
ar
X

iv
:1

30
5.

74
48

v1
 [

cs
.D

S]
 3

1
M

ay
 2

01
3

Speeding-up Dynamic Programming with

Representative Sets ⋆

An Experimental Evaluation of Algorithms for Steiner

Tree on Tree Decompositions

Stefan Fafianie1, Hans L. Bodlaender1, and Jesper Nederlof1

Utrecht University, The Netherlands
S.Fafianie@uu.nl; H.L.Bodlaender@uu.nl; J.Nederlof@uu.nl

Abstract. Dynamic programming on tree decompositions is a frequently
used approach to solve otherwise intractable problems on instances of
small treewidth. In recent work by Bodlaender et al. [7], it was shown
that for many connectivity problems, there exist algorithms that use
time, linear in the number of vertices, and single exponential in the
width of the tree decomposition that is used. The central idea is that
it suffices to compute representative sets, and these can be computed
efficiently with help of Gaussian elimination.
In this paper, we give an experimental evaluation of this technique for the
Steiner Tree problem. A comparison of the classic dynamic program-
ming algorithm and the improved dynamic programming algorithm that
employs the table reduction shows that the new approach gives signifi-
cant improvements on the running time of the algorithm and the size of
the tables computed by the dynamic programming algorithm, and thus
that the rank based approach from Bodlaender et al. [7] does not only
give significant theoretical improvements but also is a viable approach in
a practical setting, and showcases the potential of exploiting the idea of
representative sets for speeding up dynamic programming algorithms.

Keywords: Steiner tree, treewidth, dynamic programming, representa-
tive sets, exact algorithms, rank based approach, Gaussian elimination

1 Introduction

The notion of treewidth provides us with a method of solving many NP-hard
problems by means of dynamic programming algorithms on tree decompositions
of graphs, resulting in algorithmic solutions which are fixed-parameter tractable
in the treewidth of the input graph. For many problems, this gives algorithms
that are linear in the number of vertices n, but at least exponential in the width
of the tree decomposition on which the dynamic programming algorithm is ex-
ecuted. The dependency of the running time on the width of the tree decompo-
sition has been a point of several investigations. For many problems, algorithms

⋆ The third author is supported by the NWO project ’Space and Time Efficient Struc-
tural Improvements of Dynamic Programming Algorithms’.

http://arxiv.org/abs/1305.7448v1

were known whose running time is single exponential on the width, see e.g., [26].
A recent breakthrough was obtained by Cygan et al. [13] who showed for sev-
eral connectivity problems, including Hamiltonian Circuit, Steiner Tree,
Connected Dominating Set (and many other problems) that these can be
solved in time, single exponential in the width, but at the cost of introducing
randomization and an additional factor in the running time that is polynomial
in n. Very recently, Bodlaender et al. [7] introduced a new technique (termed the
rank based approach) that allows algorithms for connectivity problems that are
(i) deterministic, (ii) can handle weighted vertices, and (iii) have a running time
of the type O(ckn) for graphs with a given tree decomposition of width k and n
vertices, i.e., the running time is single exponential in the width, and linear in
the number of vertices.

The main ideas of the rank based approach are the following. (Many details
are abstracted away in the discussion below. See [7] for more details.) Suppose
we store during dynamic programming a table T with each entry giving the
characteristic of a partial solution. If we have an entry s in T , such that for
each extension of s to a ‘full solution’, s · t, there is an other entrys′ 6= s in T ,
that can be extended in the same way to a full solution s′ · t, and solution s′ · t
has a value that is as least as good as the value of s · t, then s is not needed for
obtaining an optimal solution, and we can delete s from T . This idea leads to the
notion of representativity, pioneered by Monien in 1985 [24]. Consider the matrix
M with rows indexed by partial solutions, and columns indexed by manners to
extend partial solution, with a 1. if the combination gives a full solution, and a 0
otherwise. A table T corresponds to a set of rows in M , with a value associated
to each row. (E.g., for the Steiner Tree problem, a row corresponds to the
characteristic of a forest in a subgraph, and the value is the sum of the edges
in the forest.) It is not hard to see that a maximal subset of linear independent
rows of minimal cost (in case of minimization problems, and of maximal value
in case of maximization problems) forms a representative set. Now, if we have
an explicit basis of M (the characteristics of the columns in a maximal set of
independent columns in T) and M has ‘small’ rank, then we can find a ‘small’
representative set efficiently, just by performing Gaussian elimination on a sub-
matrix of M . Now, for many connectivity problems, including Steiner Tree,
Feedback Vertex Set, Long Path, Hamiltonian Circuit, Connected

Dominating Set, the rank of this matrix M when solving these problems on
a tree decomposition is single exponential in the width of the current bag. This
leads to the improved dynamic programming algorithm: interleave the steps of
the existing DP algorithm with computing representative sets by computing the
submatrix of M and then carrying out Gaussian elimination on this submatrix.

The notion of representative sets was pioneered by Monien in 1985 [24].
Using the well known two families theorem by Lovász [22], it is possible to
obtain efficient FPT algorithms for several other problems [23,15]. Cygan et
al. [12] give an improved bound on the rank as function of the width of the
tree decomposition for problems on finding cycles and paths in graphs of small
treewidth, including TSP, Hamiltonian Circuit, Long Path.

2

In this paper, we perform an experimental evaluation of the rank based ap-
proach, targeted at the Steiner Tree problem, i.e., we discuss an implementa-
tion of the algorithm, described by Bodlaender et al. [7] for the Steiner Tree

problem and its performance. We test the algorithm on a number of graphs from
a benchmark for Steiner Tree, and some randomly generated graphs. The results
of our experiments are very positive: the new algorithm is considerably faster
compared to the classic dynamic programming algorithm, i.e., the time that is
needed to reduce the tables with help of Gaussian elimination is significantly
smaller than the gain in time caused by the fact that tables are much smaller.

The Steiner Tree problem (of which Minimum Spanning Tree is a spe-
cial case) is a classic NP-hard problem which was one of Karp’s original 21 NP-
complete problems [18]. Extensive overviews on this problem and algorithms for
it can be found in [17,31]. Applications of Steiner Tree include electronic
design automation, very large scale integration (VSLI) of circuits and wire rout-
ing. In this paper we consider the weighted variant, i.e., edges have a weight,
and we want to find a Steiner tree of minimum weight. It is well known that
Steiner Tree can be solved in linear time for graphs of bounded treewidth.
In 1983, Wald and Colbourn [28] showed this for graphs of treewidth two. For
larger fixed values of k, polynomial time algorithms are obtained as consequence
of a general characterization by Bodlaender [5] and linear time algorithms are
obtained as consequence of extensions of Courcelles theorem, by Arnborg et
al. [3] and Borie et al. [9]. In 1990, Korach and Solel [21] gave an explicit linear
time algorithm for Steiner Tree on graphs of bounded treewidth. Inspection
shows that the running time of this algorithm is O(2O(k log k)n); k denotes the
width of the tree decomposition. We call this algorithm the classic algorithm.
Recently, Chimani et al. [10] gave an improved algorithm for Steiner Tree

on tree decompositions that uses O(B2
k+1 · k · n) time, where the Bell number

Bi denotes the number of partitions of an i element set. Our description of the
classic algorithm departs somewhat from the description in Korach and Solel
[21], but the underlying technique is essentially the same. We have chosen not to
use the coloring schemes from Chimani et al. [10], but instead use hash tables to
store information. Wei-Kleiner [30] gives a tree decomposition based algorithm
for Steiner tree, that particularly aims at instances with a small set of Steiner
vertices.

In this paper, we compare three different algorithms:

– The classic dynamic programming algorithm (CDP), see the discussion above.
On a nice tree decomposition, we build for each node i a table. Tables map
partitions of subsets of Xi to values, characterizing the minimum weight of
a ‘partial solution’ that has this partition of a subset as ‘fingerprint’.

– RBA: To the classic dynamic programming algorithm, we add a step where
we apply the reduce algorithm from [7]. With help of Gaussian elimination
on a specific matrix (with rows corresponding to entries in the DP table,
columns corresponding to a ‘basis of the fingerprints of ways of extending
partial solutions to Steiner trees’, and values 1, if the extension of the column
applied to the entry of the row gives a Steiner tree and 0 otherwise), we delete

3

some entries from the table. It can be shown that deleted entries are not
needed to obtain an optimal solution, i.e., the step does not affect optimality
of the solution. This elimination step is performed each time after the DP
algorithm has computed a table for a node of the nice tree decomposition.

– RBC: Similar as RBA, but now the elimination step is only performed for
‘large’ tables, i.e., tables where the theory tells us that we will delete at least
one entry when we perform the elimination step.

The experiments show that both RBA and RBC are both preferable over the
classic algorithm, with RBC outperforming RBA in all cases. Thus, applying
the reduce algorithm from [7] gives a significant speedup of the dynamic pro-
gramming algorithm, and it is preferable to use the reduction step only for large
tables.

Our software is publicly available, can be used under a GNU Lesser General
Public Licence, and can be downloaded at:

http://www.staff.science.uu.nl/∼bodla101/java/steiner.zip

This paper is organized as follows. Some preliminary definitions are given in
Section 2. In Section 3, we describe both the classic dynamic programming algo-
rithm for Steiner Tree on nice tree decompositions, as well as the improvement
with the the rank-based approach as presented in [7]. In Section 4, we describe
the setup of our experiments, and in Section 5, we discuss the results of the
experiments. Some final conclusions are made in Section 6.

2 Preliminaries

We use standard graph theory notation and quite some additional notation
from [7]. For a subset of edges X ⊆ E of an undirected graph G = (V,E),
we let G[X] denote the subgraph induced by edges and endpoints of X , i.e.
G[X] = (V (X), X). We let cc(G) denote the number of connected components
in a graph G. For a function s we the function s\{(v, s(v))}∪{v, α} as s[v → α].
We use s|X to denote the function obtained by restricting the domain to X .

Given a base set U , we use Π(U) for the set of all partitions of U . It is
known that, together with the coarsening relation ⊑, Π(U) gives the partition
lattice, with the minimum element being {U} and the maximum element being
the partition into singletons. We denote ⊓ for the meet operation and ⊔ for the
join operation in this lattice; these operators are associative and commutative.
Given a partition p ∈ Π(U) we let #blocks(p) denote the number of blocks of p.
If X ⊆ U we let p↓X ∈ Π(X) be the partition obtained by removing all elements
not in X from it, and analogously we let for U ⊆ X denote p↑X ∈ Π(X) for the
partition obtained by adding singletons for every element in X \U to p. Also, for
X ⊆ U , we let U [X] be the partition of U where one block is {X} and all other
blocks are singletons. If a, b ∈ U we shorthand U [ab] = U [{a, b}]. The empty set,
vector and partition are all denoted by ∅.

4

http://www.staff.science.uu.nl/~bodla101/java/steiner.zip

Definition 1 (Tree decomposition, [25]). A tree decomposition of a graph
G is a tree T in which each node x has an assigned set of vertices Bx ⊆ V (called
a bag) such that

⋃

x∈T
Bx = V with the following properties:

– for any e = (u, v) ∈ E, there exists an x ∈ T such that u, v ∈ Bx.

– if v ∈ Bx and v ∈ By, then v ∈ Bz for all z on the (unique) path from x to
y in T.

The treewidth tw(T) of a tree decomposition T is the size of the largest bag
of T minus one, and the treewidth of a graph G is the minimum treewidth over
all possible tree decompositions of G.

Definition 2 (Nice tree decomposition). A nice tree decomposition is a
tree decomposition with one special bag z called the root and in which each bag
is one of the following types:

– leaf bag: a leaf x of T with Bx = ∅.

– introduce vertex bag: an internal vertex x of T with one child vertex y for
which Bx = By ∪ {v} for some v /∈ By. This bag is said to introduce v.

– introduce edge bag: an internal vertex x of T labelled with an edge e =
(u, v) ∈ E with one child bag y for which u, v ∈ Bx = By. This bag is said
to introduce e.

– forget vertex bag: an internal vertex x of T with one child bag y for which
Bx = By \ {v} for some v ∈ By. This bag is said to forget v.

– join bag: an internal vertex x with two child vertices y and z with Bx =
By = Bz.

We additionally require that every edge in E is introduced exactly once.

Nice tree decompositions were introduced in the 1990s by Kloks [19]. We use
here a more recent version that distinguishes introduce edge and introduce vertex
bags [13].

Finding a tree decomposition of minimum treewidth is NP-hard [2], but for
each fixed integer k there is a linear time algorithm for finding a tree decom-
position of width at most k (if it exists) [6]. There are also many heuristics for
finding a tree decomposition of small width; see [8] for a recent overview. Given
a tree decomposition T of G, a nice tree decomposition rooted at a forget bag
can be computed in n · twO(1) time by following the arguments given in [19],
with the following modification: between a forget bag Xi where we ’forget ver-
tex v’ and its child bag Xj , we add a series of introduce edge bags for each
edge e = {v, w} ∈ E and w ∈ Xj . In the remainder of the paper, we assume
that a nice tree decomposition of the input graph with the appropriate width is
given. (In our experiments, we find a tree decomposition with the greedy degree
heuristic, and then transform it, as discussed above, to a nice tree decomposition
of the same width.)

5

3 Dynamic Programming Algorithms for Steiner Tree

Parameterized by Treewidth

In this section we describe both the classic dynamic programming algorithm on
(nice) tree decompositions for (the edge weighted version of) Steiner Tree

and its variant with the rank-based approach. We first give the formal definition
of the Steiner Tree problem.

Steiner Tree

Input: A graph G = (V,E), weight function ω : E → N \ {0}, a terminal set
K ⊆ V and a nice tree decomposition T of G of width tw.
Question: The minimum of ω(X) over all subsets X ⊆ E of G such that G[X]
is connected and K ⊆ V (G[X]).

3.1 Classic Dynamic Programming

We follow the description from [7]. In order to facilitate the correctness proof and
the description of the algorithms, a collection of operators was introduced in [7].
We will also use these operators here, and thus obtain compact descriptions of
the recurrences (for the different types of nodes in the nice tree decomposition)
that shape the dynamic programming algorithm.

For each node in the nice tree decomposition, we compute a table. Each table
entry maps a partition of a subset of the bag to an integer value. We now will
introduce the notation, and give the corresponding recurrences (with just brief
sketches for their correctness).

We will denote the weighted partition tables as Ax(·) and sets of partial
solutions as Ex(·) where x denotes the current bag. The classic dynamic pro-
gramming algorithm computes for each bag x the function Ax. This function is
stored in a table, with only trivial entries (e.g., partitions mapping to infinity,
as there are no forests corresponding to the partition) not stored.

We use s : Bx → {0, 1} to describe which vertices belong to the tree, where
s(v) = 1 denotes v is in the Steiner tree. For a bag x and s ∈ {0, 1}Bx define:

Ax(s) =

{(

p, min
X∈Ex(p,s)

ω(X)

)
∣

∣

∣

∣

p ∈ Π(s−1(1)) ∧ Ex(p, s) 6= ∅

}

Ex(p, s) =
{

X ⊆ Ex

∣

∣

∣
∀v ∈ Bx : v ∈ V (G[X]) ∨ v ∈ K → s(v) = 1

∧ ∀v1, v2 ∈ (s−1(1)) :

v1, v2 are in same block in p ↔ v1, v2 connected in G[X]

∧ #blocks(p) = cc(G[X])
}

In the definition of Ex(p, s), partial solutions have (a subset of) s−1(1) as
incident vertices in Bx connected according to the partition p. The blocks in p
represent connected components in the partial solution. When two vertices are
in the same block they belong to the same connected component. Naturally, any

6

terminal v ∈ K has to be used in a partial solution and we are allowed to use
other vertices to connect these terminals. Connected components are formed by
using subsets X ⊆ Ex of edges and multiple different subsets are possible to
form the same partition in a partial solution. In the partial solution tables Ax(s)
we only consider minimum weight partial solutions and discard any other partial
solutions that are dominated. If we have a tree decomposition T such that its
root is a forget vertex bag for v ∈ K as input for Steiner Tree, then x has one
child y with one entry in Ay(s) where s(v) = 1. There are no other vertices in
this bag since the root bag is empty. Therefore Ay(s) only contains the partition
p = {{v}} in which the single block represents a single connected component
containing all terminals with minimum weight over all possible subsets of edges,
thus yielding the solution.

We proceed with the recurrence forAx(s) which is used by the classic dynamic
programming algorithm. In order to simplify the notation, let v denote the vertex
introduced and contained in an introduce bag, and let y, z denote the left and
right children of x in T, if present. We let U respectively U ′ denote the base set
of vertices present in y and z. We distinguish on the type of bag in T. For a leaf
bag x let:

Ax(∅) =
{

(∅, 0)
}

This is the trivial case, where Ex(p, s) only contains the empty set, which
doesn’t contain or connect any vertices and has weight 0.

For an introduce vertex v bag x with child y let:

Ax(s) =







{

(p↑U∪{v}, w)
∣

∣(p, w) ∈ Ay(s|By
)
}

, if s(v) = 1
Ay(s|By

), if s(v) = 0 ∧ v /∈ K
∅, if s(v) = 0 ∧ v ∈ K

For each partial solution in Ay(s) we consider whether or not to use v and
add both cases (when feasible) to Ax to fill our table for introduce vertex bag
x. Using v corresponds to s(v) = 1, and because v was just introduced and thus
is currently an isolated vertex, we insert it as a singleton into each partition.
If we do not use v, i.e, s(v) = 0 then we don’t insert v and preserve the same
partial solution as in the child bag. If v is a terminal, then not inserting v is not
feasible.

For a forget vertex v bag x with child y let:

Ax(s) = rmc(Ay(s[v → 0]) ∪
{

(p↓v, w)
∣

∣

∣
(p, w) ∈ Ay(s[v → 1])

∧ ∃v′ ∈ v : p ⊑ U [vv′]
}

), where

rmc(A) =
{

(p, w) ∈ A
∣

∣∄(p, w′) ∈ A ∧ w′ < w
}

We assume that x is not the root. The procedure basically does two steps:
if v is forgotten, then any partition in which v is used and is a singleton gives
more than one connected component. (Recall here that the root bag forgets a
terminal, and here v cannot be connected to that terminal vertex.) All such
entries are deleted. All other entries are ‘projected’, i.e., v is removed from the

7

partitions. Possibly, multiples entries have the same projection; then we keep the
one with the smallest value. The function rmc(A) expresses this.

For an introduce edge e = (u, v) bag x with child y let:

Ax(s) =



















Ay(s), if s(u) = 0 ∨ s(v) = 0

rmc(Ay(s)∪
{

(Û [uv] ⊓ p↑Û , w + ω(u, v))
∣

∣(p, w) ∈ Ay(s)

∧ Û = U ∪ u, v
}

),

otherwise.

For each partial solution in Ay(s) we consider whether or not to include e
and add both cases (when feasible) to Ax to fill our table for introduce edge bag
x. If we include an edge in a partial solution then we must ensure that u and v
are used in the partition i.e. s(u) = s(v) = 1. Including the edge increases the
weight of the partial solution by ω(u, v) and connects the connected components
containing v respectively u, and thus, we combine their blocks in the new partial
solution. Again, if we do not include e, the partial solution remains the same.
Because v and u may already have been part of the same connected component
we must eliminate dominated partial solutions.

For join bag x with children y and z let:

Ax(s) = rmc(
{

(p↑Û ⊓ q↑Û , w1 + w2)
∣

∣

∣
(p, w1) ∈ Ay(s)

∧ (q, w2) ∈ Az(s) ∧ Û = U ∪ U ′
}

)

Here we combine choices previously made in the subtree of y with choices
made in the subtree of z, by combining pairs of partial solutions. We account
for the weight by adding their respective weights. Using edges from both partial
solutions may merge connected components, so we join their connectivity. This
may again result in multiple partitions of different weight, of which we keep the
minimum weight. This concludes the formulation of the recurrence for the classic
dynamic programming algorithm.

The algorithm now can be expressed as follows: in bottom-up order for each
bag x we compute Ax, and finally computes the minimum weight of a Steiner
Tree by inspection the information for the root bag, as discussed above.

3.2 Rank-Based Table Reductions

In this section, we describe the rank-based approach from [7]. The main idea is
that after we have computed a table for a bag in the nice tree decomposition,
we can carry out a reduction step and possibly remove a number of entries from
the table without affecting optimality. A table is transformed thus to a (possibly
smaller) table whose weighted partitions are representative for the collection
of weighted partitions in the earlier table. If a set of partitions extends to an
optimal solution then we should also be able to extend to an optimal solution
from the representative set. Representation is formally defined as:

8

Definition 3 (Representation). Given a set of weighted partitions A ⊆ Π×N
and a partition q ∈ Π(U), define:

opt(q,A) = min{w|(p, w) ∈ A ∧ p ⊓ q = {U}}

For another set of weighted partitions A′ ⊆ Π(U)×N, we say that A′ represents
A if for all q ∈ Π(U) it holds that opt(q,A′) = opt (q,A).

Although this definition is symmetric, we will only be interested in finding
A′ where A′ ⊆ A and where we have a size guarantee such that A′ is small.
Omitting the formal proof (see [7]), we now state that the functions describing
the formulation of the recurrence in Section 3.1 preserve representation:

Definition 4 (Preserving representation). A function f : 2Π(U)×N × Z →
2Π(U ′)×N is said to preserve representation if for every A,A′ ⊆ Π(U) × N and
z ∈ Z it holds that if A′ represents A then f(A′, z) represents f(A, z), where Z
stands for any combination of further inputs.

At the core of the rank-based approach, the key to obtaining a small rep-
resentative set is to find for partial solutions q ∈ A the minimum weight of
partial solutions (p, w) such that p ⊓ q = {U}. So if we can find a set cover of
partitions p with minimum weight for every q with this property, then we have
a representative set, since when they can all extend to the unit partition, then
one must also extend to the optimal solution. We can achieve this by finding a

basis of minimum weight in the matrix M ∈ Z
Π(U)×Π(U)
2 where M[p, q] = 1 if

p⊓q = {U} and M[p, q] = 0 otherwise. In arithmetic modulo two we can rewrite
this matrix as a product of two cut-matrices C defined as:

Definition 5. Define cuts(t) := {(V1, V2)|V1 ∪ V2 = U ∧ 1 ∈ V1}, where 1

stands for an arbitrary but fixed element of U . Define C ∈ Z
Π(U)×cuts(t)
2 by

C[p, (V1, V2)] = [(V1, V2) ⊑ p].

We now can see that M ≡ CCT and because of linear dependencies we are
allowed to use the lightest (i.e., with minimal weights) basis of the cut-matrix C
as the representative subset A′ ⊆ A where A′ ≤ 2|U|. We can find this basis via
straightforward Gaussian elimination in C after we order its rows by weight.

This yields the improved algorithm for solving Steiner Tree: for each node
in the tree of the nice tree decomposition, in bottom-up order, we compute a
table and then reduce the size of this intermediate table by the reduce algorithm1.
The computation of the table uses the same recurrences as for Ax, but as inputs
we use the reduced tables for the children, i.e., we restrict the domains — in this
way, we obtain for each node a table whose entries are ‘representative’ for Ax.

We have two variants: we can choose to always apply the reductions, or to
apply them only in some cases. Correctness follows from the analysis in [7]. In
our experiments, we consider both the case where we always apply the reduction
step, and the case where we only apply it when A ≥ 2|U|. Both cases give the
same guarantees on the size of tables and worst case upper bound on the running
time, but the actual running times in experiments differ, as we discuss in later
sections.
1 See the proof of Theorem 3.7 in the arXiv report of [7].

9

4 Implementation

In this section, we give some details on our implementation of the algorithms
described in the previous section.

We have implemented the algorithms in Java. For each of the test graphs,
we used the well known (and quite simple and effective, see e.g., [8]) Greedy
Degree heuristic to find a tree decomposition. These tree decompositions were
subsequently transformed into nice tree decompositions, using the procedure
which was previously described in Section 2. The algorithms were executed on
the thus obtained nice tree decompositions.

The recursions for the different types of nodes were implemented such that
we spend linear time per generated entry (before removing double entries, and
before the reduction step). For most types, this is trivial. The computation for
join bags contains a step, where we are given two partitions, and must compute
the partition that is the closure of the combination of the two (i.e., the finest
partition that is a coarsening of both). We implemented this step with a breadth
first search on the vertices in the bag, with the children of a vertex v all not yet
discovered vertices that are in the same block as v in either of the partitions.

In order to find duplicate partial solutions we have represented the partial
solution tables in a nested hash-map structure. First we use sets of vertices
that where not used in a partial solution as keys, pointing to tables of weighted
partitions, effectively grouping partitions consisting of the same base set of ver-
tices together. These weighted partition tables are then represented by another
hash-map where the partitions, which are represented as nested sets, are used
as keys, pointing to the minimum weight corresponding to the partial solution.
This allows us to find and replace any duplicate partial solution in amortized
constant time. Java provides hash-codes for sets by adding the hash-codes for all
objects contained within a set, which works well enough for the outer hash-table
used in our structure. This standard approach breaks down when we use it to
calculate hash-codes for partitions however, at it effectively adds all hash-codes
of vertices used in the partition together. This results in the same hash-code for
all partitions used in the same inner hash-map. To resolve this problem we dis-
rupt this commutative effect by multiplying indexes of vertices contained in each
block, and then taking the sum of these values of blocks in order to calculate
hash-codes for partitions. We apply the multiplications modulo a prime number
to avoid integer overflows. In our experiments, we observed that this approach
results in approximately 3% collisions for large tables.

In the implementation of the rank-based approach we receive partial solution
tables from the classic algorithm. For every computed partial solution table we
enumerate the cuts and fill the cut-matrix ordering its rows by weight. For every
partial solution represented in the matrix we then find the leading 1 in its row,
after which we add the values in its row to the row of every other partial solution
of higher weight containing a 1 in the same column, modulo 2. We then include
the partial solution in A′. Any time we find a solution with a row consisting of
all 0’s we can eliminate it, as it is linearly dependent on previously processed
partial solutions. We can stop when all partial solutions have been processed,

10

or when we have processed 2|U| rows, since all remaining partial solutions are
linearly dependent on solutions in A. Any time a partial solution is processed
we can eliminate the column containing its leading 1, since all elements in this
column are 0.

Chimani et al. [10] give an efficient algorithm for Steiner tree for graphs given
with a tree decomposition, that runs in time O(B2

k+2kn) time, with k the width
of the tree decomposition. We have chosen not to use the coloring scheme from
Chimani et al. [10], but instead use hash tables (as discussed above) to store
the tables. Of course, our choice has the disadvantage that we lose a guarantee
on the worst case running time (as we cannot rule out scenarios where many
elements are hashed to the same position in the hash table), but gives a simple
mechanism which works in practice very well. In fact, if we assume that the
expected number of collisions of an element in the hash table is bounded by a
constant (which can be observed in practice), then the expected running time
of our implementation matches asymptotically the worst case running time of
Chimani et al.

5 Experimental Results

In this section, we will report the results for experiments with the algorithms dis-
cussed in Section 3. We will denote the classic dynamic programming algorithm
as CDP. With RBA, we denote the algorithm where we always apply the reduc-
tion step, whereas RBC denotes the algorithm which only applies the reduction
step when we have a table whose size is larger than the bound guaranteed by
reduction. We will compare the runtime of these three algorithms. Furthermore
we will compare the number of partial solutions generated during the execution
of these algorithms to illustrate how much work is being saved by reducing the
tables.

Each of the three algorithms receives as input the same nice tree decom-
position of the input graph; this nice tree decomposition is rooted at a forget
bag of a terminal vertex. The experiments where performed on sets of graphs of
different origin, spanning a range of treewidth sizes of their tree decompositions,
and where possible diversified on the number of vertices, edges and terminals.
Our graphs come from benchmarks for algorithms for the Steiner Tree prob-
lem and for Treewidth. The graphs from Steiner tree benchmarks can be found
in Steinlib [20], a repository for Steiner Tree problems. These are prefixed by
b, i080 or es. Graph instances prefixed by b are randomly generated sparse
graphs with edge weights between 1 and 10; these were introduced in [4] and
were generated following a scheme outlined in [1]. The i080 graph instances are
randomly generated sparse graphs with incidence edge weights, introduced in
[14]. We have grouped these sparse graphs together in the results. The next set
of instances, prefixed by es, were generated by placing random points on a two-
dimensional grid, which serve as terminals. By building the grid outlined in [16]
they where converted to rectilinear graphs with L1 edge weights and prepro-
cessed with GeoSteiner [29]. The last collection of graphs come are often used

11

as benchmarks for algorithms for Treewidth. These come from from Bayesian
network and graph colouring applications. We transformed these to Steiner

Tree instances by adding random edge weights between 1 and 1000, and by se-
lecting randomly a subset of the vertices as terminals (about 20% of the original
vertices). These graphs can be found in [27].

All algorithms have been implemented in Java and the computations have
been carried out on a Windows-7 operated PC with an Intel Core i5-3550 proces-
sor and 16.0 GB of available main memory. We have given each of the algorithms
a maximum time of one hour to find a solution for a given instance; in the tables,
we marked instances halted due to the use of the maximum time by a *.

instance tw(T) |V | |E| |K| CDP RBA RBC

b01.stp 4 50 63 9 55 53 17
b02.stp 4 50 63 13 12 30 12
b08.stp 6 75 94 19 171 92 48
b09.stp 6 75 94 38 78 46 31
b13.stp 7 100 125 17 1328 618 408
b14.stp 7 100 125 25 2190 385 275
b15.stp 8 100 125 50 14421 1542 1281
i080-001.stp 9 80 120 6 98617 11270 7953
i080-003.stp 9 80 120 6 144796 12689 10211
i080-004.stp 10 80 120 6 1618531 70192 68930
b06.stp 10 50 100 25 1325669 36986 29082
b05.stp 11 50 100 13 * 270376 207516
i080-005.stp 11 80 120 6 * 936074 840466

Table 1. Runtime in milliseconds for instances from Steinlib (1)

In Tables 1 – 3, we have gathered the results for the runtimes of the three
algorithms for the aforementioned graph instances. We immediately notice that
RBC outperforms RBA in all cases. If we investigate Tables 4 – 6 we notice
that the number of partial solutions computed during RBA is not significantly
smaller compared to the number computed during RBC. From these results we
can conclude that it is preferable to use the reductions more sparingly in order
to decrease runtime, since applying the reductions when the tables are already
smaller than their size guarantee does not seem to have a noteworthy effect.

We also notice that, while RBA outperforms CDP in numerous cases, RBC
outperforms CDP in all but one (discussed below). For example, in the case of
i080-004 we see a significant speed-up: the classic DP uses 26 minutes to find the
optimal solution, but RBC uses just 69 seconds. Furthermore we see a strong
increase in the runtime difference when the width of the tree decompositions
increases. This is further reflected in Table 4 – 6 where we see that when the
width of the tree decompositions increases, the difference in the number of of
generated partial solutions grows significantly.

12

instance tw(T) |V | |E| |T | CDP RBA RBC

es90fst12.stp 5 207 284 90 71 120 60
es100fst10.stp 5 229 312 100 105 166 86
es80fst06.stp 6 172 224 80 272 276 151
es100fst14.stp 6 198 253 100 109 160 78
es90fst01.stp 7 181 231 90 250 270 148
es100fst13.stp 7 254 361 100 1223 1200 679
es100fst15.stp 8 231 319 100 2600 1688 1033
es250fst03.stp 8 543 727 250 2904 2010 1251
es100fst08.stp 9 210 276 100 4670 2302 1942
es250fst05.stp 9 596 832 250 24460 15550 9742
es250fst07.stp 10 585 799 250 107150 54605 31729
es500fst05.stp 10 1172 1627 500 124664 47336 31102
es250fst12.stp 11 619 872 250 * 144932 95855
es100fst02.stp 12 339 522 100 * 426078 334785
es250fst01.stp 12 623 876 250 * 332389 246704
es250fst08.stp 13 657 947 250 * 2670464 2251728
es250fst15.stp 13 713 1053 250 * 2120913 1671672

Table 2. Runtime in milliseconds for instances from Steinlib (2)

instance tw(T) |V | |E| |T | CDP RBA RBC

myciel3.stp 5 11 20 2 5 8 4
BN 28.stp 5 24 49 4 8 15 7
pathfinder.stp 6 109 211 21 422 254 155
csf.stp 6 32 94 6 335 198 116
oow-trad.stp 7 33 72 6 766 594 364
mainuk.stp 7 48 198 9 8842 3495 2025
ship-ship.stp 8 50 114 10 10579 4511 2841
barley.stp 8 48 126 9 9281 2410 1473
miles250.stp 9 128 387 25 35369 14423 9382
jean.stp 9 80 254 16 39192 18237 10862
huck.stp 10 74 301 14 17030 38486 21050
myciel4.stp 11 23 71 4 1510595 98720 93107
munin1.stp 11 189 366 37 * 460051 372718
pigs.stp 12 441 806 88 * 1431083 1280194
anna.stp 12 138 493 27 * * 3291591

Table 3. Runtime in milliseconds for instances on graphs from TreewidthLib

The huck instance is the only example where using the rank-based approach
does not pay off. Upon further inspection we found that the tree decomposition
for this instance has only one bag of size 11, while most of the other bags are
of size 7 and below. This is also reflected by the difference in the number of
generated partial solutions, where the improvement factor is not comparable to
the other cases. Vice versa we found that the i080-004 case included 18 bags of

13

instance tw(T) |V | |E| |T | CDP RBA RBC

b01.stp 4 50 63 9 3141 2854 2854
b02.stp 4 50 63 13 3263 2763 2769
b08.stp 6 75 94 19 39178 11278 11345
b09.stp 6 75 94 38 18970 5177 5449
b13.stp 7 100 125 17 328366 68533 70693
b14.stp 7 100 125 25 400940 35554 40012
b15.stp 8 100 125 50 2294557 84567 94951
i080-001.stp 9 80 120 6 15757284 529805 565777
i080-003.stp 9 80 120 6 18841974 589313 589773
i080-004.stp 10 80 120 6 196513167 2611426 3270334
b06.stp 10 50 100 25 156669926 903700 938800
b05.stp 11 50 100 13 * 6320072 6320264
i080-005.stp 11 80 120 6 * 26653282 31275766

Table 4. Number of generated partial solutions for instances of Steinlib (1)

instance tw(T) |V | |E| |T | CDP RBA RBC

es90fst12.stp 5 207 284 90 39324 28739 28761
es100fst10.stp 5 229 312 100 53477 36548 36578
es80fst06.stp 6 172 224 80 97373 47524 48124
es100fst14.stp 6 198 253 100 51786 34747 34792
es90fst01.stp 7 181 231 90 83763 36783 36825
es100fst13.stp 7 254 361 100 364446 138376 138635
es100fst15.stp 8 231 319 100 596847 163386 163410
es250fst03.stp 8 543 727 250 700715 210195 210319
es100fst08.stp 9 210 276 100 825150 108249 113399
es250fst05.stp 9 596 832 250 4708395 921183 922000
es250fst07.stp 10 585 799 250 17267208 2106090 2107053
es500fst05.stp 10 1172 1627 500 19211081 2263151 2263681
es250fst12.stp 11 619 872 250 * 4641299 4642325
es100fst02.stp 12 339 522 100 * 5531945 5532151
es250fst01.stp 12 623 876 250 * 5079895 5080613
es250fst08.stp 13 657 947 250 * 20876551 21907601
es250fst15.stp 13 713 1053 250 * 17467070 17698575

Table 5. Number of generated partial solutions for instances of Steinlib (2)

treewidth 11 of which 6 where join bags, which explains the extreme difference.
In practice, when we run dynamic programming algorithms on tree decomposi-
tions, the underlying structure of the decomposition has a big influence on the
performance, which is not always properly reflected by the treewidth of a graph.
In general however, the rank-based approach is more and more advantageous as
the treewidth increases, even allowing us to find solutions where CDP does not
find any within the time limit. During the execution of the experiments we have
also tracked the amount of time spent on filling the cut-matrices and the time
spent on performing Gaussian elimination, and found that we spent significantly

14

instance tw(T) |V | |E| |T | CDP RBA RBC

myciel3.stp 5 11 20 2 2763 1773 1837
BN 28.stp 5 24 49 4 5317 3509 3529
pathfinder.stp 6 109 211 21 130730 31126 31789
csf.stp 6 32 94 6 104620 28196 28908
oow-trad.stp 7 33 72 6 235555 66378 66443
mainuk.stp 7 48 198 9 2109366 326069 330049
ship-ship.stp 8 50 114 10 2439667 294814 295219
barley.stp 8 48 126 9 1825048 168018 169318
miles250.stp 9 128 387 25 8955601 531507 542261
jean.stp 9 80 254 16 8886646 657659 690002
huck.stp 10 74 301 14 5916126 1103232 1114182
myciel4.stp 11 23 71 4 211076605 2156903 3798591
munin1.stp 11 189 366 37 * 15486584 19662020
pigs.stp 12 441 806 88 * 14525282 17868488
anna.stp 12 138 493 27 * * 55923467

Table 6. Number of generated partial solutions for graphs from TreewidthLib

more time on filling the table whereas the Gaussian elimination step only takes
up a small fraction of the time spent on reducing the tables.

bag size CDP RBA RBC

0 1 1 1
1 2 2 2
2 4 4 4
3 15 15 15
4 50 49 49
5 196 168 168
6 782 541 541
7 3438 1441 1441
8 15746 4901 4901
9 69315 13300 13300
10 252560 41740 41740
11 860867 80694 80694

Table 7. The maximum number of partial solutions found in bags of a fixed size during
the execution of the three algorithms for the es500fst05 instance

To further illustrate the advantages of the rank-based approach as the treewidth
increases, we have included Table 7 which shows the effect on the maximum num-
ber of partial solutions found in bags of a fixed size in the es500fst05 instance.
We notice no difference between RBA and RBC which is not unexpected when
considering the previous results. We see a strong reduction in the size of the
intermediate tables for bigger treewidth when compared to CDP, indicating a
worthy pay-off for the time spent reducing the size of partial solution tables.

15

6 Discussion and Concluding Remarks

In this paper, we presented an experimental evaluation of the rank based ap-
proach by Bodlaender et al. [7], comparing the classic dynamic programming for
Steiner Tree and the new versions based on Gaussian elimination. The re-
sults are very promising: even for relatively small values of the width of the tree
decompositions, the new approach shows a notable speed-up in practice. The
theoretical analysis of the algorithm already predicts that the new algorithms
are asymptotically faster, but it is good to see that the improvement already is
clearly visible at small size benchmark instances.

Overall, the rank based approach is an example of the general technique of
representativity: a powerful but so far underestimated paradigmatic improve-
ment to dynamic programming. A further exploration of this concept, both in
theory (improving the asymptotic running time for problems) as in experiment
and algorithm engineering seems highly interesting. Our current paper gives a
clear indication of the practical relevance of this concept.

We end this paper with a number of specific points for further study:

– The rank based approach promises also faster algorithms on tree decom-
positions for several other problems. The experimental evaluation can be
executed for other problems. In particular, for Hamiltonian Circuit and
similar problems, it would be interesting to compare the use of the basis
from [7] with the smaller basis given by Cygan et al. [12].

– How well does the Cut and Count method perform? As remarked in [13],
it seems advantageous to use polynomial identity testing rather then the
isolation lemma to optimize the running time.

– Are further significant improvements on the running time possible by using
different data structures or variants of the approach, e.g., by not storing
table entries as partitions of subsets by identifying them by their row in the
matrix M?

– Are running time improvements possible by other forms of reduction of tables
(without affecting optimality)? If we exploit the two families theorem by
Lovász [22], we obtain a variant of our algorithm, with a somewhat different
reduce algorithm [15] (see also [23]); how does the running time of this version
compare with the running time of the algorithm we studied?

– Can we use the rank based approach to obtain a faster version of the tour
merging heuristic for TSP by Cook and Seymour [11]? Also, it would be
interesting to try a variant of tour merging for other problems, e.g., ‘tree
merging’ as a heuristic for Steiner Tree.

– For what other problems does the rank based approach give faster algorithms
in practical settings?

– Are there good heuristic ways of obtaining small representative sets, even
for problems where theory tells us that representative sets are large in the
worst case?

16

References

1. Y. P. Aneja. An integer linear programming approach to the Steiner problem in
graphs. Networks, 10:167–178, 1980.

2. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8:277–284, 1987.

3. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12:308–340, 1991.

4. J. E. Beasley. An algorithm for the Steiner problem in graphs. Networks, 14:147–
159, 1984.

5. H. L. Bodlaender. Dynamic programming algorithms on graphs with bounded tree-
width. In T. Lepistö and A. Salomaa, editors, Proceedings of the 15th International

Colloquium on Automata, Languages and Programming, ICALP’88, volume 317 of
Lecture Notes in Computer Science, pages 105–119. Springer Verlag, 1988.

6. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

7. H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Solving weighted and
counting variants of connectivity problems parameterized by treewidth determin-
istically in single exponential time. Report on arXiv 1211.1505, 2012. Extended
abstract to appear at ICALP 2013.

8. H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations I. Upper
bounds. Information and Computation, 208:259–275, 2010.

9. R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on recursively
constructed graph families. Algorithmica, 7:555–581, 1992.

10. M. Chimani, P. Mutzel, and B. Zey. Improved Steiner tree algorithms for bounded
treewidth. Journal of Discrete Algorithms, 16:67–78, 2012.

11. W. Cook and P. D. Seymour. Tour merging via branch-decomposition. INFORMS

Journal on Computing, 15(3):233–248, 2003.
12. M. Cygan, S. Kratsch, and J. Nederlof. Fast Hamiltonicity checking via bases of

perfect matchings. Report on arXiv 1211.1506, 2012. To appear in Proceedings
STOC 2013.

13. M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. van Rooij, and J. O. Wo-
jtaszczyk. Solving connectivity problems parameterized by treewidth in single
exponential time. In Proceedings of the 52nd Annual Symposium on Foundations

of Computer Science, FOCS 2011, pages 150–159, 2011.
14. C. Duin. Steiner Problems in Graphs. PhD thesis, University of Amsterdam,

Amsterdam, the Netherlands, 1993.
15. F. V. Fomin, D. Lokshtanov, and S. Saurabh:. Efficient computation of represen-

tative sets with applications in parameterized and exact algorithms. Report on
arXiv 1304.4626, 2013.

16. M. Hanan. On Steiner’s problem with rectilinear distance. SIAM J. Applied Math.,
14:255–265, 1966.

17. F. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, volume 53
of Annals of Discrete Mathematics. Elsevier, 1992.

18. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85 – 104.
Plenum Press, 1972.

19. T. Kloks. Treewidth. Computations and Approximations, volume 842 of Lecture
Notes in Computer Science. Springer Verlag, Berlin, 1994.

17

20. T. Koch, A. Martin, and S. Voß. Steinlib, an updated library on Steiner tree
problems in graphs. Technical Report ZIB-Report 00-37, Konrad-Zuse Zentrum
für Informationstechnik Berlin, 2000. http://elib.zib.de/steinlib.

21. E. Korach and N. Solel. Linear time algorithm for minimum weight Steiner tree
in graphs with bounded treewidth. Technical Report 632, Technion, Haifa, Israel,
1990.

22. L. Lovász. Flats in matroids and geometric graphs. In Combinatorial Surveys.

Proceedings 6th Britisch Combinatorial Conference, pages 45–86. Academic Press,
1977.

23. D. Marx. A parameterized view on matroid optimization problems. Theoretical

Computer Science, 410:4471–4479, 2009.
24. B. Monien. How to find long paths efficiently. Annals of Discrete Mathematics,

25:239–254, 1985.
25. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-

width. Journal of Algorithms, 7:309–322, 1986.
26. J. Telle and A. Proskurowski. Efficient sets in partial k-trees. Discrete Applied

Mathematics, 44:109–117, 1993.
27. Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib, 2004–
28. J. A. Wald and C. J. Colbourn. Steiner trees, partial 2-trees, and minimum IFI

networks. Networks, 13:159–167, 1983.
29. D. Warme, P. Winter, and M. Zachariasen. GeoSteiner, software for computing

Steiner trees. http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner/.
30. F. Wei-Kleiner. Tree decomposition based Steiner tree computation over large

graphs. Report on arXiv 1305.5757, 2013.
31. P. Winter. Steiner problem in networks: A survey. Networks, 17:129–167, 1987.

18

http://www.cs.uu.nl/people/hansb/treewidthlib

	Speeding-up Dynamic Programming with Representative Sets

