
ar
X

iv
:1

20
4.

02
19

v1
 [

cs
.D

S
]

1
A

pr
 2

01
2

Improved Approximation for Orienting Mixed Graphs

Iftah Gamzu∗ Moti Medina†

Abstract

An instance of the maximum mixed graph orientation problem consists of a mixed graph and a col-
lection of source-target vertex pairs. The objective is to orient the undirected edges of the graph so as to
maximize the number of pairs that admit a directed source-target path. This problem has recently arisen
in the study of biological networks, and it also has applications in communication networks.

In this paper, we identify an interesting local-to-global orientation property. This property enables us to
modify the best known algorithms for maximum mixed graph orientation and some of its special structured
instances, due to Elberfeld et al. (CPM ’11), and obtain improved approximation ratios. We further proceed
by developing an algorithm that achieves an even better approximation guarantee for the general setting of
the problem. Finally, we study several well-motivated variants of this orientation problem.

∗Tel Aviv University. Email:iftah.gamzu@cs.tau.ac.il.
†Tel Aviv University. Email:medinamo@eng.tau.ac.il.

http://arxiv.org/abs/1204.0219v1

1 Introduction

An instance of themaximum mixed graph orientationproblem consists of amixedgraphG = (V,ED ∪ EU)
with n vertices, such thatED andEU indicate the sets of directed and undirected edges, respectively. An
additional ingredient of the input is a collectionP ⊆ V × V of source-target vertex pairs. A source-target
vertex pair(s, t) ∈ P is called arequest. The objective is to orientG in a way that maximizes the number of
satisfied requests. Anorientationof G is a directed graph~G = (V,ED ∪ ~EU), where ~EU is a set of directed
edges obtained by choosing a single direction for each undirected edge inEU. A request(s, t) is said to be
satisfiedunder an orientation~G if there is a directed path froms to t in ~G.

One may assume without loss of generality that the mixed graph G is acyclic, that is, a graph that has
no cycles. This assumption holds since any instance of maximum mixed graph orientation can be reduced to
another instance in which the underlying mixed graph is acyclic without affecting the number of requests that
can be satisfied [23, 10]. Indeed, if the input graph containscycles, one can sequentially contract them one
after the other. In each step, the undirected edges of an arbitrary cycle are all oriented in the same direction.
In particular, if this cycle contains directed edges then the undirected edges are oriented in a consistent way
with those edges. As a result, every pair of vertices on this cycle admits a directed path between them, and
thus, the cycle can be contracted. One can easily validate that the resulting mixed acyclic graph consists of
undirected components, each of which must be an undirected tree, and those components are connected by
directed edges in a way that does not produce cycles. The maximum mixed graph orientation problem draws
its interest from applications in network biology and communication networks:

Network biology. Recent technological advances, such as yeast two-hybrid assays [12] and protein co-
immunoprecipitation screens [16], enable detecting physical interactions in the cell, leading to protein-protein
interaction (PPI) networks. One major caveat of those PPI measurements is that they do not reveal informa-
tion about the directionality of the interactions, namely,the directions in which the signal flows. Since PPI
networks serve as the skeletons of signal transduction in the cell, inferring the hidden directionality informa-
tion may provide insights to the inner working of the cell. Such an information may be inferred from causal
relations in those networks [24]. One such source of causal relations is perturbation experiments, in which
a gene is perturbed (cause) and as a result, other genes change their expression levels (effects). A change of
expression of a gene suggests that the corresponding proteins admit a path in the network, and in particular, it
is assumed that there must be a directed path from the causal gene to the affected gene.

Up until this point in time, the above-mentioned scenario can be modeled as a special instance of the
maximum mixed graph orientation problem in which one is interested to orient the edges of anundirected
network in a way that maximizes the number of cause-effect pairs that admit a directed path from the causal
gene to the affected gene. However, in the more accurate biological variant, there are several interactions
whose directionality is known in advance. For instance, protein-DNA interactions are naturally directed from
a transcription factor to its regulated genes, and some PPIs, like kinase-substrate interactions, are known to
transmit signals in a directional fashion. Therefore, in general, the input network is a mixed graph.

Communication networks. A unidirectional communication network consists of communication links that
allow data to travel only in one direction. One main benefit ofsuch communication links is that the data of
the device on one side is kept confidential while it may still access the data of the device on the other side.
As a consequence, unidirectional networks are most commonly found in high security environments, where a
connection may be made between devices with differing security classifications. For example, unidirectional
communication links can be used to facilitate access to a vulnerable domain such as the Internet to devices
storing sensitive data. The maximum mixed graph orientation problem captures the interesting scenario in
which one is interested to design a unidirectional network that maximizes the number of connection requests
that can be satisfied in a secure way. We remark that unidirectional networks have also been studied in

1

distributed and wireless ad hoc settings (see, e.g., [2, 1, 21] and the references therein), where a common
focus is on algorithmic questions that arise in a given unidirectional network. Here, we are rather interested
in the question of how to design such a network while optimizing some performance guarantees.

1.1 Previous work

Arkin and Hassin [3] seem to have been the first to study the problem of orienting mixed graphs. They focused
on the decision problem corresponding to maximum mixed graph orientation, and demonstrated that it is NP-
complete. Elberfeld et al. [10] observed that the reductionin their proof implies that the maximum mixed
graph orientation problem is NP-hard to approximate to within a factor of7/8. Silverbush, Elberfeld, and
Sharan [23] devised a polynomial-size integer linear program formulation for this problem, and evaluated its
performance experimentally. Recently, Elberfeld et al. [10] developed several polylogarithmic approximation
algorithms for special instances of the problem in which theunderlying graph is tree-like, e.g., when the graph
has bounded treewidth. In addition, they developed a greedyalgorithm for the general setting that achieves
Ω(1/(M c log n))-approximation, whereM = max{n, |P |} andc = 1/

√
2 ≈ 0.7071.

Medvedovsky et al. [22] initiated the study of the special setting of maximum graph orientation in which
the underlying graph is undirected, that is, when there are no pre-directed edges. They proved that it is
NP-hard to approximate this problem to within a factor of12/13, even when the graph is a star. They also
proposed an exact dynamic-programming algorithm for the special case of path graphs, and aΩ(1/ log n)-
approximation algorithm for the general problem. Gamzu, Segev and Sharan [15] utilized the framework
developed in [14] to obtain an improvedΩ(log log n/ log n)-approximation ratio (see also [9]). Very recently,
Dorn et al. [8] studied this problem from a parameterized complexity point of view. They presented several
fixed-parameter tractability results. Further research focused on other variants of this undirected orientation
problem. For example, Hakimi, Schmeichel, and Young [17] studied the special setting in which the set of
requests contains all vertex pairs, and developed an exact polynomial-time algorithm.

1.2 Our results

We identify a useful structural property of requests crossing through a junction vertex. Informally, this prop-
erty guarantees that if a set of requests is locally satisfiable then it can also be satisfied globally. Using this
property, we can slightly modify the algorithms developed by Elberfeld et al. [10], and obtain improved ap-
proximation ratios. For example, we eliminate a logarithmic factor from their polylogarithmic approximation
ratio for the case that the underlying graph has bounded treewidth. These results appear in Section 2. Al-
though the local-to-global property can be used in conjunction with the algorithm of Elberfeld et al. [10] to
obtain an improved approximation guarantee for the generalsetting, we proceed by developing an improved
Ω(1/(n|P |)1/3)-approximation algorithm for this problem. Our algorithm is based on a greedy approach that
employs the local-to-global property in a novel way. The specifics of this algorithm are presented in Section 3.
We also study two well-motivated variants of the orientation problem, and most notably, show hardness results
for them. Further details are provided in Section 4.

2 From Local to Global Orientations

In this section, we identify a useful structural property ofrequests crossing through a junction vertex. Infor-
mally, this property guarantees that if there is an orientation of thelocal neighborhood of a vertex that locally
satisfies a set of requests then it can be extended to aglobal orientation of the complete graph which satisfies
the same set of requests. Finding a local orientation that maximizes the local satisfiability is a relatively easy
task, namely, it admits a constant factor approximation algorithm. As a consequence, we can slightly modify

2

the algorithms developed by Elberfeld et al. [10] so they utilize this property, and obtain improved approxi-
mation ratios. For example, we eliminate a logarithmic factor from their polylogarithmic approximation ratio
for the special case that the underlying graph has bounded treewidth.

We associate each request(s, t) ∈ P with the shortest pathp betweens andt in the underlying graph.
Note that in case there are several shortest paths for a request, we associate it with one of them arbitrarily.
We now introduce some notation and terminology. To better understand the suggested notation, we refer the
reader to the concrete example in Figure 1.

• The local neighborhoodof a vertexv is the subgraphGv that consists ofv, all edges incident onv, and
all vertices adjacent tov. Notice that the local neighborhood graph is a star.

• Let Pv be the set of shortest paths of requests that crossv, and letP ′
v be the corresponding set oflocal

paths, that is, the paths ofPv confined to the local neighborhood ofv. More precisely, each (global) path
p ∈ Pv gives rise to a (local) pathp′ ∈ P ′

v defined as the intersection ofp with the local neighborhood
of v. Furthermore, for eachp′ ∈ P ′

v , we define its local endpointss′ andt′ to be the closest vertices to
s andt onp that also appear onp′, respectively.

• The local graph orientationproblem corresponding to vertexv is defined with respect to the local
neighborhood graphGv and the set of local pathsP ′

v. The goal is to orient the undirected edges ofGv

in a way that maximizes the number of satisfied paths inP ′
v. A path is said to besatisfiedif there is a

directed path between its source and target vertices under the orientation.

v1

v4

v2

s1

s2

v2

s3

t2

(a)

v3
v v

v1

v3

v4
t1

(b)

Figure 1: (a) SupposeP = {(s1, t1), (s2, t2), (s3, v)} is the set of requests, and note that the shortest paths of
these requests are marked with the heavy lines. Notice that all these paths crossv. (b) The local neighborhood
of v, and the corresponding set of local paths. For example, notice that the local endpoints of the request
(s1, t1) ares′1 = v1 andt′1 = v2.

Lemma 2.1. Given an orientation ofGv that satisfies a set of local pathsS′ ⊆ P ′
v then there is an orientation

ofG that satisfies the corresponding set of global pathsS ⊆ Pv.

Proof. We argue that if two local pathsp′1, p
′
2 ∈ S′ then the corresponding global pathsp1, p2 ∈ S cannot

be in conflict. The pathsp1 andp2 are said to bein conflict if they have a mutual undirected edge that gets
a different direction when the edges ofp1 are consistently oriented from its source vertex to its target vertex
and when the edges ofp2 are consistently oriented from its source vertex to its target vertex. Notice that
establishing this argument completes that proof of the lemma since none of the paths ofS can be in conflict
with another path inS, and therefore, all the paths inS can be simultaneously satisfied by consistently
orienting each one of them from its source vertex to its target vertex. Note that after one orients those paths,
the remaining undirected edges of the graph can be oriented in some arbitrary way.

3

For the purpose of establishing the above argument, let us suppose thatp1 andp2 are in conflict, and attain
a contradiction. Sincep1 andp2 are in conflict then there is an undirected edgee = (v1, v2) ∈ EU that gets
a different direction when consistently orienting each oneof p1 andp2 from its source vertex to its target
vertex. Let us assume without loss of generality that edgee is the closest tov from all conflicting edges. We
next present a case analysis that depends whether the edgee appears before or after the position of vertexv
on each of pathsp1 andp2. Essentially, there are two main cases. To better understand the used notation, we
refer the reader to the concrete examples in Figure 2.

Case I: edgee appears after vertexv in both p1 and p2. Let us assume without loss of generality thatv1
is closer tov thanv2 on p1, andv2 is closer tov thanv1 on p2. Let d1 be the distance betweenv andv1 on
p1, andd2 be the distance betweenv andv2 onp2. Sincep1 is a shortest path betweens1 andt1, it must also
be a shortest path betweenv andv2. Thus,d1 + 1 ≤ d2. Similarly, sincep2 is a shortest path betweens2 and
t2, it must also be a shortest path betweenv andv1, and hence,d2 + 1 ≤ d1. Summing together the above
inequalities results ind1 + d2 + 2 ≤ d1 + d2, a contradiction.

We note that the case that the edgee appearsbeforevertexv in bothp1 andp2 can be handled along the
same lines with an adjustment to the relative position ofv, e.g., the distances need to be defined fromv1 and
v2 towards the junction vertexv.

Case II: edgee appears after vertexv in p1 and before vertexv in p2. Let us assume without loss of
generality thatv1 is closer tov thanv2 on both pathsp1 andp2. Sincep′1, p

′
2 ∈ S′ we know that the edge

on whichp1 leavesv and the edge on whichp2 entersv must be different. This implies that the subpath
betweenv andv1 on p1 and the subpath betweenv1 andv on p2 are different. Consequently, merging these
two subpaths creates a cycle in the graph. This contradicts the fact that the graph is acyclic.

Note that the case that the edgee appears after vertexv in p2 and before vertexv in p1 is essentially
identical to the above case up to a renaming of the paths.

e

v1

t1

t2

t2
t1

v1

e

(a) (b)

d2

s2s1

v v2v2v

s2

s1

d1

Figure 2: (a) The case thate appears afterv in bothp1 andp2. (b) The case thate appears afterv in p1 and
beforev in p2.

We now concentrate on the computational complexity of the local graph orientation problem correspond-
ing to a vertexv. One can easily validate that this problem is equivalent to the maximum undirected graph
orientation problem on a star. Medvedovsky et al. [22] demonstrated that this problem is equivalent to the
maximum directed cut problem. This latter problem admits constant factor approximation algorithms (see,
e.g., [11, 20]). In fact, one can easily verify that a random orientation of the undirected edges in the local
neighborhood satisfies at least1/4 of the paths ofP ′

v in expectation. This follows since the maximal length
of any path in the local neighborhood is at most2. Furthermore, one can use the method of conditional ex-
pectations to obtain a deterministic orientation that satisfies at least1/4 of the paths, and consequently, this
approach is a1/4-approximation for this problem. Combining this result with the local-to-global orientation
property exhibited in Lemma 2.1 implies the following theorem.

4

Theorem 2.2. Given a vertexv and a set of requestsPv whose shortest paths crossv, there is a polynomial-
time algorithm that computes an orientation that satisfiesΩ(|Pv |) requests.

We can now modify the algorithms developed by Elberfeld et al. [10] in accordance with Theorem 2.2,
and obtain the following improved approximation ratios. Weemphasize that the algorithms and their analysis
follow (up to our modification step) those presented by Elberfeld et al. [10], and thus, we defer them to the
appendix. The first two theorems present algorithms whose approximation guarantees depend on the treewidth
and feedback vertex number of the underlying graph.

Theorem 2.3. There is a polynomial-time algorithm that finds an orientation satisfyingΩ(|P |/(k log n))
requests when the undirected version of the underlying graph has bounded treewidthk.

Theorem 2.4. There is a polynomial-time algorithm that finds an orientation satisfyingΩ(|P |/(k + log n))
requests, wherek is the minimum number of vertices whose deletion turns the undirected version of the
underlying graph into a tree.

We can also improve the approximation ratios of the algorithms presented by Elberfeld et al. [10] for the
general case, in which there are no structural assumptions on the graph, by a logarithmic factor.

Theorem 2.5.There is a polynomial-time algorithm that approximates themaximum mixed graph orientation
problem to within a factor ofΩ(1/

√

∆|P |), where∆ is the maximum length of a shortest source-target path
in the graph.

Theorem 2.6.There is a polynomial-time algorithm that approximates themaximum mixed graph orientation
problem to within a factor ofΩ(1/M1/

√
2), whereM = max{n, |P |}.

Note that we do not provide a proof for the latter theorem since it can be established along the same lines
of [10], but more importantly, since we next present an algorithm with a better approximation guarantee.

3 Improved Approximation for The General Case

In this section, we develop a relatively simpleΩ(1/(n|P |)1/3)-approximation algorithm for the maximum
mixed graph orientation problem. Our algorithm is based on agreedy approach that employs the local-to-
global orientation property developed in Section 2.

The algorithm, formally described below, begins by associating each request(si, ti) ∈ P with a shortest
pathpi betweensi and ti in the graph. Then, it greedily orients shortest paths one after the other until all
the remaining paths are in conflict with many other paths. When this happens, the algorithm concentrates on
the vertex that is crossed by a maximal number of paths, and utilizes the local-to-global orientation algorithm
from Theorem 2.2 to complete the orientation of the graph. Recall that two pathsp1 andp2 are said to bein
conflict if they have a mutual undirected edge that gets a different direction when the edges ofp1 andp2 are
consistently oriented from their source vertex to their target vertex.

One can easily verify that the algorithm computes a feasibleorientation, namely, it assigns a single di-
rection to each undirected edge. This follows since no conflicting paths are oriented during the main loop
of the algorithm, and since the algorithm from Theorem 2.2 isknown to compute a feasible orientation. We
next prove that the algorithm satisfiesΩ(1/(n|P |)1/3)-fraction of all requests. Clearly, this implies that the
algorithm achieves (at least) the same approximation guarantee.

Theorem 3.1. The greedy orientation algorithm satisfiesΩ(1/(n|P |)1/3)-fraction of all requests.

5

Algorithm 1 Greedy Orientation

Input: A mixed graphG and a collectionP ⊆ V × V of requests
Output: An orientation~G of G

1: Let pi be a shortest path for request(si, ti) ∈ P in G, and letP =
⋃{pi}

2: while there ispi ∈ P that is in conflict with less than(n|P |)1/3 paths inP do
3: LetQ ⊆ P be the set of paths in conflict withpi
4: G← the graph that results by orienting the edges ofpi from si towardsti in G
5: P ← P \ (Q∪ {pi})
6: end while
7: Let v be a vertex that a maximal number of paths inP cross, and letPv ⊆ P be that set of paths
8: G← the graph that results by executing the algorithm from Theorem 2.2 with respect tov andPv
9: return G

Proof. Let P =
⋃{pi} be the initial collection of shortest paths, and note that|P| = |P |. In addition, let

P2 ⊆ P be the set of paths the remain after the termination of the main loop of the algorithm, andP1 = P\P2.
Finally, letA1 be the set of paths that our algorithm satisfies during the main loop of the algorithm, and let
A2 be the set of paths that the algorithm satisfies during the execution of the algorithm from Theorem 2.2. In
what follows, we prove that|A1| = Ω(1/(n|P |)1/3) · |P1|, and|A2| = Ω(1/(n|P |)1/3) · |P2|. Consequently,
we obtain that the number of paths satisfied by our algorithm is

|A1|+ |A2| = Ω

(

1

(n|P |)1/3
)

· (|P1|+ |P2|) = Ω

(

1

(n|P |)1/3
)

· |P | .

The fact that|A1| = Ω(1/(n|P |)1/3) · |P1| easily follows by observing that in each step of the main
loop of the algorithm, one path is satisfied while less than(n|P |)1/3 paths are discarded. Hence, we are left
to prove that|A2| = Ω(1/(n|P |)1/3) · |P2|. We establish a somewhat stronger result by demonstrating that
|A2| = Ω(1/(n|P2|)1/3) · |P2|. For this purpose, consider two pathsp1, p2 ∈ P2 that are in conflict. We
associate the conflict between these paths to an arbitrary undirected edge that gets a different direction when
p1 andp2 are oriented, and place one token on this edge. Notice that each path ofP2 is in conflict with at
least(n|P |)1/3 other paths inP2; otherwise, the main loop would not have terminated. This implies that if
we place a token for each pair of conflicting paths inP2 as shown before then the undirected edges ofG have
at least(n|P |)1/3 · |P2|/2 ≥ n1/3|P2|4/3/2 tokens placed on them. As a consequence, there must be a vertex
that has at leastt = |P2|4/3/(2n2/3) tokens placed on the undirected edges in its local neighborhood. We next
argue that if some vertex hast tokens in its local neighborhood then there must beΩ(

√
t) paths that cross that

vertex. As a result, we attain that the number of paths that cross the vertexv, i.e., the vertex that a maximal
number of paths fromP2 cross, is at leastΩ(

√
t) = Ω(|P2|2/3/n1/3). By theorem 2.2, our algorithm satisfies

a constant fraction of these requests, namely,|A2| = Ω(1/(n|P2|)1/3) · |P2|, as required.
For the purpose of establishing the above argument, consider some vertexu that hast tokens in its local

neighborhood. Let us focus on some edgee in this local neighborhood that hasr paths that traverse in one
direction andℓ paths that traverse in the other direction. Notice that suchan edge is assignedr · ℓ tokens. This
implies that if the local neighborhood ofu consists only of the edgee then the minimal number of paths that
crossu corresponds to the solution ofmin{r + ℓ : r · ℓ = t}. One can easily verify that the solution for this
expression isr = ℓ =

√
t, that is, the number of paths isΩ(

√
t). Note that when there is more than one edge

in the local neighborhood ofu then any path may cross at most two edges. As a result, if we denote the set
of edges in the local neighborhood ofu by Eu, then the minimal number of paths that crossu dominates the
solution ofmin{∑e∈Eu

(re+ ℓe)/2 :
∑

e(re ·ℓe) = t}; here,re andℓe indicate the number of paths traversing

6

edgee in one direction and the other direction, respectively. Onecan easily demonstrate that the solution for
the above expression is obtained by assigning non-zero values only to one pair ofre, ℓe variables, namely, it
is equivalent to the solution for the single edge case.

4 Other Orientation Variants

In this section, we study two well-motivated variants of theorientation problem: the first is maximum mixed
graph orientationwith fixed paths, and the other is maximum mixedgrid orientation.

4.1 Orientation with fixed paths

We consider the maximum mixed graph orientationwith fixed pathsproblem. This variant is identical to the
maximum mixed graph orientation problem with the exceptionthat each request(s, t) ∈ P is also associated
with a fixed pathp from s to t in the graph. With this modified definition in mind, a request(s, t) is satisfied
only if the edges of the pathp are oriented from the vertexs towards the vertext. Note that this variant
is seemingly simpler than maximum mixed graph orientation since the only computational task is to decide
which requests to satisfy, and there is no need to decide which paths will be used to satisfy those requests.
This is also one of our motivations for studying this variant, hoping that it will shed some light on the original
problem that would lead to a reduction in the gap between its lower and upper approximation bounds.

We prove that the maximum mixed graph orientation with fixed paths problem is NP-hard to approximate
to within a factor ofmax{1/|P |1−ǫ, 1/m1/2−ǫ}, for anyǫ > 0. In fact, we establish this result even when
the underlying graph is undirected. As a consequence, we attain that this problem is provably harder than the
maximum mixed (or undirected) graph orientation problem, although it may seem simpler at first glance. Our
proof is based on showing that the problem under consideration captures the well-knownmaximum indepen-
dent setproblem as a special case.

A hardness of approximation result. An input instance for themaximum independent setproblem consists
of an undirected graphG′ = (V ′, E′). The goal is to find an independent set of maximum size in the graph. An
independent set is a collection of vertices that do not have any edges between them. This problem is known to
be NP-hard to approximate within a factor of1/|V ′|1−ǫ, for anyǫ > 0 [25]. We next show a value-preserving
reduction from this problem to our maximum mixed graph orientation with fixed paths problem.

Given an input instance of maximum independent set, we construct an input instance for our problem that
consists of the undirected graph presented in Figure 3(a). Specifically, we begin by creating a graph with
n′ = |V ′| pairs ofsi, ti vertices, corresponding to the vertices ofG′, such that each such pair is connected
by a pathpi. We intersect all these connecting paths in a grid-like fashion. Then, each intersection point is
replaced by one of the gadgets exhibited in Figures 3(b) and 3(c). The gadgetgi,j that replaces the intersection
point of pathspi andpj has4 vertices:vi andui that are appropriately added to pathpi, andvj anduj that
are appropriately added to pathpj . The edges within the gadget has the form described in Figure3(b) if
(i, j) /∈ E′, or the form described in Figure 3(c) if(i, j) ∈ E′. In the latter case, the pathpj is also modified
to consist of the verticesvi andui, so its subpath inside the gadget is〈vj , ui, vi, uj〉. In addition, the set of
requestsP for our problem consist of alln′ pairs(si, ti) with their corresponding pathpi.

One can easily validate that a solutionS ⊆ V ′ for the maximum independent set problem implies an
orientation in the newly-created instance that satisfies the same number of requests. Specifically, ifi, j ∈ S
then clearly(i, j) /∈ E′, and thus, the pathspi andpj do not share edges. As a result, one can simultaneously
satisfy both request(si, ti) and (sj, tj) by orienting each of their paths from its source vertex to itstarget
vertex. Conversely, it is not difficult to verify that given an orientation in newly-created instance that satisfies
some set of requests, one can perform a similar value-preserving transformation in the opposite direction. In

7

uj

vi ui

vj

(b)

g2,1

gn′,n′−1gn′,2gn′,1
gi,j

g3,1

tn′

s3

t1 t2

(a)

sn′

s2

s1

vi

(c)

vj

uig3,2

gi,j

uj

Figure 3: (a) The graph resulting from the reduction. (b) Thegadget that is used in case(i, j) /∈ E′. Note that
the edges(vi, ui) and(vj , uj) do not intersect. (c) The gadget that is used in case(i, j) ∈ E′.

particular, notice that ifi /∈ S then there must bej ∈ S such that(i, j) ∈ E′, and hence, the pathspi and
pj require to orient the edge(vi, ui) in the gadgetgi,j in conflicting directions. Consequently, one cannot
simultaneously satisfy both underlying requests.

As a result of this value-preserving reduction, and in conjunction with the hardness result presented by
Zuckerman [25], we attain the following inapproximabilityresult. Recall that|P | = |V ′|, and notice that the
number of edges in the newly-created instance ism = O(|V ′|2).

Theorem 4.1. The maximum mixed graph orientation with fixed paths problemis NP-hard to approximate
within a factor ofmax{1/|P |1−ǫ, 1/m1/2−ǫ}, for anyǫ > 0.

4.2 Orientation in grid networks

We study the maximum mixedgrid orientation problem. This variant is identical to the maximum mixed
graph orientation problem with the additional restrictionthat the graph is a grid. An ×m grid network is a
graph with a vertex setV = {1, . . . , n} × {1, . . . ,m}, and an edge setE consisting of horizontal edges, i.e.,
edges((i, j), (i, j + 1)) for all j = {1, . . . ,m − 1}, and vertical edges, i.e., edges((i, j), (i + 1, j)) for all
i = {1, . . . , n− 1}. Note that the study of this variant is motivated by applications in networking.

We prove that the maximum mixed grid orientation problem is at least as hard as themaximum directed
cut problem. Consequently, approximating our problem within factors of12/13 ≈ 0.923 andαGW ≈ 0.878
is NP-hard and Unique Game-hard, respectively. Interestingly, this finding comes in contrast with the results
attainable for the undirected grid setting. This latter setting can be solved to optimality in polynomial-time,
and in particular, when the grid is not a path, that is, whenn,m > 1, all the requests inP can be satisfied.

A hardness of approximation result.An input instance for themaximum directed cutproblem consists of a
directed graphG′ = (V ′, E′). The goal is to find a directed cut of maximum size in the graph.The size of
a cutA ⊆ V is the number of directed edges(u, v) ∈ E′ such thatu ∈ A andv ∈ V ′ \ A. Approximating
this problem within factors of12/13 ≈ 0.923 andαGW ≈ 0.878 is known to be NP-hard [18] and Unique
Games-hard [19], respectively. In what follows, we presenta value-preserving reduction from this problem to
our maximum mixed grid orientation problem.

8

Given an input instance of maximum directed cut, we construct an input instance for our problem which
consists of the mixed grid presented in Figure 4(a). Specifically, we create a grid whose dimensions are
n = 2|V ′| − 1 andm = 3. We associate each vertexvi ∈ V ′ with the vertex(2i − 1, 1) in the grid. The
edges incident on each vertex(2i, 1) in the grid are oriented away from that vertex, and the edges along the
perimeter of the sub-grid that consists of the second and third vertex columns are oriented in a way that creates
a directed cycle. In addition, the set of requests for our problem is defined to beP = E′.

One can validate that a solutionA ⊆ V ′ for the maximum directed cut problem implies an orientation
in the newly-created instance that satisfies the same numberof requests. Specifically, ifvi ∈ A we orient
the single undirected edge incident on vertexvi of the grid away from that vertex, and ifvi ∈ V \ A we
orient that edge towards vertexvi. Then, it is easy to see that if an edge ofE′ is cut by the solutionA
then the corresponding request is satisfied in the orientation. Conversely, it is not difficult to verify that
given an orientation in newly-created instance that satisfies some set of requests, one can perform a similar
value-preserving transformation in the opposite direction. In particular, this side of the proof builds upon the
observation that any request(vi, vj) may only be satisfied by a path that crosses the undirected edges incident
on vi andvj. The orientation of all those undirected edges define the cutin the initial problem.

As a result of this value-preserving reduction, and in conjunction with the hardness results presented by
Håstad [18] and Khot et al. [19], we attain the following inapproximability result.

Theorem 4.2. The maximum mixed grid orientation problem is NP-hard to approximate within a factor of
12/13 ≈ 0.923, and Unique Games-hard to approximate within a factor ofαGW ≈ 0.878.

(a) (b)

vn′

v3

v2

v1

Figure 4: (a) The grid resulting from the reduction. Note that n′ = |V ′|. (b) An orientation of an undirected
grid that admits a directed path between any two vertices.

Orientation of undirected grids. The above-mentioned hardness result comes in contrast withthe results
attainable for the undirected grid setting. This latter setting can be solved to optimality in polynomial-time.
Specifically, when the grid is a path, i.e., when eitherm or n equals1, there are optimal polynomial-time
algorithms for the problem [22, 8], and whenn,m > 1, there is a simple orientation that satisfies all the
requests inP . This orientation can be obtained by creating a directed cycle along the perimeter of the grid,
and then, orienting all the remaining horizontal and vertical edges consistently. A concrete example of such
an orientation is presented in Figure 4(b). One can easily prove that this orientation admits a directed path
between any two vertices of the graph.

9

References

[1] Y. Afek and A. Bremler-Barr. Self-stabilizing unidirectional network algorithms by power supply.
Chicago J. Theor. Comput. Sci., 1998.

[2] Y. Afek and E. Gafni. Distributed algorithms for unidirectional networks.SIAM J. Comput., 23(6):1152–
1178, 1994.

[3] E. M. Arkin and R. Hassin. A note on orientations of mixed graphs. Discrete Applied Mathematics,
116(3):271–278, 2002.

[4] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undirected feedback vertex set
problem.SIAM J. Discrete Math., 12(3):289–297, 1999.

[5] A. Becker and D. Geiger. Approximation algorithms for the loop cutset problem. InProceedings 10th
Annual Conference on Uncertainty in Artificial Intelligence, pages 60–68, 1994.

[6] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.SIAM J.
Comput., 25(6):1305–1317, 1996.

[7] F. A. Chudak, M. X. Goemans, D. S. Hochbaum, and D. P. Williamson. A primal-dual interpretation of
two 2-approximation algorithms for the feedback vertex setproblem in undirected graphs.Oper. Res.
Lett., 22(4-5):111–118, 1998.

[8] B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann. Exploiting bounded signal flow for
graph orientation based on cause-effect pairs. InProceedings 1st International ICST Conference on
Theory and Practice of Algorithms in (Computer) Systems, pages 104–115, 2011.

[9] M. Elberfeld, V. Bafna, I. Gamzu, A. Medvedovsky, D. Segev, D. Silverbush, U. Zwick, and R. Sharan.
On the approximability of reachability-preserving network orientations.Internet Mathematics, 7:209–
232, 2011.

[10] M. Elberfeld, D. Segev, C. R. Davidson, D. Silverbush, and R. Sharan. Approximation algorithms for
orienting mixed graphs. InProceedings 22nd Annual Symposium on Combinatorial Pattern Matching,
pages 416–428, 2011.

[11] U. Feige and M. X. Goemans. Aproximating the value of twoprover proof systems, with applications
to MAX 2SAT and MAX DICUT. In Proceedings 3rd Israel Symposium on Theory and Computing
Systems, pages 182–189, 1995.

[12] S. Fields. High-throughput two-hybrid analysis: The promise and the peril. The FEBS Journal,
272(21):5391–5399, 2005.

[13] G. N. Frederickson and D. B. Johnson. Generating and searching sets induced by networks. InPro-
ceedings 7th International Colloquium on Automata, Languages and Programming, pages 221–233,
1980.

[14] I. Gamzu and D. Segev. A sublogarithmic approximation for highway and tollbooth pricing. InPro-
ceedings 37th International Colloquium on Automata, Languages and Programming, pages 582–593,
2010.

10

[15] I. Gamzu, D. Segev, and R. Sharan. Improved orientations of physical networks. InProceedings 10th
International Workshop on Algorithms in Bioinformatics, pages 215–225, 2010.

[16] A. C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M.
Michon, C. M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino,
K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. A.
Heurtier, R. R. Copley, A. Edelmann, E. Querfurth, V. Rybin,G. Drewes, M. Raida, T. Bouwmeester,
P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. Functional organization of the yeast
proteome by systematic analysis of protein complexes.Nature, 415:141–147, 2002.

[17] S. L. Hakimi, E. F. Schmeichel, and N. E. Young. Orienting graphs to optimize reachability.Information
Processing Letters, 63(5):229–235, 1997.

[18] J. Håstad. Some optimal inapproximability results.Journal of the ACM, 48(4):798–859, 2001.

[19] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for MAX-CUT
and other 2-variable CSPs?SIAM Journal on Computing, 37(1):319–357, 2007.

[20] M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the MAX 2-SAT and MAX
DI-CUT problems. InProceedings 9th International Conference on Integer Programming and Combi-
natorial Optimization, pages 67–82, 2002.

[21] M. K. Marina and S. R. Das. Routing performance in the presence of unidirectional links in multihop
wireless networks. InProceedings 3rd ACM Interational Symposium on Mobile Ad HocNetworking and
Computing, pages 12–23, 2002.

[22] A. Medvedovsky, V. Bafna, U. Zwick, and R. Sharan. An algorithm for orienting graphs based on
cause-effect pairs and its applications to orienting protein networks. InProceedings 8th International
Workshop on Algorithms in Bioinformatics, pages 222–232, 2008.

[23] D. Silverbush, M. Elberfeld, and R. Sharan. Optimally orienting physical networks. InProceedings
15th Annual International Conference on Research in Computational Molecular Biology, pages 424–
436, 2011.

[24] C.-H. Yeang, T. Ideker, and T. Jaakkola. Physical network models.Journal of Computational Biology,
11(2/3):243–262, 2004.

[25] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number.
Theory of Computing, 3:103–128, 2007.

A Additional Details

In this section, we complete the details omitted from the main part of the paper.

A.1 Proof of Theorem 2.3

The algorithm begins by computing a tree decomposition of width k for the undirected version of the under-
lying graph. Note that this task can be done in polynomial-time since our graph has bounded treewidth [6].
A tree decomposition is a pair(T,X), whereX = {X1, . . . ,Xℓ} is a collection of subsets such that each

11

Xi ⊆ V , andT is a tree whose nodes are the subsets inX. Note thatℓ = poly(n) in our case. The decompo-
sition satisfies the following properties: (1)

⋃

Xi = V , (2) the incident vertices of every edge of the graph are
contained in some subset inX, and (3) ifXi andXj contain a vertexv then all the nodesXk in the unique
path betweenXi andXj containv as well. The width of the tree is defined to bemax |Xi| − 1.

Given the tree decomposition(T,X), the algorithm proceeds by computing a shortest path for each re-
quest inP . The paths are then classified into at most⌈log ℓ⌉ = O(log n) classes such that for every class, an
orientation that satisfiesΩ(1/k)-fraction of its paths can be efficiently computed. As a consequence, by sep-
arately computing an orientation for each class, and then picking the option that satisfies the highest number
of paths, we are guaranteed to satisfyΩ(|P |/(k log n)) of all the requests.

For the purpose of constructing the first class, we find a centroid nodeXt of T , that is, a node whose
removal breaks the tree into a collection of subtrees, each of which has at most half of the vertices inT . Note
that any tree has a centroid (see, e.g., [13]). We assign all the paths that cross a vertex fromXt = {v1, . . . , vr}
to classC1. We further partitionC1 into r collectionsC1,1, . . . , C1,r such that a pathp is assigned to the
collectionC1,j if it crossesvj but does not cross any of the vertices in{v1, . . . , vj−1}. Notice that we can
satisfyΩ(|C1,j|) paths from the collectionj by applying Theorem 2.2. One can now easily validate that
executing the mentioned algorithm on each collection separately, and then picking the option that satisfies the
highest number of paths results in an orientation satisfying Ω(|C1|/k) requests sincer ≤ k + 1.

To construct the second class, we first remove the nodeXt from T to obtain a forest of tree decomposi-
tions. For each tree decomposition, we compute a centroid node, and in the same way as above, we assign
a path toC2 if it crosses a vertex from the subsets associated with thesecentroid nodes. Note that we only
assign paths that were not assigned to the first class. Using the same arguments as above, we can compute
an orientation that satisfiesΩ(|C2|/k) requests. In particular, one can validate that each path crosses vertices
from exactly one centroid node; otherwise, it should have been assigned to the first class by properties (2) and
(3) of the tree decomposition. We now proceed recursively inthe same way to construct the other classes as
long as the decompositions under consideration are not empty. Since the maximal size of a subtree decreases
by at least half in each level of the recursion, this process terminates within⌈log ℓ⌉ steps, and hence, there are
indeed at most⌈log ℓ⌉ classes.

A.2 Proof of Theorem 2.4

The algorithm begins by finding a feedback vertex setF = {v1, . . . , vℓ} in the undirected version of the
graph, namely, a set of vertices whose removal turns the underlying undirected graph into a tree. Although
the computational task of finding a feedback vertex set with aminimum cardinality is NP-hard, there is a
2-approximation algorithm for this problem [5, 4, 7]. Therefore, we may assume that the cardinality of that
set satisfiesℓ ≤ 2k. The algorithm proceeds by computing a shortest pathpi for each request(si, ti) ∈ P .
Then, each pathpi is classified into one ofℓ+1 classes: ifpi crosses the vertexvj and none of the vertices in
{v1, . . . , vj−1} then it is assigned to classCj; otherwise, ifpi does not cross any of the vertices ofF , then it
is assigned to classCℓ+1. Notice that we can satisfyΩ(|Cj |) paths from any classj by applying Theorem 2.2.
Also notice that by deleting the vertices ofF from the graphG, we obtain a mixed graph which is a forest
of trees, and all the paths inCℓ+1 still remain connected. This mixed tree orientation setting is known to
admit an efficientΩ(1/ log n)-approximation algorithm [10], and thus, we can satisfyΩ(|Cℓ+1|/ log n) paths
from the classℓ + 1. One can now easily validate that executing the mentioned algorithms on each class
separately, and then picking the option that satisfies the highest number of paths results in an orientation
satisfyingΩ(|P |/(k + log n)) of all requests.

12

A.3 Proof of Theorem 2.5

The algorithm computes a shortest pathpi for each request(si, ti) ∈ P . Then, it considers those shortest
paths in some arbitrary order, and orients them one after theother. In particular, when a pathp is oriented,
all the pending paths that are in conflict withp are discarded. This greedy orientation procedure continues
as long as a pathp under consideration is not in conflict with more than

√

∆|P | pending paths. When this
happens, there must be some vertexv on p that at least

√

∆|P |/∆ =
√

|P |/∆ pending paths cross. This
claim holds since the length ofp is known to be at most∆. The algorithm then employs the local-to-global
orientation algorithm from Theorem 2.2 with respect to the vertexv and the corresponding set of pending
paths to complete the orientation of the graph.

One can easily verify that the algorithm computes a feasibleorientation. Therefore, we next prove that the
algorithm satisfiesΩ(1/

√

∆|P |)-fraction of all requests. Notice that if the algorithm employs our local-to-
global orientation algorithm then the resulting orientation indeed attains the desired performance guarantee
since the number of paths satisfied only by this step isΩ(

√

|P |/∆) = Ω(1/
√

∆|P |) · |P |. Hence, we
may assume that the algorithm only makes greedy orientationsteps. In this case, the resulting orientation
clearly achieves the desired performance guarantee since one path is satisfied while at most

√

∆|P | paths are
discarded in each of those greedy steps.

13

