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On group feedback vertex set parameterized by the size ctitiset

Marek Cygant Marcin Pilipczuk Michat Pilipczuk*

Abstract

We study the parameterized complexity of a robust genetédiz of the classical EEDBACK VER-
TEX SET problem, namely the @ouPFEEDBACK VERTEX SET problem; we are given a graghwith
edges labeled with group elements, and the goal is to contpetemallest set of vertices that hits all
cycles ofG that evaluate to a non-null element of the group. This proldeneralizes not only&#ED-
BACK VERTEX SET, but also $¥BSET FEEDBACK VERTEX SET, MULTIWAY CUT and D CYCLE
TRANSVERSAL Completing the results of Guillemot [Discr. Opt. 2011], previde a fixed-parameter
algorithm for the parameterization by the size of the cutsdy. Our algorithm works even if the group
is given as a polynomial-time oracle.

1 Introduction

The parameterized complexity is an approach for tacklinghidRl problems by designing algorithms that
perform well, when the instance is in some sense simplejfftsudty is measured by an integer, called the
parameter additionally appended to the input. Formally, we say thatodlem isfixed-parameter tractable
(FPT), if it admits an algorithm that given input of lengthand parametek, resolves the task in time
f(k)nc, wheref is some computable function ands a constant independent of the parameter.

The search for fixed-parameter algorithms led to the dewedop of a number of new techniques and
gave valuable insight into structures of many classes ohbifd-problems. Among them, there is a family
of so-calledgraph cutproblems, where the goal is to delete as few as possible edgestices (depending
on the variant) in order to make a graph satisfy a global sgjoar requirement. This class is perhaps best
represented by the classica#DBACK VERTEX SET problem (FVS) where, given an undirected graph
we seek for a minimum set of vertices that hits all cycleg7of Another examples are ML.TIwAY CUT
(MWC: separate each pair from a given set of terminals in plgreith a minimum cutset) or @ CyCLE
TRANSVERSAL (OCT: make a graph bipartite by a minimum number of vertertitahs).

The research on the aforementioned problems had a greattimpshe development of parameterized
complexity. The long line of research concerning paranmtdralgorithms for FVS containslI[1} 2, [3, 4,
10,[11/[12[ 14, 16, 20], leading to an algorithm working3fm©() time [7]. The search for a polynomial
kernel for FVS lead to surprising applications of deep coraturial results such as the Gallai's theorem
[23], which has also been found useful in designing FPT #lgos [9]. While investigating the graph cut
problems such as MWC, Mark [118] introduced thgportant separatotechnique, which turned out to be
very robust, and is now the key ingredient in parameteritgorithms for various problems such as variants
of FVS [5,[9] or ALMOST 2-SAT [21]. Moreover, the recent developments on MWC shopliegbility
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of linear programming in parameterized complexity, legdio the fastest currently known algorithms not
only for MWC, but also AmosT 2-SAT and OCTI[8| 19]. Last but not least, the research on togd O
problem resulted in the introduction of iterative compiassa simple yet powerful technique for designing
parameterized algorithmis [22].

Considered problem. In this paper we study a robust generalization of the FVSlpmpnamely Goupr
FEEDBACK VERTEX SETY. Let X be a finite (not necessarily abelian) group, with unit eleimen We use
the multiplicative convention for denoting the group opiera

Definition 1. For a finite group, a directed graplix = (V, A) and a labeling function\ : A — 33, we call
(G, A) aX-labeledgraph iff for each ar¢u, v) € A we have(v,u) € A andA((u,v)) = A((v,u))~L.

We somehow abuse the notation and(by\ X, A) denote the-labeled grapiG, A) with vertices of
X removed, even though formally has in its domain arcs that do not existGn\ X.

For a pathP = (vy,...,v,) we denoteA(P) = A((vi,v2)) - ...  A((ve—1,ve)). Similarly, for a cycle
C = (vi,...,vg,v1) we denoteA (C) = A((v1,v2)) - ... - A((ve—1,v¢)) - A((vg,v1)). We call a cycleC' a
non-nullcycle, iff A(C') # 1x. Observe that if the group is non-abelian, then it may happen that cyclic
shifts of the same cycle yield different elements of the grawevertheless, the notion of a non-null cycle is
well-defined, as either all of them are equalltpor none of them.

Lemma 2. Let(z1,...,z, 21) be acycle in a&-labeled graph(G, A). If A((z1,...,xp,21)) # 15, then
A((za, ..., zp,m1,22)) # 1x.

Proof. Let g1 = A((:L'l,ZL'g)) andgg = A((:L'g, o ,ﬂj‘g,ﬂj‘l)). We have thayl cgo =1y iff g2-g1 = 1y and
the lemma follows. O

In the GROUPFEEDBACK VERTEX SET problem we want to hit all non-null cycles int&labeled graph
using at most: vertices.

GROUPFEEDBACK VERTEX SET (GFVS) Parameter: k&
Input: A X-labeled grapiG, A) and an integek.

Question: Does there exist a séf C V(G) of at mostk vertices, such that there is no non-null cycle|i
(G\ X,N)?

5

As observed in [13], for a graph excluding a non-null cyclecaa define a consistent labeling.

Definition 3. For aX-labeled graph(G,A) we callA : V — ¥ a consistent labelingff for each arc
(u,v) = a € A(G) we have\(v) = A(u) - A(a).

Lemma 4 ([13]). AX-labeled graph G, A) has a consistent labeling iff it does not contain a non-nwdie.

Note that when analyzing the complexity of the GFVS problénms important how the group is
represented. Ir[13] it is assumed thais given via its multiplication table as a part of the input. this
paper we assume a more general model, where operatiodnsie computed by an oracle in polynomial
time. More precisely, we assume that the oracle can multipdyelements, return an inverse of an element,
provide the neutral elemeny;, or check whether two elements are equal.

As noted in[[17], GFVS subsumes not only the classical FV®lpm, but also OCT (withE = Z,)
and MWC (with > being an arbitrary group of size not smaller than the numibéerminals). We note

1In this paper, we follow the notation of Guillem6t[13].



that if X is given in the oracle model, @UP FEEDBACK VERTEX SET subsumes also GE SUBSET
FEEDBACK VERTEX SET, which is equivalent to 88SET FEEDBACK VERTEX SET [9].

EDGE SUBSET FEEDBACK VERTEX SET (ESFVS) Parameter: k
Input: An undirected grapld, a setS C E(G) and an integek:.

Question: Does there exist a sé&f C V(G) of at mostk vertices, such that i/ \ X there are no cycle
with at least one edge froii?

1°2)

Lemma 5. Given anESFVSinstance(G, S, k), one can in polynomial time construct an equival&iVs
instance(G’, A, k) with groupX: = Z‘f'.

Proof. To construct the new GFVS instance, create the graphy replacing each edge 6f with arcs in
both direction, keep the parametertake’: = Z‘f' and construct &-labeling A by setting any.S| linearly
independent values of((u,v)) for uv € S andA((u,v)) = 1y for uv ¢ S. Clearly, this construction
can be done in polynomial time and the operations on the g¥boan be performed by a polynomial-time
oracle. O

We note that the 8oupP FEEDBACK VERTEX SET problem was also studied from the graph theoretical
point of view, as, in addition to the aforementioned redutdj it also subsumes the setting of Madér's
paths theoren [6, 15]. In particular, Kawarabayashi andaigdroved the Erdds-Pbsa property for non-null
cycles in highly connected graphs, generalizing a list ef/jmus results [15].

The study of parameterized complexity of GFVS was initiabgdGuillemot [13], who presented a
fixed-parameter algorithm for GFVS parameterized By & running in tim@ O* (2018 =)  When
parameterized by, Guillemot showed a fixed-parameter algorithm for the essige-deletion variant of
GFVS, running in timeO*(20(*1°2%)) = Veery recently, Kratsch and Wahlstrom presented a rangeani
kernelization algorithm that reduces the size of a GFV Samst toO(k2‘E|) [17].

The main purpose of studying the GFVS problem is to find thernompoints in the fixed-parameter
algorithms for problems it generalizes. Precisely thisrapph has been presented by Guillemot in [13],
where at the base of the algorithm lies a subroutine thaesawery general version of WMTIwAay CUT.
When reducing various graph cut problems to GFVS, usuadlystke of the group depends on the number
of distinguished vertices in the instance, as in Lerfliina 5.cdethe usage of the gener@t (2010 [>D)
algorithm of Guillemot unfortunately incorporates thisgraeter in the running time. It appears that by
a more refined combinatorial analysis, usually one can dedfrthis dependence; this is the case both in
SUBSET FEEDBACK VERTEX SET [9] and in MuLTIwAY CuT [8][19]. This suggests that the phenomenon
can be, in fact, more general.

Our result and techniques. Our main result is a fixed-parameter algorithm for GFVS patanized by
the size of the cutset only.

Theorem 6. GROUPFEEDBACK VERTEX SET can be solved i©*(20(¢1o2)) time and polynomial space.

Our algorithm uses a similar approach as described by Kraisd Wahlstrom in [17]: in each step of
iterative compression, when we are given a solutibof sizek + 1, we guess the values of a consistent
labeling on the vertices af, and reduce the problem toWdTiIwAay CuT. However, by a straightforward
application of this approach we obtai (2°(k1°2|=) time complexity. To reduce the dependency|Bh

>The O* () notation suppresses terms polynomial in the input size.



we carefully analyze the structure of a solution, providewa feduction rules in a spirit of the ones used in
the recent algorithm for @88seT FEEDBACK VERTEX SET [9] and, finally, for each vertex of we reduce
the number of choices for a value of a consistent labelingotgnomial in k. Therefore, the number of
reasonable consistent labelingssfs bounded by (¥ 1°gk) and we can afford solving a ML.TIwAY CUT
instance for each such labeling.

Note that the bound on the running time of our algorithm mesctine currently best known algorithm
for SUBSET FEEDBACK VERTEX SET [9]. Therefore, we obtain the same running time asin [9] byldpg
a much more general framework.

In the GROUPFEEDBACK VERTEX SET problem definition in[[13] a set of forbidden verticEsC V(G)
is additionally given as a part of the input. Observe that care easily gadget such vertices by replacing
each forbidden vertex by a clique of siket+ 1 labeled withly; therefore, for the sake of simplicity we
assume that all the vertices are allowed.

2 Preliminaries

Notation. We use standard graph notation. For a gréptby V' (G) and E(G) we denote its vertex and
edge sets, respectively. In case of a directed gtaplve denote the arc set 6f by A(G). Forv € V(G),
its neighborhoodVe; (v) is defined asVg(v) = {u : uwv € E(G)}, andNg[v] = Ng(v) U{v} is the closed
neighborhood of. We extend this notation to subsets of vertic®s:[X| = (J,.x Na[v] andNg(X) =
Ng[X]\ X. ForasetX C V(G) by G[X] we denote the subgraph 6f induced byX. For a setX of
vertices or edges df, by G \ X we denote the graph with the vertices or edgeX akemoved; in case of
vertex removal, we remove also all the incident edges.

3 Algorithm

In this section we prove Theorelmh 6. We proceed with a standptication of the iterative compression
technique in Section_3.1. In each step of the iterative cesgion, we solve a @UPRESSION GROUP
FEEDBACK VERTEX SET problem, where we are given a solutighof size a bit too large — + 1 —
and we are to find a new solution disjoint with it. We first prepthe ®MPRESSIONGROUP FEEDBACK
VERTEX SET instance byuntanglingit in Section 3.2, in the same manner as it is done in the kizat&n
algorithm of [17]. The main step of the algorithm is done in8®[3.3, where we provide a set of reduction
rules that enable us for each vertex Z to limit the number of choices for a value of a consistent lialge
on v to polynomial ink. Finally, we iterate over alD*(29(*1ogk)) remaining labelings of and, for each
labeling, reduce the instance touMriway CuT (Sectior 3.14).

3.1 Iterative compression

The first step in the proof of Theordm 6 is a standard technigtiee design of parameterized algorithms,
that is, iterative compression, introduced by Reed el &]. [Rerative compassion was also the first step of
the parameterized algorithm fouBSET FEEDBACK VERTEX SET [9].

We define a&zompression problepnwhere the input additionally contains a feasible solutioa V(G),
and we are asked whether there exists a solution of size atiwasich is disjoint withZ.



COMPRESSIONGROUP FEEDBACK VERTEX SET (C-GFVS) Parameter: k + | Z|
Input: A X-labeled grapiG, A), an integerk and a setZ C V(G), such that{G \ Z, A) has no non-null
cycle.

Goal: Find asetX C V(G) \ Z of at mostk vertices, such that there is no non-null cycléd@\ X, A) or
return NO, if such a set does not exist.

In Section 3.2 we prove the following lemma providing a pagtenized algorithm for GMPRESSION
GROUP FEEDBACK VERTEX SET.

Lemma 7. COMPRESSIONGROUP FEEDBACK VERTEX SET can be solved i9*(20(121(og k+log|Z])) . ok)
time and polynomial space.

Armed with the aforementioned result, we can easily proveofénd 6.

Proof of Theorerhl61n the iterative compression approach we start with an ersplytion for an empty
graph, and in each of the steps we add a single vertex both to a feasible solution atieetgraph; we use
LemmdT to compress the feasible solution after guessinghndgrtices of the solution of size at mdst 1
should not be removed.

Formally, for a given instancéG = (V,A),A k) let V = {vy,...,v,}. For0 < i < n define
Vi = {v1,...,v;} (in particularVy, = ) and letA; be the functionA restricted to the set of arc4; =
{(u,v) € A :u,v € V;}. Initially we setX, = 0, which is a solution to the grap{©z[V;], A¢). For each
i=1,...,nwesetZ; = X,_; U{v;}, which is a feasible solution tg7[V;], A;) of size at mosk + 1. If
|Z;| <k, then we sefX; = Z; and continue the inductive process. OtherwiseZjf = k + 1, we guess by
trying all possibilities, a subset of verticég C Z; that is not removed in a solution of sizeo (G[V;], A;)
and use Lemm@ 7 for the instanég = (G[V; \ (Z; \ Z))], \i, k' = |Z!| — 1, Z!). If for each setZ] the
algorithm from Lemmal7 returns NO, then there is no solutmm(&[V;], A;) and, consequently, there is no
solution for (G, A). However, if for someZ; the algorithm from Lemm@l 7 returns a s€f of size smaller
than|Z!|, then we sefX; = (Z; \ Z!) U X|. Since|X;| = |Z; \ Z!| + | X]| < |Zi] = k + 1, the setX; is a
solution of size at most for the instancéG;, A;).

Finally, we observe that sincg7,,,A,) = (G, A), the setX,, is a solution for the initial instance
(G = (V,A),A, k) of GROUPFEEDBACK VERTEX SET. The claimed bound on running time follows from
the observation thd¥Z;| < k + 1 for each of polynomially many steps. O

At this point a reader might wonder why we do not add an assompf| < k + 1 to the C-GFVS
problem definition and parameterize the problem solelykbyThe reason for this is that in Sectibn13.3
we will solve the C-GFVS problem recursively, sometimesrdasing the value ot without decreasing
the size ofZ, and to always work with a feasible instance of the C-GFVSj@m we avoid adding the
|Z| < k + 1 assumption to the problem definition.

3.2 Untangling

In order to prove Lemnid 7 we use the concepirthingling previously used by Kratsch and Wahlstromi[17].
We transform an instance of C-GFVS to ensure that eactfwarg with both endpoints i/ (G) \ Z is
labeledly. by A.

Definition 8. We call an instancéG = (V, A), A, k, Z) of C-GFVSuntangled iff for each arc(u,v) € A
such thatu,v € V' \ Z we haveA((u,v)) = 1x.



Moreover, byuntanglinga labelingA around vertex» with a group elemeny we mean changing the
labeling toA’ : A — X, such that fou,v) = a € A, we have

g-Aa) if u=ux;
N(a)=<{ Aa)-g7' ifv=uz;
A(a) otherwise

Lemma 9. Let (G = (V, A),A) be aX-labeled graphx € V be a vertex of and letg € ¥ be a group
element. For any subset of vertic& C V' the graph(G \ X, A) contains a non-null cycle iffG \ X, A’)
contains a non-null cycle, wher¥ is the labelingA untangled around the vertexwith a group elemeny.

Proof. The lemma follows from the fact that for any cyelein G we haveA(C) = A'(C). O
In Sectior 3.B we prove the following lemma.

Lemma 10. COMPRESSIONGROUP FEEDBACK VERTEX SET for untangled instances can be solved in
O0*(20(2|(log k+log|Z])) . 9F) time and polynomial space.

Having Lemmatal9 and 10 we can prove Lenitha 7.

Proof of Lemmal7Let (G, A, k, Z) be an instance of C-GFVS. Sin¢&' \ Z) has no non-null cycle, by
Lemmd. 4 there is a consistent labelingf (G \ Z, A).

Let A’ be aresult of untangling around each vertex € V(G)\ Z with A(v). Note that, by associativity
of ¥, the order in which we untangle subsequent vertices doawaiber. After all the untangling operations,
for an arca = (u,v) € A(G), such thatu,v € V(G) \ Z, we haveA’(a) = (M(u) - Aa)) - AMv)™! =
A(v)-A(v)~! = 1x. Therefore, by Lemnid 9 the instan@&, A’, k, Z) is an untangled instance of C-GFVS,
which is a YES-instance iffG, A, k, Z) is a YES-instance. Consequently, we can use Lemrha 10 and the
claim follows. O

3.3 Fixing a labeling onZ

In this section we prove Lemnall0 using the following lemmahicl we prove in Section 3.4.

Lemma 11. Let (G, A, k, Z) be an untangled instances 6-GFVS There is an algorithm which for a
given functionp : Z — %, finds a setX C V(G) \ Z of size at mosk, such that there exists a consistent
labeling A : V(G) \ X — X of (G \ X, A), where)|z = ¢, or checks that such a séf does not exist; the
algorithm works inO*(2¥) time and uses polynomial space.

We could try all(|%| + 1)/4! possible assignments and use the algorithm from Lemrhal11. Unfor-
tunately, sincgX| is not our parameter we cannot iterate over all such assigismd herefore, the goal
of this section is to show that after some preprocessing, énbugh to consider onfP(1ZI(logk+log|Z]))
assignment®; together with LemmB_11 this suffices to prove Lenima 10.

Definition 12. Let (G, A, k, Z) be an untangled instance of C-GFVS, febe a vertex inZ and by,
denote the sek({(z,v) € A(G) : v € V(G) \ Z}).

By a flow graphF'(G, A, Z, =), we denote the undirected grafii’, E’), whereV’ = (V(G)\ Z) U X,
andE’ = {uv : (u,v) € A(GIV(G)\ Z])} U{gv : (z,v) € A(G),v € V(G) \ Z,A((z,v)) = g}.



Less formally, in the flow graph we take the underlying untied graph ofG[V (G) \ Z] and add a
vertex for each group elemept € X, that is a group element for which there exists an arc froin
V(G) \ Z labeled withg by A. A vertexg € ¥, is adjacent to all the vertices &f(G) \ Z for which there
exists an arc going from, labeled withg by A.

Lemma 13. Let (G, A, k, Z) be an untangled instance 6-GFVS Let H be the flow grapt¥' (G, A, Z, z)
for somez € Z. If for some vertex € V(G) \ Z, in H there are at leask + 2 paths fromw to X, that are
vertex disjoint apart fromy, thenv belongs to every solution @-GFVS

Proof. Let us assume, thatis not a part of a solutiotX C V(G) \ Z, where|X| < k. Then there at least
2 out of thek + 2 paths fromw to X, remain inH \ X. These two paths are vertex disjoint apart fronso
they correspond to a non-null cycle @\ X, a contradiction. O

Definition 14. For an untangled instancér, A, k, Z) of C-GFVS by arexternal pathwe denote any path
P beginning and ending i, but with all internal vertices belonging 6 (G) \ Z. Moreover, for two
distinct vertices:y, zo € Z by ¥(z1, 22) we denote the set of all elementsc X, for which there exists an
external pathP from z; to z with A(P) = g.

Lemma 15. Let (G, A, k, Z) be an untangled instance 6-GFVS If for eachz € Z andv € V(G) \ Z
there are at most + 1 vertex disjoint paths fromto X, in F'(G, A, Z, z) and for some, 2z € Z, 21 # 29,
we haveX(z1, z2)| > k3(k + 1)% + 2, then there is no solution fdiG, A, k, Z).

Proof. Let us assume thaX’ C V(G) \ Z is a solution for(G, A, k, Z). Let P be a set of external paths
from z; t0 29, containing exactly one path for eachg € X(z1, z2) with A(P) = g. Note that the only arcs
with non-null labels inP are possibly the first and the last arc.

By the pigeon-hole principle, there exists a vertex X, which belongs to at least?(k + 1)% + 1
paths inP, since otherwise there would be at least two pathB dfisjoint with X, creating a non-null cycle
disjoint with X. This cycle is not necessarily simple; however, if it is mauil, then it contains a simple
non-null subcycle that is also disjoint witk.

Consider a connected componéntof G[V(G) \ Z] to whichv belongs. Observe that there exists a
vertexz € {z1, 22} that has at least(k + 1) + 1 incident arcs going t@' with pairwise different labels in
A, since otherwise would belong to at most?(k + 1)? paths in.

Let H be the flow graph¥' (G, A, Z, z) and letT C X, be the set of labels of arcs going fromto
C; recall that|T'| > k(k + 1). Since there is no non-null cycle (G \ X, A), we infer that inH, =
H[CUT]\ (X NnC), no two vertices ofl" belong to the same connected component. Moreovet,; &s
connected inG, for eacht € T there exists a pati; with endpointsv and¢ in H[{C U T. Letw; be the
closest ta: vertex fromX on the path?,. As |X| < k and|T| > k(k + 1), there existsv € X such that
w = w, for at leastk + 2 elements € T'. By the definition of the vertices); and the fact that there are
no two vertices ofl" in the same connected componentry, the subpaths aof; from ¢ to w; for all ¢ with
w = wy are vertex disjoint apart fromy. As there are at leagt+ 2 of them, we have a contradiction. [J

We are now ready to prove Lemiina 10 given Lenimla 11.

Proof of Lemma_10If there exists a vertex, satisfying the properties of Lemrnal13, we can assume that it
has to be a part of the solution; therefore, we can removedhewfrom the graph and solve the problem
for decremented parameter value. Hence, we assume thadore= Z andv € V(G) \ Z, there are at
mostk + 1 vertex disjoint paths from» to 3, in F/(G, A, Z, z). We note that one can compute the number
of such vertex disjoint paths in polynomial time, using a nraxn flow algorithm.



By LemmdI5h, if there is a pair of vertices, zp € Z with |S (21, z2)| > k3(k + 1)? + 2, we know that
there is no solution. Observe, that one can easily verifictiidinality ofX(z1, z2), since the only non-null
label arcs on paths contributing ¥z, z2) are the first and the last one, and we can iterate over all such
arcs and check whether their endpoints are in the same dednesmponent iiz[V (G) \ Z]. Clearly, this
can be done in polynomial time.

Knowing that the setX(z1, z2) have sizes bounded by a functiongfwe can enumerate all the reason-
able labelings ofZ. For the sake of analysis I&f = (Z, E’) be an auxiliary undirected graph, where two
vertices ofZ are adjacent, when they are connected by an external p&th i, for some fixed solution
X CV(G)\ Z. Let F be any spanning forest 6¥'. SinceF has at mostZ| — 1 edges, we can gue$s
by trying at most Z| - | Z|?(41-1) possibilities. Let us assume, that we have guegsedrrectly. Observe
that for any two vertices,, zo € Z, belonging to two different connected componentg'othere is no path
betweenz; andz, in G\ X. Therefore, there exists a consistent labeling'afX, which labels an arbitrary
fixed vertex from each connected componenk'afith 1x. For all other vertices of” we use the fact that if
we have already fixed a valug 2, ), then for each external path corresponding to an egggeof F, there
are at mosk>(k + 1)2 + 1 possible values of(zz), sinced1(z1) - ¢(z2) € X(z1,22). Hence, we can
exhaustively try2€(1Z(ogk+log|Z])) |apelingse of Z, and use Lemmiall for each of them. O

3.4 Reduction to Multiway Cut

In this section, we prove Lemnhalll, by a reduction totMiwAy CuT. A similar reduction was also used
recently by Kratsch and Wahlstrom in the kernelizationoatym for GROUP FEEDBACK VERTEX SET
parameterized by with constantX| [17]. Currently the fastest FPT algorithm forddriway CuT is due
to Cygan et al.[[B], and it solves the problemi(2*) time and polynomial space.

MULTIWAY CuUT Parameter: k
Input: An undirected grapli = (V, E), a set of terminal§” C V, and a positive integek.

Goal: Find asetX C V' \ T, such that X | < k and no pair of terminals from the sétis contained in one
connected component of the gra@gfil” \ X], or return NO if such a seX’ does not exist.

Proof of Lemm&_1Firstly, we check whether the given functignsatisfiesp(z2) = ¢(z1) - A((21, 22)),
for each ardz1, z2) € G[Z], since otherwise there is no s€twe are looking for.

Given aX-labeled graph G, A), a setZ, an integerk, and a functionp : Z — X, we create an
undirected graptez’ = (V, E). As the vertex set, we s&f = (V(G) \ Z) UT andT = {g : (u,v) €
AG),ue Z, ve V(G)\ Z, ¢(u) - A((u,v)) = g}. Note that in the sef’ there exactly these elements of
¥, which are potential values of a consistent labeling@fA) that matche® on Z. As the edge set, we set
E ={uv: (u,v) € A(G[V(G)\Z])}U{gv : (u,v) € A(G), u e Z, ve V(G)\Z, ¢(u)-A((u,v)) = g}.
We show tha{G’, T, k) is a YES-instance of MLTIWAY CuT iff there exists a seK C V(G) \ Z, such
that there exists a consistent labelihgf (G \ X, A) with A|z = ¢.

Let X be solution for(G’, T, k). We define a consistent labelingof (G \ X,A). Forv € Z we set
A(v) = ¢(v). Forv € (V(G)\ Z) \ X, if vis reachable from a termingle T'in G’ \ X, we set\(v) = g.

If v e (V(G)\ Z) \ X is not reachable from any terminal &, we set\(v) = 1x. Since each arc in
A(G[V(G) \ Z)]) is labeledly, by A, and each vertex il (G) \ Z is reachable from at most one terminal in
G’ \ X, \is a consistent labeling ¢f7 \ X, A).

Let X C V(G) \ Z be a set of vertices aff, | X| < k, such that there is a consistent labelingf

(G\ X,A), where\|z = ¢. By the definition of edges betwednandV (G) \ Z in G’, each vertex of




V(G)\ Z is reachable from at most one terminalify since otherwise would not be a consistent labeling
of (G\ X, \). Therefore X is a solution for(G', T, k).

We can now apply the algorithm for M.TIwAY CuT of [8] to the instancdG’, T\ k) in order to con-
clude the proof. O

4 Conclusions and open problems

We have shown a relatively simple fixed-parameter algorfinnGrRouP FEEDBACK VERTEX SET running
in time O*(20(kleg k) - Our algorithm works even in a robust oracle model, thatalas to generalize the
recent algorithm for 8BSET FEEDBACK VERTEX SET [9] within the same complexity bound.

We would like to note that if we represent group elements bipgs consistingg andg~! for g €
A(A(Q)) (formally, we perform the computations in the free grouprayenerators corresponding to the
arcs of the graph), then after slight modifications of ouloethm we can solve the BOuP FEEDBACK
VERTEX SET problem even for infinite groups for which the word problem,,ithe problem of checking
whether results of two sequences of multiplications areakds polynomial-time solvable. The lengths of
representations of group elements created during the datigrucan be bounded linearly in the size of the
input graph. Therefore, if a group admits a polynomial-tiaigorithm solving the word problem, then we
can use this algorithm as the oracle.

Both our algorithm and the algorithm foluBSeT FEEDBACK VERTEX SET of [9] seems hard to speed
up to time complexityO*(2°0(%)). Can these problems be solved®i(2°(%)) time, or can we prove that
such a result would violate Exponential Time Hypothesis?

Acknowledgements.We thank Stefan Kratsch and Magnus Wahlstrom for inspidisgussions on graph
separation problems and for drawing our attention to tR® @ FEEDBACK VERTEX SET problem.
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