Previously, the algorithm allowed Ai (C) = Vi if and
only if C was a PNE for Vi ⊆ V . Now we want it to allow Ai (C) = Vi if and only if
C is a PNE for Vi ⊆ V and Mp(C) ≥ k,∀p ∈ Vi . Otherwise, it would not increase
the value of Ai (C). This alteration is necessary and sufficient to decide the existence
of a maximum-payoff PNE. Then, with the altered Ai tables we could use the same
top–down procedure as in the proof of Theorem 5 to construct a maximum-payoff
PNE, given that one exists.

8 Conclusions

This article deals with the problem of deciding the existence of a pure Nash equilibrium
for a graphical game. The methods we use are native to the field of parameterized
complexity and our main contributions sum up to the following: PNE-GG is W [1]-
hard when parameterized by treewidth; there is a O∗(αw) algorithm that solves PNE-
GG (in addition, we prove that PNE-GG is polynomial-time solvable for α = 2);
there is no O∗((α − ε)w) time algorithm, for some α ≥ 3 and ε > 0, that solves
PNE-GG unless the SETH fails. The previous algorithms for the problem, found in
[17] and [8], are based on reduction to other problems. Our algorithm is based directly
on the combinatorics of the problem and improves on the time bound of [8], which
was previously the fastest algorithm, by removing a factor of Δ = maxp∈V |N (p)|
from the exponent. This is an argument in favor of the power of the techniques used
in parameterized complexity.

As an epilogue we outline a few open problems. Consider the following general-
ization of PNE-GG: given a graphical game G find the largest subset of players that
are in PNE. Of course, if G admits a PNE then it is the set of all players. It this problem
solvable in O∗(αw) time? A result towards the opposite would be that this problem
is hard for one of the classes of the W -hierarchy, even if α is bounded. In addition,
it is not clear if our algorithms are capable of computing a social welfare optimizing
PNE. That is, a PNE configuration C that maximizes

∑
p∈V Mp(C). Finally, would

the fact that w-PNE-GG is in F PT for fixed α be useful for proving F PT results for
other problems by reducing those to PNE-GG (or to the maximum payoff version of
PNE-GG)? Note that when designing such reductions one has to be very careful with
regards to the matrix sizes and, of course, that α remains constant.

123

Algorithmica (2015) 71:581–604 603

References

1. Becker, A., Geiger, D.: A sufficiently fast algorithm for finding close to optimal clique trees. Artif.
Intell. 125(1–2), 3–17 (2001)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25(6), 1305–1317 (1996)

3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial
kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: An O(ckn)

5-approximation algorithm for treewidth. In: Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2013). IEEE Computer Society, pp. 499–508 (2013)

5. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth.
Comput. J. 51(3), 255–269 (2008)

6. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. J.
ACM 56(3), 14:1–14:57 (2009)

7. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium.
SIAM J. Comput. 39(1), 195–259 (2009)

8. Daskalakis, C., Papadimitriou, C.H.: Computing pure Nash equilibria in graphical games via Markov
random fields. In: Feigenbaum, J., Chuang, J.C.-I., Pennock, D.M. (eds.) ACM Conference on Elec-
tronic Commerce. ACM, pp. 91–99 (2006)

9. Daskalakis, C., Schoenebeck, G., Valiant, G., Valiant, P.: On the complexity of Nash equilibria of
action-graph games. In: Mathieu, C. (ed.) Proceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2009). SIAM, pp. 710–719(2009)

10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London
(2013)

11. Drucker, A.: New limits to classical and quantum instance compression. In: Proceedings of the 53rd
Annual Symposium on Foundations of Computer Science (FOCS 2012). IEEE Computer Society, pp.
609–618 (2012)

12. Estivill-Castro, V., Parsa, M.: Computing Nash equilibria gets harder: new results show hardness even
for parameterized complexity. In Downey, R., Manyem, P. (eds.) Proceedings of the 15th Computing:
The Australasian Theory Symposium (CATS 2009) volume 94 of Conferences in Research and Practice
in Information Technology (CRPIT). Australian Computer Society, pp. 81–87 (2009)

13. Estivill-Castro, V., Parsa, M.: Single parameter FPT-algorithms for non-trivial games. In: Iliopoulos,
C.S., Smyth, W.F. (eds.) Combinatorial Algorithms - 21st International Workshop (IWOCA 2010),
Lecture Notes in Computer Science, vol. 6460, pp. 121–124, Springer, Berlin (2010)

14. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Szeider, S., Thomassen,
C.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2),
143–153 (2011)

15. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of
multiple-interval graph problems. Theoret. Comput. Sci. 410(1), 53–61 (2009)

16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York (2006)
17. Gottlob, G., Greco, G., Scarcello, F.: Pure Nash equilibria: hard and easy games. J. Artif. Intell. Res.

24, 357–406 (2005)
18. Greco, G., Scarcello, F.: On the complexity of constrained Nash equilibria in graphical games. Theorert.

Comput. Sci. 410(38–40), 3901–3924 (2009)
19. Hermelin, D., Huang, C.-C., Kratsch, S., Wahlström, M.: Parameterized two-player Nash equilibrium.

Algorithmica 65(4), 802–816 (2013)
20. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
21. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Com-

put. Syst. Sci. 63(4), 512–530 (2001)
22. Jiang, A.X., Leyton-Brown, K.: Computing pure Nash equilibria in symmetric action graph games.

In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007). AAAI Press, Menlo
Park, pp. 79–85 (2007)

23. Jiang, A.X., Leyton-Brown, K., Bhat, N.A.: Action-graph games. Games Econ. Behav. 71(1), 141–173
(2011). Special Issue In Honor of John Nash

24. Jiang, A.X., Safari, M.: Pure Nash equilibria: Complete characterization of hard and easy graphical
games. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) Proceedings

123

604 Algorithmica (2015) 71:581–604

of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010)
International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), pp. 199–206
(2010)

25. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In: Breese, J.S., Koller, D.
(eds.) Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI 2001). Morgan
Kaufmann, San Francisco, CA, pp. 253–260 (2001)

26. Kratsch, S.: Recent developments in kernelization: a survey. Bull. Eur. Assoc. Theoret. Comput. Sci.
(EATCS) 113, 58–97 (2014)

27. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded treewidth are probably
optimal. In: Randall, D. (ed.) Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2011). SIAM, pp. 777–789 (2011)

28. Marx, D.: Can you beat treewidth? Theory Comput. 6(1), 85–112 (2010)
29. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
30. Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-player games. J. ACM

55(14), 1–29 (2008)
31. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3),

309–322 (1986)
32. Schrijver, A.: Disjoint homotopic paths and trees in a planar graph. Discret. Comput. Geom. 6(1),

527–574 (1991)
33. Schutt, A., Stuckey, P.J.: Incremental satisfiability and implication for UTVPI constraints. INFORMS

J. Comput. 22(4), 514–527 (2010)
34. Takahashi, A., Ueno, S., Kajitani, Y.: Mixed searching and proper-path-width. Theoret. Comput. Sci.

137(2), 253–268 (1995)
35. Thomas, A., van Leeuwen, J.: Treewidth and pure Nash equilibria. In: Gutin, G., Szeider, S. (eds.)

Proceedings 8th International Symposium on Parameterized and Exact Computation (IPEC 2013)
LNCS, vol. 8246, pp. 348–360. Springer, Berlin (2013)

123

