
Noname manuscript No.
(will be inserted by the editor)

Space-efficient Substring Occurrence Estimation

Alessio Orlandi · Rossano Venturini

the date of receipt and acceptance should be inserted later

Abstract In this paper we study the problem of estimating the number of
occurrences of substrings in textual data: A text T on some alphabet Σ = [σ]
of length n is preprocessed and an index I is built. The index is used in lieu of
the text to answer queries of the form Count≈(P), returning an approximated
number of the occurrences of an arbitrary pattern P as a substring of T . The
problem has its main application in selectivity estimation related to the LIKE
predicate in textual databases. Our focus is on obtaining an algorithmic solution
with guaranteed error rates and small footprint. To achieve that, we first enrich
previous work in the area of compressed text-indexing providing an optimal
data structure that, for a given additive error `≥ 1, requires Θ(n` logσ) bits. We
also approach the issue of guaranteeing exact answers for sufficiently frequent
patterns, providing a data structure whose size scales with the amount of such
patterns. Our theoretical findings are supported by experiments showing the
practical impact of our data structures.

The work is an extended version of the paper appeared in the Proceedings of the 30th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS)
2011 [23]. This work has been partially supported by MIUR of Italy under projects PRIN ARS
Technomedia 2012, the Midas EU Project, Grant Agreement no. 318786 and the InGeoCloudS
EU Project, Grant Agreement no. 297300.
The work was conducted while the first author was a Ph.D. student at the Dept. of Computer
Science, University of Pisa.

Alessio Orlandi
Google Switzerland.

Rossano Venturini
Department of Computer Science, University of Pisa, Italy.

E-mail: oalessio@google.com, rossano.venturini@unipi.it

2

1 Introduction

A large fraction of the data we process every day are texts: unformatted
natural language documents, XML structured data, HTML collections, textual
columns in relational databases, biological sequences, are just few examples.
With nowadays growth of data it is common to perform operations on massive
data sets. Thinking about text, the basic class of operations is simple pattern
matching queries (or its variations, e.g., regular expressions). The challenge,
especially on massive data sets, is to obtain low time complexities and little
space requirements. On one hand, one would like to achieve the maximum
speed in solving matching queries on the text, and thus indexing the data is
mandatory. On the other hand, when massive data sets are involved, the cost
for extra index data may be non-negligible, and thus compressing the data is
mandatory too. It is not surprising that the last decade has seen a trending
growth of compressed text indexes [9,11,12,15,22]. Their main role is to match
both requirements at the same time, allowing textual data to be stored in
compressed format while being able to efficiently perform pattern matching
queries on the indexed text itself.

Nonetheless, there exist lower bounds on the compression ratio these indexes
can achieve, usually expressed in terms of the kth order empirical entropy of
the underlying text. Without making assumptions on the text at hand, such
limits can be only surpassed by allowing pattern matching operations to have
approximated results, namely, a small amount of error may be present in the
output. In this paper we proceed on this path by addressing the following
problem.

Substring Occurrence Estimation Problem. Given a text T [1,n] drawn from an
alphabet Σ = [σ] and any fixed error parameter `≥ 1, we would like to design
an index that, without the need of accessing/storing the original text, is able to
count the number of occurrences of any pattern P [1,p] in T . In the uniform error
case, the index is allowed to err by at most `: precisely, the reported number of
occurrences of P is in the range [Count(P),Count(P) + `−1], where Count(P)
is the actual number of occurrences of P in T . This operation is referred
to as Count≈`(P). In the lower-sided error case, instead, we consider the
stronger operation Count≥`(P) such that Count≥`(P) = Count(P) whenever
Count(P)≥ `, and Count≥`(P) = `−1 otherwise.

A relative of additive error is the multiplicative error, i.e., when the estima-
tion lays in [Count(P),(1 + ε)Count(P)] for some fixed ε > 0, which provides
better estimates for low frequency patterns. Unfortunately, solving the multi-
plicative error problem would imply an index able to discover for sure whether a
pattern P appears in T or not (set Count(P) = 0 in the above expression). This
turns out to be the hard part of estimation and, indeed, we prove (Theorem 5)
that an index with multiplicative error would require as much as T to be
represented. Hence, the forthcoming discussion will focus solely on additive
error.

3

Occurrence estimation finds its main application in Substring Selectivity
Estimation: given a textual column of a database, create a limited space index
that finds (approximately) the percentage of rows satisfying the predicate
LIKE ’%P%’ for any pattern P . Provided with a data structure for substring
occurrence estimation with lower-sided error, solutions in literature [6,18,19] try
to reduce the error when the data structure is not able to guarantee a correct
answer, i.e., Count(P)< `. This phase, called error reduction, usually involves
splitting P into pieces appearing in the data structure and using a probabilistic
model to harness such information to generate a selectivity estimate for the
whole pattern. Apart from providing an effective model, solutions for substring
selectivity incur in a space/error trade-off: the more space-efficient is the
underlying data structure, the more information can be stored, hence yielding
a more accurate estimate. Most of the data structures used in selectivity
estimation are simple and waste space; therefore, we can indirectly boost
selectivity accuracy by studying space-efficient substring occurrence estimation.

In the forthcoming discussion, we focus on occurrence estimation on
whole texts only. Nonetheless, the techniques immediately apply to collec-
tions of strings (i.e., rows in a database column): given the content of strings
R1,R2, . . . ,Rn we introduce a new special symbol . and create the text
T (R) = .R1 . R2 . · · · . Rn.. A substring query is then performed directly
on T (R).

To date, the main data structure for occurrence estimation is the pruned
suffix tree PST`(T) [19]. Here, we briefly review its main characteristics and
defer a full explanation to the next section. For a fixed error `≥ 1, the PST`(T)
is obtained from the suffix tree of T by pruning away all nodes having less than
` leaves in their subtrees. This suffices for solving the substring occurrence
estimation problem with lower-sided error. However, the space occupancy of
PST` is a serious issue, both in theory and practice: it requires a total of
O(m logn+g logσ) bits, where m is the number of nodes surviving the pruning
phase and g is the amount of symbols that label the edges of such nodes. This
is problematic for two reasons: 1) the number of nodes in the pruned tree may
be very high (up to Θ(n− `)); 2) the number of symbols on the edges may
exceed the length of the text itself. Thus, the space occupancy of the pruned
suffix tree may be not sublinear in the text size and can be very far from the
Ω(n logσ

`) bits space lower bound for the problem (see Theorem 4).
Solutions with smaller footprint can be obtained by resorting to the com-

pressed full-text indexes [9, 11, 15, 22], which are well known in the field of
succinct data structures. These indexes deliver a framework to keep a copy of
text T compressed together with auxiliary information for efficient substring
search. Such solutions, however, work on the entire text and are not designed
to allow errors or pruning of portions of the string, yet they provide a good
baseline for our work.

In this paper we show (Section 4) how to build an index (called APX`)
that requires O(n log(σ`)

`) bits of space. This is the first index that has both
guaranteed space, sublinear with respect to the size of the indexed text, and

4

provable error bounds. It turns out (Theorem 4) that such index is space-optimal
up to constant factors for sufficiently small values of ` (namely, log`=O(logσ)).

We also provide a data structure (CPST`) for the lower-sided error version
of the problem (Section 5) that presents a space bound of O(m log(σ`)) bits
where m is the number of nodes in the PST`(T). Hence, our CPST` does not
require to store the labels (the g logσ term above), which account for most of
the space in practice. Such data structure outperforms our previous solution
only when m=O(n/`), a condition that is satisfied in many real data sets1.
Both the APX` and CPST` data structures heavily rely on the Burrows-Wheeler
Transform [5], which proves to be an effective tool to tackle the problem.

In Section 6 we support our claims with tests on real data sets. We show the
improvement in space occupancy of both APX` and CPST`, both ranging from
5x to 60x w.r.t. to PST`, and we show our sharp advantage over compressed
text indexing solutions. As an example, for an English text of about 512 MB,
it suffices to set `= 256 to obtain an index of 5.1 MB (roughly, 1%). We also
confirm that m and n/` are close most of the times. In such sense we also
note that the main component in PST`’s space is given by the labels, hence
guaranteeing to our CPST` a clear advantage over PST`.

Concerning the selectivity estimation problem, we illustrate the gain in
estimation quality given by employing our indexes as underlying data structure.
For such purposes we employ the MOL algorithm (see [18]). We study the average
additive error by choosing a first threshold for PST` and a second one for CPST`
such that the resulting indexes occupy roughly the same space. Results show
that CPST` induces an improvement ranging from 5x to 790x depending on
the source of data. Combining MOL and our CPST with reasonably small `, it is
possible to solve the selectivity estimation problem with an average additive
error of 1 by occupying (on average) around 1/7 of the original text size.

2 Preliminaries

A basic concept of text compression is the empirical entropy of a text. Let
T [1,n] be a string drawn from the alphabet Σ = [σ].2 For each c ∈Σ, we let nc
be the number of occurrences of c in T . The zero-th order empirical entropy of
T is defined as

H0(T) = (1/n)
∑
c∈Σ

nc log(n/nc).

The quantity nH0(T) bits provides an information-theoretic lower bound
to the output size of any compressor that encodes each symbol of T with a
fixed code [20,25].

For any string w of length k, we denote by wT the string of single symbols
following the occurrences of w in T , taken from left to right. For example, if

1 Recall that the condition on m is not enough to obtain a small PST` due to the edge
labels.

2 In the following we will adopt the common assumption that σ =O(n).

5

T = banabananab and w= {an}, we have wT = {aaa} since the three occurrences
of an in T are followed by the symbol a. The k-th order empirical entropy of T
is defined as

Hk(T) = (1/n)
∑
w∈Σk

|wT |H0(wT).

We have Hk(T)≥Hk+1(T) for any k ≥ 0. The quantity nHk(T) bits pro-
vides an information-theoretic lower bound to the output size of any compressor
that encodes each symbol of T with a code that depends on the symbol itself
and on the k immediately preceding symbols [20].

2.1 Rank and Select queries

Our solutions rely on basic data structures that can answer Rank and Select
queries. Let T [1,n] be a text drawn from an alphabet Σ = [σ]. The query
Rankc(T,i) for c ∈Σ counts the number of occurrences of the symbol c in the
prefix T [0 : i]. The query Selectc(T,i) for c ∈ Σ returns the position of the
ith occurrence of the symbol c in T , or −1 if not existing. The space/time
complexities of the best solutions on the RAM model with word size w are
summarized in the following theorem (see [4] and references therein).

Theorem 1 Given a text T [1,n] drawn from an alphabet Σ = [σ], σ ≤ n, there
exist data structures storing T within nH0(T) +o(n) bits and supporting Rank
and Select queries in O(1 + log logσ

logw) time.

Notice that, since w =Ω(logn) bits, Rank/Select queries require constant
time for σ =O(polylog(n)).

In our solutions we also employ the so-called Elias-Fano representation [7,8]
that supports the query Select1 over a binary vector B[1,n] in constant time.
The main advantage of this representation is that, depending on the relation
between n and the number m of bits set to 1, it may be more space efficient
than the results in Theorem 1. Its time/space complexities are reported in the
following theorem.

Theorem 2 There exists a data structure encoding a bitvector B of length n
with m bits set to 1 in m log n

m +O(m) bits, supporting Select1 in O(1) time.

2.2 Suffix trees

The Suffix Tree of a text T , denoted as ST(T), is the compacted trie built on
all the n suffixes of T (see e.g., [16]). We assume that a special symbol, say
$, terminates the text T to ensure that no suffix is a proper prefix of another
suffix. The symbol $ does not appear anywhere else in T and is assumed to be
lexicographically smaller than any other symbol in Σ. In this way each suffix
of T has its own unique leaf in the suffix tree, since any two suffixes of T will
eventually follow separate branches in the tree. The label of any edge e= (u,v)

6

$

ananab$

b

nab$

banab$

nab$

$

ana$

$

ananab$

b

nab$$

ananab$

b na

$ a b na

Fig. 1: The suffix tree for the text banabananab$.

in ST(T), denoted as label(u,v), is always a non-empty substring of T . For a
given node u in ST(T), its path label (denoted pathlabel(u)) is defined as the
concatenation of edge labels on the path from the root to u. The string depth
of node u is |pathlabel(u)|. See Figure 1 for the suffix tree built on the text
T = banabananab$.

The search of a pattern P [1,p] in T has to identify the highest node u in
ST(T) such that P prefixes pathlabel(u), if any. The search starts from the root
of ST(T) and follows a path trying to match symbols of P . The search stops
as soon as a mismatch occurs or P is completely matched. In the former case
P does not occur in T . In the latter case, each leaf in the subtree below the
matching position gives an occurrence of P . The number of these occurrences
can be obtained in constant time by simply storing in each node u the number
C(u) of leaves in its subtree. Therefore, the number of occurrences of any
pattern P [1,p] is computed in O(p logσ) time. This time complexity can be
reduced up to O(p) by placing a (minimal) perfect hashing function [17] in each
node to speed up percolation, while increasing the space only by a constant
factor.

2.3 Burrows-Wheeler Transform

Burrows and Wheeler [5] introduced a new compression algorithm based on
a reversible transformation, now called the Burrows-Wheeler Transform (Bwt
from now on). The Bwt permutes the symbols of the input string T to obtain a
new string which is easier to compress. We assume, again, that T is terminated

7

banabananab$
anabananab$b
nabananab$ba
abananab$ban
bananab$bana
ananab$banab
nanab$banaba
anab$banaban
nab$banabana
ab$banabanan
b$banabanana
$banabananab

=⇒

F L
$ banabanana b
a b$banabana n
a bananab$ba n
a nab$banaba n
a nabananab$ b
a nanab$bana b
b $banabanan a
b anabananab $
b ananab$ban a
n ab$banaban a
n abananab$b a
n anab$banab a

Fig. 2: Example of Burrows-Wheeler transform for the string T = banabananab$. The matrix
on the right has the rows sorted in lexicographic order. The output of the Bwt is the column
L= bnnnbba$aaaa.

by an extra symbol $ smaller than any other symbol of Σ. The Bwt of T ,
hereafter denoted by Bwt(T), is built with two basic steps (see Figure 2):

1. form a conceptual matrixM(T) whose rows are the cyclic rotations of string
T in lexicographic order;

2. construct string L by taking the last column of the sorted matrix M(T).
We set Bwt(T) = L.

Every column of M(T), hence also the transformed string L, is a permuta-
tion of T$. In particular the first column of M(T), call it F , is obtained by
lexicographically sorting the symbols of T (or, equally, the symbols of L). Note
that the sorting of the rows of M(T) is essentially equal to the sorting of the
suffixes of T , because of the presence of the special symbol $. This shows that:
(1) symbols following the same substring (context) in T are grouped together
in L, and thus give raise to clusters of nearly identical symbols; (2) there is an
obvious relation between M(T) and suffix tree/array of T . Property 1 is the
key for devising modern data compressors (see e.g., [20]); Property 2 is crucial
for designing compressed indexes (see e.g., [9, 22]) and, additionally, suggests a
way to compute the Bwt in linear time through the construction of the suffix
array of T .

Burrows and Wheeler [5] observed two properties that guarantee the invert-
ibility of the Bwt:

(a) Since the rows in M(T) are cyclically rotated, L[i] precedes F [i] in the
original string T .

(b) For any c ∈Σ, the j-th occurrence of c in F and the j-th occurrence of c
in L correspond to the same symbol of the string T .

As a result, the original text T can be obtained backwards from L by
resorting to function LF (also called LF-mapping) that maps row indexes to
row indexes, and is defined as

LF (i) = C[L[i]] +RankL[i](L,i),

8

Algorithm Count(P [1,p])
1. i= p, c= P [p], First = C[c] +1, Last = C[c+ 1];
2. while ((First≤ Last) and (i≥ 2)) do
3. c= P [i−1];
4. First = C[c] + Rankc(L,First−1) +1;
5. Last = C[c] + Rankc(L,Last);
6. i= i−1;
7. if (Last< First) then return “no rows prefixed by P”
8. else return [First,Last].

Fig. 3: The algorithm to find the range [First,Last] of rows of M(T) prefixed
by P [1,p].

where C[L[i]] counts the number of occurrences in T of symbols smaller than
L[i]. We talk about LF-mapping because the symbol c= L[i] is located in the
first column, F , of M(T) at position LF (i). The LF-mapping allows one to
navigate T backwards: if T [k] = L[i], then T [k− 1] = L[LF (i)] because row
LF (i) of M(T) starts with T [k] and, thus, ends with T [k−1]. In this way, we
can reconstruct T backwards by starting at the first row, equal to $T , and
repeatedly applying LF for n steps. As an example, observe that the second a
in L of Figure 2 lies onto the row which starts with bananab$ and, correctly,
the second a in F lies onto the row which starts with abananab$. That symbol
a is T [4].

2.4 Compressed Full-text Indexing

Ferragina and Manzini [11] proved that data structures for supporting Rank
queries on the string L = Bwt(T) suffice to search for an arbitrary pattern
P [1,p] as a substring of T . Their searching procedure, called backward search, is
reported in Figure 3. It works in p phases, each preserving a simple invariant: At
the end of the i-th phase, [First,Last] is the range of contiguous rows in M(T)
which are prefixed by P [i,p]. Count starts with i = p so that First and Last
are determined via the array C (step 1). Ferragina and Manzini proved that
the pseudo-code in Figure 3 maintains the invariant above for all phases, so
[First,Last] delimits at the end the rows prefixed by P (if any). Steps 4 and 5 are
dominant costs of each iteration of Count. While array C is small and occupies
O(σ logn) bits, efficient support of Rank queries over Bwt is guaranteed by the
data structures described in Subsection 2.1. The space occupancy of a solution
achieving bounds in terms of H0(T) on an arbitrary text T can be bounded in
terms of Hk(T) when applied to L= Bwt(T).

By plugging these considerations into Count algorithm (see e.g., [2]), we
obtain the following theorem.

Theorem 3 Given a text T [1,n] drawn from an alphabet Σ = [σ], σ ≤ n,
there exists a compressed index that takes O(p(1+ log logσ

logw)) time to support

9

Count(P [1,p]) and requires nHk(T) + o(n)(Hk(T) + 1) bits of space, for any
k ≤ (α logσ n)−1 and constant 0< α < 1.

Notice that compressed indexes support also other operations, like locate
and display of pattern occurrences, which are slower than Count in that they
require O(polylog(n)) time per occurrence [9, 22]. We do not go into further
details on these operations because they are not required in our solution.

2.5 Solutions for the Substring Occurrence Estimation Problem

The main data structure for occurrence estimation, and the one used in KVI
and MO [18,19], is the pruned suffix tree PST`(T). For a fixed error `≥ 1, the
PST`(T) is obtained from the suffix tree of T by pruning away all nodes of
suffixes that appear less than ` times in T .

It is immediate to see that the resulting data structure solves the Substring
Occurrence Estimation Problem with lower-sided error in time O(|P |). However,
the space occupancy of PST` may be a serious issue, both in theory and practice.
Indeed, the PST` requires a total of O(m logn+g logσ) bits, where m is the
number of nodes surviving the pruning phase and g is the amount of symbols
that label the edges of such nodes. This space complexity may be problematic
because both m and g may be Ω(n) even for very large values of ` (i.e., the
error). Indeed, depending on the text T , the number of nodes in the pruned
tree could raise to Θ(n− `) and could slowly decrease as the error ` increases:
observe that we require to increase the error up to n/2 just to halve the number
of nodes in the tree. Consider the text T = an$. The shape of its suffix tree is
a long chain of n−1 nodes with two children each. Therefore, for any value
of `, the space required to store explicitly its pruned suffix tree is at least
Ω((n− `) logn) bits. This quantity further increases due to the need of storing
explicitly edges’ labels. We point out that the number of these symbols is at
least equal to the number of nodes but can significantly increase whenever the
suffixes represented in the tree share long common prefixes and it may even
exceed the length of the text itself. This implies that the space occupancy of
the pruned suffix tree may be not sublinear in the text size.

An alternative to the pruning strategy above consists in building a pruned
Patricia trie [21] PT`/2(T) indexing just a suffix every `/2 suffixes of T sorted
lexicographically. More formally, let S1,S2, . . . ,Sn denote the n suffixes of T
sorted lexicographically, PT`/2(T) is the Patricia trie of the set of O(n/`)
strings S = {Si | i ≡ 1 (mod `/2)}. The pruned Patricia trie PT`/2(T) can
be stored in O(n(logσ+logn)

`) = O(n logn
`) bits. We use the blind search [10]

to search for a pattern P [1,p] in time O(p). Such algorithm returns a node u
that either corresponds to P , if P is a prefix of some string in S, or another
node otherwise (whereas there is a connection between such node and P , it
is not possible to exploit it without the original text). Once we identify the
node u, we return the number of leaves descending from that node multiplied
by `. If P occurs at least `/2 times in T , it is easy to see that the number of

10

reported occurrences is a correct approximation of its number of occurrences
in T . However, if P occurs less than `/2 times in T , the algorithm may fail by
reporting as result a number of occurrences which may be arbitrarily far from
the correct one.

A similar solution resorts to a data structure presented by Belazzougui et
al. [3]. Their solution solves via (perfect) hash functions a problem somehow
related to ours, called Weak Prefix Search. The problem is as follows: We have
a set V of v strings and want to build an index on them. Given a pattern
P [1,p], the index outputs the ranks (in lexicographic order) of the strings
that have P as prefix; if such strings do not exist the output of the index is
arbitrary. Their main solution needs just O(p log(σ)/w+ logp+ log logσ) time
and O(v log(L logσ)) bits of space, where L is the average length of the strings
in the set and w is the machine word size. We can use their data structure
to index the set of suffixes S, so that we can search P [1,p] and report its
number of occurrences multiplied by `. Since in our case L=Θ(n), the index
requires O(n log(n logσ)

`) = O(n logn
`) bits of space. As in the case of pruned

Patricia trie, the answer is arbitrary when P is not prefix of any suffix in
S (i.e., it occurs less that ` times). Hence, this solution improves the time
complexity of the previous approach but retains the same important drawback.
We conclude by mentioning a solution [13] that solves the weak prefix search
problem efficiently in the Cache-Oblivious Model [14], and, thus, makes the
above approach suitable for this model. Applying this solution we can search
for a pattern P [1,p] in O(logB n+ (p logσ)/B) I/Os in the Cache-Oblivious
Model by using O(n logn

`) bits of space, where B is the number of bits that fit
in a block.

2.6 Algorithms for the Substring Selectivity Estimation

In this section we present in detail the three main algorithms for substring
selectivity estimation: KVI [19], the class of MO-based estimators [18] and CRT [6],
in chronological order. All the algorithms we will describe rely on an underlying
solution for the substring occurrence estimation problem and, thus, represent
an application for our solutions.

For a given threshold `, KVI starts by assuming to have a data structure
answering correctly to queries Count(P) when Count(P) ≥ ` and strives to
obtain a one-sided error estimate for infrequent (< `) strings. It also assumes
the data structure can detect if Count(P)< `. Its main observation is as follows:
let P = αβ where Count(P) < ` and assume Count(α) ≥ ` and Count(β) ≥ `,
then one can estimate Count(P) from Count(α) and Count(β) in a probabilistic
way, using a model in which the probability of β appearing in the text given
that α appears is roughly the same of β appearing by itself. Generalizing this
concept, KVI starts from P and retrieves the longest prefix of P , say P ′, such
that Count(P ′)> `, and then repeats on the remaining suffix.

Requiring the same kind of data structure beneath, the MO class starts
by observing that, instead of splitting the pattern P into known fragments

11

of information, one can rely on the concept of maximum overlap: given two
strings α and β, the maximum overlap α�β is the longest prefix of β that is
also a suffix of α. Hence, instead of estimating Count(P) from Count(α) and
Count(β) alone, it also computes and exploits the quantity Count(α�β). In
probabilistic terms, this is equivalent to introducing a light form of conditioning
between pieces of the string, hence yielding better estimates. The change is
justified by an empirically proved Markovian property that makes maximum
overlap estimates very significant. MO is also presented in different variants:
MOC, introducing constraints from the strings to avoid overestimation, MOL,
performing a more thorough search of substrings of the pattern, and MOLC,
combining the two previous strategies.

In particular, MOL relies on the lattice LP of the pattern P . For a string
P = a ·α · b (|α| ≥ 0), the l-parent of P is the string α · b and the r-parent of P
is a ·α. The lattice LP is described recursively: P is in the lattice and for any
string ζ in the lattice, also its l-parent and r-parent are in the lattice. Two nodes
β and ζ of the lattice are connected if β is an l-parent or an r-parent of ζ or
viceversa. To estimate Count(P), the algorithm starts by identifying all nodes in
the lattice for which Count(α) can be found in the underlying data structure and
retrieve it, so that Pr(α) = Count(α)/N , where N is a normalization factor. For
all other nodes, it computes Pr(a ·α · b) = Pr(a ·α)×Pr(α · b)/Pr(a ·α�α · b)
recursively. In the end, it obtains Pr(P), i.e., the normalized ratio of occurrences
of P in T .

The CRT method was presented to circumvent underestimation, a problem
that may afflict estimators with limited probabilistic knowledge as those above.
The first step is to build an a-priori knowledge of which substrings are highly
distinctive in the database: in that, they rely on the idea that most patterns
exhibit a short substring that is usually sufficient to identify the pattern
itself. Given a pattern to search for, they retrieve all distinctive substrings of
the pattern and use a machine learning approach to combine their value. At
construction time, they train a regression tree over the distinctive substrings
by using a given query log; the tree is then exploited at query time to obtain a
final estimate.

3 Substring Occurrence Estimation Problem: Lower bounds

The following lower bound establishes the minimum amount of space needed to
solve the substring occurrence estimation problem for both error types, uniform
and lower-sided.

Theorem 4 For any fixed additive error `≥ 1, an index built on a text T [1,n]
drawn from an alphabet Σ = [σ] that approximates the number of occurrences
of any pattern P in T within ` must use Ω(n logσ

`) bits of space.

Proof Assume there exists an index requiring o(n logσ
`) bits of space that is

able to answer any approximate counting query within an additive error `.
Given any text T [1,n], we derive a new text T ′[1,(2`+1)(n+1)] that is formed

12

by repeating the string T$ for 2`+ 1 times, where $ is a symbol that does
not belong to Σ. Then, we build the above index on T ′, which would require
o((2`+1)(n+1)log(σ+1)

`) = o(n logσ) bits. We observe that we can recover the
original text T by means of this index. We search for all possible texts of length
n drawn from Σ followed by a $. The original text T will be the only one for
which the index answers with a value greater than `. However, since there must
exist at least a text of length n from the alphabet [σ] requiring logσn = n logσ
bits to be represented, the index built on this text would require too few bits,
a contradiction. ut

Using similar considerations we can prove the following Theorem, which
justifies the need of focusing on additive errors.

Theorem 5 For any fixed multiplicative error (1 +ε)≥ 1, an index built on a
text T [1,n] drawn from an alphabet Σ = [σ] that approximates the number of
occurrences of any pattern P in T within (1 + ε) must use Ω(n logσ) bits of
space.

Proof The proof uses a standard argument. Assume there exists an index that,
for any T [1,n], requires fewer than n logσ bits and answers any approximate
counting query within a multiplicative error (1 + ε)≥ 1. We can recover the
original text T by means of this index. We search for all possible texts of
length n drawn from Σ. The text T will be the only one for which the index
answers with a value greater than 0. The existence of such index would imply
a contradiction, since at least a text of length n must require n logσ bits to be
represented. ut

4 Uniform error solution

In this section we describe our first data structure, which is able to report the
number of occurrences of any pattern within an additive error of at most ` by
using O(n log(σ`)

`) bits of space. Accordingly to Theorem 4, this error/space
trade-off is optimal whenever the error ` is such that log`=O(logσ). Formally,
we will prove the following theorem.

Theorem 6 Given T [1,n] drawn from an alphabet Σ = [σ], σ ≤ n, and a
fixed error threshold `, there exists an index that answers Count≈`(P [1,p]) in
O(p(1 + log logσ

logw)) time by using O(n log(σ`)
`) bits of space.

The idea behind our solution is that of sparsifying the string L= Bwt(T)
by removing most of its symbols (namely, for each symbol we just keep track
of one every `/2 of its occurrences). Then, we provide an algorithm that, even
though, can provide sufficiently good results on this sampled Bwt. Similarly to
the backward search, our algorithm searches for a pattern P [1,p] by performing
p phases. In each of them, it computes two indexes of rows of M(T): AFirsti
and ALasti. These two indexes are obtained by first performing Rank queries on

13

Algorithm Count≈`(P [1,p])
1. i= p, c= P [p], AFirstp = C[c] +1, ALastp = C[c+ 1];
2. while ((AFirsti ≤ ALasti) and (i≥ 2)) do
3. c= P [i−1];
4. DiscrFirsti = Succ(AFirsti,Dc)
5. RL= min(DiscrFirsti−AFirsti, `/2−1)
6. AFirsti−1 = LF(DiscrFirsti)−RL;
7. DiscrLasti = Pred(ALasti,Dc)
8. RR= min(ALasti−DiscrLasti, `/2−1)
9. ALasti−1 = LF(DiscrLasti) +RR;

10. i= i−1;
11. if (ALasti < AFirsti) then return “no occurrences of P”
12. else return [AFirsti,ALasti].

Fig. 4: Our algorithm to find the approximate range [AFirst1,ALast1] of rows
of M(T) prefixed by P [1,p] (if any).

the sampled Bwt and, then, by applying a correction mechanism. Corrections
are required to guarantee that both indexes are within a distance `/2 from
the actual indexes Firsti and Lasti that would be computed by the backward
search in phase i. More formally, in each phase it is guaranteed that AFirsti ∈
[Firsti− (`/2)−1,Firsti] and ALasti ∈ [Lasti,Lasti+ (`/2)−1]. Clearly, also the
last step obeys to this invariant, hence all rows in [AFirst1,ALast1] contain
suffixes prefixed by P , with the possible exception of the first and last `/2
ones. It follows that the algorithm errs for at most ` occurrences reporting
ALast1−AFirst1 + 1 as the number of occurrences of P .

For each symbol c, the sampling of L= Bwt(T) keeps track of a set Dc of
positions, called discriminant positions (for symbol c), containing:

– the position of the first occurrence of c in L;
– the positions x of the ith occurrence of c in L where i mod `/2 = 0;
– the position of the last occurrence of c in L.

In Figure 4 we report the procedure for searching with this sampled Bwt.
The algorithm searches for a pattern P [1,p] by performing predecessor and
successor queries on sets Ds3. The crucial steps are lines 4− 9 where the
algorithm computes the values of AFirsti−1 and ALasti−1 using the values
computed in the previous phase. To understand the intuition behind these
steps, let us focus on the computation of AFirsti−1 and assume that we know
the value of Firsti. The original backward search would compute the number
of occurrences, say v, of symbol c in the prefix L[1 : Firsti− 1]. Since our
algorithm does not have the whole L, the best it can do is to identify the
rank, say r, of the position in Dc closest to (but larger than) Firsti. Clearly,
r ·`/2−`/2< v ≤ r ·`/2. Thus, setting AFirsti−1 =C[c]+r ·`/2−`/2−1 would
suffice to guarantee that AFirsti−1 ∈ [Firsti−1− (`/2−1),Firsti−1]. Notice that

3 We recall that a predecessor query Pred(x,A) returns the predecessor of x in a set A,
namely, max{y | y ≤ x ∧ y ∈A}. A successor query is similar but finds the minimum y such
that y ≥ x.

14

we are using the crucial assumption that the algorithm knows Firsti. If we
replace Firsti with its approximation AFirsti, this simple argumentation cannot
be applied since the error would grow phase by phase. In this way the final
error would grow up to `/2 · p. Surprisingly, it is enough to use the simple
correction retrieved at line 5 and applied at line 6 to fix this problem. The
following Lemma provides a formal proof of our claim.

Lemma 1 For any fixed `≥ 0 and any phase i, both AFirsti ∈ [Firsti− (`/2−
1),Firsti] and ALasti ∈ [Lasti,Lasti+ `/2−1] hold.

Proof We prove only that AFirsti ∈ [Firsti− (`/2− 1),Firsti] or, equivalently,
that 0 ≤ Firsti−AFirsti < `/2. A similar reasoning applies for ALasti. The
proof is by induction. For the first step p, we have that AFirstp = Firstp,
thus the thesis immediately follows. For the inductive step, we assume that
0 ≤ Firsti −AFirsti < `/2 and we prove that 0 ≤ Firsti−1 −AFirsti−1 < `/2.
Recall that Firsti−1 is computed as C[c] +Rankc(L,Firsti−1) + 1 by the back-
ward search and that LF(DiscrFirsti) = C[c] + Rankc(L,DiscrFirsti− 1) + 1 =
C[c]+Rankc(L,DiscrFirsti), where the latter equality follows by observing that
L[DiscrFirsti] = c by definition of discriminant position for c. We distinguish
two cases depending on the relative (and unknown) order between Firsti and
DiscrFirsti.

Case 1. Assume Firsti ≤ DiscrFirsti. Let z be the number of occurrences of
symbol c in L[Firsti,DiscrFirsti − 1]. We have Firsti−1 = LF(DiscrFirsti)− z.
Thus, the difference ∆ = Firsti−1−AFirsti−1 equals to LF(DiscrFirsti)− z−
LF(DiscrFirsti)+RL=RL−z. Since there are at most `/2−1 occurrences of c
in L[AFirsti,DiscrFirsti−1] and since AFirsti ≤ Firsti ≤ DiscrFirsti, z cannot be
larger than RL= min(DiscrFirsti−AFirsti, `/2−1). Hence, 0≤∆< `/2.

Case 2. Assume Firsti > DiscrFirsti. Let z be the number of occurrences of c
in L[DiscrFirsti,Firsti−1]. We have Firsti−1 = LF(DiscrFirsti)+z. Thus, the dif-
ference ∆= Firsti−1−AFirsti−1 equals to LF(DiscrFirsti)+z−LF(DiscrFirsti)+
RL = z+RL. Since both z and RL are non-negative and z+RL cannot be
larger than the number of positions between AFirsti and Firsti−1, it follows
0≤∆< `/2. ut

We easily obtain the following Theorem by combining Lemma 1 with the
proof of correctness of Backward Search (Lemma 3.1 in [11]).

Theorem 7 For any pattern P [1,p] that occurs Count(P) times in text T ,
Algorithm 4 returns in O(p) steps as result a value Count≈`(P) which is in the
range [Count(P),Count(P) + `−1].

Notice that, if [First,Last] is the range of indexes corresponding to the
consecutive suffixes that are prefixed by P , then the algorithm identifies a
range [AFirst,ALast] such that First− `/2 < AFirst ≤ First and Last ≤ ALast <
Last+ `/2.

It remains to show how to represent the sets of discriminant positions
Dc to support predecessor and successor queries on them. We represent all

15

of these sets by means of two different objects. We conceptually divide the
string L = Bwt(T) into d2n/`e blocks of equal length and for each of them
we create the characteristic set Bi, such that Bi contains c iff there exists a
position in Dc belonging to block i. Note that since each block has length
bl/2c, the construction procedure for Dc guarantees that there can only be one
discriminant position per symbol in any block. Considering sets Bi as strings
(with arbitrary order), we compute the string B =B0#B1# . . .B2n/`# where
is a symbol outside Σ and augment it with Rank and Select data structures
(see Theorem 1). Let r be the total number of discriminant positions. We
also create an array V of r cells, designed as follows. Let x be a discriminant
position and assume that it appears as the jth one in B, then V [j] = x mod `/2.
The following lemma states that a constant number of Rank and Select queries
on B and V suffices for computing Pred(x,Dc) and Succ(x,Dc).

Lemma 2 Pred(x,Dc) and Succ(x,Dc) can be computed with a constant num-
ber of Rank and Select queries on B and V .

Proof We show only how to support Pred(x,Dc) since Succ(x,Dc) is similar. Let
p = Rankc(B,Select#(B,b2x/`c)), denoting the number of blocks containing
a discriminant position of c before the one addressed by b2x/`c. Let q =
Selectc(B,p)−b2x/`c be the index of the discriminant position preceding x
(the subtraction removes the # spurious symbols). Then, by computing g =
Rank#(B,Selectc(B,p)) we find the block preceding (or including) b2x/`c that
has a discriminant position for c. Also, V [q] contains the offset, within that block,
of the discriminant position. Such position can be either in a block preceding
b2x/`c or in the same block. In the former case, Pred(x,Dc) = b2x/`cg+V [q].
In latter case we have an additional step to make, as we have so far retrieved a
position that just belongs to the same block of x but could be greater than x.
If that happens, we decrease p by 1 and repeat all the calculations. Note that,
since the first occurrence of c is also a discriminant, this procedure can never
fail. ut

Once we have computed the correct discriminant positions, Algorithm 4
requires to compute an LF-step from them (lines 7 and 9). The following Lemma
states that this task is simple.

Fact 1 For any symbol c, given any discriminant position d in Dc but the
largest one, we have that LF(d) =C[c]+(i−1) ·`/2+1 where i is such that Dc’s
ith element in left-to-right position is d. For the largest discriminant position
d in Dc we have LF(d) = C[c+ 1].

It follows immediately that while performing the calculations of Lemma 2 we
can also compute the LF mapping of the discriminant position retrieved.

To conclude the proof of Theorem 6 it remains to bound the time and the
space complexities of our solution. Since the query algorithm requires O(p)
applications of Lemma 2, the claim on the time complexity easily follows.
The space complexity is given by three elements. The array C, containing
counters for each symbol, requires O(σ logn) bits. The number of discriminant

16

positions is easily seen to be at most 2n/` in total, hence the array V requires
at most O(n/`) cells of O(log`) bits each. Finally, the string B requires one
symbol per block plus one symbol per discriminant position, accounting for
O(n logσ

`) bits in total. Thus, the overall space occupancy of the data structure
is O(n log(σ`)

` +σ logn) bits. The first term dominates as long as σ =O(n/`),
and, in this case, the space bound of Theorem 6 holds. In order to match this
bound also for larger alphabet sizes (i.e., σ = ω(n/`)) we use a simple pre-filter
with the aim of reducing the alphabet size to O(n/`) without altering the
approximation guarantees. Observe that the number of symbols that occur at
least ` times in T are at most n/`. Let Σ′ be the set of these symbols. We build
a minimal perfect hash function M to map each symbol in Σ′ to a unique value
in [|Σ′|]. The minimal perfect hash function requires O(|Σ′|) bits of space,
and, given a symbol c, M(c) can be evaluated in constant time [17]. We also
store an array of size |Σ′| that stores the symbol c ∈Σ′ in position M(c). This
array requires O(|Σ′| logσ) =O(n logσ

`) bits. In this way, given a symbol c in
Σ, we can check if c belongs to Σ′ and, in case, remap it to M(c) in constant
time. We now construct the text T ′ of length n drawn from an alphabet of
size |Σ′|+ 1. The ith symbol of T ′[i] is equal to M(T [i]) if T [i] ∈Σ′, or to the
special symbol $ otherwise. We build the index described in this section over
the text T ′, which, thanks to the alphabet remapping, requires O(n log(σ`)

`)
bits of space. At query time, given a pattern P , we remap its symbols by using
the minimal perfect hash function in O(p) time. If at least one of its symbols
does not belong to Σ′, then the pattern cannot occur more than `−1 times in
T and, thus, we can safely report `−1 as its number of occurrences. Otherwise,
we search the remapped pattern with the index for T ′ so that its number of
occurrences is correctly estimated.

5 Lower-side error solution

Let PST`(T) be the pruned suffix tree as discussed in Subsection 2.5, and
let m be the number of its nodes. Recall that PST`(T) is obtained from the
suffix tree of T by removing all the nodes with less than ` leaves in their
subtrees, and hence constitutes a solution to the lower-sided error problem:
when Count(P)≥ `, the answer is correct, otherwise the value `−1 is returned.
Thus, compared with the solution of previous section, it has the great advantage
of being perfectly correct if the pattern appears frequently enough, but it is
extremely space inefficient. Our objective in this section is to present a compact
version of PST`(T), by means of proving the following theorem.
Theorem 8 Given T [1,n] drawn from an alphabet Σ = [σ], σ≤n, and given an
error threshold `, there exists a representation of PST`(T) using O(m log(σ`))
bits that can answer to Count≥`(P [1,p]) in O(p(1+ log logσ

logw)) time, where m
is the number of nodes of PST`(T).

To appreciate Theorem 8, consider that the original PST`(T) representation
requires, apart from node pointers, to store labels together with their lengths,

17

for a total of O(m logn+ g logσ) bits. The predominant space complexity is
given by the edge labels, since it can reach n logσ bits even when m is small.
Therefore, our objective is to build an alternative search algorithm that does
not require all the labels to be stored.

5.1 Computing counts

As a crucial part of our explanation, we will refer to nodes using their preorder
traversal times. The branching symbol of a child of a node u is the first symbol
of child’s edge label. During the visit we are careful to descend into children in
ascending lexicographical order over their branching symbols. Therefore, u < v
if and only if u is either an ancestor of v or their corresponding path labels have
the first mismatching symbols, say in position k, such that pathlabel(u)[k]<
pathlabel(v)[k].

We begin by explaining how to store and access a basic information that
our algorithm must recover: Given any node u ∈ PST`(T), we would like to
compute C(u), the number of occurrences of pathlabel(u) as a substring in T .4
A straightforward storage of such data would require m logn bits for a tree of
m nodes. We can obtain a more space efficient representation and still able to
compute C(u) in O(1) time. Our approach is based on the following simple
observation.
Observation 1 Let u be a node in PST`(T) and let v1,v2, . . . ,vk be the children
of u in the suffix tree of T that have been pruned away. We have g(u) =∑

1≤i≤kC(vi)< σ`.

Proof For any i≤ k, since vi’s subtree has been pruned away, it holds C(vi)< `.
Since node u has at most σ children, the observation follows. ut

Note that Observation 1 applies in a stronger form to leaves of the suffix tree
where C(x) = g(x), for any leaf x. We refer to the g(·) values as correction
terms. For an example refer to Figure 5. It is easy to see that to obtain C(v) it
suffices to sum all the correction terms of all the descendants of v in PST`(T).
Precisely, it suffices that, at index construction time, we build5 the binary
string G = 0g(0)10g(1)1 · · ·0g(m−1)1 together with support for binary Select
queries.
Lemma 3 Let v ∈ PST`(T) and let z be the identifier of the rightmost leaf in
the subtree rooted at v. Define CNT(v,z) = Select1(G,z)−z−Select1(G,v) +v.
Then C(v) = CNT(v,z).

Proof By the numbering scheme, it follows that a consecutive range of G
contains the values of all the nodes in the subtree of v. Select1(G,x)−x is
equivalent to Rank0(G,Select1(G,x)), i.e., it sums up all correction terms in
nodes before x in the numbering scheme. Computing the two prefix sums and
subtracting gives the value of C(v). ut

4 Notice that C(u) is the number of leaves in the subtree of u in the original suffix tree.
5 We use the notation 0x to denote the binary value 0 repeated x times.

18

0(1)

7(1)

8(2)

b

5(1)

6(2)

ana

1(0)

3(1)

4(2)

b

2(2)
b na

a b

na

b

b

Fig. 5: The pruned suffix tree of the text banabananab$ with threshold 2. Each
node contains its preorder traversal id and, in parentheses, its correction factor.
The solid arrow denotes an inverse suffix link for b, the dashed arrow a virtual
one.

Lemma 4 Let m be the number of nodes in PST`(T), then G can be stored
using at most m log(σ`) +O(m) bits. The computation of CNT(v,z) requires
O(1) time.

Proof Each correction factor is at most σ`, hence the number of 0s in G is at
most mσ`. The number of 1s in G is m. The thesis follows by storing G with
the binary Elias-Fano’s data structure of Theorem 2. ut

5.2 Finding the correct node

Our solution relies on the concepts of suffix links and inverse suffix links
in a suffix tree. For each node u of PST`(T), the suffix link SL(u) is v iff
the string pathlabel(v) is obtained from pathlabel(u) by removing the its first
symbol. The inverse suffix link (also referred to as Weiner link) of v for some
symbol c, denoted ISL(v,c), is u iff v = SL(u) and the link symbol is c (i.e.,
c ·pathlabel(v) = pathlabel(u)). We say that v possesses an inverse suffix link
for c if ISL(v,c) is defined. We also refer to the lowest common ancestor of
two nodes u and v as LCA(u,v). An inverse suffix link ISL(v,c) = u exists only
if c ·pathlabel(v) = pathlabel(u), however many search algorithms require also
virtual inverse suffix links to be available. We say a node w has a virtual
inverse suffix link for symbol c (denoted VISL(w,c)) if and only if at least one
of its descendants (including w) has an inverse suffix link for c. The value of
VISL(w,c) is equal to ISL(v,c), where v is the highest descendant of w having
an inverse suffix link for c.6 As we will see in Lemma 7, it is guaranteed that
this highest descendant is unique and, thus, this definition is always well formed.
The intuitive meaning of virtual suffix links is the following: VISL(w,c) links
node w to the highest node w′ in the tree whose path label is prefixed by
c ·pathlabel(w). An example is illustrated in Figure 5.

6 Notice that w and v coincide whenever w has an inverse suffix link for c.

19

Our interest in virtual inverse suffix links is motivated by an alternative
interpretation of the classic backward search. When the backward search is
performed, the algorithm virtually starts at the root of the suffix tree, and
then traverses (virtual) inverse suffix links using the pattern to induce the link
symbols, prefixing a symbol at the time to the suffix found so far. The use of
virtual inverse suffix links is necessary to accommodate situations in which
the pattern P exists but only an extension P ·α of it appears as a node in the
suffix tree. Note that the algorithm can run directly on the suffix tree if one
has access to virtual inverse suffix links, and such property can be directly
extended to pruned suffix trees. Storing virtual inverse suffix links explicitly is
prohibitive since there can be up to σ of them outgoing from a single node,
therefore we plan to store real inverse suffix links and provide a fast search
procedure to evaluate the VISL function.

In the remaining part of this section we will show a few properties of
(virtual) suffix links that allow us to store/access them efficiently and to derive
a proof of correctness of the search algorithm sketched above.

The following two lemmas state that inverse suffix links preserve the relative
order between nodes.

Lemma 5 Let w,z be nodes in PST`(T) such that ISL(w,c) =w′ and ISL(z,c) =
z′. Let u= LCA(w,z) and u′ = LCA(w′,z′). Then, ISL(u,c) = u′.

Proof If w is a descendant of z or viceversa, the lemma is proved. Hence, we
assume u 6= w and u 6= z. Let α= pathlabel(u). Since u is a common ancestor
of w and z, it holds pathlabel(w) = α · β and pathlabel(z) = α · ζ for some
non-empty strings β and ζ. By definition of inverse suffix link, we have that
pathlabel(w′) = c ·α ·β and pathlabel(z) = c ·α · ζ. Since w and z do not share
the same path below u, the first symbols of β and ζ must differ. This implies
the existence of a node v whose path label is pathlabel(v) = c ·α which is the
lowest common ancestor between w′ and z′. Again by definition of inverse
suffix link, it follows that ISL(u,c) = u′ = v.7 ut

Lemma 6 Given any pair of nodes u and v with u < v such that both have an
inverse suffix link for symbol c, it holds ISL(u,c)< ISL(v,c).

Proof Since u < v, we have that pathlabel(u) is lexicographically smaller than
pathlabel(v). Thus, obviously c ·pathlabel(u) is lexicographically smaller than
c · pathlabel(v). Since c · pathlabel(u) is the path label of u′ = ISL(u,c) and
c ·pathlabel(v) is the path label of v′ = ISL(v,c), u′ precedes v′ in the preorder
traversal of PST`(T). ut

Computing the virtual inverse suffix link of node u for symbol c requires to
identify the highest descendant of u (including u) having an inverse suffix link
for c. If such a node does not exist we conclude that the virtual inverse suffix
link is undefined. The following lemma states that such node, say v, must be
unique, meaning that if there exists another descendant of u having an inverse
suffix link for c, then this node must also be a descendant of v.

7 We notice that this lemma is also observed by Russo et al. [24] (Lemma 5.1).

20

{a,b}

{a}

{a}

b

{a}

ana

{n}

{b}

b

{n}

b

na

a b

na

S =ab#n#n#b##a##a#a#

Fig. 6: The same PST of Figure 5, with information associated with Theorem 9.
Each node is given the set of symbols for which an inverse suffix link is defined.
The string S contains the separated encoding of these symbols collected by
visiting the tree in preorder.

Lemma 7 For any node u in PST`(T), the highest descendant of u (including
u) having an inverse suffix link for a symbol c, if existing, is unique.

Proof Pick any pair of nodes that descend from u having an inverse suffix
link for the symbol c. By Lemma 5 their common ancestor must also have an
inverse suffix link for c. Thus, there must exist a unique node that is a common
ancestor of all of these nodes. ut

In our solution we conceptually associate each node u in PST`(T) with
the set of symbols Eu for which u has an inverse suffix link. We represent
each set with a string Enc(Eu) built by concatenating the symbols in Eu in
any order and ending with a special symbol # not in Σ. We then build a
string S as Enc(E0)Enc(E1) · · ·Enc(Em−1) so that the encodings follow the
preorder traversal of the tree8. We also define the array C[1,σ] whose entry
C[c] stores the number of nodes of PST`(T) whose pathlabels start with a
symbol lexicographically smaller than c. The next theorem proves that string S
together with Rank and Select capabilities is sufficient to compute VISL. This
is crucial to prove that our data structure works, proving virtual inverse suffix
links can be recreated from real ones.

Theorem 9 Let u ∈ PST`(T) and let z be the rightmost leaf descending from
u. For any symbol c ∈ Σ, let cu = Rankc(S,Select#(S,u− 1)) and, similarly,
let cz = Rankc(S,Select#(S,z)). Then (a) if cu = cz, VISL(u,c) is undefined.
Otherwise, (b) VISL(u,c) = C[c] + cu+ 1 and (c) C[c] + cz is the rightmost leaf
descending from VISL(u,c).

8 A similar method of traversing a suffix tree by means of inverse suffix links encoded in a
string has been proposed by Arroyuelo et al. [1].

21

Algorithm Count≥`(P [1,p])
1. i= p, c= P [p], up = C[c] +1, zp = C[c+ 1];
2. while ((ui 6= zi) and (i≥ 2)) do
3. c= P [i−1];
4. ui−1 = VISL(ui, c) = C[c] + Rankc(S,Select#(S,ui)) +1;
5. zi−1 = VISL(zi, c) = C[c] + Rankc(S,Select#(S,zi));
6. i= i−1;
7. if (ui = zi) then return “no occurrences of P” else return CNT(u1,z1)

Fig. 7: The algorithm reports the number of occurrences of a pattern P [1,p] in
the Compact Pruned Suffix Tree.

Proof LetA be the set of nodes of PST`(T) whose path label is lexicographically
smaller than the path label of u and let B be the set of nodes in the subtree of u.
Let S(A) and S(B) be the concatenations of, respectively, Enc(Ew) for w ∈ A
and Enc(Ew) for w ∈ B. Due to the preorder numbering of nodes, we know that
A= [0,u−1] and B = [u,z]. Thus, S(A) is a prefix of S that ends where S(B)
begins. Notice that the operations Select#(S,u−1) and Select#(S,z) return
respectively the ending positions of S(A) and S(B) in S. Thus, cu counts the
number of inverse suffix links of nodes in A while cz includes also the number
of inverse suffix links of nodes in B. Hence, if cu = cz no node of B has an
inverse suffix link and, thus, proposition (a) is proved.

By Lemma 6 we know that inverse suffix links map nodes preserving their
relative order. Thus, the first node in B that has an inverse suffix link for c
is mapped to node C[c] + cu+ 1.9 By the node numbering, this first node is
obviously also the highest one. Thus, proposition (b) is proved.

Proposition (c) is proved by resorting to similar considerations. ut

Figure 6 illustrates the whole situation. Exploiting VISL, Algorithm 7
searches for a pattern P [1,p] backwards. The algorithm starts by setting up to
be C[P [p]]+1. At the ith step, we inductively assume that ui+1 is known, and
that its path label is prefixed by P [i+1,p]. Similarly, we keep zi+1, the address
of the rightmost leaf in u’s subtree. Using ui+1 and zi+1 we can evaluate if
VISL(ui+1,P [i]) exists and, in such case, follow it. In the end, we have to access
the number of suffixes of T descending from u1. The next theorem formally
proves the whole algorithm correctness:

Theorem 10 Given any pattern P [1,p], Algorithm 7 retrieves C(u), where u
is the highest node of PST`(T) such that pathlabel(u) is prefixed by P . If such
node does not exist, it terminates reporting −1.

Proof We start by proving that such node u, if any, is found, by induction.
It is easy to observe that C[P [p]]+1 is the highest node whose path label is
prefixed by the single symbol P [p].

9 There is a caveat: in case the first node of the subtree of c has an edge label with length
greater than 1, then the +1 factor must be eliminated, since that same node becomes a
destination.

22

By hypothesis, we assume that ui+1 is the highest node in PST`(T) whose
path label is prefixed by P [i+ 1,p], and we want to prove the same for ui =
VISL(ui+1,P [i]). The fact that pathlabel(ui) is prefixed by P [i,p] easily follows
by definition of inverse suffix link. We want to prove that ui is the highest
one with this characteristic: by contradiction assume there exists another node
w′ higher that ui = VISL(ui+1,P [i]). This implies that there exists a node
w = SL(w′), prefixed by P [i+ 1,p]. Also, the virtual inverse suffix link of ui+1
is associated with a proper one whose starting node is z = SL(ui+1), which by
definition of VISL is also the highest one in ui+1’s subtree. Thus, by Lemma 7,
w is a descendant of z. Hence, w > z but ISL(w′, c)< ISL(z,c), contradicting
Lemma 6.

Finally, if at some point of the procedure a node ui+1 does not have a
virtual inverse suffix link, then it is straightforward that the claimed node u
does not exist (i.e., P occurs in T less than ` times). Once u is found, also z is
present, hence we resort to Lemma 3 to obtain C(u) = CNT(u,z). ut

In order to conclude the proof of Theorem 8 we are left with proving the
time/space complexities of the index. The solution has to store: the C array,
holding the count of nodes in PST`(T) whose path label is prefixed by each of
the σ symbols; the string G, together with binary Select capabilities, and the
string S, together with arbitrary alphabet Rank and Select capabilities. Let m
be the number of nodes in PST`(T). We know C occupies at most O(σ logn)
bits. By Lemma 4, G occupies at most m log(σ`) +O(m) bits. String S can be
represented in different ways, related to σ, picking a choice from Theorem 1,
but the space is always limited by m logσ+o(m logσ). Hence the total space is
O(σ logn)+m log(σ`)+O(m)+O(m log(σ)) =O(m log(σ`)), as claimed10. For
the time complexity, at each of the p steps, we perform four Rank and Select
queries on arbitrary alphabets which we cost O(1+ log logσ

logw) time each. The
final step on G takes O(1) time, hence the bound follows.

6 Experiments

In this section we show an experimental comparison among the solutions
presented above and those previously known. We use four different data sets
downloaded from Pizza&Chili corpus [9] that correspond to four different
types of texts: DNA sequences, structured text (XML), natural language and
source code.

– Dna. This file contains bare DNA sequences without descriptions, separated
by newline, collected from files available at the Gutenberg Project site.
Each of the four DNA bases is coded as an uppercase letter A,G,C,T, and
there are a few occurrences of other special symbols.

10 Notice that we can use the same pre-filter described at the end of Section 4 whenever
the term O(σ logn) bits is dominant.

23

– Dblp. This file is in XML format and provides bibliographic information on
major computer science journals and proceedings. It was downloaded from
the DBLP archive at dblp.uni-trier.de.

– English. This file contains the first 512 Mbytes of the concatenation of
English texts selected from the Gutenberg Project site.

– Sources. This file is formed by C/Java source codes obtained by concate-
nating all the .c, .h, .C and .java files of the linux-2.6.11.6 (ftp.kernel.org)
and gcc-4.0.0 (ftp.gnu.org) distributions.

Text and alphabet sizes of the above datasets are reported in the first two
columns in Figure 8.

`= 8
Dataset Size (in Mbytes) σ n/` |PST`|

∑
i
|edge(i)|

Dblp 275 96 36,064 28,017 1,034,016
Dna 292 15 38,399 42,361 814,993
English 501 225 65,764 53,600 660,957
Sources 194 229 25,475 25,474 11,376,730

`= 64 `= 256
Dataset n/` |PST`|

∑
i
|edge(i)| n/` |PST`|

∑
i
|edge(i)|

Dblp 4,508 3,705 103,383 1,127 941 20,200
Dna 4,799 5,491 102,127 1,199 1,317 19,194
English 8,220 6,491 64,500 2,055 1,616 14,316
Sources 3,184 3,264 9,430,627 796 982 8,703,817

Fig. 8: Statistics on the datasets. The second column denotes the original text
in MBytes. Each subsequent group of three columns describe PST` information
for a choice of `: expected amount of nodes, n/`; real amount of nodes in
PST`(T); sum of length of labels in PST`(T). All numbers are expressed in
thousands.

In our experimental evaluation we compare the following solutions.

– FM-index. This is an implementation of a compressed full-text index avail-
able at the Pizza&Chili site [9]11. Since it is the compressed full-text index
that achieves the best compression ratio, it is useful to establish which is
the minimum space required by known solutions to answer to counting
queries without errors.

– APPROX-`. This is the implementation of the solution presented in Section 4.
– PST-`. This is an implementation of the Pruned Suffix Tree as described by

Krishnan et al. [19].
– CPST-`. This is the implementation of the Compact Pruned Suffix Tree

described in Section 5.

11 This implementation can be downloaded at the address http://pizzachili.dcc.uchile.
cl/indexes/FM-indexV2.

24

Recall that APPROX-` reports results affected by an error of at most ` while
PST-` and CPST-` are always correct whenever the pattern occurs at least `
times in the indexed text.

 0

 0.5

 1

 1.5

 2

8 16 32 64 128 256

B
its

/s
ym

bo
l

Error Threshold

(a) Dblp

 0

 0.5

 1

 1.5

 2

 2.5

 3

8 16 32 64 128 256

B
its

/s
ym

bo
l

Error Threshold

(b) Dna

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

8 16 32 64 128 256

B
its

/s
ym

bo
l

Error Threshold

(c) English

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

8 16 32 64 128 256

B
its

/s
ym

bo
l

Error Threshold

(d) Sources
• FM-index � APPROX × PST � CPST

Fig. 9: Occupancies of indexes as a function of the error threshold `, as bits
per symbol of the original text.

The plots in Figure 9 show the space occupancies of the four indexes
depending on the chosen threshold `. We do not plot space occupancies worse
than FM-index, since in those cases FM-index is clearly the index to choose. In
fact, Figure 9(d) does not contain a plot for PST, since its space performance
was always worse than FM-index.

It turns out that in all the texts of our collection the number of nodes in the
pruned suffix tree is small (even smaller than n/`): these statistics are reported
in Table 8. This is the reason why our CPST is slightly more space-efficient
than APPROX. In practice, the former should be indubitably preferred with
respect to the latter: it requires less space and it is always correct for patterns
that occur at least ` times. Even though, the latter remains interesting due
to its better theoretical guarantees. In both solutions, by halving the error

25

Dataset Indices |P |= 6 |P |= 8

Dblp PST-256 10.06 32.372 12.43 34.172
CPST-16 0.68 1.456 0.86 1.714

Dna PST-256 0.47 1.048 0.49 2.433
CPST-32 0.47 0.499 0.43 0.497

English PST-256 7.03 27.757 12.45 31.712
CPST-32 0.80 2.391 1.40 3.394

Sources PST-11,000 816.06 1,646.57 564.94 1,418.53
CPST-8 0.70 1.028 0.93 1.255

Dataset Indices |P |= 10 |P |= 12 Avg Improvement

Dblp PST-256 14.20 35.210 15.57 36.044
CPST-16 1.00 1.884 1.14 2.009 19.03×

Dna PST-256 4.26 15.732 11.09 19.835
CPST-32 0.52 0.904 1.77 2.976 5.51×

English PST-256 13.81 28.897 11.43 23.630
CPST-32 2.07 3.803 2.45 3.623 9.68×

Sources PST-11000 400.62 1,229.35 313.68 1,120.94
CPST-8 1.13 1.367 1.28 1.394 792.52×

Fig. 10: Comparison of error (difference between number of occurrences and
estimate) for MOL estimates over different pattern lengths. PST and CPST pa-
rameters are chosen to obtain close index sizes. Tests performed on one Million
random patterns appearing in the text. The last column shows the average
factor of improvement obtained by using our CPST instead of PST.

threshold, we obtain indexes that are between 1.75 (CPST) and 1.95 (APPROX)
times smaller. Thus, we can obtain very small indexes by setting relatively
small values of `. As an example, CPST with `= 256 on text English requires
5.1 Mbytes of space, which is roughly 100 times smaller than the original text.
We observe that both CPST and APPROX are in general significantly smaller than
FM-index and remain competitive even for small values of `. As an example,
FM-index requires 232.5 Mbytes on English, which is roughly 45 times larger
than CPST−256.

As far as PST is concerned, it is always much worse than CPST and APPROX.
As expected, its space inefficiencies are due to the need of storing edge labels
since their amount grows rapidly as ` decreases (see Table 8). Moreover, this
quantity depends on the indexed text, while the number of nodes is more
stable. Thus, the performance of PST is erratic: worse than CPST by a factor 6
on English, which becomes 60 on Sources. It is remarkable that on sources
we have to increase PST’s error threshold up to 11,000 to achieve a space
occupancy close to our CPST with `= 8 .

For what concerns applications, we use our best index, i.e., CPST, together
with one estimation algorithm: MOL, briefly explained in Section 2.6. The
algorithm is oblivious to the underlying data structure as long as a lower-sided
error one is used. We performed a comparison between MO, MOL and KVI [18,19]
and found out that MOL delivered the best estimates. We also considered MOC

26

and MOLC, but for some of our data sets the creation of the constraint network
was prohibitive in terms of memory. Finally, we tried to compare with CRT [6];
however, we lacked the original implementation and a significative training set
for our data sets. Hence, we discarded the algorithm from our comparison.

Figure 10 shows the average error of the estimates obtained with MOL on our
collection by using either CPST or PST as the base data structure. For each set
we identified two pairs of thresholds such that our CPST and PST have roughly
the same space occupancy. For each text, we searched for 4 Million patterns of
different lengths that we randomly extracted from the text. Thus, this figure
depicts the significant boost in accuracy that one can achieve by replacing
PST with our solution. As an example, consider the case of Sources where the
threshold of PST is considerably high due to its uncontrollable space occupancy.
In this case the factor of improvement that derives by using our solution is
more than 790. The improvements for the other texts are less impressive but
still considerable.

7 Conclusion and future work

We presented two different solutions to the problem of substring occurrence
estimation. Our first solution is a space-optimal data structure when the index
is allowed to have a uniform error on the reported number of occurrences. Our
second solution can be seen as a very succinct version of the classical Pruned
Suffix Tree for the harder problem of having one-sided errors. It guarantees
better space complexities with respect to the pruned suffix tree both in theory
and in practice. It is not clear if the latter solution is space-optimal or not, thus,
proving a lower bound for the latter problem would provide greater insight
into the problem.

As a second open problem, we note that the entire article is forced to deal
with additive errors due to the space lower bound. A natural question is: is
there a way to relax the model, in order to circumvent the multiplicative lower
bound (Theorem 5)? For example, what if we allow non-existing substrings
to have an arbitrary estimation error, forcing all others with a multiplicative
bound?

References

1. Diego Arroyuelo, Gonzalo Navarro, and Kunihiko Sadakane. Stronger Lempel-Ziv based
compressed text indexing. Algorithmica, 62(1):54–101, 2012.

2. Jérémy Barbay, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich. Alphabet partition-
ing for compressed rank/select and applications. In Proceedings of the 21st International
Symposium on Algorithms and Computation (ISAAC), pages 315–326, 2010.

3. Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Fast prefix
search in little space, with applications. In Proceedings of the 18th Annual European
Symposium on Algorithms (ESA), pages 427–438, 2010.

4. Djamal Belazzougui and Gonzalo Navarro. New lower and upper bounds for representing
sequences. In Proceedings of the 20th Annual European Symposium on Algorithms
(ESA), pages 181–192, 2012.

27

5. Michael Burrows and David Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

6. Surajit Chaudhuri, Venkatesh Ganti, and Luis Gravano. Selectivity estimation for
string predicates: Overcoming the underestimation problem. In Proceedings of the 20th
International Conference on Data Engineering (ICDE), pages 227–, 2004.

7. Peter Elias. Efficient storage and retrieval by content and address of static files. Journal
of the ACM, 21(2):246–260, 1974.

8. Robert M. Fano. On the number of bits required to implement an associative memory.
Memorandum 61, Computer Structures Group, Project MAC, MIT, Cambridge, Mass.,
1971.

9. Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano Venturini. Com-
pressed text indexes: From theory to practice. ACM Journal of Experimental Algorith-
mics, 13, 2008.

10. Paolo Ferragina and Roberto Grossi. The string B-tree: a new data structure for string
search in external memory and its applications. Journal of the ACM, 46:236–280, March
1999.

11. Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM,
52(4):552–581, 2005.

12. Paolo Ferragina and Rossano Venturini. The compressed permuterm index. ACM
Transactions on Algorithms, 7(1):10, 2010.

13. Paolo Ferragina and Rossano Venturini. Compressed cache-oblivious String B-tree. In
Proceedings of 21th Annual European Symposium on Algorithms (ESA), pages 469–480,
2013.

14. Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. ACM Transactions on Algorithms, 8(1):4, 2012.

15. Roberto Grossi and Jeffrey S. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on Computing,
35(2):378–407, 2005.

16. Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

17. Torben Hagerup and Torsten Tholey. Efficient minimal perfect hashing in nearly minimal
space. In Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), pages 317–326, 2001.

18. H.V. Jagadish, Raymond T. Ng, and Divesh Srivastava. Substring selectivity estimation.
In Proceedings of the 18th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of database systems (PODS), pages 249–260, 1999.

19. P. Krishnan, Jeffrey S. Vitter, and Balakrishna R. Iyer. Estimating alphanumeric
selectivity in the presence of wildcards. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 282–293, 1996.

20. Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

21. Donald R. Morrison. PATRICIA - practical algorithm to retrieve coded in alphanumeric.
Journal of the ACM, 15(4):514–534, 1968.

22. Gonzalo Navarro and Veli Mäkinen. Compressed full text indexes. ACM Computing
Surveys, 39(1), 2007.

23. Alessio Orlandi and Rossano Venturini. Space-efficient substring occurrence estimation.
In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), pages 95–106, 2011.

24. Lúıs M. S. Russo, Gonzalo Navarro, and Arlindo Oliveira. Fully-compressed suffix trees.
ACM Transactions on Algorithms, 7(4), 2011.

25. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Morgan Kaufmann Publishers, Los Altos, CA
94022, USA, second edition, 1999.

