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Abstract. We investigate whether an n-vertex instance (G, k) of Tree-
width, asking whether the graph G has treewidth at most k, can effi-
ciently be made sparse without changing its answer. By giving a special
form of or-cross-composition, we prove that this is unlikely: if there
is an ε > 0 and a polynomial-time algorithm that reduces n-vertex
Treewidth instances to equivalent instances, of an arbitrary problem,
with O(n2−ε) bits, then NP ⊆ coNP/poly and the polynomial hierarchy
collapses to its third level.
Our sparsification lower bound has implications for structural parameter-
izations of Treewidth: parameterizations by measures that do not ex-
ceed the vertex count, cannot have kernels with O(k2−ε) bits for any ε >
0, unless NP ⊆ coNP/poly. Motivated by the question of determining the
optimal kernel size for Treewidth parameterized by vertex cover, we
improve the O(k3)-vertex kernel from Bodlaender et al. (STACS 2011)
to a kernel with O(k2) vertices. Our improved kernel is based on a novel
form of treewidth-invariant set. We use the q-expansion lemma of Fomin
et al. (STACS 2011) to find such sets efficiently in graphs whose vertex
count is superquadratic in their vertex cover number.

1 Introduction

The task of preprocessing inputs to computational problems to make them less
dense, called sparsification, has been studied intensively due to its theoretical and
practical importance. Sparsification, and more generally, preprocessing, is a vital
step in speeding up resource-demanding computations in practical settings. In
the context of theoretical analysis, the sparsification lemma due to Impagliazzo
et al. [21] has proven to be an important asset for studying subexponential-
time algorithms. The work of Dell and van Melkebeek [15] on sparsification for
Satisfiability has led to important advances in the area of kernelization lower
bounds. They proved that for all ε > 0 and q ≥ 3, assuming NP 6⊆ coNP/poly,
there is no polynomial-time algorithm that maps an instance of q-CNF-SAT
on n variables to an equivalent instance on O(nq−ε) bits — not even if it is an
instance of a different problem.

This paper deals with sparsification for the task of building minimum-width
tree decompositions of graphs, or, in the setting of decision problems, of de-
termining whether the treewidth of a graph G is bounded by a given integer k.

? This work was supported by ERC Starting Grant 306992 “Parameterized Approxi-
mation”.

ar
X

iv
:1

30
8.

36
65

v1
  [

cs
.C

C
] 

 1
6 

A
ug

 2
01

3



Preprocessing procedures for Treewidth have been studied in applied [10,11,26]
and theoretical settings [3,7]. A team including the current author obtained [7]
a polynomial-time algorithm that takes an instance (G, k) of Treewidth, and
produces in polynomial time a graph G′ such that tw(G) ≤ k if and only
if tw(G′) ≤ k, with the guarantee that |V (G′)| ∈ O(vc3) (vc denotes the size
of a smallest vertex cover of the input graph). A similar algorithm was given that
reduces the vertex count of G′ to O(fvs4), where fvs is the size of a smallest
feedback vertex set in G. Hence polynomial-time data reduction can compress
Treewidth instances to a number of vertices polynomial in their vertex cover
(respectively feedback vertex) number. On the other hand, the natural parame-
terization of Treewidth is trivially and-compositional, and therefore does not
admit a polynomial kernel unless NP ⊆ coNP/poly [3,17]. These results give an
indication of how far the vertex count of a Treewidth instance can efficiently
be reduced in terms of various measures of its complexity. However, they do not
tell us anything about the question of sparsification: can we efficiently make a
Treewidth instance less dense, without changing its answer?

Our results. Our first goal in this paper is to determine whether nontrivial
sparsification is possible for Treewidth instances. As a simple graph G on n
vertices can be encoded in n2 bits through its adjacency matrix, Treewidth
instances consisting of a graph G and integer k in the range [1 . . . n] can be
encoded in O(n2) bits. We prove that it is unlikely that this trivial sparsification
scheme for Treewidth can be improved significantly: if there is a polynomial-
time algorithm that reduces Treewidth instances on n vertices to equivalent
instances of an arbitrary problem, with O(n2−ε) bits, for some ε > 0, then NP ⊆
coNP/poly and the polynomial hierarchy collapses [27]. We prove this result
by giving a particularly efficient form of or-cross-composition [9]. We embed
the or of t n-vertex instances of an NP-complete graph problem into a Tree-
width instance with O(n

√
t) vertices. The construction is a combination of

three ingredients. We carefully inspect the properties of Arnborg et al.’s [1] NP-
completeness proof for Treewidth to obtain an NP-complete source problem
called Cobipartite Graph Elimination that is amenable to composition. Its
instances have a restricted form that ensures that good solutions to the composed
Treewidth instance cannot be obtained by combining partial solutions to two
different inputs. Then, like Dell and Marx [14], we use the layout of a 2 ×

√
t

table to embed t instances into a graph on O(nO(1)
√
t) vertices. For each way

of choosing a cell in the top and bottom row, we embed one instance into the
edge set induced by the vertices representing the two cells. Finally, we use ideas
employed by Bodlaender et al. [8] in the superpolynomial lower bound for Tree-
width parameterized by the vertex-deletion distance to a clique: we compose
the input instances of Cobipartite Graph Elimination into a cobipartite
graph to let the resulting Treewidth instance express a logical or, rather than
an and. Our proof combines these three ingredients with an intricate analysis of
the behavior of elimination orders on the constructed instance. As the treewidth
of the constructed cobipartite graph equals its pathwidth [23], the obtained
sparsification lower bound for Treewidth also applies to Pathwidth.
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Our sparsification lower bound has immediate consequences for parameter-
izations of Treewidth by graph parameters that do not exceed the vertex
count, such as the vertex cover number or the feedback vertex number. Our re-
sult shows the impossibility of obtaining kernels of bitsize O(k2−ε) for such pa-
rameterized problems, assuming NP 6⊆ coNP/poly. The kernel for Treewidth
parameterized by vertex cover (Treewidth [vc]) obtained by Bodlaender et
al. [6] contains O(vc3) vertices, and therefore has bitsize Ω(vc4). Motivated by
the impossibility of obtaining kernels with O(vc2−ε) bits, and with the aim of
developing new reduction rules that are useful in practice, we further investi-
gate kernelization for Treewidth [vc]. We give an improved kernel based on
treewidth-invariant sets: independent sets of vertices whose elimination from the
graph has a predictable effect on its treewidth. While finding such sets seems
to be hard in general, we show that the q-expansion lemma, previously em-
ployed by Thomassé [25] and Fomin et al. [19], can be used to find them when
the graph is large with respect to its vertex cover number. The resulting kernel
shrinks Treewidth instances to O(vc2) vertices, allowing them to be encoded
in O(vc3) bits. Thus we reduce the gap between the upper and lower bounds
on kernel sizes for Treewidth [vc]. Our new reduction rule for Treewidth
[vc] relates to the old rules like the crown-rule for k-Vertex Cover relates to
the high-degree Buss-rule [12]: by exploiting local optimality considerations, our
reduction rule does not need to know the value of k.

Related work. While there is an abundance of superpolynomial kernel lower
bounds, few superlinear lower bounds are known for problems admitting poly-
nomial kernels. There are results for hitting set problems [15], packing prob-
lems [14,20], and for domination problems on degenerate graphs [13].

2 Preliminaries

Parameterized complexity and kernels. A parameterized problem Q is a
subset of Σ∗×N. The second component of a tuple (x, k) ∈ Σ∗×N is called the
parameter [16,18]. The set {1, 2, . . . , n} is abbreviated as [n]. For a finite set X
and integer i we use

(
X
i

)
to denote the collection of size-i subsets of X.

Definition 1 (Generalized kernelization). Let Q,Q′ ⊆ Σ∗ × N be parame-
terized problems and let h : N→ N be a computable function. A generalized ker-
nelization forQ intoQ′ of size h(k) is an algorithm that, on input (x, k) ∈ Σ∗×N,
takes time polynomial in |x|+ k and outputs an instance (x′, k′) such that:

– |x′| and k′ are bounded by h(k).
– (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernelization, or in short a kernel, for Q if Q′ = Q. It is a
polynomial (generalized) kernelization if h(k) is a polynomial.

Cross-composition. To prove our sparsification lower bound, we use a vari-
ant of cross-composition tailored towards lower bounds on the degree of the
polynomial in a kernel size bound. The extension is discussed in the journal
version [9] of the extended abstract on cross-composition [6].
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Definition 2 (Polynomial equivalence relation). An equivalence relation R
on Σ∗ is called a polynomial equivalence relation if the following conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x
and y belong to the same equivalence class in time polynomial in |x|+ |y|.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S.

Definition 3 (Cross-composition). Let L ⊆ Σ∗ be a language, let R be a
polynomial equivalence relation on Σ∗, let Q ⊆ Σ∗×N be a parameterized prob-
lem, and let f : N→ N be a function. An or-cross-composition of L into Q (with
respect to R) of cost f(t) is an algorithm that, given t instances x1, x2, . . . , xt ∈
Σ∗ of L belonging to the same equivalence class of R, takes time polynomial
in
∑t
i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ × N such that:

– The parameter k is bounded by O(f(t) ·(maxi |xi|)c), where c is some
constant independent of t.

– (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

Theorem 1 ([9, Theorem 6]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ × N
be a parameterized problem, and let d, ε be positive reals. If L is NP-hard under
Karp reductions, has an or-cross-composition into Q with cost f(t) = t1/d+o(1),
where t denotes the number of instances, and Q has a polynomial (generalized)
kernelization with size bound O(kd−ε), then NP ⊆ coNP/poly.

Graphs. All graphs we consider are finite, simple, and undirected. An undi-
rected graph G consists of a vertex set V (G) and an edge set E(G) ⊆

(
V (G)

2

)
. The

open neighborhood of a vertex v in graph G is denoted NG(v), while its closed
neighborhood is NG[v]. The open neighborhood of a set S ⊆ V (G) is NG(S) :=⋃
v∈S NG(v) \ S, while the closed neighborhood is NG[S] := NG(S) ∪ S. If S ⊆

V (G) then G[S] denotes the subgraph of G induced by S. We use G− S to de-
note the graph G[V (G) \S] that results after deleting all vertices of S and their
incident edges from G. A graph is cobipartite if its edge-complement is bipartite.
Equivalently, a graph G is cobipartite if its vertex set can be partitioned into
two sets X and Y , such that both G[X] and G[Y ] are cliques. A matching M
in a graph G is a set of edges whose endpoints are all distinct. The endpoints of
the edges in M are saturated by the matching. For disjoint subsets A and B of a
graph G, we say that A has a perfect matching into B if there is a matching that
saturates A ∪ B such that each edge in the matching has exactly one endpoint
in each set. If {u, v} is an edge in graph G, then contracting {u, v} into u is the
operation of adding edges between u and NG(v) while removing v. A graph H
is a minor of a graph G, if H can be obtained from a subgraph of G by edge
contractions.

Treewidth and Elimination Orders. While treewidth [2] is commonly de-
fined in terms of tree decompositions, for our purposes it is more convenient to
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work with an alternative characterization in terms of elimination orders. Elim-
inating a vertex v in a graph G is the operation of removing v while complet-
ing its open neighborhood into a clique, i.e., adding all missing edges between
neighbors of v. An elimination order of an n-vertex graph G is a permuta-
tion π : V (G) → [n] of its vertices. Given an elimination order π of G, we ob-
tain a series of graphs by consecutively eliminating π−1(1), . . . , π−1(n) from G.
The cost of eliminating a vertex v according to the order π, is the size of the
closed neighborhood of v at the moment it is eliminated. The cost of π on G,
denoted cG(π), is defined as the maximum cost over all vertices of G.

Theorem 2 ([2, Theorem 36]). The treewidth of a graph G is exactly one
less than the minimum cost of an elimination order for G.

Lemma 1 ([4, Lemma 4], cf. [22, Lemma 6.13]). Let G be a graph con-
taining a clique B ⊆ V (G), and let A := V (G) \ B. There is a minimum-cost
elimination order π∗ of G that eliminates all vertices of A before eliminating any
vertex of B.

Following the notation employed by Arnborg et al. [1] in their NP-completeness
proof, we say that a block in a graph G is a maximal set of vertices with the
same closed neighborhood. An elimination order π for G is block-contiguous
if for each block S ⊆ V (G), it eliminates the vertices of S contiguously. The
following observation implies that every graph has a block-contiguous minimum-
cost elimination order.

Observation 1 Let G be a graph containing two adjacent vertices u, v such
that NG[u] ⊆ NG[v]. Let π be an elimination order of G that eliminates v be-
fore u, and let the order π′ be obtained by updating π such that it eliminates u
just before v. Then the cost of π′ is not higher than the cost of π.

3 Sparsification Lower Bound for Treewidth

In this section we give the sparsification lower bound for Treewidth. We phrase
it in terms of a kernelization lower bound for the parameterization by the number
of vertices, formally defined as follows.

n-Treewidth
Input: An integer n, an n-vertex graph G, and an integer k.
Parameter: The number of vertices n.
Question: Is the treewidth of G at most k?

The remainder of this section is devoted to the proof of the following theorem.

Theorem 3. If n-Treewidth admits a (generalized) kernel of size O(n2−ε),
for some ε > 0, then NP ⊆ coNP/poly.

We prove the theorem by cross-composition. We therefore first define a suit-
able source problem for the composition in Section 3.1, give the construction of
the composed instance in Section 3.2, analyze its properties in Section 3.3, and
finally put it all together in Section 3.4.
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3.1 The Source Problem

The sparsification lower bound for Treewidth will be established by cross-
composing the following problem into it.

Cobipartite Graph Elimination
Input: A cobipartite graph G with partite sets A and B, and a positive

integer k, such that the following holds: |A| = |B|, |A| is even, k < |A|
2 ,

and A has a perfect matching into B.
Question: Is there an elimination order for G of cost at most |A|+ k?

The NP-completeness proof extends the completeness proof for Treewidth [1].

Lemma 2. Cobipartite Graph Elimination is NP-complete.

Proof. Membership in NP is trivial. To establish completeness, we use the con-
nection between treewidth and elimination orders. The instances created by the
NP-completeness proof for Treewidth due to Arnborg et al. [1] are close to
satisfying the desired conditions. In Section 3 of their paper, Arnborg et al. [1]
reduce the Cutwidth problem to Treewidth. They show how to transform
an n-vertex graph G with maximum degree ∆ into a cobipartite graph G′ with
partite sets A and B of size (∆ + 1)n, such that G has cutwidth at most k if
and only if G′ has treewidth at most (∆+ 1)(n+ 1) + k − 1 = |A|+∆+ k. By
Theorem 2 the latter happens if and only if G′ has an elimination order of cost
at most |A|+∆+ k + 1. It is easy to verify that their construction results in a
graph with a perfect matching between the sets A and B.

Using this information we prove the NP-completeness of Cobipartite Graph
Elimination. We reduce from Cutwidth3 (cf. [8, §5]), the cutwidth problem
on subcubic graphs, which is known to be NP-complete [24, Corollary 2.10].
Given an instance (G, k) of Cutwidth3, let n be the number of vertices in G.
As the cutwidth of a graph does not exceed its edge count, and a subcubic n-
vertex graph has at most 3n edges, we may output a constant-size yes-instance
if k ≥ 3n. In the remainder we therefore have k < 3n. Form a new graph G∗

as the disjoint union of 20 copies of G. The resulting graph G∗ has 20n ver-
tices, and its maximum degree is ∆ ≤ 3. As the cutwidth of a graph is the
maximum cutwidth of its connected components, graph G∗ has cutwidth at
most k if and only if (G, k) is a yes-instance. Now apply the transformation
by Arnborg et al. to the instance (G∗, k). It results in a cobipartite graph G′

with partite sets A′ and B′ of size (∆ + 1)20n, such that G′ has an elimina-
tion order of cost |A′| + ∆ + k + 1 if and only if (G, k) is a yes-instance. The
construction ensures that G′ has a perfect matching between A′ and B′. Now

put k′ := ∆ + k + 1 < 4 + 3n ≤ |A
′|

2 . It is easy to see that |A′| is even. The re-
sulting instance (G′, A′, B′, k′) of Cobipartite Graph Elimination therefore
satisfies all constraints. As G′ has an elimination order of cost at most |A′|+ k′

if and only if (G, k) has cutwidth at most three, this completes the proof. ut
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3.2 The Construction

We start by defining an appropriate polynomial equivalence relationship R. Let
all malformed instances be equivalent under R, and let two valid instances of
Cobipartite Graph Elimination be equivalent if they agree on the sizes of
the partite sets and on the value of k. This is easily verified to be a polynomial
equivalence relation.

Now we define an algorithm that combines a sequence of equivalent inputs
into a small output instance. As a constant-size no-instance is a valid output
when the input consists of solely malformed instances, in the remainder we
assume that the inputs are well-formed. By duplicating some inputs, we may
assume that the number of input instances t is a square, i.e., t = r2 for some
integer r. An input instance can therefore be indexed by two integers in the
range [r]. Accordingly, let the input consist of instances (Gi,j , Ai,j , Bi,j , ki,j)
for i, j ∈ [r], that are equivalent underR. Thus the number of vertices is the same
over all partite sets; let this be n = |Ai,j | = |Bi,j | for all i, j ∈ [r]. Similarly, let k
be the common target value for all inputs. For each partite set Ai,j and Bi,j in
the input, label the vertices arbitrarily as a1i,j , . . . , a

n
i,j (respectively b1i,j , . . . , b

n
i,j).

We construct a cobipartite graph G′ that expresses the or of all the inputs, as
follows.

1. For i ∈ [r] make a vertex set A′i containing n vertices â1i , . . . , â
n
i .

2. For i ∈ [r] make a vertex set B′i containing n vertices b̂1i , . . . , b̂
n
i .

3. Turn
⋃
i∈[r]A

′
i into a clique. Turn

⋃
i∈[r]B

′
i into a clique.

4. For each pair i, j with i, j ∈ [r], we embed the adjacency of Gi,j into G′ as

follows: for p, q ∈ [n] make an edge {âpi , b̂
q
j} if {api,j , b

q
i,j} ∈ E(Gi,j).

It is easy to see that at this point in the construction, graph G′ is cobipartite.
For any i, j ∈ [r] the induced subgraph G′[A′i ∪ B′j ] is isomorphic to Gi,j by

mapping â`i to a`i,j and b̂`j to b`i,j . As Gi,j has a perfect matching between Ai,j
and Bi,j by the definition of Cobipartite Graph Elimination, this implies
that G′ has a perfect matching between A′i and B′j for all i, j ∈ [r]. These
properties will be maintained during the remainder of the construction.

5. For each i ∈ [r], add the following vertices to G′:
– n checking vertices C ′i = {c1i , . . . , cni }, all adjacent to B′i.
– n dummy vertices D′i = {d1i , . . . , dni }, all adjacent to

⋃
j∈[r]A

′
j and to C ′i.

– n
2 blanker vertices X ′i = {x1i , . . . , x

n/2
i }, all adjacent to A′i.

6. Turn
⋃
i∈[r]A

′
i∪C ′i into a clique A′. Turn

⋃
i∈[r]B

′
i∪D′i∪X ′i into a clique B′.

The resulting graph G′ is cobipartite with partite sets A′ and B′. Define k′ :=
3rn+ n

2 + k. Observe that |A′| = 2rn and that |B′| = 2rn+ rn
2 . Graph G′ can

easily be constructed in time polynomial in the total size of the input instances.
Intuition. Let us discuss the intuition behind the construction before pro-

ceeding to its formal analysis. To create a composition, we have to relate elim-
ination orders in G′ to those for input graphs Gi,j . All adjacency information
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of the input graphs Gi,j is present in G′. As A′ is a clique in G′, by Lemma 1
there is a minimum-cost elimination order for G′ that starts by eliminating all
of B′. But when eliminating vertices of some B′j∗ from G′, they interact si-
multaneously with all sets A′i (i ∈ [r]), so the cost of those eliminations is not
directly related to the cost of elimination orders of a particular instance Gi∗,j∗ .
We therefore want to ensure that low-cost elimination orders for G′ first “blank
out” the adjacency of B′ to all but one set A′i∗ , so that the cost of afterwards
eliminating B′j∗ tells us something about the cost of eliminating G′i∗,j∗ . To blank
out the other adjacencies, we need earlier eliminations to make B′ adjacent to
all vertices of

⋃
i∈[r]\{i∗}A

′
i. These adjacencies will be created by eliminating

the blanker vertices. For an index i ∈ [r], vertices in X ′i are adjacent to A′i
and all of B′. Hence eliminating a vertex in X ′i indeed blanks out the adja-
cency of B′ to A′i. The weights of the various groups (simulated by duplicating
vertices with identical closed neighborhoods) have been chosen such that low-
cost elimination orders of G′ starting with B′, have to eliminate r − 1 blocks of
blankers X ′i1 , . . . , X

′
ir−1

before eliminating any other vertex of B′. This creates
the desired blanking-out effect. The checking vertices C ′i (i ∈ [r]) enforce that
after eliminating r−1 blocks of blankers, an elimination order cannot benefit by
mixing vertices from two or more sets B′i, B

′
i′ : each set B′i from which a vertex is

eliminated, introduces new adjacencies between B′ and C ′i. Finally, the dummy
vertices are used to ensure that after one set B′i∪D′i is completely eliminated, the
cost of eliminating the remainder is small because |B′| has decreased sufficiently.

3.3 Properties of the Constructed Instance

The following type of elimination orders of G′ will be crucial in the proof.

Definition 4. Let i∗, j∗ ∈ [r]. An elimination order π′ of G′ is (i∗, j∗)-canonical
if π′ eliminates V (G) in the following order:

1. first all blocks of blanker vertices X ′i for i ∈ [r] \ {i∗}, one block at a time,
2. then the vertices of B′j∗ , followed by dummies D′j∗ , followed by blankers X ′i∗ ,
3. alternatingly a block B′i followed by the corresponding dummies D′i, until all

remaining vertices of
⋃
i∈[r]B

′
i ∪D′i have been eliminated,

4. and finishes with the vertices
⋃
i∈[r]A

′
i ∪ C ′i in arbitrary order.

Lemma 3 shows that the crucial part of a canonical elimination order is its
behavior on B′j∗ .

Lemma 3. Let π′ be an (i∗, j∗)-canonical elimination order for G′.

1. No vertex that is eliminated before the first vertex of B′j∗ costs more than 3rn.
2. When a vertex of D′j∗ ∪X ′i∗ is eliminated, its cost does not exceed 3rn+ n

2 .
3. No vertex that is eliminated after X ′i∗ costs more than 3rn.

Proof. (1) By Definition 4, all vertices eliminated before B′j∗ are blanker ver-
tices. The elimination of a vertex v in a block X ′i turns N(v) into a clique and
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removes v. As A′ and B′ are cliques from the start, no extra edges can be in-
troduced between members of A′ or between members of B′. When considering
the effects of eliminating vertices from B′, we therefore only have to consider
which vertices of B′ become adjacent to vertices in A′. As blanker vertices are
not adjacent to checking vertices, no elimination of a blanker vertex introduces
adjacencies to sets C ′j for any j ∈ [r]. Eliminating X ′i effectively makes all re-
maining vertices in B′ adjacent to A′i, as X ′i and A′i are adjacent by construction.
With these insights we prove the first item of the lemma.

Consider the situation when 0 ≤ ` < r − 1 blocks of blankers X ′i1 , . . . , X
′
i`

have already been eliminated, and we are about to eliminate a blanker vertex vB
in the next block X ′i`+1

. Then N [v] contains all remaining vertices in B′, of which

there are |B′|− ` · n2 = 2rn+ (r−`)n
2 . Now consider the neighborhood of vB in A′.

As observed above, N [vB ] does not contain checking vertices. When it comes to
adjacencies into

⋃
i∈[r]A

′
i, vertex vB in block X ′i`+1

is adjacent to A′i`+1
, and to

the blocks A′i1 , . . . , A
′
i`

for the blankers X ′i1 , . . . , X
′
i`

that have previously been
eliminated. Hence vB has (`+1)n neighbors in A′. Summing up the contributions

from the two partite sets, we find |N [v]| = 2rn+ (r−`)n
2 +(`+1)n = 3rn+ (`−r)n

2 +
n. The largest value is attained when the last block of blankers unequal to X ′i∗
is about to be eliminated; at that point ` = r − 2 blocks have been eliminated
already, which results in a cost of 3rn for the first vertex of the last block that
is eliminated. The other vertices X ′i`+1

are eliminated immediately after v, by
Definition 4. Hence their closed neighborhood at time of elimination is smaller
than that of v: elimination of v does not introduce any new adjacencies for
vertices with the same closed neighborhood as v. Hence the remaining vertices
of X ′i`+1

cost less than v. Thus the cost of eliminating the vertices before B′j∗
does not exceed 3rn.

(2) Let G′B be the graph that is obtained from G′ by eliminating according
to π′ until just after the last vertex of B′j∗ . Then G′B contains exactly one block
of blankers X ′i∗ , as all other sets have been eliminated before B′j∗ . It does not
contain B′j∗ as it was just eliminated. The elimination of B′j∗ has made the
remainder of B′ adjacent to

⋃
i∈[r]A

′
i, as B′j∗ has a perfect matching into A′i

for all i ∈ [r]. According to Definition 4, elimination order π′ eliminates D′j∗
just after B′j∗ . At that point, the neighborhood of the dummy vertices D′j∗
into

⋃
j∈[r] C

′
j is exactly C ′j∗ : they were initially adjacent, the eliminated blanker

vertices were not adjacent to any checking vertices, and the eliminated vertices
from B′j∗ see only the checking vertices C ′j∗ , by construction. Hence the cost of
eliminating the first dummy vertex in D′j∗ is | bigcupj∈[r]\{j∗}B′j∗∪D′j∗ |+|D′j∗ |+
|X ′i∗ |+ |

⋃
i∈[r]A

′
i|+ |C ′j∗ |, which is 2(r− 1)n+n+ n

2 + rn+n = 3rn+ n
2 . As the

other dummy vertices in D′j∗ have exactly the same closed neighborhood, their
elimination is not more expensive.

By Definition 4, order π′ follows the elimination of D′j∗ by eliminating X ′i∗ .
At the time of elimination, N [X ′i∗ ] ∩B′ has size |

⋃
j∈[r]\{j∗}B

′
j ∪D′j |+ |X ′i∗ | =

2(r − 1)n + n
2 . Vertices in X ′i∗ are adjacent to

⋃
i∈[r]A

′
i, and to exactly one set

of checking vertices, namely C ′j∗ ; the elimination of B′j∗ has introduced these
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adjacencies. Hence the cost of eliminating the first vertex of X ′i∗ is 2(r − 1)n+
n
2 + rn+n = 3rn− n

2 . As the other vertices in X ′i∗ have the same neighborhood,
they are not more expensive. In summary, no vertex of D′j∗ ∪ X ′i∗ costs more
than 3rn+ n

2 when eliminated.
(3) Let G′X be the graph that is obtained from G′ by eliminating according

to π′ until just after the last vertex of X ′i∗ . Then G′X does not contain any
blanker vertices, as all such sets have been eliminated. Similarly, it does not
contain B′j∗ or D′j∗ . The eliminations up until X ′i∗ have made all of B′ adjacent
to
⋃
i∈[r]A

′
i. Vertices in a set B′j ∪ D′j for j 6= j∗ are adjacent to the checking

vertices C ′j (by construction) and C ′j∗ (because the elimination of B′j∗ introduced
these adjacencies), but to no other checking vertices. Now consider the first
vertex v that is eliminated after X ′i∗ ; by Definition 4 it is contained in some
set B′j with j 6= j∗. As no blanker vertex remains, and B′j∗ ∪ D′j∗ have been
eliminated, there are exactly 2rn− 2n vertices left in B′. Vertex v is adjacent to
all rn vertices in

⋃
i∈[r]A

′
i, to C ′j∗ and to the checking vertices corresponding to

its own index. Hence the cost of v is 2rn− 2n+ rn+ n+ n = 3rn. The cost of
the succeeding blankers D′j in the same block is not more than that of v.

When eliminating the next group B′j′ , observe that 2n neighbors have been
lost in B′ (the set B′j ∪D′j that was eliminated), whereas only n new neighbors
have been introduced (the set C ′j). Hence the cost of later groups of vertices B′j′
does not exceed the cost of v, and so does not exceed 3rn. Finally, when all
of B′ has been eliminated then only the vertex set A′ of size 2rn remains. At
that point, no vertex can have cost more than 2rn as there are only 2rn vertices
left in the graph. Thus the cost of eliminating A′ satisfies the claimed bound,
after which the entire graph is eliminated. ut

The next lemma links this behavior to the cost of a related elimination order
for Gi∗,j∗ . Some terminology is needed. Consider an (i∗, j∗)-canonical elimina-
tion order π′ for G′, and an elimination order π for Gi∗,j∗ that eliminates all
vertices of Bi∗,j∗ before any vertex of Ai∗,j∗ . By numbering the vertices in Bi∗,j∗

(a partite set of Gi∗,j∗) from 1 to n, we created a one-to-one correspondence
between Bi∗,j∗ and B′j∗ , the first set of non-blanker vertices eliminated by π′.
Hence we can compare the relative order in which vertices of Bi∗,j∗ are elimi-
nated in π and π′. If both π and π′ eliminate the vertices of Bi∗,j∗ in the same
relative order, then we say that the elimination orders agree on Bi∗,j∗ .

Lemma 4. Let π′ be an (i∗, j∗)-canonical elimination order of G′. Let π be an
elimination order for Gi∗,j∗ that eliminates all vertices of Bi∗,j∗ before any vertex
of Ai∗,j∗ . If π′ and π agree on Bi∗,j∗ , then cG′(π

′) = 3rn+ n
2 − n+ cGi∗,j∗ (π).

Proof. Consider the graph G′B obtained from G′ by performing the elimina-
tions according to π′ until we are about to eliminate the first vertex of B′j∗ .
By Definition 4 this means that all blocks of blankers X ′j for j 6= j∗ have been
eliminated, and no other vertices. Using the construction of G′ it is easy to
verify that these eliminations have made all remaining vertices of B′ adjacent
to
⋃
i∈[r]\{i∗}A

′
i, and that no new adjacencies have been introduced to

⋃
i∈[r] C

′
i

10



or to A′i∗ . Graph G′[A′i∗ ∪ B′j∗ ] was initially isomorphic to Gi∗,j∗ by the obvi-
ous isomorphism based on the numbers assigned to the vertices. As no vertex
adjacent to A′i∗ has been eliminated yet, this also holds for G′B [A′i∗ ∪B′j∗ ].

Consider what happens when eliminating the first vertex v′ of B′j∗ according
to π′. Let v ∈ Bi∗,j∗ be the corresponding vertex in Gi∗,j∗ . By the fact that the
elimination orders agree, v is the first vertex of Bi∗,j∗ to be eliminated under π.

The set NG′B [v′] contains C ′j∗ ,
⋃
j 6=j∗ B

′
j ∪ D′j ,

⋃
i 6=i∗ A

′
i, X

′
i∗ , D

′
j∗ , and the

vertices of G′[A′i∗ ∪ B′j∗ ] that correspond exactly to NGi∗,j∗ [v] by the isomor-
phism. So the cost of eliminating v′ from G′ exceeds the cost of eliminating v
from Gi∗,j∗ by exactly |C ′j∗ | + |

⋃
j 6=j∗ B

′
j ∪ D′j | + |

⋃
i 6=i∗ A

′
i| + |X ′i∗ | + |D′j∗ | =

n + 2(r − 1)n + (r − 1)n + n
2 + n = 3rn + n

2 − n. Now observe that by the
isomorphism, eliminating v′ from G′ has exactly the same effect on the neigh-
borhoods of B′j∗ into A′i∗ , as eliminating v from Gi∗,j∗ has on the neighbor-
hoods of Bi∗,j∗ into Ai∗,j∗ . Thus after one elimination, the remaining vertices
of A′i∗ ∪ B′j∗ and Ai∗,j∗ ∪ Bi∗,j∗ induce subgraphs of G′ and Gi∗,j∗ that are
isomorphic. Hence we may apply the same argument to the next vertex that is
eliminated. Repeating this argument we establish that for each vertex in B′j∗ ,
its elimination from G′ costs exactly 3rn+ n

2 − n more than the corresponding
elimination in Gi∗,j∗ .

Now consider the cost of π on Gi∗,j∗ : it is at least n+1, as the first vertex to be
eliminated is adjacent to all of Bi∗,j∗ (the graph is cobipartite) and to at least one
vertex of Ai∗,j∗ (since the Cobipartite Graph Elimination instance Gi∗,j∗

has a perfect matching between its two partite sets). After all vertices of Bi∗,j∗

have been eliminated from Gi∗,j∗ , the remaining vertices cost at most n; there are
at most n vertices left in the graph at that point. Hence the cost of π on Gi∗,j∗

is determined by the cost of eliminating Bi∗,j∗ . For each vertex from that set
that is eliminated, π′ incurs a cost exactly 3rn+ n

2 − n higher. Hence cG′(π
′) is

at least (3rn + n
2 − n) + (n + 1) = 3rn + n

2 + 1. By Lemma 3 the cost that π′

incurs before eliminating the first vertex of B′j∗ is at most 3rn, the cost of
eliminating D′j∗ ∪X ′i∗ is at most 3rn+ n

2 , and the cost incurred after eliminating
the last vertex of B′j∗ is at most 3rn. Hence the cost of π′ is determined by the
cost of eliminating the vertices of B′j∗ . As this is exactly 3rn+ n

2 −n more than
the cost of π on Gi∗,j∗ , this proves the lemma. ut

The last technical step of the proof is to show that if G′ has an elimination
order of cost at most k′, then it has such an order that is canonical.

Lemma 5. If G′ has an elimination order of cost at most k′, then there are
indices i∗, j∗ ∈ [r] such that G′ has an (i∗, j∗)-canonical elimination order of
cost at most k′.

Proof. Let π′ be an elimination order for G′ of cost at most k′. As A′ is a
clique in G′, we may assume by Lemma 1 that π′ eliminates all vertices of B′

before any vertex of A′ (Property 1). As each set X ′i forms a block in G′, by
Observation 1 we can adapt π′ such that it eliminates the vertices of a set X ′i
contiguously for all i ∈ [r] (Property 2). Note that for i ∈ [r] and vertices d ∈ D′i
and u ∈ B′i, we have NG[u] ⊆ NG[d] by construction. Hence by Observation 1 we
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may assume that when a dummy d ∈ D′i is about to be eliminated, all vertices
of the corresponding set B′i are already eliminated (Property 3). Using these
structural properties we proceed with the proof.

Consider the process of eliminating G′ by π′. At some point, π′ has eliminated
r − 2 distinct blocks of blankers X ′i1 , . . . , X

′
ir−2

. Consider the first vertex vB of
the blanker X ′ir−1

that is eliminated after that point, and note that possibly
non-blanker vertices are eliminated in between. Let G′B be the graph obtained
from G′ by eliminating all vertices before vB .

Claim 1 Graph G′B still contains the vertices
⋃
i∈[r]B

′
i ∪D′i: no vertex in this

set is eliminated before vB.

Proof. Assume for a contradiction that some vertex of
⋃
i∈[r]B

′
i∪D′i is eliminated

before vB . We first show how to derive a contradiction when there is an index i ∈
[r] such that B′i is eliminated completely before vB (Case 1). Afterwards we show
how to derive a contradiction when at least one vertex of B′i remains in G′B for
all i ∈ [r] (Case 2).

Case 1. If there is an index j such that no vertex of B′j remains in G′B ,
then let j∗ be the index of the first set B′j to be eliminated from G′ completely.
Consider the moment when the last vertex u of Bj∗ is eliminated. By our choice
of j∗ and Property 3, we know that no dummy vertex has been eliminated yet.
So consider the closed neighborhood of u at the moment of its elimination. It
contains all rn dummy vertices. As at least two blocks of blankers remain, N [u]
contains at least 2n

2 blanker vertices. We claim that u has become adjacent to
all vertices of

⋃
i∈[r]A

′
i. To see this, recall that u was the last vertex of Bj∗ to

be eliminated. As we observed during the construction of G′, there is a perfect
matching between A′i and B′j∗ for all i ∈ [r]. Hence for each vertex in

⋃
i∈[r]A

′
i,

if u was not originally adjacent to it, then it has become adjacent to it by
eliminating the vertex of B′j∗ that was matched to it. Thus u is indeed adjacent to
all of

⋃
i∈[r]A

′
i. For each vertex in a set B′j with j 6= j∗ that is eliminated before u,

the elimination has made u adjacent to C ′j . By our choice of j∗, no such set B′j is
eliminated completely. Hence for each set B′j with j 6= j∗ from which (less than n)
vertices were eliminated, u has picked up n new neighbors in the set C ′j . So the
number of neighbors of u in

⋃
j∈[r]\{j∗}B

′
j∪C ′j is at least (r−1)n. Adding up the

contribution of the blankers, the dummies, of
⋃
i∈[r]A

′
i, of

⋃
j∈[r]\{j∗}B

′
j ∪ C ′j ,

and of C ′j∗ , to N [u], we find that |N [u]| ≥ 2n
2 + rn+ rn+(r−1)n+n ≥ 3rn+n.

This value exceeds k′, as k < n
2 by the definition of Cobipartite Graph

Elimination. Hence we find a contradiction to the assumption that π′ has cost
at most k′.

Case 2. Assume now that for each j ∈ [r] at least one vertex of B′j remains
in G′B , which implies by Property 3 that all dummies are present in G′B . Recall
that we assumed, for a contradiction, that some vertex u of

⋃
j∈[r]B

′
j ∪D′j was

eliminated before vB . As u is no dummy, it is contained in some set B′j∗ . By the
adjacency of B′j∗ to C ′j∗ , the elimination has made the blanker X ′ir−1

adjacent
to C ′j∗ . We will show that this causes the cost of vB to exceed k′.

12



To see this, consider the neighbors of vB in the various sets. For each set B′j
from which vertices were eliminated, we have eliminated less than n vertices (at
least one vertex remains by the precondition to this case). For those sets B′j ,
the blankers X ′ir−1

have picked up adjacencies to the corresponding checkers C ′j .
Thus |N [vB ] ∩ (

⋃
j∈[r]\{j∗}B

′
j ∪ C ′j)| ≥ (r − 1)n. As vB is the first blanker

vertex to be eliminated after r − 2 blocks of blankers were already eliminated,
there are two blocks of blankers left, giving 2n

2 vertices in N [vB ] ∩ (
⋃
i∈[r]X

′
i).

The prior eliminations of blankers X ′i1 , . . . , X
′
ir−2

made X ′ir−1
adjacent to the

corresponding sets A′i1 , . . . , A
′
ir−2

, and by construction vB ∈ X ′ir−1
is adjacent

to A′ir−1
. Now consider the remaining index ir ∈ [r]\{i1, . . . , ir−1}, and let i∗ :=

ir for convenience.
Recall that B′j∗ has a perfect matching into A′i∗ by the construction of G′.

Hence for each vertex vertex u that was eliminated from B′j∗ , vertex vB has
become adjacent to u’s matching partner in the set A′i∗ . Hence, letting ` denote
the number of vertices eliminated from B′j∗ , we know that vB is adjacent to
at least ` vertices in A′i∗ . Summing up the contributions of the blankers, the
dummies, the set (

⋃
i∈[r]\{j∗}B

′
i∪C ′i), the set C ′j∗ , the set

⋃
i∈[r]\{i∗}A

′
i, and the

setA′i∗∪B′j∗ to |N [vB ]|, we find that |N [vB ]| ≥ 2n
2 +rn+(r−1)n+n+(r−1)n+n ≥

3rn + n > k′, which is a contradiction to the assumption that the cost of π′ is
at most k′.

As the two cases are exhaustive, we have established that when vB is elimi-
nated, all vertices of

⋃
i∈[r]B

′
i ∪D′i still remain in the graph G′B . ♦

We need two more claims to complete the proof of Lemma 5. As π′ is block-
contiguous with respect to the blankers (Property 2), after vB it eliminates the
rest of X ′ir−1

. Afterwards only a single group of blankers remains, say X ′ir .

Claim 2 After eliminating X ′ir−1
, order π′ eliminates a vertex in

⋃
i∈[r]B

′
i.

Proof. By Property 1, all vertices of B′ are eliminated before any vertex of A′.
Recall that B′ consists of blankers

⋃
i∈[r]X

′
i and the vertices

⋃
i∈[r]B

′
i ∪ D′i.

As X ′ir−1
is the r − 1-th block of blankers to be eliminated, afterwards the only

vertices in B′ remaining are X ′ir and
⋃
i∈[r]B

′
i∪D′i. By Property 3, π′ eliminates

all vertices of B′i before eliminating a dummy in the corresponding set D′i. Hence
if π′ does not follow the elimination of X ′ir−1

by a vertex of
⋃
i∈[r]B

′
i, it elimi-

nates X ′ir . If this is the case, then all blankers have been eliminated before elim-
inating any vertex of

⋃
i∈[r]B

′
i ∪D′i. Now consider the first vertex u of

⋃
i∈[r]B

′
i

that is eliminated, and suppose it is contained in B′j∗ . Eliminating all blankers
has made B′j∗ adjacent to all of

⋃
i∈[r]A

′
i. By construction B′j∗ is adjacent to

the n checking vertices C ′j∗ . By Property 3 it is adjacent to all dummies. Sum-
ming up the contributions of the dummies, of

⋃
i∈[r]B

′
i, of

⋃
i∈[r]A

′
i, and of the

single set C ′j∗ , to N [u], we find that the cost of u is at least rn+rn+rn+n > k′;
a contradiction. ♦

Before proving the next claim, we make an observation. Let u be the first
vertex of

⋃
i∈[r]B

′
i that is eliminated by π′, and suppose that u ∈ B′j∗ . The
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elimination of u makes the last group of blankers X ′ir adjacent to the checking
vertices C ′j∗ , as B′j∗ is adjacent to C ′j∗ . This implies that after the elimination
of u ∈ B′j∗ , the closed neighborhood of X ′i∗ is a superset of the closed neighbor-
hood of a remaining vertex in B′j∗ . To see this, note that at that stage, X ′i∗ is
adjacent to the remainder of B′, to

⋃
i∈[r]\{i∗}A

′
i (by eliminating the previous

blankers), to A′i∗ (by construction), and to C ′j∗ (by eliminating u). On the other
hand, vertices in B′j∗ see the remainder of B′, they see

⋃
i∈[r]\{i∗}A

′
i, a subset

of A′i∗ that depends on the edges in the graph Gi∗,j∗ , and C ′j∗ . Hence, by the
same reasoning as in Observation 1, if a vertex z ∈ X ′i∗ is eliminated after the
first vertex of B′j∗ (i.e., u) but before the last vertex of B′j∗ , then the cost of π′

does not increase when eliminating all vertices of B′j∗ just before z. Hence we
may assume that π′ eliminates all of B′j∗ before any vertex of X ′i∗ ; we call this
Property 4. We use this in the proof of the following claim.

Claim 3 All vertices of B′j∗ are eliminated before any vertex of
⋃
j∈[r]\{j∗}B

′
j.

Proof. By Property 4, all vertices ofB′j∗ are eliminated before the last blankerX ′i∗ .
Now suppose that before eliminating the last vertex of B′j∗ , order π′ eliminates
some vertex v ∈ B′j′ with j′ 6= j∗. Let v be the first vertex with this property.
By Property 4, all vertices in X ′i∗ remain in the graph when v is eliminated.
This causes the cost of v to exceed k′. To see this, observe that at the time of
elimination, the closed neighborhood of v contains all rn dummy vertices (by
Property 3), it contains the n

2 vertices of X ′i∗ , it contains C ′j∗ (by elimination
of u) and C ′j′ (by construction), which contain n vertices each. Additionally, N [v]
contains

⋃
i∈[r]\{j∗}B

′
i by our choice of v, and

⋃
i∈[r]\{i∗}A

′
i by the eliminations

of earlier groups of blankers, for a subtotal of rn+ n
2 +2n+(r−1)n+(r−1)n =

3rn + n
2 . If ` vertices have been eliminated from B′j∗ prior to elimination of v,

then N [v] contains n− ` vertices from B′j∗ , but has gained ` neighbors in A′i∗ by
the perfect matching between A′i∗ and Bj∗ in G′. Hence the remaining vertices
in A′i∗ ∪ B′j∗ contribute at least ` + (n − `) vertices to the cost of v. Thus the
cost of v is at least 3rn+ n

2 + n, which is more than k′; a contradiction. ♦

Using Claims 1, 2, and 3, we prove Lemma 5. By Property 1, elimination
order π′ eliminates B′ before A′. By Claim 1, π′ did not eliminate any vertex
of
⋃
i∈[r]B

′
i ∪D′i when the first vertex of the r − 1-th block of blankers is elimi-

nated. As π′ is block-contiguous with respect to the blankers, its initial behavior
matches that of a canonical elimination order (Definition 4): it eliminates r − 1
distinct blocks of blankers X ′i1 , . . . , X

′
ir−1

before any vertex of
⋃
j∈[r]B

′
j∪D′j . By

Claim 2 it then eliminates a vertex of
⋃
j∈[r]B

′
j , say a vertex in B′j∗ . By Claim 3

it completes the elimination of B′j∗ before touching vertices in
⋃
j∈[r]\{j∗}B

′
j ,

by Property 3 it eliminates B′j∗ before any dummy, and by Property 4 it elimi-
nates B′j∗ before the last blanker X ′ir . Hence after the r − 1 blocks of blankers,
the vertices of B′j∗ are eliminated consecutively.

Once this is done, the closed neighborhoods of D′j∗ and X ′i∗ coincide: by the
perfect matchings between B′j∗ and A′i (for all i ∈ [r]) in G′, eliminating all of B′j∗
made D′j∗ and X ′i∗ adjacent to

⋃
i∈[r]A

′
i. Furthermore, N [D′j∗ ] ∩

⋃
i∈[r] C

′
i =
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N [X ′i∗ ] ∩
⋃
i∈[r] C

′
i = C ′j∗ : the dummies see C ′j∗ by construction, while X ′i∗ sees

it because of the elimination of B′j∗ . The closed neighborhoods of D′j∗ and X ′i∗
are subsets of the closed neighborhoods of the other vertices that remain in B′ at
that point: vertices in a setB′j∪D′j for j 6= j∗ see

⋃
i∈[r]A

′
i together with both A′j∗

and A′j , while the latter set is not seen by D′j∗ ∪X ′i∗ . Hence by Observation 1 we
may assume that after finishing B′j∗ , order π′ eliminates D′j∗ followed by X ′i∗ .

Once that is done, the only vertices remaining in B′ are
⋃
i∈[r]\{j∗}B

′
i ∪D′i.

It is easy to see that for any j ∈ [r] \ {j∗}, all vertices in B′j ∪D′j have the same
closed neighborhood at that stage, consisting of the remainder of B′ together
with C ′j ∪C ′i∗ and

⋃
i∈[r]A

′
i. By Observation 1 we may assume that π′ is block-

contiguous after eliminating X ′i∗ , which means it eliminates the sets B′j ∪D′j one
at a time. As we may shuffle the order within a set B′j ∪D′j without changing
the cost (all closed neighborhoods of vertices from such a set are identical), we
may assume that the remaining actions of π′ on B′ are alternatingly eliminating
a set B′j followed by the corresponding set D′j , until all of B′ is eliminated.
Then π′ finishes by eliminating A′ in some order. As this form exactly matches
the definition of an (i∗, j∗)-canonical elimination order, we have proved that
whenever an elimination order of G′ exists that has cost at most k′, then there
is one that is canonical. This proves Lemma 5. ut

3.4 Proof of Theorem 3

Having analyzed the relationship between elimination orders for G′ and for the
input graphs Gi,j (i, j ∈ [r]), we can complete the proof. By combining the
previous lemmata it is easy to show that G′ acts as the logical or of the inputs.

Lemma 6. G′ has an elimination order of cost ≤ k′ ⇔ there are i, j ∈ [r] such
that Gi,j has an elimination order of cost ≤ n+ k.

Proof. (⇒) Assume that G′ has an elimination order π′ of cost at most k′. By
Lemma 5 we may assume that π′ is (i∗, j∗)-canonical, for appropriate choices of i∗

and j∗. Build an elimination order π for Gi∗,j∗ that agrees with π′ on Bi∗,j∗ . By
Lemma 4 this shows that cG′(π

′) = 3rn+ n
2 −n+ cGi∗,j∗ (π). Hence cGi∗,j∗ (π) =

cG′(π
′)−3rn− n

2 +n ≤ k′−3rn− n
2 +n = n+k. Thus Gi∗,j∗ has an elimination

order of cost at most n+ k.
(⇐) In the other direction, suppose that Gi∗,j∗ has an elimination order π

of cost at most n + k. As Ai∗,j∗ is a clique in Gi∗,j∗ , by Lemma 1 we may
assume that π eliminates all vertices of Bi∗,j∗ before any vertex of Ai∗,j∗ . Using
Definition 4 it is easy to see that a canonical elimination order π′ for G′ exists
that agrees with π on Bi∗,j∗ . By Lemma 4 the cost of π′ on G′ exceeds the cost
of π on Gi∗,j∗ by exactly 3n + n

2 − n. So the cost of π′ on G′ is at most 3n +
n
2 − n+ (n+ k) = k′, which proves this direction of the claim. ut

Lemma 7. There is an or-cross-composition of Cobipartite Graph Elimi-
nation into n-Treewidth of cost

√
t.
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Proof. In Section 3.2 we gave a polynomial-time algorithm that, given instances
(Gi,j , Ai,j , Bi,j , ki,j) of Cobipartite Graph Elimination that are equivalent
under R for i, j ∈ [r], constructs a cobipartite graph G′ with partite sets A′

and B′, and an integer k′. By Lemma 6 the resulting graph G′ has an elimination
order of cost k′ if and only if there is a yes-instance among the inputs. By the
correspondence between treewidth and bounded-cost elimination orders of Theo-
rem 2, this shows that G′ has treewidth at most k′−1 if and only if there is a yes-
instance among the inputs. The polynomial equivalence relationship ensured that
all partite sets of all inputs have the same number of vertices. For partite sets of
size n, the constructed graph G′ satisfies |A′| = 2rn and |B′| = 5rn

2 . The number
of vertices in G′ is n′ = 9rn

2 . Consider the n-Treewidth instance (G′, n′, k′−1).
It expresses the logical or of a series of r2 = t Cobipartite Graph Elimi-

nation instances using a parameter value of 9n
√
t

2 ∈ O(n
√
t). Hence the algo-

rithm gives an or-cross-composition of Cobipartite Graph Elimination into
n-Treewidth of cost

√
t. ut

Theorem 3 follows from the combination of Lemma 7, Lemma 2, and Theorem 1.
Since the pathwidth of a cobipartite graph equals its treewidth [23] and the graph
formed by the cross-composition is cobipartite, the same construction gives an
or-cross-composition of bounded cost into n-Pathwidth.

Corollary 1. If n-Pathwidth admits a (generalized) kernel of size O(n2−ε),
for some ε > 0, then NP ⊆ coNP/poly.

4 Quadratic-Vertex Kernel for Treewidth [VC]

In this section we present an improved kernel for Treewidth [vc], which is
formally defined as follows.

Treewidth [vc]
Input: A graph G, a vertex cover X ⊆ V (G), and an integer k.
Parameter: |X|.
Question: Is the treewidth of G at most k?

Our kernelization revolves around the following notion.

Definition 5. Let G be a graph, let T be an independent set in G, and let ĜT
be the graph obtained from G by eliminating T ; the order is irrelevant as T is
independent. Then T is a treewidth-invariant set if for every v ∈ T , the graph ĜT
is a minor of G− {v}.

Lemma 8. If T is a treewidth-invariant set in G and ∆ := maxv∈T degG(v),
then tw(G) = max(∆,tw(ĜT )).

Proof. We prove that tw(G) is at least, and at most, the claimed amount.
(≥). As ĜT is a minor of G, we have tw(G) ≥ tw(ĜT ) (cf. [2]). If tw(ĜT ) ≥

∆ then this implies the inequality. So assume that ∆ > tw(ĜT ). Let v ∈ T have
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degree ∆. By assumption, ĜT is a minor of G − {v}. It contains all vertices
of NG(v) since T is an independent set. As NG(v) is a clique in ĜT , there is a
series of minor operations in G−{v} that turns NG(v) into a clique. Performing
these operations on G rather than G−{v} results in a clique on vertex set NG[v]
of size degG(v) + 1 = ∆+ 1: the set NG(v) is turned into a clique, and v remains
unchanged. Hence G has a clique with ∆+1 vertices as a minor, which is known
to imply (cf. [2]) that its treewidth is at least ∆.

(≤). Consider an optimal elimination order π̂ for ĜT , which costs tw(ĜT )+1
by Theorem 2. Form an elimination order π for G by first eliminating all vertices
in T in arbitrary order, followed by the remaining vertices in the order dictated
by π̂. Consider what happens when eliminating the graph G in the order given
by π. Each vertex v ∈ T that is eliminated incurs cost degG(v)+1 ≤ ∆+1: as T
is an independent set, eliminations before v do not affect v’s neighborhood. Once
all vertices of T have been eliminated, the resulting graph is identical to ĜT , by
definition. As π matches π̂ on the vertices of V (G)\T , and π̂ has cost tw(ĜT )+1,
the total cost of elimination order π on G is max(∆ + 1,tw(ĜT ) + 1). By
Theorem 2 this completes this direction of the proof. ut

Lemma 8 shows that when a treewidth-invariant set is eliminated from a
graph, its treewidth changes in a controlled manner. To exploit this insight in a
kernelization algorithm, we have to find treewidth-invariant sets in polynomial
time. While it seems difficult to detect such sets in all circumstances, we show
that the q-expansion lemma can be used to find a treewidth-invariant set when
the size of the graph is large compared to its vertex cover number. The following
auxiliary graph is needed for this procedure.

Definition 6. Given a graph G with a vertex cover X ⊆ V (G), we define
the bipartite non-edge connection graph HG,X . Its partite sets are V (G) \ X
and

(
X
2

)
\E(G), with an edge between a vertex v ∈ V (G) \X and a vertex x{p,q}

representing {p, q} ∈
(
X
2

)
\ E(G) if v ∈ NG(p) ∩NG(q).

For disjoint vertex subsets S and T in a graph G, we say that S is saturated
by q-stars into T if we can assign to every v ∈ S a subset f(v) ⊆ NG(v) ∩ T of
size q, such that for any pair of distinct vertices u, v ∈ S we have f(u)∩f(v) = ∅.
Observe that an empty set can trivially be saturated by q-stars.

Lemma 9. Let (G,X, k) be an instance of Treewidth [vc]. If HG,X contains
a set T ⊆ V (G)\X such that S := NHG,X

(T ) can be saturated by 2-stars into T ,
then T is a treewidth-invariant set.

Proof. As T is a subset of the independent set V (G)\X, the set T is independent
in G. It remains to prove that for every v ∈ T , the graph ĜT is a minor of G−{v}.
So consider an arbitrary vertex v∗ ∈ T . We give a series of minor operations that
transforms G−{v∗} into ĜT . The crucial part of the transformation consists of
contracting vertices of T \ {v∗} into vertices of X, to turn NG(v) into a clique
for all v ∈ T ; afterwards we can simply delete all remaining vertices of T \ {v∗}.
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Let f : S →
(
T
2

)
be a mapping that assigns to each vertex in v a set of two of v’s

neighbors in T , such that the images of f are pairwise disjoint.
Consider a vertex v ∈ T such that NG(v) is not a clique. Let {p, q} be a

non-edge in G[NG(v)]. As v is adjacent to both p and q, vertex v is adjacent
to the representative x{p,q} in HG,X , implying that x{p,q} ∈ S. Hence x{p,q}
is saturated by a 2-star into T . Consider the two vertices f(x{p,q}) assigned
to x{p,q}; at least one of them, say u, differs from v∗. As u is adjacent to x{p,q}
in HG,X by definition of 2-star saturation, by definition of HG,X this implies
that u is adjacent to both p and q. Hence contracting u into p creates the
missing edge {p, q}. Now observe that as the images of f are pairwise disjoint,
for each non-edge {p, q} in the neighborhood of some vertex in T , there is a
distinct vertex unequal to v∗ that can be contracted to create the non-edge.
Contracting all such vertices into appropriate neighbors therefore turns each
set NG(v) for v ∈ T into a clique. Hence we establish that ĜT is indeed a minor
of G− {v∗}, proving that T is treewidth-invariant. ut

q-Expansion Lemma ([19, Lemma 12]). Let q be a positive integer, and
let m be the size of a maximum matching in a bipartite graph H with partite
sets A and B. If |B| > m · q and there are no isolated vertices in B, then there
exist nonempty vertex sets S ⊆ A and T ⊆ B such that S is saturated by q-stars
into T and S = NH(T ). Furthermore, S and T can be found in time polynomial
in the size of H by a reduction to bipartite matching.

Theorem 4. Treewidth [vc] has a kernel with O(|X|2) vertices that can be
encoded in O(|X|3) bits.

Proof. Given an instance (G,X, k) of Treewidth [vc], the algorithm con-
structs the non-edge connection graph HG,X with partite sets A =

(
X
2

)
\ E(G)

and B = V (G) \X. We attempt to find a treewidth-invariant set T ⊆ B. If B
has an isolated vertex v, then by definition of HG,X the set NG(v) is a clique
implying that {v} is treewidth-invariant. If B has no isolated vertices, we apply
the q-expansion lemma with q := 2 to attempt to find a set S ⊆ A and T ⊆ B
such that S is saturated by 2-stars into T and S = NHG,X

(T ). Hence such a
set T is treewidth-invariant by Lemma 9. If we find a treewidth-invariant set T :

– If maxv∈T degG(v) ≥ k + 1 then we output a constant-size no-instance, as
Lemma 8 then ensures that tw(G) ≥ degG(v) > k.

– Otherwise we reduce to (ĜT , X, k) and restart the algorithm.

Each iteration takes polynomial time. As the vertex count decreases in each
iteration, there are at most n iterations until we fail to find a treewidth-invariant
set. When that happens, we output the resulting instance. The q-expansion
lemma ensures that at that point, |B| ≤ 2m, where m is the size of a maximum
matching in HG,X . As m cannot exceed the size of the partite set A, which is

bounded by
(|X|

2

)
as there cannot be more non-edges in a set of size |X|, we find

that |B| ≤ 2
(|X|

2

)
upon termination. As vertex set B of the graph HG,X directly

corresponds to V (G)\X, this implies thatG has at most |X|+2
(|X|

2

)
vertices after
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exhaustive reduction. Thus the instance that we output has O(|X|2) vertices.
We can encode it in O(|X|3) bits: we store an adjacency matrix for G[X], and
for each of the O(|X|2) vertices v in V (G) \ X we store a vector of |X| bits,
indicating for each x ∈ X whether v is adjacent to it. ut

5 Conclusion

In this paper we contributed to the knowledge of sparsification for Treewidth
by establishing lower and upper bounds. Our work raises a number of questions.

We showed that Treewidth and Pathwidth instances on n vertices are
unlikely to be compressible into O(n2−ε) bits. Are there natural problems on
general graphs that do allow (generalized) kernels of size O(n2−ε)? Many prob-
lems admit O(k)-vertex kernels when restricted to planar graphs [5], which can
be encoded in O(k) bits by employing succinct representations of planar graphs.
Obtaining subquadratic-size compressions for NP-hard problems on classes of
potentially dense graphs, such as unit-disk graphs, is an interesting challenge.

In Section 4 we gave a quadratic-vertex kernel for Treewidth [vc]. While
the algorithm is presented for the decision problem, it is easily adapted to the
optimization setting (cf. [11]). The key insight for our reduction is the notion
of treewidth-invariant sets, together with the use of the q-expansion lemma to
find them when the complement of the vertex cover has superquadratic size. A
challenge for future research is to identify treewidth-invariant sets that are not
found by the q-expansion lemma; this might decrease the kernel size even further.
As the sparsification lower bound proves that Treewidth [vc] is unlikely to
admit kernels of bitsize O(|X|2−ε), while the current kernel can be encoded
in O(|X|3) bits, an obvious open problem is to close the gap between the upper
and the lower bound. Does Treewidth [vc] have a kernel with O(|X|) vertices?
If not, then is there at least a kernel with O(|X|2) rather than O(|X|3) edges?

For Pathwidth [vc], a kernel with O(|X|3) vertices is known [8]. Can this
be improved to O(|X|2) using an approach similar to the one used here? The
obvious pathwidth-analogue of Lemma 8 fails, as removing a low-degree simpli-
cial vertex may decrease the pathwidth of a graph. Finally, one may consider
whether the ideas of the present paper can improve the kernel size for Tree-
width parameterized by a feedback vertex set [7].
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