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Improved Approximation for Orienting Mixed Graphs

Iftah Gamzui Moti Medind

Abstract

An instance of the maximum mixed graph orientation problemsists of a mixed graph and a col-
lection of source-target vertex pairs. The objective isriertd the undirected edges of the graph so as to
maximize the number of pairs that admit a directed sounggetaath. This problem has recently arisen
in the study of biological networks, and it also has appi@a in communication networks.

In this paper, we identify an interesting local-to-globaéatation property. This property enables us to
modify the best known algorithms for maximum mixed grapleotation and some of its special structured
instances, due to Elberfeld et al. (CPM '11), and obtain mapd approximation ratios. We further proceed
by developing an algorithm that achieves an even betteioappation guarantee for the general setting of
the problem. Finally, we study several well-motivated &ats of this orientation problem.
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1 Introduction

An instance of thenaximum mixed graph orientatiggroblem consists of mixedgraphG = (V, Ep U Ey)
with n vertices, such that’p and Ey indicate the sets of directed and undirected edges, resggctAn
additional ingredient of the input is a collectidh C V' x V' of source-target vertex pairs. A source-target
vertex pair(s,t) € P is called arequest The objective is to orients in a way that maximizes the number of
satisfied requests. Asrientationof G is a directed graply = (V, Ep U Ey), whereEy is a set of directed
edges obtained by choosmg a single direction for each ectdid edge iy. A request(s,t) is said to be
satisfiedunder an orientatiort if there is a directed path fromto ¢ in G.

One may assume without loss of generality that the mixedhgéajs acyclic that is, a graph that has
no cycles. This assumption holds since any instance of marimixed graph orientation can be reduced to
another instance in which the underlying mixed graph is lezyathout affecting the number of requests that
can be satisfied [23, 10]. Indeed, if the input graph contaeytdes, one can sequentially contract them one
after the other. In each step, the undirected edges of aimaaybcycle are all oriented in the same direction.
In particular, if this cycle contains directed edges thenuhdirected edges are oriented in a consistent way
with those edges. As a result, every pair of vertices on thitecadmits a directed path between them, and
thus, the cycle can be contracted. One can easily validatdth resulting mixed acyclic graph consists of
undirected components, each of which must be an undiremted and those components are connected by
directed edges in a way that does not produce cycles. Themaximixed graph orientation problem draws
its interest from applications in network biology and conmication networks:

Network biology. Recent technological advances, such as yeast two-hybsays412] and protein co-
immunoprecipitation screens [16], enable detecting miaysnteractions in the cell, leading to protein-protein
interaction (PPI) networks. One major caveat of those PRismmements is that they do not reveal informa-
tion about the directionality of the interactions, naméfe directions in which the signal flows. Since PPI
networks serve as the skeletons of signal transductioreicéh, inferring the hidden directionality informa-
tion may provide insights to the inner working of the cell.cBwan information may be inferred from causal
relations in those networks [24]. One such source of caadations is perturbation experiments, in which
a gene is perturbed (cause) and as a result, other genesdhangexpression levels (effects). A change of
expression of a gene suggests that the correspondingneatémit a path in the network, and in particular, it
is assumed that there must be a directed path from the caarsaltg the affected gene.

Up until this point in time, the above-mentioned scenario ba modeled as a special instance of the
maximum mixed graph orientation problem in which one isneséed to orient the edges of andirected
network in a way that maximizes the number of cause-effeics plaat admit a directed path from the causal
gene to the affected gene. However, in the more accuratedidall variant, there are several interactions
whose directionality is known in advance. For instancetggneDNA interactions are naturally directed from
a transcription factor to its regulated genes, and some, Riedkinase-substrate interactions, are known to
transmit signals in a directional fashion. Therefore, inggal, the input network is a mixed graph.

Communication networks. A unidirectional communication network consists of comigation links that
allow data to travel only in one direction. One main benefiswéh communication links is that the data of
the device on one side is kept confidential while it may stitess the data of the device on the other side.
As a consequence, unidirectional networks are most comnfouahd in high security environments, where a
connection may be made between devices with differing ggatlassifications. For example, unidirectional
communication links can be used to facilitate access to aevable domain such as the Internet to devices
storing sensitive data. The maximum mixed graph orientapimblem captures the interesting scenario in
which one is interested to design a unidirectional netwbat maximizes the number of connection requests
that can be satisfied in a secure way. We remark that unigiredtnetworks have also been studied in



distributed and wireless ad hoc settings (see, e.g., [21]lad the references therein), where a common
focus is on algorithmic questions that arise in a given waadional network. Here, we are rather interested
in the question of how to design such a network while optingzome performance guarantees.

1.1 Previous work

Arkin and Hassin [3] seem to have been the first to study thieleno of orienting mixed graphs. They focused
on the decision problem corresponding to maximum mixedtgaj@ntation, and demonstrated that it is NP-
complete. Elberfeld et al. [10] observed that the reductiotheir proof implies that the maximum mixed
graph orientation problem is NP-hard to approximate to iwithfactor of7/8. Silverbush, Elberfeld, and
Sharan [23] devised a polynomial-size integer linear @ogformulation for this problem, and evaluated its
performance experimentally. Recently, Elberfeld et &) [developed several polylogarithmic approximation
algorithms for special instances of the problem in whichuhderlying graph is tree-like, e.g., when the graph
has bounded treewidth. In addition, they developed a gredgbrithm for the general setting that achieves
Q(1/(M¢log n))-approximation, wherd/ = max{n, |P|} andc = 1/v/2 ~ 0.7071.

Medvedovsky et al. [22] initiated the study of the specidlisg of maximum graph orientation in which
the underlying graph is undirected, that is, when there ar@ne-directed edges. They proved that it is
NP-hard to approximate this problem to within a factorl®f13, even when the graph is a star. They also
proposed an exact dynamic-programming algorithm for trezigp case of path graphs, andal / log n)-
approximation algorithm for the general problem. GamzwgeSeand Sharan [15] utilized the framework
developed in [14] to obtain an improvél(log log n/ log n)-approximation ratio (see also [9]). Very recently,
Dorn et al. [8] studied this problem from a parameterized glexity point of view. They presented several
fixed-parameter tractability results. Further researcuged on other variants of this undirected orientation
problem. For example, Hakimi, Schmeichel, and Young [ldflistd the special setting in which the set of
requests contains all vertex pairs, and developed an egbgtgmial-time algorithm.

1.2 Our results

We identify a useful structural property of requests crogshrough a junction vertex. Informally, this prop-
erty guarantees that if a set of requests is locally satlsfidien it can also be satisfied globally. Using this
property, we can slightly modify the algorithms developgddiberfeld et al. [10], and obtain improved ap-
proximation ratios. For example, we eliminate a logarithfaictor from their polylogarithmic approximation
ratio for the case that the underlying graph has boundedvitlde These results appear in Section 2. Al-
though the local-to-global property can be used in conjonatith the algorithm of Elberfeld et al. [10] to
obtain an improved approximation guarantee for the gersettihg, we proceed by developing an improved
Q(1/(n|P|)'/3)-approximation algorithm for this problem. Our algorithebased on a greedy approach that
employs the local-to-global property in a novel way. Thec#iges of this algorithm are presented in Section 3.
We also study two well-motivated variants of the orientafwoblem, and most notably, show hardness results
for them. Further details are provided in Section 4.

2 From Local to Global Orientations

In this section, we identify a useful structural propertyr@fuests crossing through a junction vertex. Infor-
mally, this property guarantees that if there is an oriémiadf thelocal neighborhood of a vertex that locally

satisfies a set of requests then it can be extendedlimbal orientation of the complete graph which satisfies
the same set of requests. Finding a local orientation thatmizes the local satisfiability is a relatively easy
task, namely, it admits a constant factor approximatioordigm. As a consequence, we can slightly modify



the algorithms developed by Elberfeld et al. [10] so thelizatithis property, and obtain improved approxi-
mation ratios. For example, we eliminate a logarithmicda@tom their polylogarithmic approximation ratio
for the special case that the underlying graph has boundedialth.

We associate each requéstt) € P with the shortest patp betweens and¢ in the underlying graph.
Note that in case there are several shortest paths for asieque associate it with one of them arbitrarily.
We now introduce some notation and terminology. To betteletstand the suggested notation, we refer the
reader to the concrete example in Figure 1.

e Thelocal neighborhoof a vertexwv is the subgrapld-,, that consists of, all edges incident on, and
all vertices adjacent to. Notice that the local neighborhood graph is a star.

e Let P, be the set of shortest paths of requests that arpaad letP, be the corresponding set local
paths that is, the paths aP, confined to the local neighborhoodw@fMore precisely, each (global) path
p € P, gives rise to a (local) pathl € P, defined as the intersection pfwith the local neighborhood
of v. Furthermore, for each € P,, we define its local endpoints andt’ to be the closest vertices to
s andt onp that also appear opf, respectively.

e Thelocal graph orientationproblem corresponding to vertexis defined with respect to the local
neighborhood grapty, and the set of local pathB/. The goal is to orient the undirected edgesf
in a way that maximizes the number of satisfied pathB/inA path is said to beatisfiedif there is a
directed path between its source and target vertices uhdarientation.

(@) (b)

Figure 1: (a) SupposP = {(s1,t1), (s2,t2), (s3,v)} is the set of requests, and note that the shortest paths of
these requests are marked with the heavy lines. Noticeltliheae paths cross (b) The local neighborhood

of v, and the corresponding set of local paths. For examplecendtiat the local endpoints of the request
(s1,t1) ares| = vy andt] = v.

Lemma 2.1. Given an orientation of7, that satisfies a set of local patl$$ C P, then there is an orientation
of GG that satisfies the corresponding set of global paihs P,.

Proof. We argue that if two local paths,, p, € S’ then the corresponding global paths p2 € S cannot

be in conflict. The pathg; andp, are said to bén conflictif they have a mutual undirected edge that gets
a different direction when the edgesaf are consistently oriented from its source vertex to itsdaugrtex
and when the edges @f, are consistently oriented from its source vertex to itsdagrtex. Notice that
establishing this argument completes that proof of the larsimce none of the paths Sfcan be in conflict
with another path inS, and therefore, all the paths i can be simultaneously satisfied by consistently
orienting each one of them from its source vertex to its tavgetex. Note that after one orients those paths,
the remaining undirected edges of the graph can be orienteahie arbitrary way.
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For the purpose of establishing the above argument, letpmose thap, andp, are in conflict, and attain
a contradiction. Sincg; andp, are in conflict then there is an undirected edge (v1,v;) € Ey that gets
a different direction when consistently orienting each ohe; and p, from its source vertex to its target
vertex. Let us assume without loss of generality that edigehe closest t@ from all conflicting edges. We
next present a case analysis that depends whether the: egigeears before or after the position of vertex
on each of pathg; andp,. Essentially, there are two main cases. To better understenused notation, we
refer the reader to the concrete examples in Figure 2.

Case |: edgee appears after vertexv in both p; and p». Let us assume without loss of generality that
is closer tov thanvy on py, andws is closer tov thanwvy on ps. Letd; be the distance betweenandwv; on
p1, andds be the distance betweerandwv, on py. Sincep; is a shortest path betweenandty, it must also
be a shortest path betweemndwvs. Thus,d; + 1 < d,. Similarly, sincep, is a shortest path betweeg and
to, it must also be a shortest path betweeandv,, and henceds + 1 < d;. Summing together the above
inequalities results id; + dy + 2 < dy + da, a contradiction.

We note that the case that the edgappeardeforevertexv in bothp; andp, can be handled along the
same lines with an adjustment to the relative position,d.g., the distances need to be defined ftgrand
vo towards the junction vertex.

Case Il: edgee appears after vertexwv in p; and before vertexwv in po. Let us assume without loss of
generality that; is closer tov thanvs on both pathg; andp,. Sincep!,p, € S’ we know that the edge
on which p; leavesv and the edge on whichy, entersv must be different. This implies that the subpath
betweenv andv; onp; and the subpath between andv on p, are different. Consequently, merging these
two subpaths creates a cycle in the graph. This contradiettatt that the graph is acyclic.

Note that the case that the edgeappears after vertex in p, and before vertex in p; is essentially
identical to the above case up to a renaming of the paths. [

Oty

(@) (b)

Figure 2: (a) The case thatappears aftev in bothp; andp,. (b) The case that appears after in p; and
beforev in ps.

We now concentrate on the computational complexity of tieallgraph orientation problem correspond-
ing to a vertexv. One can easily validate that this problem is equivalenhéorhaximum undirected graph
orientation problem on a star. Medvedovsky et al. [22] destrated that this problem is equivalent to the
maximum directed cut problem. This latter problem admitsstant factor approximation algorithms (see,
e.g., [11, 20]). In fact, one can easily verify that a randamerdation of the undirected edges in the local
neighborhood satisfies at ledst of the paths ofP) in expectation. This follows since the maximal length
of any path in the local neighborhood is at m@st-urthermore, one can use the method of conditional ex-
pectations to obtain a deterministic orientation thats§ias at least /4 of the paths, and consequently, this
approach is d /4-approximation for this problem. Combining this resultiihe local-to-global orientation
property exhibited in Lemma 2.1 implies the following thewr.
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Theorem 2.2. Given a vertex and a set of requestB, whose shortest paths crossthere is a polynomial-
time algorithm that computes an orientation that satisfiégP, |) requests.

We can now modify the algorithms developed by Elberfeld efldl] in accordance with Theorem 2.2,
and obtain the following improved approximation ratios. &phasize that the algorithms and their analysis
follow (up to our modification step) those presented by Héddret al. [10], and thus, we defer them to the
appendix. The first two theorems present algorithms whogeapnation guarantees depend on the treewidth
and feedback vertex number of the underlying graph.

Theorem 2.3. There is a polynomial-time algorithm that finds an oriergatisatisfying2(| P|/(k logn))
requests when the undirected version of the underlyinglgtegs bounded treewidth

Theorem 2.4. There is a polynomial-time algorithm that finds an oriergatsatisfying(| P|/(k + logn))
requests, wheré is the minimum number of vertices whose deletion turns thigrecied version of the
underlying graph into a tree.

We can also improve the approximation ratios of the algorgipresented by Elberfeld et al. [10] for the
general case, in which there are no structural assumptiotiseograph, by a logarithmic factor.

Theorem 2.5. There is a polynomial-time algorithm that approximatesrtreximum mixed graph orientation
problem to within a factor of2(1/1/A|P|), whereA is the maximum length of a shortest source-target path
in the graph.

Theorem 2.6. There is a polynomial-time algorithm that approximatesrieximum mixed graph orientation
problem to within a factor of2(1/0//V2), whereM = max{n, |P|}.

Note that we do not provide a proof for the latter theoremesibcan be established along the same lines
of [10], but more importantly, since we next present an algor with a better approximation guarantee.

3 Improved Approximation for The General Case

In this section, we develop a relatively simglé1/(n|P|)'/3)-approximation algorithm for the maximum
mixed graph orientation problem. Our algorithm is based @gnegdy approach that employs the local-to-
global orientation property developed in Section 2.

The algorithm, formally described below, begins by assoweeach requests;, t;) € P with a shortest
pathp; betweens; andt; in the graph. Then, it greedily orients shortest paths oter #fie other until all
the remaining paths are in conflict with many other paths. Wthes happens, the algorithm concentrates on
the vertex that is crossed by a maximal number of paths, aliwkstthe local-to-global orientation algorithm
from Theorem 2.2 to complete the orientation of the graptcalRé¢hat two pathg; andp, are said to bén
conflictif they have a mutual undirected edge that gets a differeettion when the edges pf andp, are
consistently oriented from their source vertex to theigéavertex.

One can easily verify that the algorithm computes a feasiblentation, namely, it assigns a single di-
rection to each undirected edge. This follows since no adinfj paths are oriented during the main loop
of the algorithm, and since the algorithm from Theorem 2 nigwn to compute a feasible orientation. We
next prove that the algorithm satisfi@$1/(n|P|)'/3)-fraction of all requests. Clearly, this implies that the
algorithm achieves (at least) the same approximation gtega

Theorem 3.1. The greedy orientation algorithm satisfi@$1/(n|P|)'/3)-fraction of all requests.



Algorithm 1 Greedy Orientation

Input: A mixed graphG and a collection” C V' x V of requests
Output: An orientationG of G

1: Letp; be a shortest path for requést, ¢;) € Pin G, and letP = [ J{p;}

2: while there isp; € P that is in conflict with less thatw|P|)!/? paths inP do

3: Let @ C P be the set of paths in conflict wiil

4 G <+ the graph that results by orienting the edgegp;dfom s; towardst; in G

5: P+ P\ (QU{p})

6: end while

7. Letwv be a vertex that a maximal number of pathgircross, and leP, C P be that set of paths
8: (G « the graph that results by executing the algorithm from Téeo2.2 with respect to andP,
9: return G

Proof. Let P = [J{p;} be the initial collection of shortest paths, and note t#4t= |P|. In addition, let
P> C P be the set of paths the remain after the termination of the toap of the algorithm, an®; = P\ P,.
Finally, let.4; be the set of paths that our algorithm satisfies during thex hoap of the algorithm, and let
As be the set of paths that the algorithm satisfies during theutiom of the algorithm from Theorem 2.2. In
what follows, we prove thatd;| = Q(1/(n|P)'/3) - |Py|, and|Az| = Q(1/(n|P|)'/3) - |P|. Consequently,
we obtain that the number of paths satisfied by our algorithm i

A+ el =@ (e ) (P 1Pa) = (s ) 1P

The fact that|.A;| = Q(1/(n|P])'/3) - [Py easily follows by observing that in each step of the main
loop of the algorithm, one path is satisfied while less thali?|)'/? paths are discarded. Hence, we are left
to prove that As| = Q(1/(n|P|)'/3) - |P,|. We establish a somewhat stronger result by demonstratitg t
|Az| = Q(1/(n|P2])Y/3) - |Py|. For this purpose, consider two pathg p, € P, that are in conflict. We
associate the conflict between these paths to an arbitraiyegted edge that gets a different direction when
p1 andpy are oriented, and place one token on this edge. Notice tlchtgath of P; is in conflict with at
least(n| P|)*/? other paths irP,; otherwise, the main loop would not have terminated. Thigli@s that if
we place a token for each pair of conflicting path$inas shown before then the undirected edges bave
atleast(n|P|)'/3 - |Py| /2 > n'/3|Py|*/3 /2 tokens placed on them. As a consequence, there must be = verte
that has at least= |P,|*/3/(2n?/3) tokens placed on the undirected edges in its local neigldookthWe next
argue that if some vertex hasokens in its local neighborhood then there must¥¢'t) paths that cross that
vertex. As a result, we attain that the number of paths thasscthe vertex, i.e., the vertex that a maximal
number of paths frorP, cross, is at leagt(v/7) = Q(|P2[>/3 /n'/3). By theorem 2.2, our algorithm satisfies
a constant fraction of these requests, namely] = Q(1/(n|Ps])'/3) - |Py|, as required.

For the purpose of establishing the above argument, cansigiee vertex, that hast tokens in its local
neighborhood. Let us focus on some edga this local neighborhood that haspaths that traverse in one
direction and’ paths that traverse in the other direction. Notice that suclhdge is assigned ¢ tokens. This
implies that if the local neighborhood afconsists only of the edgethen the minimal number of paths that
crossu corresponds to the solution ofin{r + ¢ : r - £ = t}. One can easily verify that the solution for this
expression is = ¢ = /t, that is, the number of paths§¥+/t). Note that when there is more than one edge
in the local neighborhood af then any path may cross at most two edges. As a result, if wetel¢ine set
of edges in the local neighborhood @by F,,, then the minimal number of paths that crasdominates the
solution ofmin{}_ cp (re+/0e)/2: > (re-Le) = t}; here,r. andl, indicate the number of paths traversing

6



edgee in one direction and the other direction, respectively. Cae easily demonstrate that the solution for
the above expression is obtained by assigning non-zerevalnly to one pair of., /. variables, namely, it
is equivalent to the solution for the single edge case. [

4 Other Orientation Variants

In this section, we study two well-motivated variants of thieentation problem: the first is maximum mixed
graph orientationwith fixed pathsand the other is maximum mixegtid orientation.

4.1 Orientation with fixed paths

We consider the maximum mixed graph orientatiaith fixed pathgroblem. This variant is identical to the
maximum mixed graph orientation problem with the exceptlmat each request, ¢t) € P is also associated
with a fixed pathp from s to ¢ in the graph. With this modified definition in mind, a requestt) is satisfied
only if the edges of the path are oriented from the vertex towards the vertex. Note that this variant
is seemingly simpler than maximum mixed graph orientatiocesthe only computational task is to decide
which requests to satisfy, and there is no need to decidehwdaths will be used to satisfy those requests.
This is also one of our motivations for studying this varjdrtiping that it will shed some light on the original
problem that would lead to a reduction in the gap betweemitel and upper approximation bounds.

We prove that the maximum mixed graph orientation with fixathp problem is NP-hard to approximate
to within a factor ofmax{1/|P|'~¢, 1/m!/?>~¢}, for anye > 0. In fact, we establish this result even when
the underlying graph is undirected. As a consequence, aim dttat this problem is provably harder than the
maximum mixed (or undirected) graph orientation probleltimcaigh it may seem simpler at first glance. Our
proof is based on showing that the problem under consideraptures the well-knowmaximum indepen-
dent sefproblem as a special case.

A hardness of approximation result. An input instance for thenaximum independent gatoblem consists
of an undirected grapft’ = (V’, E’). The goal is to find an independent set of maximum size in thglgrAn
independent set is a collection of vertices that do not hayesdges between them. This problem is known to
be NP-hard to approximate within a factoriofiV/|'—¢, for anye > 0 [25]. We next show a value-preserving
reduction from this problem to our maximum mixed graph draéon with fixed paths problem.

Given an input instance of maximum independent set, we ngrisin input instance for our problem that
consists of the undirected graph presented in Figure 3(pgcifically, we begin by creating a graph with
n’ = |V’'| pairs ofs;, t; vertices, corresponding to the vertices(@f such that each such pair is connected
by a pathp;. We intersect all these connecting paths in a grid-likei@ashThen, each intersection point is
replaced by one of the gadgets exhibited in Figures 3(b) &r)d Bhe gadged; ; that replaces the intersection
point of pathsp; andp; has4 vertices:v; andw; that are appropriately added to path andv; andw; that
are appropriately added to paph. The edges within the gadget has the form described in Fig(bkif
(i,7) ¢ E', or the form described in Figure 3(c)(if, j) € E’. In the latter case, the path is also modified
to consist of the vertices; andu;, so its subpath inside the gadget(is, u;, v;,u;). In addition, the set of
requestsP for our problem consist of alt’ pairs(s;, ¢;) with their corresponding path.

One can easily validate that a solutisShC V’ for the maximum independent set problem implies an
orientation in the newly-created instance that satisfiessdtme number of requests. Specifically, jf € .S
then clearly(i, j) ¢ E’, and thus, the paths andp; do not share edges. As a result, one can simultaneously
satisfy both requests;,t;) and(s;,t;) by orienting each of their paths from its source vertex tdatget
vertex. Conversely, it is not difficult to verify that given arientation in newly-created instance that satisfies
some set of requests, one can perform a similar value-piageransformation in the opposite direction. In
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Figure 3: (a) The graph resulting from the reduction. (b) adget that is used in cagej) ¢ E’. Note that
the edgegv;, u;) and(v;, u;) do not intersect. (c) The gadget that is used in ¢asg < E'.

particular, notice that if ¢ S then there must bg € S such that(i, j) € F’, and hence, the paths and
p; require to orient the edg@;, v;) in the gadgey; ; in conflicting directions. Consequently, one cannot
simultaneously satisfy both underlying requests.

As a result of this value-preserving reduction, and in codjion with the hardness result presented by
Zuckerman [25], we attain the following inapproximabilitgsult. Recall thatP| = |V’|, and notice that the
number of edges in the newly-created instance is O(|V’|?).

Theorem 4.1. The maximum mixed graph orientation with fixed paths prokteMP-hard to approximate
within a factor ofmax{1/|P|'~¢,1/m!/?><}, for anye > 0.

4.2 Orientation in grid networks

We study the maximum mixedrid orientation problem. This variant is identical to the maximmixed
graph orientation problem with the additional restrictibat the graph is a grid. A x m grid network is a
graph with avertex sét = {1,...,n} x {1,...,m}, and an edge séi consisting of horizontal edges, i.e.,
edges((4,j), (i,7 + 1)) forall j = {1,...,m — 1}, and vertical edges, i.e., edg€s, j), (i + 1, 7)) for all
i ={1,...,n — 1}. Note that the study of this variant is motivated by appiaa in networking.

We prove that the maximum mixed grid orientation problemtikeast as hard as thmaximum directed
cut problem. Consequently, approximating our problem witlaictérs of12/13 ~ 0.923 andagw = 0.878
is NP-hard and Unique Game-hard, respectively. Interglgtithis finding comes in contrast with the results
attainable for the undirected grid setting. This lattetisgtcan be solved to optimality in polynomial-time,
and in particular, when the grid is not a path, that is, whem > 1, all the requests i can be satisfied.

A hardness of approximation result. An input instance for thenaximum directed cyiroblem consists of a
directed graphG’ = (V/, E’). The goal is to find a directed cut of maximum size in the grafie size of
acutA C V is the number of directed edgés, v) € E’ such thatu € A andv € V' \ A. Approximating
this problem within factors 0f2/13 ~ 0.923 andagw ~ 0.878 is known to be NP-hard [18] and Unique
Games-hard [19], respectively. In what follows, we presevilue-preserving reduction from this problem to
our maximum mixed grid orientation problem.



Given an input instance of maximum directed cut, we cons@dnput instance for our problem which
consists of the mixed grid presented in Figure 4(a). Spetlficwe create a grid whose dimensions are
n = 2|V’| — 1 andm = 3. We associate each vertex € V' with the vertex(2: — 1, 1) in the grid. The
edges incident on each verté¥, 1) in the grid are oriented away from that vertex, and the edigegyahe
perimeter of the sub-grid that consists of the second andl ¥ertex columns are oriented in a way that creates
a directed cycle. In addition, the set of requests for oublgm is defined to bé = E’.

One can validate that a solutioh C V' for the maximum directed cut problem implies an orientation
in the newly-created instance that satisfies the same nuaibbeguests. Specifically, if; € A we orient
the single undirected edge incident on verte)of the grid away from that vertex, and#f € V' \ A we
orient that edge towards vertex. Then, it is easy to see that if an edgeifis cut by the solutionAd
then the corresponding request is satisfied in the oriemtatiConversely, it is not difficult to verify that
given an orientation in newly-created instance that saissome set of requests, one can perform a similar
value-preserving transformation in the opposite directio particular, this side of the proof builds upon the
observation that any requ&st, v;) may only be satisfied by a path that crosses the undirectezbedgjdent
onwv; andv;. The orientation of all those undirected edges define thendhe initial problem.

As a result of this value-preserving reduction, and in cogijion with the hardness results presented by
Hastad [18] and Khot et al. [19], we attain the following pipaoximability result.

Theorem 4.2. The maximum mixed grid orientation problem is NP-hard toragimate within a factor of
12/13 ~ 0.923, and Unique Games-hard to approximate within a factoagfy ~ 0.878.

(@)

(U

(b)

Figure 4: (a) The grid resulting from the reduction. Notet thia= |V’|. (b) An orientation of an undirected
grid that admits a directed path between any two vertices.

Orientation of undirected grids. The above-mentioned hardness result comes in contrasthathesults
attainable for the undirected grid setting. This lattetisgtcan be solved to optimality in polynomial-time.
Specifically, when the grid is a path, i.e., when eitheor n equalsl, there are optimal polynomial-time
algorithms for the problem [22, 8], and whenm > 1, there is a simple orientation that satisfies all the
requests inP. This orientation can be obtained by creating a directetecgiong the perimeter of the grid,
and then, orienting all the remaining horizontal and vettedges consistently. A concrete example of such
an orientation is presented in Figure 4(b). One can easdyepthat this orientation admits a directed path
between any two vertices of the graph.
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Additional Details

In this section, we complete the details omitted from thempairt of the paper.

Al

Proof of Theorem 2.3

The algorithm begins by computing a tree decomposition ot for the undirected version of the under-
lying graph. Note that this task can be done in polynomiaktisince our graph has bounded treewidth [6].
A tree decomposition is a paffl’, X'), whereX = {X1,...,X,} is a collection of subsets such that each

11



X; C V,andT is a tree whose nodes are the subset¥ ifNote that/ = poly(n) in our case. The decompo-
sition satisfies the following properties: (1) X; = V, (2) the incident vertices of every edge of the graph are
contained in some subset X, and (3) if X; and X; contain a vertex then all the node<(;, in the unique
path betweenX; and X; containv as well. The width of the tree is defined to bex | X;| — 1.

Given the tree decompositigfi’, X'), the algorithm proceeds by computing a shortest path fdn eac
quest inP. The paths are then classified into at mjdsg /| = O(logn) classes such that for every class, an
orientation that satisfieQ(1/k)-fraction of its paths can be efficiently computed. As a cqos@ace, by sep-
arately computing an orientation for each class, and thekingj the option that satisfies the highest number
of paths, we are guaranteed to sati€fy P|/(k logn)) of all the requests.

For the purpose of constructing the first class, we find a oghttode X; of T', that is, a node whose
removal breaks the tree into a collection of subtrees, ebwainich has at most half of the verticesh Note
that any tree has a centroid (see, e.g., [13]). We assigneafiaths that cross a vertex froXp = {vy,..., v}
to classC;. We further partitionC; into r collectionsCy 1,...,Cy, such that a pathy is assigned to the
collectionC, ; if it crosseswv; but does not cross any of the vertices{in,...,v;_}. Notice that we can
satisfy €2(|C1,;|) paths from the collectiory by applying Theorem 2.2. One can now easily validate that
executing the mentioned algorithm on each collection sd#plr and then picking the option that satisfies the
highest number of paths results in an orientation satigffitiC;|/k) requests since < k + 1.

To construct the second class, we first remove the ngdom 7' to obtain a forest of tree decomposi-
tions. For each tree decomposition, we compute a centraie,rend in the same way as above, we assign
a path toC, if it crosses a vertex from the subsets associated with tbestoid nodes. Note that we only
assign paths that were not assigned to the first class. Usingame arguments as above, we can compute
an orientation that satisfig(|C2|/k) requests. In particular, one can validate that each pa#sesovertices
from exactly one centroid node; otherwise, it should hawntassigned to the first class by properties (2) and
(3) of the tree decomposition. We now proceed recursivelhpénsame way to construct the other classes as
long as the decompositions under consideration are notyer@pice the maximal size of a subtree decreases
by at least half in each level of the recursion, this processinates withinlog /] steps, and hence, there are
indeed at mostlog /] classes.

A.2 Proof of Theorem 2.4

The algorithm begins by finding a feedback vertex Bet= {v1,..., v} in the undirected version of the
graph, namely, a set of vertices whose removal turns therlynuig undirected graph into a tree. Although
the computational task of finding a feedback vertex set withicimum cardinality is NP-hard, there is a
2-approximation algorithm for this problem [5, 4, 7]. Theyed, we may assume that the cardinality of that
set satisfied < 2k. The algorithm proceeds by computing a shortest paflor each requests;,¢;) € P.
Then, each patp; is classified into one of +- 1 classes: ifp; crosses the vertex; and none of the vertices in
{v1,...,vj_1} then it is assigned to clagy; otherwise, ifp; does not cross any of the verticesfof then it

is assigned to clas%.;. Notice that we can satisf(|C;|) paths from any clasg by applying Theorem 2.2.
Also notice that by deleting the vertices Bffrom the graph’Z, we obtain a mixed graph which is a forest
of trees, and all the paths @y, still remain connected. This mixed tree orientation sgtis known to
admit an efficienf2(1/ log n)-approximation algorithm [10], and thus, we can sati8fyC, |/ log n) paths
from the clasg + 1. One can now easily validate that executing the mentiongdrithms on each class
separately, and then picking the option that satisfies thkedst number of paths results in an orientation
satisfyingQ2(|P|/(k + logn)) of all requests.
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A.3 Proof of Theorem 2.5

The algorithm computes a shortest pathfor each requests;,t;) € P. Then, it considers those shortest
paths in some arbitrary order, and orients them one afteottier. In particular, when a paghis oriented,

all the pending paths that are in conflict wjthare discarded. This greedy orientation procedure corginue
as long as a path under consideration is not in conflict with more thgfA|P| pending paths. When this
happens, there must be some verteon p that at least,/A|P|/A = /| P|/A pending paths cross. This
claim holds since the length gfis known to be at mosi\. The algorithm then employs the local-to-global
orientation algorithm from Theorem 2.2 with respect to tleetexv and the corresponding set of pending
paths to complete the orientation of the graph.

One can easily verify that the algorithm computes a feasibntation. Therefore, we next prove that the
algorithm satisfie$2(1/+/A|P|)-fraction of all requests. Notice that if the algorithm ewoyd our local-to-
global orientation algorithm then the resulting orierdatindeed attains the desired performance guarantee
since the number of paths satisfied only by this ste(s/|P|/A) = Q(1/\/A|P]) - |P|. Hence, we
may assume that the algorithm only makes greedy orientasteps. In this case, the resulting orientation
clearly achieves the desired performance guarantee sinecpaih is satisfied while at mong\P\ paths are
discarded in each of those greedy steps.
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