arXiv:1212.4016v2 [cs.DS] 21 Dec 2013

Online Bin Packing with Advice*

Joan Boyalr, Shahin Kamafi, Kim S. Larsen, Alejandro Lopez-Ortiz

L University of Southern Denmark, Denmark
2 University of Waterloo, Canada.

Abstract. We consider the online bin packing problem under the advara-c
plexity model where the “online constraint” is relaxed amdagégorithm receives
partial information about the future requests. We providhttupper and lower
bounds for the amount of advice an algorithm needs to aclaievaptimal pack-
ing. We also introduce an algorithm that, when provided vdthn + o(log n)
bits of advice, achieves a competitive ratio3gf for the general problem. This
algorithm is simple and is expected to find real-world aglans. We introduce
another algorithm that receivés + o(n) bits of advice and achieves a competi-
tive ratio of4/3+e¢. Finally, we provide a lower bound argument that implies tha
advice of linear size is required for an algorithm to achiaveompetitive ratio
better tharp/8.

1 Introduction

In the classical one-dimensional bin packing problem thal goto pack a given se-
quence ofitemsinto a minimum number obins with fixed and equal capacities. For
convenience, it is assumed that items sizes are in the f@gpand the capacities of
bins arel. In theonlineversion of the problem, the items are revealed one by one, and
an algorithm must pack each item without any knowledge afutute items. The deci-
sions of an online algorithm are irrevocable, i.e., it is po$sible to move an item from
one bin to another after it isackedn a bin.

The online bin packing problem has many applications in firacfrom loading
trucks subject to weight limitations to creating file backup removable media [10].
Heuristics that have been proposed for the problem incluebet-Nit (NF), First-Fit
(FF), Best-Fit (BF), and the Harmonic-based class of algorithms.mhintains a single
openbin and places an item in that bin; in the case the item doefitnibtloseshe bin
and opens a new onerlkeeps a list of bins in the order they are opened, packs an item
in the first bin that has enough space, and opens a new binaéksary. B performs
similarly to Fr, except that the bins are ordered in increasing order of teaiaining
capacity. Harmonic-based algorithms are based on the idesc&ing items of similar
sizes together in a bin. For Harmogican item has type (1 < i < K — 1) ifitisin
the rangg =, 1], and typeK if it is in the range(0, . The algorithm applies the N
strategy for items of each type separately.

* The work of the first and third author was partially supporgdthe Danish Council for In-
dependent Research, Natural Sciences and the Villum Faandand most of the work was
carried out while these authors were visiting the UnivgrsftWaterloo.

http://arxiv.org/abs/1212.4016v2

As for other online problems, the standard method for commgabsin packing al-
gorithms is competitive analysis. Under competitive asialythe performance of an
algorithmA is compared to that of ©r, which is the optimal offline algorithm. More
precisely, the competitive ratio of an algorithinis the asymptotically maximum ratio
of the cost ofA to that of QpT for serving the same sequeneeFF and BrF have the
same competitive ratio df.7, while the best Harmonic-based algorithm has a competi-
tive ratio of at mosil.58889 [22]. It is also known that no online algorithm can have a
competitive ratio better thah’54037 [3].

The total lack of information about the future is unreadisti many real-world sce-
narios [13]. A natural approach for addressing this isste iglax the problem by pro-
viding extra information about the input sequence. For thlee bin packing problem,
such relaxations have been studied in the contextsalaheadin which the online
algorithm can look at the items arriving in the near futur@é][landclosed bin packing
in which the length of the request sequence is known to thmemilgorithm [1]. In
both cases, the average performance of the online algonitipmoves, compared to the
online algorithms with no information about the future.

The advice complexity model for online algorithms is a mozaegral framework un-
der which the “no knowledge assumption” behind online atbars is relaxed, and the
algorithm receives some bits aflviceabout the future requests. The advice can be any
information about the input sequence and is generated byflamearacle which has
unbounded computational power. Provided with the appab@edvice, the online algo-
rithms are expected to achieve improved competitive rafibe advice model has re-
ceived significant attention since its introductioh [8113/ 7, 18,20.9/4,11,15.119,6,5,21].

In this paper, we study the advice complexity of the onlimmegzcking problem. Our
interest in studying the problem under this setting is nydbtoretical. Nevertheless, in
many practical scenarios, it can be justified to allow a féfhe oracle to take a “quick
look” at the input sequence and send some advice to the aaltjoeithm. For example,
it may be possible to take a quick look and count the numbeeafs which are larger
than1/2 and smaller tha/3 of the bin capacity. We show that this form of advice can
be used to achieve an algorithm which outperforms all ordigerithms.

1.1 Model

In the last few years, slightly different models of advicengexity have been pro-
posed for online problems. All these models assume thag tkean offline oracle with
infinite computational power, which provides the onlinecaithm with some bits of
advice. How these bits of advice are given to the algoriththéssource of difference
between the models. In the first model, presented_in [12], dim® algorithm poses
a series of questions which are answered by the offline oradidocks of answers
The total size of the answers, measured in the number ofd&fs)es the advice com-
plexity. The problem with this model is that a lot of inforritat can be encoded in
the individual length of each block. To address this issuetteer model is proposed
in [13] which assumes that online algorithms receive a fixechier of bits of advice
per request. We call this model tlaglvice-with-request modeThis model is studied
for problems, such as metrical task systems ats@&rver, and the results tend to use
at least a constant number of bits of advice per request(].3,Revertheless, there

are many online problems for which a sublinear and even atannhaumber of bits
of advice in total is sufficient to achieve good competitimdas. However, under the
advice-with-request model, the possibility of sendingblisear number of advice bits
to the algorithm is not well defined. 1n![8,7] another modehdfice complexity is pre-
sented which assumes that the online algorithm has accessaivice tapewritten
by the offline oracle. At any time step, the algorithm may reéethe tape and read
any number of advice bits. The advice complexity is the nunthebits on the tape
accessed by the algorithm. We refer to this modeldsce-on-tape modeSince its in-
troduction, the advice-on-tape model has been used toantdg advice complexity of
many online problems including pagind[8J17,18], disjgiath allocation[[B], job shop
scheduling([8.18]k-server|[1.20], knapsackl[9], various coloring problem4 B45,21],
set cover([19,6], maximum cliquel[6], and graph explorafibtj.

Under the advice-on-tape model, we require a mechanisnfeo low many bits
of advice the algorithm should read at each time step. Thitddoe implicitly derived
during the execution of the algorithm or explicitly encodedhe advice string itself.
For example, we may useself-delimitecencoding as used ihl[7], in which the value of
a non-negative integeY is encoded by writing the value ofog([log(X + 1)] + 1)]
in unary (a string of 1's followed by a zero), the value[tfg(X + 1)] in binaryf, and
the value ofX in binary. These codes respectively requike([log(X +1)] +1)] +1,
[log([log(X +1)] + 1)], and[log(X + 1)] bits. Thus, the self-delimited encoding of
X requires

e(X) = log(X +1)] +2[log([log(X + 1)]+1)] +1

bits. The existence of self-delimited encodings at thertr@gg of the tape usually adds
a lower-order term to the number of advice bits required bglgorithm.

Regarding notation, we usi(c) to denote the costs of for packing a request
sequence. Wheno follows from the context, we simply useto denote this cost. We
use similar notation for all algorithms, includingr@.

We consider the bin packing problem under the advice-oe-tapdel, which is
formally defined as follows, based on the definition of theieglvnodel in[[7]:

Definition 1. In theonline bin packing problem with advicthe input is a sequence of
itemso = (x1,...,2,), revealed to the algorithm in an online manrér< z; < 1).
The goal is to pack these items in the minimum number of binsib§ize. At time step
t, an online algorithm should pack item into a bin. The decision of the algorithm
to select the target bin is a function & x1, ..., z;_1, whered is the content of the
advice tape. An algorithm is c-competitive with advice complexity(n) if there exists
a constant such that, for alln and for all input sequencesof length at most, there
exists some advicg such thatA (o) < ¢ OPT(o) + cg, and at most the first(n) bits
of @ have been accessed by the algorithna.# 1 andcy, = 0, thenA is optimal

1.2 Contribution

We answer different questions about the advice complefith@ online bin packing
problem. First, we study how many bits of advice are requioegthieve an optimal so-

% In this paper we uskyg n to denotdog, (n).

lution. We consider two different settings of the problenmhéfd there is no restriction on
the number of distinct items or their sizes, we present teg essult that [log OPT(0)]
bits of advice are sufficient to achieve an optimal solutieinere Q>7(o) is the number
of bins in an optimal packing. We also prove that at Idast- 2 OPT(c)) log OPT(0)
bits of advice are required to achieve an optimal solution.

When there aren distinct items in the sequence, we prove that at |¢ast—
3)logn — 2mlogm bits of advice are required to achieve an optimal solutibmn |
is a constant, there is a linear time online algorithm thegreesm log n+ o(log n) bits
of advice and achieves an optimal solution. We also show évan ifm is not a con-
stant, there is a polynomial time online algorithm that regem [log(n+1)]+o(logn)
bits of advice and achieves a packing with+) OPT(c) + 1 bins.

We also study a relevant question that asks how many bitswié@ére required
to perform strictly better than all online algorithms. Weund this by providing an
algorithm which receivetogn + o(logn) bits of advice and achieves a competitive
ratio of 3/2. Recall that any online bin packing algorithm has a comipetiatio of at
least1.54037 [3]. Hence, our algorithm outperforms all online algorithm

Moreover, we introduce an algorithm that recei2es+ o(n) bits of advice and
achieves a competitive ratio df 3 + ¢, for any fixed value of > 0. We also prove a
lower bound that implies that a linear number of bits of adwace required to achieve
a competitive ratio 09/8 — o for any fixed value o > 0.

2 Optimal Algorithms with Advice

In this section we study the amount of advice required toexhan optimal solution.
We first investigate the theoretical setting in which ther@a restriction on the num-
ber of distinct items or on their sizes. We observe that tieaesimple algorithm that
receivesn[log OPT(o)] bits of advice and achieves an optimal solution. Such anralgo
rithm basically read$log OpT(o)] bits for each item, encoding the index of the bin
that includes the item in an optimal packing. We show thatuger bound given by
this algorithm is tight up to lower order terms, wher- 2 OPT(c) € O(n).

Theorem 1. To achieve an optimal packing for a sequence of sized optimal cost
OpPT(0), it is sufficient to receiver[log OPT(c)] bits of advice. Moreover, any deter-
ministic online algorithm requires at leagt — 2 OPT(0)) log OPT(0) bits of advice to
achieve an optimal packing.

Proof.

Upper BoundConsider an offline oracle that knows an optimal packinggtioat such
an oracle has unbounded computational power). This oraxfd\swrites on the advice
tape, for each item, except for the last two, the index of the bin in an optimalkdag
thatz is packed in. To pack any item, the online algorithm simply reads the index
of the bin thatr should be packed in and packsaccordingly. For the last two items,
the algorithm simply uses Best-Fit. Since the packing istirae as one for an optimal
algorithm up to that point, if it is impossible to fit both ofelremaining items in the
bins already used, Best-Fit will ensure that at least onéffitsat is possible. If both
of the remaining items fit in the same already open bin, it is fmput the first one of

the last two items anywhere it fits, since there will still Ipase remaining for the last.
If both of the remaining items fit in open bins, but should baliffierent bins, using
Best-Fit will ensure that they are both placed there.

This requireglog OPT(o)] bits of advice peritem which sums up(te—2)[log OPT(0)]
bits of advice. The algorithm should also know the valu&of [log OPT(c)] in order
to read the appropriate number of bits on each request. &hibe done by encoding

in unary and terminating with a zero. This uses no more tHawg OPT(o)| bits. Con-
sequently the number of advice bits used by the algorithn{lisg OPT(c)] as stated
by the theorem.

Lower Bound:Consider a seb = {o1,...,0nx} Of sequences, so that eaeh has
lengthn for1 <r < N.Letl < k <n — 1. Each sequence. in the set has the form

11 1 1 i
Zagaﬁa"'vmaulvl’bv”'vuk

in whichuf, ..., u} are defined from a sét of vectors in formV,. = (v} = 1,03 =
2,V = kUL, Vhyos -5 U _y) SUCh that each), € {1,...,k} for1 < h <
n—k.

For example, when = 8 andk = 3, the vector(1,2,3,2,1) is a vector inV.

We associate with each vectty € V a sequence, € S. For a vectoV,, € V

and biny, defineug =1— Y a4, whereq, is theith item in the sequence,, i.e.,
1<i<n—k
vy =]

a; = # Note that allu,s are strictly larger thaf.5. Clearly, OpT(o,.) = k for all
r. We refer to the firsh — OPT(¢) items assmallitems and the last ©r(c) items as
largeitems.

For example, assume= 8 and COPT(c) = 3. For a vectoWV,. = (1,2,3,2,1),
we haveu] = 1 — (3 + g7) = 0.734375, ub = 1 — (3 + 35) = 0.84375,
anduj = 1 — % = 0.9375. Hence, the sequeneg associated with/,. is

(3.4, &, 35, &,0.734375,0.84375,0.9375).

In fact, V. indicates in which bin each of the firast— OPT(¢) items ofo, should
be packed, and at the end; fills the empty space of thgth bin to capacity to achieve
an optimal packing® for a given sequence (it is optimal since all bins are fullghe).
The restriction that the sequence starts witlistinct items ensures that we do not need
to consider permutations of the binsfhas additional optimal packings. We claim that
P is the unigue optimal packing. Suppose there is anothemappackingP’. Observe
that each bin includes at most one large item, and indeedlgxa® since we assume
it is also optimal. Letz;(1 < i < n — OPT(c0)) be the first item which is packed in
some other bin iP’ than the one prescribed B. Consider the biB thata, is packed
into in P. This bin cannot be fully packed iR’ sincea; is strictly larger than the total
size of all remaining small items, i.e., even if we put all leéin in the empty space of
a;, there is still some empty spacefh As a resultP’ cannot be optimal. Hence there
is unique solution for packing each sequence in th&'set

Note that there ar&/ = OPT(0)"~29"T(?) sequences. We claim that these se-
guences need separate advice strings. Suppose othemddeta,, o, € S (r # ')
be two different sequences with the same advice string. tMatethe firsto — OPT(0)
items in these sequences are the same. Since the onlindtalgperforms determinis-
tically and we assume it receives the same advice for bptmdo,.., the partial pack-
ings of the algorithms after serving the first— OPT(o) items are the same for both
sequences. However, as discussed earlier, this implieth#néinal packing of the algo-
rithm is different from the optimal packing prescribed By: for at least one of the se-
quences. As discussed, such a packing is the unique optalaly and deviating from
that increases the cost of the algorithm by at least one Asit result, the algorithm
performs non-optimally for at least one 6f or o,». We conclude that the sequences
in the setS need separate advice strings. Since thereNare OPT(o)"~2°PT() se-
quences inS, at leastlog(OPT(c)»~29PT(?)) = (n — 20PT(0)) log OPT(c) bits of
advice are required to get that many distinct advice strings a

Next, we consider a more realistic scenario where therewageo(n) distinct items
and the values of these items are known to the algorithm.edhat the advice tape
specifies the number of items of each size. If we are not caedesbout the running
time of the online algorithm, there is enough informatiomhtain an optimal solution.
If we are concerned, we can use known results for solvingfflir@problem [2,14,23].
We formalize this in what follows.

Lemma 1 (|2]). Consider the restriction of the bin packing problem to imstes in
which the number of distinct item sizes is a constant nomtiegintegem. There is a
linear time algorithm that optimally solves this restridtproblem.

If there are more than a constant number of distinct itensssiwe can solve the
problem almost optimally if the item sizes are lower bounbea fixed value.

Lemma 2 ([14.23]). There is a polynomial algorithm for the bin packing problem
which opens at mogtl + ¢) OpT(o) + 1 bin, in whiche is any small but constant
value.

We use the above results to otain the following:

Theorem 2. Consider the online bin packing problem in which there aredistinct
items. Ifm is a constant, there is a (linear time) optimal online algbm that receives
mlogn + o(logn) bits of advice. Ifm is not a constant, there is a (polynomial time)
online algorithm that readsn[log(n + 1)] + o(log n) bits of advice and achieves an
almost optimal packing with at mogt+¢) OpPT(c) 41 bins, for any small but constant
value ofe.

Proof. The offline oracle simply encodes the input sequence, cereicas a multi-set,
in m[log(n+ 1)] bits of advice. In order to do that, it writes the number ofurcences
of each of them distinct items on the tape. The online algorithm uses therilgns
of Lemma[l (for constant values af) or that of LemmaR (for non-constant) to
compute an (almost) optimal packing. Then it packs the iteman online manner
according to such an (almost) optimal packing. The algorithreads frequencies of

items in chunks ofX = [log(n + 1)] bits and consequently needs to know the value
of X. So, we add self-delimited encodings &f at the beginning of the tape using
e(X) bits. The number of advice bits used by the algorithm is th®g(n + 1)| +

O (loglog n), which ism[log(n + 1)] 4+ o(logn) asm € o(n). O

We show that the above upper bound is asymptotically tiglet.stért with the fol-
lowing simple lemma.

Lemma 3. Consider the equation; + 2x5 + ...+ az, = X in which thez;s (¢ < «)
and X are non-negative integers. K is sufficiently large, then this equation has at

Ieast(l + a(i—ﬁl))a " solutions,
Proof. DefineA = }":" , 4. Assign arbitrary values in the ranfe. X /A] to all z;;s for
2 < i < « (for simplicity assumeX /A is an integer). There afe + X /A)>~! different
such assignments. Any of these assignments defines a valiibedfor the equation
since by definition ofd we haved ;" , iz; < X, andwe canassign = X —> "7 , ix;.
ReplacingA with «(a + 1)/2 completes the proof. O

Theorem 3. At least(m — 3) logn — 2mlog m bits of advice are required to achieve
an optimal solution for the online bin packing problem onwseces of length with
m distinct items, each of size at leagt.

Proof. We define a family of sequences of lengttand containingn distinct items
and show that the sequences in this family need separateeestvings to be optimally
served by an online algorithm. To define the family, we fixitem sizes as being
o, k2 mds o 2mel 1) To simplify the argument, we scale up the sizes of
bins and items by a factor &m. So, we assume the item sizes diem + 2,m +
3...,2m — 1,2m}, and the bins have capaciyn. Each sequence in the family starts
with n/2 items of sizel. Consider any packing of these items in which all bins have
level at most equal ten — 2. Such a packing includes bins of level 1 (one item of
size 1 in each)y, bins of level 2 (two items of size 1 in each), etc., such thattls are

non-negative integers and + 2as + ... + (m — 2)a;,—2 = n/2. By Lemma3, there

m—3
are at Ieas(l + m) distinct packings with the desired property. For any

of these packings, we define a sequence in our family. Suchuesee starts with /2
items of sizel and is followed by another/2 items. LetB denote the number of bins
in a given packing of the first/2 items, so thatB < n/2. The sequence associated
with the packing is followed by3 items of size larger tham + 1 which completelyfit
these bins (in non-increasing order of their sizes). Fnale include anothet /2 — B
items of size&2m in the sequence to achieve a sequence of length

We claim that any of the sequences in the family has a uniqtimappacking of
sizen /2. This is because there are exactl§2 large items of size strictly greater than
m (more than half the capacity of the bin), and the othg2 items havesmall size 1
(which fit the empty space of all bins). So each bin is fully kEtwith one large item
of sizex and2m — x items of sizel (see Figuréll).

The unique optimal packing of each sequence is defined byatti@fpacking of the
first n/2 small items. Consider a deterministic online algorithmeceiving the same

10 || 10

L)
N =)

1111} 11|12 1 1

1 1 1 1 1 1 1 1 12‘12“12“12‘

12“12“12‘
The packing of sequendg*® 11 1111 11 10 10 9 8 12(7)

8 8
1 1
1 1
11 1 1
1

11
1

11
1

11
1

11
1

11
1

11
1

11 ‘12“12“12“12“12“12‘

The packing of sequendg *® 11 11 11 11 11 11 11 8 8 12(9)

Fig. 1. The optimal packings for two sequences of the family whes 30 andm = 6 (item
sizes and bin capacities are scaled2by = 12).

advice string for two sequeneg andos. SinceA is deterministic and both sequences
start with the same sub-sequence of small items, the pagiding of the algorithm
after packing the first/2 items is the same for botly andos. As a result, the final
packing ofA is sub-optimal for at least one them. We conclude that angra@mistic
online algorithm should receive distinct advice stringsdach sequence in the family.

m—3
Since there are at Ieaéil + Mm) sequences in the family, at legst —

3) log (1 + (m_l)”m) > (m — 3) logn — 2mlog m bits of advice are required.0

3 An Algorithm with Sublinear Advice

In what follows we introduce an algorithm that receil@sn + o(log n) bits of advice
and achieves a competitive ratio%;ffor any instance of the online bin packing problem.
An offline oracle can compute and write the advice on the tapknear time, and
the online algorithm runs as fast as First-Fit. Thus, thettlgn might be applied in
practical scenarios in which it is allowed to have a “quickbdat the input sequence.
We call itemdiny, small mediumandlargeif their sizes lie in the interval®, 1/3],
(1/3,1/2],(1/2,2/3], and(2/3, 1], respectively. The advice that the algorithm receives
is the number of medium items, which we denotenby
The algorithm reads the advice tape, obtain®pensa bins, calledcritical bins,
and reserveg/3 of the space in each of them. This reserved space will be ogeack
a medium item in each of the critical bins, and these bins laavigual level of size

2/3 at the beginning. All other bins have virtual level zeroen they are opened. The
algorithm serves an itemin the following manner:

— If z is alarge item, open a new bin for it. Set the virtual levekssize.

— If z is a medium item, put it in the reserved space of a criticalBirtUpdate the
virtual level to the actual level B will not have any reserved space now.)

— If z is small or tiny, use the First Fit i strategy to put it into any of the open bins,
based on virtual levels (open a new bin if required). Add ike of the item to the
virtual level.

Note that the critical bins appear first in the ordering meiimeéd by the algorithm
as they are opened before other bins.

Theorem 4. There is an online algorithm which receivieg n + o(log n) bits of advice
and has cosB/2 OpT(o) + 3 for serving any sequeneeof sizen.

Proof. We prove that the algorithm described above has the desiopegy. The value
of a is encoded inX = [log(n + 1)] bits of advice. In order to read this properly
from the tape, the algorithm needs to know the valu& ofhis can be done by adding
the self-delimited encoding of in e(X) = [log X] + 2[loglog(X)] + 2 bits at the
beginning of the tape. Consequently the number of adviseusitd by the algorithm is
X + O (log X), which islogn + o(logn) as stated by the theorem.

Consider the final packing of the algorithm for serving a ssgpes. There are two
cases. In the first case, there is a critical Birso that no other item, except a medium
item, is packed in it. Since all tiny items are smaller thaf3 and can fit inB, all
the non-critical bins that are opened affgiinclude small and large items only. More
precisely, they include either a single large item or two lsiteans (except the last one
which might have a single small item). Lét M, and.S denote the number of large,
medium, and small items. The cost of the algorithm is at mast\/ +.5/2+ 1. Now, if
S < M, this would be atmost +3/2M + 1. SinceL + M is a lower bound on the cost
of OPT, the cost of the algorithm is at md&t2 OpT(c) +1 and we are done. § > M,
OPT should operl + M bins for large and medium items, and in the best case, it packs
M small items together with medium ones. For the othier M bins, CPT has to open
at least(S — M)/2 bins. Hence the cost of € is at leastL. + M + (S — M)/2 =
L+ M/2+ S/2,and we hav8/2 OPT(0) > 3L/2+3M/4+3S/4> L+ M + S/2.
Thus, the cost of the algorithm is at m@g OPT(c) + 1.

In the second case, we assume that all critical bins incladéhar item in addition
to the medium item. We claim that at the end of serving a sezpiafi bins, except
possibly two, have level at lea8y/3. First, we verify this for non-critical bins (bins
without medium items). If a non-critical bin is opened by ggkaitem, it clearly has
level higher thar2/3. All other non-critical bins only include items of size at std/2.
Hence, these bins, except possibly the last one, includmaat two items. Among the
non-critical bins that include two items, consider two bbpsindb; (i < j) that have
levels smaller thai/3. Sinceb; contains at least two items, at least one of them has
size smaller thari /3. This item could fit inb; by the Fr property. We conclude that
all non-critical bins, except possibly two, have level ade2/3. Now, suppose two
critical binsb; andb; have levels smaller thay3. Consider the first non-medium item

x which is packed ib; (in the second case, such an item exists). Since a medium item
is packed in the biny should be either tiny or small. if is small, then the level di; is

at leastl /2 + 1/3, which contradicts the level df; being smaller thag/3. Similarly,

x cannot be a tiny item of size larger thay6 (sincel/2 + 1/6 > 2/3). Hencex is a

tiny item of size at most /6. This implies that at the time the online algorithm pagks

bin b; has a virtual level of at least/6. The virtual level is at most/6 larger than the
actual level (the final level). Hence, the actual levebpfs at least /6 — 1/6 = 2/3.

We conclude that at most one critical bin has level smallan#y3. To summarize, at
most three bins have level smaller thf8. Hence, the cost of the algorithm is at most
3/20pPT(0) + 3. 0

4 An Algorithm with Linear Advice

In this section, we present an algorithm that rece®est+ o(n) bits of advice and
achieves a competitive ratio ¢f 3 + ¢ for any sequence of size and arbitrarily small
(but constant) values af. Consider an algorithm that receivesapproximate sizéor
each sufficiently large item encoded using bits. The approximate size af would
be larger than itectual sizeby at most an additive term df/2*. The algorithm can
optimally pack items by their approximate sizes and achavapproximate packing
which includes a reserved space of size ¢ (¢ < 1/2%) for each item. Precisely, for
each sulfficiently large item, the approximate packing includes a reserved space of size
x + ¢ (e < 1/2%) for z. This enables the algorithm to plageén the reserved space for
it in the approximate packing. Smaller items are treateféihtly and the algorithm
does not reserve any space for them. In the reminder of thi®osewe elaborate this
idea to achieve a 4/3-competitive algorithm.

Notice that the cost of an approximate packing can be as h&réaimes the cost
of OPT. To see that, consider a sequence which is a permutat@'lﬂfal, % —e1, % +
€2,5—€2,..., 5+€n/2, 3—En/a), Wheres; < 1/27(1 < i < n/2). Since QT packs all
bins tightly, an increase in the sizes of items by a constama(l)< results in opening a
new bin for each two bins ©ruses. Hence the cost of the optimal approximate packing
can be as bad a}OPT. This example suggests that using approximate packingstis n
good for the bins in which a small number of large items aretljgpacked. To address
this issue we divide the bins off into two groups:

Definition 2. Consider an optimal packing of a sequenrceGiven a small parameter
g’ < 1/60, definegood binsto be those where the total size of the items smaller than
1/4 in the bin is at leasbe’. Define all other bins to bbad bins

A part of the advice received for each itenindicates ifx is packed by ®Tin a good
bin or in a bad bin. This enables us to treat items packed sethgo groups separately.

Lemma 4. Consider sequences for which all bins in the optimal packirg good
(as defined above). There is an online algorithm that recaiye) bits of advice and
achieves a competitive ratio df 3.

Proof. Call an itemsmallif it is smaller than or equal td/6 andlarge otherwise. The
advice bits define the approximate sizes of all large itenib wiprecision ot’. The

10

amount of advice will be roughlg'/¢ log n which is o(n) for constant values of'.
The online algorithmA can build the optimal approximate packing of large items. In
such a packing, there is a reserved space of size atanpst for any large item of size
x. The algorithm considers this packing as a partial packimjiaitializes the level of
each hin to be the total sizes of approximated items in thatHor packing an itenz,

if = is large,A packs it in the space reserved for it in the approximate pacht also
updates the level of the bin to reflect the actual size.df = is small,A simply applies
the First-Fit strategy to packin a bin of the partial packing (and opens a new bin for it
if necessary). We prove thatis 4/3-competitive. In the final packing b, call a bin
“red” if all items packed in it are small items and call it “lgtiotherwise (the blue bins
constitute the approximated packing at the beginning)r@ hee two cases to consider.

In the first case, there is no red bin in the final packing\.pf.e., all small items fit
in the remaining space of the bins in the approximate packinarge items. Let’ be
a copy of the input sequence in which the sizes of large itelmspproximated, i.e.,
increased by at most; also letX be the number of bins for the optimal packingodf
Since there is no red bin in the final packing&fthe cost ofA is equal toX . Consider
the optimal packing of the actual input sequencesince all bins are good, one can
transfer a subset of items to provide an available spaceefatileaste’ in each bin.
After such a transfer, we can increase the sizes of largesiterieir approximate sizes.
Since there are at most 5 large items in each bin and als@bil@agpace of size at least
5¢’, the packing constructed this way is a valid packing for thguences’. Since the
size of the transferred items for each bin is at mgdf the transferred items from each
group of four bins can fit in one new bin. Consequently the nema bins in the new
packing is at mosb/4 OPT(c). We know that the final packing b is the optimal
packing foro’ (with costX), and in particular not worse than the packing constructed
above. Hence, the cost éfis not more thar /4 OPT(o).

In the second case, there is at least one red bin in the finkingaof A. We claim
that all bins in the final packing @, except possibly the last, have levels larger thah
The claim obviously holds for the red bins since the levelalbthese bins (excluding
the last one) are larger th@y 6. Moreover, since there is a bin which is opened by a
small item, all blue bins have levels larger thaf6, i.e., the total size of packed items
and reserved space for the large items is larger fhd@n Since there are at most 5
large items in each bin, the actual level of each bin in thd fiaaking ofA is at least
5/6 — 5¢’, which is not smaller thaf/4 for ¢’ < 1/60. So, all bins, except possibly
one, have levels larger th&i4. Consequently, the algorithm4g'3-competitive. O

It remains to address how to deal with bad bins. The next flereenas do this.

Lemma 5. Consider sequences for which all bins in the optimal packiredude pre-
cisely two items. There is an algorithm that receivelsit of advice per request and
achieves an optimal packing.

Proof. The single bit of advice for an item determines whether or not tipeartner of

x appeared as a previous request, where the partneisdhe i tem which is packed in
the same bin as in OPT's packing. Consider an algori thithat works as follows: If
the partner ofr has not been requested yét ppens a new bin far. Otherwise, it uses

11

the BF strategy to packi n one of the open bins.We claim thatachieves an optimal
packing.

Assume that initially we have a mapping that maps the last ttego into a bin to
the item it goes on top of in the optimal packing, i.e., it mépssecond item of each
bin to the first item. We update this mapping when necessatyraintain the invariant
that we can always pack optimally according to the mapping serving a request ,
if BF does not pack according to this mapping, it packm top ofy’, while, according
to the mapping, it was supposed to packn top ofy, and a later’ is supposed to go
on top ofy’. Due to the BF strategy, geqy, SO we can update the mapping to map the
currently unprocessed to y, and, of coursey to y/'. O

Lemma 6. Consider a sequencefor which all items have sizes larger thari4 and
for which each bin inOpT's packing includes precisely three items. The cost of the
Harmonic algorithm is at most/3 OpT(o) + 3 for serving such a sequence.

Proof. The proofis based on a simple weighting function. Call amitdargeif 1/3 <

x < 1/2 andsmallotherwise (/4 < = < 1/3). Define the weight of: to be1/2 if

x is large andl/3 if it is small. Consider a birB in the packing ofr by OPT. Since
there are three items iB, its weight is maximized when there are two large items and
one small item in it (three large item do not fit in the same bignce, the weight of
each bin in the ®T packing is at mos? x 1/2 + 1/3 = 4/3. Consequently, we have
OpT(c) > 3/4W, wherelV is the total weights of all items.

The Harmonic algorithm (l) simply packs small and large items in separate col-
lections of bins. So, each of the algorithm’s bins, excepsgay two bins, contains
either three small items or two large items. In both caseswbight of each bin is at
leastl and we have H(c) < W+ 2. As a conclusion (o) < 4/3 OPT(c) + 2 which
completes the proof. a

Lemma 7. Consider a sequence for which all bins in the optimal packing are bad
bins (as defined earlier). There is an algorithm that receitveo bits of advice for each

request, and opens at magy/3 + 25;) OPT(c) + 3 bins.

Proof. By the definition of bad bins, for any bin in the optimal pacakimll items are
either smaller thai’ or larger tharl /4. We call the former group of itentiny items
and pack them separately using thesfrategy. We refer to other itemsmagrmal items
Consider an offline packing which is the same as @’s packing, except that all
tiny items are removed from their bins and packed separateigw bins using the
strategy. This implies that the costBfis larger than ®T(c) by a multiplicative factor

of at mostl + % Let Q be the optimal packing for normal items. Since all normal
items are larger thah/4, each bin of) contains at most three items. We say a bigof
has type (i € {1,2,3}), if it containsi normal items. Similarly, we say an itemhas
type: if it is packed in a type bin. All items in type 3 bins have sizes smaller thai2
(otherwise one will have size at mast4 which contradicts the assumption). Moreover,
the sizes of the items in all typebins (except possibly the last one) are larger théh
(otherwise a better packing is achieved by pairing two afith&Vith two bits of advice,
we can detect the type of an item as follows: Latenote the two bits of advice with
itemz. If bis “01” andx > 1/2, thenx has typel; if bis “01" andz < 1/2, thenx

12

has type3; and if b is “10” or b is “11”, thenx has type2. Note that the code00” is
not used at this point (this is used later on), and the usé@fand “11” is still to be
detailed.

Let X; denote the number of bins of typg1 < ¢ < 3). Hence, the cost of) is
X1 + X> + X3, and consequently the costBfis at leastX; + X, + X3 + X'/, where
X' is the number of bins filled by tiny items. Consider an aldontA that performs
as follows. If an itemz has typel, A simply opens a new bin fat. If = has type2,
A applies the strategy of Lemrha 5 to place it in one of the binmtamed for items
of type 2. Recall that the advice in this case is eith&6™or “11”, so the second bit
provides the advice required by Lemina 5xlthas type3, A applies the Harmonic
strategy to pack the item in a set of bins maintained for 8/jiems. By Lemm&lg, the
cost of A for these items is at mod/3X3 + 3. Finally, A uses the F strategy to pack
tiny items in separate bins. Consequently, the cost of terdhm is at mosX; + Xo +

4/3X3+X'+3 < (1+125) OPT(0) + X3/3+3 < (4/3+ 125) OPT(0) +3. O

Provided with the above results, we arrive at the followieguit:

Theorem 5. There is an online algorithm which receives two bits of adyier request,
plus an additive lower order term, and achieves a competititio of4/3 + ¢, for any
positive value of.

Proof. Defines’ to be ££. Fore < 1/11, we haves’ < 1/60. Moreover, we have
2 < 17515/'12 = 9% — ¢ In an optimal packing, divide bins into good and bad bins
using Definitio 2. Also, letGd and Bd respectively denote the number of good and
bad bins. Use advice bits to distinguish items which are pddék good and bad bins,
and pack them in separate lists of bins. More preciselyhletwo bits of advice for an
item z be “00” if it is packed by CPT in a good bin, and apply Lemrh& 4 to pack these
items in at most/3Gd bins. Similarly, apply Lemm@l 7 to pack items from bad bins in
at most(4/3 + lf—%;,)Bd—i— 3 < (4/3+¢)Bd+ 3 bins, using bits of advice of the form
“017, “10", or “11”, as discussed in the proof of Lemmh 7. Consequently, theafos
the algorithm will be at most/3Gd + (4/3+¢)Bd+3 < (4/3+¢) OPT(o) +3. O

5 A Lower Bound for Linear Advice

TheGMP problen{13] and theString Guessing Problef] both contain a core special
case of guessing a binary sequence. We use their resul@tdisat an online algorithm
needs a linear number of bits of advice to achieve a competititio better thad/8
for bin packing.

Definition 3 ([1316]). The Binary String Guessing Problem with known histo3+ (
SGKH) is the following online problem. The inpdt = (n,0 = (x1,22,...,%,))
consists ofr items that are either 0” or “ 1” and that are revealed one by one. For
each itemz;, the online algorithmA must guess if itis a0” or a “ 1”. After the algo-
rithm has made a guess, the valuerpis revealed to the algorithm.

Lemma 8 ([6]).On any input of length, any deterministic algorithm faz-SGKH that
is guaranteed to guess correctly on more thanbits, for1/2 < «a < 1, needs to read
atleast(1 + (1 — a)log(1l — a) + alog a)n bits of advice.

13

Since the number of bits needed to express the number of fOtkd input is at
most[log(n +1)] < logn + 1, and this number can be given as advice by an oracle, if
it is not given to the algorithm otherwise, we easily obt&ia following lemma. Recall
that the definition o, the length of the encoding function, is given in Seclion 1.1

Lemma 9. Consider instances of sizeof the2-SGKH problem in which the number of
“0”s is given to the algorithm as part of the input. For thesestances, any deterministic

algorithm that is guaranteed to guess correctly on more tharbits, for1/2 < o < 1,

needs to read at lea$l + (1 —) log(1 — a) + aloga)n — e(n) bits of advice.

Proof. Assume to the contrary that the statement is not true. Hehees is an algo-
rithm, BSGA, that knows the number of “0”s and receives fewer tfian(1—«) log(1—

a) + aloga)n — e(n) bits of advice while guessing correctly on more than bits.
This algorithm can be used to serve arbitrary instances @248GKH problem (in
which the number of “0”s is not known). Modify the advice taped by the algorithm
BsGa so that it contains at mos{n) additional bits at the beginning specifying the
number of “0”s. (This can be done with the self-delimited @tiog of the number of
“0"s.) The algorithm for2-SGKH reads this number and gives it te®A. Then it asks
BsGA for its guess for each bit in the sequence and answers theaaBssA. It also
informs BsGa of when it is correct and when it is wrong, with the same infation it

is given. The algorithm is correct exactly whers®a is correct. The total number of
advice bits will be less thaa(n) + (1 + (1 — a)log(l — a) + aloga)n — e(n) =
(1+(1—a)log(l —a)+ aloga)n. However, LemmBl8 implies that no algorithm can
guess correctly on more tham bits with this many bits of advice. In conclusion, the
initial assumption is incorrect and the statement holds. a

In order to relate the Binary String Guessing Problem to théne bin packing
problem, we introduce another problem called the Binarya&stpn Problem.

Definition 4. TheBinary Separation Probleim the following online problem. The in-
putl = (n1,0 = (y1,¥2,--.,Yyn)) CONsists ol = n; + ny positive values which are
revealed one by one. There is a fixed partitioning of the sinfs into a subset of;
largeitems and a subset of; smallitems, so that all large items are larger than all
small items. Upon receiving an itegy, an online algorithm for the problem must guess
if 4y belongs to the set of small or large items. After the algonittas made a guess, itis
revealed to the algorithm whethgy actually belongs to class of small or large items.

We provide reductions from the modified Binary String GuegdProblem to the
Binary Separation Problem, and from the Binary Separatioblem to the online bin
packing problem. In order to reduce a problétnto another problen,, given an
instance ofP; defined by a sequeneg and a set of parametens (such as the length
of o1 or the number of “0”s in it), we create an instancersfwhich is defined by a
sequence and also a set of parametegs In our reductions, we assume s derived
from 7, and sincer; is revealed in an online mannet, is created in an online manner
by looking only at; and the revealed items of.

14

Algorithm 1 Implementing Binary String Guessing via Binary Separation
The Binary Guessing algorithm knows the number of “Qis)(and passes it as a parameter
(the number of large items) to the Binary Separation algorit
1: small=0; large =1
2: repeat

3: mid=(large— small)/ 2

4: classguess = SeparationAlgorithm.Classify This(mid)
5 if classguess = “largethen

6: bit guess =0

7. else

8 bitguess =1

9: actualbit = Guess(bitguess) The actual value is received after guessizgGKH).}
10: if actualbit = Othen

11: large = mid{We let “large” be the correct decisidgn.
12: else
13: small = mid{We let “small” be the correct decisidn.

14: until end of sequence

Lemma 10. Assume that there is an online algorithm that solves theBiSaparation
Problem on sequences of lengthwith b(n) bits of advice, and makes at me$t) mis-
takes. Then there is also an algorithm that solves the Biriyng Guessing Problem
on sequences of length assuming the number of “0”s is given as a part of input, so
that the algorithm receivelgn) bits of advice and makes at most) errors.

Proof. We assume that we have an algorithrasBthat solves the Binary Separation
Problem under the conditions of the lemma statement. Usiaigalgorithm, we define
the numbem; of large items to be the number of “0”s in the instance of theaBy
String Guessing Problem. Then, we implement our algorithee B for the Binary
String Guessing Problem as outlined in Algorithim 1, whicfirtks the reduction. This
BsGAimplementation, defined in Algorithid 1, functions as an agagy for Bsa, e.g.,
in Line 4, BsGA gives BsA its next request. Notice that we ensure that tisesB makes
a correct guess if and only if 8\ makes a correct guess. The advice tape is filled with
bits of advice for this combined algorithm. ThesBA uses the BA as a sub-routine,
but all the questions are effectively coming from theAB

The set-up, reminiscent of binary search, is carried oupasiied in the algorithm
with the purpose of ensuring that when theAis informed of the actual class of the
item it considered, no result can contradict informatioeadly obtained. Specifically,
the next item for the BA to consider is always in between the largest item which
has previously been deemed “small” and the smallest itenctwhias previously been
deemed “large”. The fact that we give the middle item front theerval is unimportant;
any value chosen from the open interval would work. a

Now, we prove that if we can solve a special case of the binipggkroblem, we
can also solve the Binary Separation Problem.

Lemma 11. Consider the bin packing problem on sequences of lepgtfor which
OPT opensn bins. Assume that there is an online algoritAnthat solves the problem

15

on these instances witi{n) bits of advice and opens at mast r(n)/4 bins. Then
there is also an algorithrBsA that solves the Binary Separation Problem on sequences
of lengthn with b(n) bits of advice and makes at mash.) errors.

Proof. In the reduction, we encode requests for thenRs items for bin packing. As-
sume we are given an instante= (n1,0 = (y1,y2, - . ., yn)) Of the Binary Separation
problem, in whichn; is the number of large items:.{ + no = n), and the values of
y:S are revealed in an online manriér< ¢ < n). We create an instance of the bin
packing problem which has leng#. Algorithm[2 shows the details of the reduction.
The bin packing sequence starts with items of size% + emin (in Algorithm[2, the
variable “NumberOfLargeltems” is; from the Binary Separation Problem). Any algo-
rithm needs to open a bin for each of thegeitems. We create the nextitems in an
online manner, so that we can use the result of their packiggéss the requests for the
Binary Separation Problem. Let= y; (1 <t < n) be a requested item of the Binary
Separation Problem; we ask the bin packing algorithm to @ackem whose size is
an increasing function of, and slightly less thaé. Depending on the decision of the
bin packing algorithm for opening a new bin or placing thente one of the existing
bins, we decide the type af as being consecutively small or large. The lagttems

of the bin packing instance are defined as complements ofahwsiin the bin packing
instance associated with small items in the binary separatstance (the complement
ofitemz is 1 —). We do not need to give the last items complementing thel $taals

in order to implement the algorithm, but we need them for treopof the quality of
the correspondence that we are proving.

Call an item in the bin packing sequence “large” if it is asated with large items
in the Binary Separation Problem, and “small” otherwise.the bin packing sequence
produced by the reduction, an optimal algorithm pairs ed¢hedlarge items with one
of the firstn; items (those with sizé + emin), Placing them in the first, bins. OPT
pairs the small items with their complements, starting ditb@nextn, bins with each
of these small items. Hence, the cost of an optimal algorithmy, + ny, = n. The
valuese,,in ande,,q. in Algorithm[2 must be small enough so that no more than two
of any of the items given in the algorithm can fit together inra blo other restriction
is necessary.

We claim that each extra bin used by the bin packing algoritum not by CrT,
results in at most four mistakes made by the derived alguorih the given instance of
the Binary Separation Problem. Consider an extra bin in tied fiacking ofA. This
bin is opened by a large item which is incorrectly guessede@zgbsmall (bins which
are opened by small items also appear #m® packing). Note that large items do not
fit in the same bins as complements of small items. The extrads enough space for
another large item. Moreover, there are at most two smalistevhich are incorrectly
guessed as being large and placed in the space dedicatedlémgh items of the extra
bin. Hence, there is an overhead of at least one for four k@stalo summarizei\
has to decide if a given item is small or large and performsmtagly, and it pays a
cost of at least /4 for each incorrect decision. & opens at most + r(n)/4 bins,
the algorithm derived fromA for the Binary Separation Problem makes at mdsi)
mistakes. a

16

Algorithm 2 Implementing Binary Separation via Special Case Bin Pagkin

1: ChooS€ min aNdemaz SO thatd < emin < Emaz < §

2: Choose a decreasing functign R — (€min-.€max)

3: for i = 1 to NumberOfLargeltemdo

4: BinPacking.Trea{ + emin) {The decision can only be to open a Bin.
5: repeat

6: Letr be the next request

7

8

9

decision = BinPacking.Treaf(— f(7))
if decision = “packed with aé + €min item” then
classguess = “large”
0: else
1 classguess = “small”
actualclass = Guess(clagguess)
12: if actualclass = “small’then
13: Smallitems.appeng(— f (7)) {Collecting small items for late}.
14: until end of request sequence
15: for i = 1 to len(Smallltemsyio
16: BinPacking.Treat(+ Smallltems[i]){The decision is not useg.

Theorem 6. Consider the online bin packing problem on sequences ottengTo
achieve a competitive ratio @f(1 < ¢ < 9/8), an online algorithm needs to receive at
least(n(1+(4c—4)log(4dc—4)+(5—4c) log(5—4c)) — ([log(n+1)]+2[log([log(n+
1)1+ 1)1 + 1))/2 bits of advice.

Proof. Consider a bin packing algorithfathat receives(n) bits of advice and achieves
a competitive ratio ot. This algorithm opens at mo&t — 1) OPT(o) bins more than
OPT, so when @T(0) = n/2, it opens at mosfc — 1)n/2 more bins. By Lemma11,
the existence of such an algorithm implies that there is gardthm A that solves the
Binary Separation Problem on sequences of lengthwith b bits of advice and makes
at most2(c — 1)n errors. By Lemm&d70, this implies that there is an algoritbat
solves the Binary String Guessing Problem on sequencesgthe./2 with b bits

of advice and makes at mo3tc — 1)n mistakes, i.e., it correctly guesses the other
n/2 —2(c—1)n = (5 —4c)n/2 items. Letae = 5 — 4¢, and note that is in the range
[1/2,1) whencisin the rang€1,9/8]. Lemmd® implies that in order to correctly guess
more thamn /2 of the items in the binary sequence, we must hidve larger than or
equal to((1 4+ (1 — a)log(l — a) + aloga)n — e(n))/2. Replacinga with 5 — 4¢
completes the proof. a

Thus, to obtain a competitive ratio strictly better tt8e(8, a linear number of bits of
advice is required. For example, to achieve a competititie ¢ 17/16, at least).188n
bits of advice are required asymptotically.

Corollary 1. Consider the bin packing problem for packing sequenceswitlte:. To
achieve a competitive ratio 8f/8 — ¢, in which§ is a small, but fixed positive number,
an online algorithm needs to recei¥n) bits of advice.

17

6

Concluding Remarks

We conjecture that a sublinear number of bits of advice isighdo achieve competi-
tive ratios smaller than /3. Note that our results imply that we cannot hope for ratios
smaller thard/8 with sublinear advice.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.
17.

E. Asgeirsson, U. Ayesta, E. Coffman, J. Etra, P. Momdlo. Phillips, V. Vokhshoori,
Z.Wang, and J. Wolfe. Closed on-line bin packidgta Cybernef.15(3):361-367, 2002.

J. Baewicz and K. Ecker. A linear time algorithm for redt&d bin packing and scheduling
problems.Oper. Res. Lett2(2):80-83, 1983.

Janos Balogh, Jozsef Békési, and Gabor Galambaos.ldveer bounds for certain classes of
bin packing algorithmsTheoret. Comput. S¢i440-441:1-13, 2012.

. Maria Paola Bianchi, Hans-Joachim Bdckenhauer, Jurajnidovic, and Lucia Keller. On-

line coloring of bipartite graphs with and without advica. GOCOON '12 volume 7434 of
LNCS pages 519-530, 2012.

. Maria Paola Bianchi, Hans-Joachim Bockenhauer, Jurairidovic, Sacha Krug, and Bjorn

Steffen. On the advice complexity of the onlidg2, 1)-coloring problem on paths and
cycles. INCOCOON 13 volume 7936 oL NCS pages 53-64, 2013.

. Hans-Joachim Bockenhauer, Juraj Hromkovic, Dennis idpi®Bacha Krug, Jasmin Smula,

and Andreas Sprock. The string guessing problem as a meathmdie lower bounds on the
advice complexity. ICOCOON '13 volume 7936 oL NCS pages 493-505, 2013.

. Hans-Joachim Bdckenhauer, Dennis Komm, Rastislalokig and Richard Kralovi¢. On

advice complexity of thé:-server problem. IHCALP '1s1 volume 6755 ofLNCS pages
207-218, 2011.

. Hans-Joachim Bockenhauer, Dennis Komm, Rastislaloki@ Richard Kralovi¢, and To-

bias Mdmke. On the advice complexity of online problemsISAAC '09 volume 5878 of
LNCS pages 331-340, 2009.

. Hans-Joachim Bockenhauer, Dennis Komm, Richard Ki@l@and Peter Rossmanith. On

the advice complexity of the knapsack problemLITIN '12, volume 7256 ofNCS pages
61-72, 2012.

Edward G. Coffman, Michael R. Garey, and David S. Johnggproximation algorithms
for bin packing: A survey. In D. Hochbaum, editépproximation algorithms for NP-hard
Problems PWS Publishing Co., 1997.

Stefan Dobrev, Rastislav Kralovic, and Euripides Mark Online graph exploration with
advice. InNSIROCCO '12volume 7355 oL NCS pages 267-278, 2012.

Stefan Dobrev, Rastislav Kralovi¢, and Dana PardabdWeasuring the problem-relevant
information in input.RAIRO Inform. Theor. Appl43(3):585-613, 2009.

Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Onlomputation with adviceTheoret.
Comput. Scj.412(24):2642 — 2656, 2011.

W. Fernandez de la Vega and G. Lueker. Bin packing can lbedswithin 1 +¢ in linear
time. Combinatorica 1:349-355, 1981.

Michal Forisek, Lucia Keller, and Monika Steinova. vick complexity of online coloring
for paths. InLATA 12 volume 7183 of. NCS pages 228-239, 2012.

Edward F. Grove. Online binpacking with lookaheadS®DA '95 pages 430-436, 1995.
Juraj Hromkovi€, Rastislav Kralovi€, and Richardalavi€. Information complexity of on-
line problems. INMFCS '1Q volume 6281 of NCS pages 24-36, 2010.

18

18.

19.

20.

21.

22.
23.

D. Komm and R. Kralovi¢. Advice complexity and baredyndom algorithmsRAIRO Inform.
Theor. Appl. 45(2):249-267, 2011.

Dennis Komm, Richard Kralovic, and Tobias Mdmke. Oa #vice complexity of the set
cover problem. IrCSR ’12 volume 7353 oL NCS pages 241-252, 2012.

Marc P. Renault and Adi Rosén. On online algorithms wadthice for thek-server problem.
In WAOA '11] volume 7164 oL NCS pages 198-210, 2011.

Sebastian Seibert, Andreas Sprock, and Walter UngewnicAdomplexity of the online
coloring problem. INCIAC '13, volume 7878 of. NCS pages 345-357, 2013.

Steven S. Seiden. On the online bin packing probl&mMACM 49:640-671, 2002.

Vijay V. Vazirani. Approximation AlgorithmsSpringer, 2004.

19

	Online Bin Packing with Advice

