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Abstract

We show that the following two problems are fixed-parameter
tractable with parameter k: testing whether a connected n-vertex
graph with m edges has a square root with at most n − 1 + k edges
and testing whether such a graph has a square root with at least m−k
edges. Our first result implies that squares of graphs obtained from
trees by adding at most k edges can be recognized in polynomial time
for every fixed k ≥ 0; previously this result was known only for k = 0.
Our second result is equivalent to stating that deciding whether a graph
can be modified into a square root of itself by at most k edge deletions
is fixed-parameter tractable with parameter k.

1 Introduction

Squares and square roots are classical concepts in graph theory that are
defined as follows. The square G2 of a graph G = (VG, EG) is the graph
with vertex set VG such that any two distinct vertices u, v ∈ VG are adjacent
in G2 if and only if u and v are of distance at most 2 in G. A graph H is a
square root of G if G = H2. There exist graphs with no square root, graphs
with a unique square root as well as graphs with many square roots.

Mukhopadhyay [19] showed in 1967 that a connected graph G with n
vertices v1, . . . , vn has a square root if and only if there exists a set of n
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complete subgraphs K1, . . . ,Kn of G with
⋃

i VKi = VG such that Ki con-
tains vi for all 1 ≤ i ≤ n, and Ki contains vj if and only if Kj contains vi
for all 1 ≤ i < j ≤ n. This characterization did not yield a polynomial time
algorithm for recognizing squares. In fact, in 1994, Motwani and Sudan [18]
showed that the Square Root problem, which is that of testing whether a
graph has a square root, is NP-complete. This fundamental result triggered
a lot of research on the computational complexity of recognizing squares of
graphs and computing square roots under the presence of additional struc-
tural assumptions. In particular, the following two recognition questions
have attracted attention; here G denotes some fixed graph class.

(1) How hard is it to recognize squares of graphs of G?

(2) How hard is is to recognize graphs of G that have a square root?

Ross and Harary [21] characterized squares of a tree and proved that if a
connected graph has a unique tree square root, then this root is unique
up to isomorphism. Lin and Skiena [15] gave linear time algorithms for
recognizing squares of trees and planar graphs with a square root. The re-
sults for trees [15, 21] were generalized to block graphs by Le and Tuy [13].
Lau [10] gave a polynomial time algorithm for recognizing squares of bi-
partite graphs. Lau and Corneil [11] gave a polynomial time algorithm for
recognizing squares of proper interval graphs and showed that the problems
of recognizing squares of chordal graphs, squares of split graphs, and chordal
graphs with a square root are all three NP-complete. Le and Tuy [14] gave
a quadratic time algorithm for recognizing squares of strongly chordal split
graphs. Milanic and Schaudt [16] gave linear time algorithms for recognizing
trivially perfect graphs and threshold graphs with a square root. Adamaszek
and Adamaszek [1] proved that if a graph has a square root of girth at least
6, then this square root is unique up to isomorphism. Farzad, Lau, Le and
Tuy [8] showed that recognizing graphs with a square root of girth at least g
is polynomial-time solvable if g ≥ 6 and NP-complete if g = 4. The missing
case g = 5 was shown to be NP-complete by Farzad and Karimi [7]. Recently
Le, Oversberg and Schaudt [12] gave polynomial algorithms for recognizing
squares of ptolemaic graphs and 3-sun-free split graphs.

1.1 Our Results

The classical Square Root problem is a decision problem. We introduce
two optimization variants of it in order to be able to take a parameterized
road to square roots. A problem with input size n and a parameter k is
said to be fixed parameter tractable (or FPT) if it can be solved in time
f(k) · nO(1) for some function f that only depends on k. We consider two
natural choices for the parameter k for our optimization variants of the
Square Root problem and in this way obtain the first FPT algorithms for
square root problems.
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First, in Section 2, we parameterize the Minimum Square Root prob-
lem, which is that of testing whether a graph has a square root with at most s
edges for some given integer s. Since any square root of a connected n-vertex
graph G is a connected spanning subgraph of G, every square root of G has
at least n−1 edges. Consequently, any instance (G, s) of Minimum Square
Root with s ≤ n − 2 is a no-instance if G is connected, which means that
we may assume that s ≥ n− 1. Hence, k = s− (n− 1) is the natural choice
of parameter. Our main result is that Minimum Square Root is FPT
with parameter k 1, because a square root of a graph is the disjoint union of
square roots of its connected components. We prove this result by showing
that an instance of Minimum Square Root can be reduced to an instance
of a more general problem, in which we impose additional requirements on
some of the edges, namely to be included or excluded from the square root.
We prove that the new instance has size quadratic in k. In other words, we
show that Minimum Square Root has a generalized kernel of quadratic
size (see Section 1.2 for the definition of this notion). This result is further
motivated by the observation that Minimum Square Root generalizes the
problem of recognizing squares of trees (take s = n−1). A weaker statement
of our FPT result is that of saying that the problem of recognizing squares
of graphs of the class

Gk = {G | G is a graph obtainable from a tree by adding at most k edges}

is polynomial-time solvable for all fixed k ≥ 0. As such, our result can also
be seen as an extension of the aforementioned result of recognizing squares
of trees [15].

Second, in Section 3, we parameterize the Maximum Square Root
problem, which is that of testing whether a given graph G with m edges has
a square root with at least s edges for some given integer s. We show that
this problem is FPT with parameter k = m− s. This choice of parameter is
also natural, as G has a square root with at least s edges if and only if G can
be modified into a square root (of itself) by at most k edge deletions. Hence,
our second FPT result can be added to the growing body of parameterized
results for graph editing problems, which form a well studied problem area
within algorithmic graph theory. In Section 3 we also present an exact
exponential time algorithm for Maximum Square Root, which could be
seen as an improvement of the algorithm implied by the characterization of
Mukhopadhyay [19].

In Section 4 we mention a number of relevant open problems.

1We restrict ourselves to connected graphs for simplicity. We may do this for the
following reason. For disconnected n-vertex graphs with ` ≥ 2 connected components
the natural parameter is k = s − (n − `) instead of k = s − (n − 1). Our FPT result
for connected graphs immediately carries over to disconnected graphs if we choose as
parameter k = s− (n− `) instead.
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1.2 Preliminaries

We only consider finite undirected graphs without loops and multiple edges.
We refer to the textbook by Diestel [5] for any undefined graph terminol-
ogy and to the textbooks of Downey and Fellows [6], Flum and Grohe [9],
and Niedermeier [20] for detailed introductions to parameterized complexity
theory.

Let G be a graph. We denote the vertex set and edge set of G by VG and
EG, respectively. The subgraph of G induced by a subset U ⊆ VG is denoted
by G[U ]. The graph G − U is the graph obtained from G by removing all
vertices in U . If U = {u}, we also write G− u. A clique is a set of pairwise
adjacent vertices. The distance distG(u, v) between a pair of vertices u and
v of G is the number of edges of a shortest path between them. The open
neighborhood of a vertex u ∈ VG is defined as NG(u) = {v | uv ∈ EG}, and
its closed neighborhood is defined as NG[u] = NG(u) ∪ {u}. Two vertices u
and v are said to be true twins if NG[u] = NG[v], and u and v are false twins
if NG(u) = NG(v). A vertex u is simplicial, if NG(u) is a clique. The degree
of a vertex u ∈ VG is denoted dG(u) = |NG(u)|. The maximum degree of G
is denoted ∆(G) = max{dG(v)|v ∈ VG}. A vertex of degree 1 is said to be
a pendant vertex.

Let G be a connected graph, S ⊂ VG, and X and Y be two disjoint
non-empty vertex subsets of G− S. Then S is a separator of G if G− S is
disconnected, S is an (X,Y)-separator if G − S has no path that connects
a vertex of X to a vertex of Y , and S is a minimal (X,Y )-separator if S is
an (X,Y )-separator of G and no proper subset of S is an (X,Y )-separator.
We say that G is biconnected if G has no separators of size 1.

The union of two graphs G1 and G2 is the graph (VG1 ∪VG2 , EG1 ∪EG2).
The graph Kn denotes the complete graph on n vertices. The graph K1,r

denotes the star on r + 1 vertices.
A well-known technique to show that a parameterized problem Π is fixed-

parameter tractable is to find a reduction to a problem kernel. This technique
replaces an instance (I, k) of Π with a reduced instance (I ′, k′) of Π called
a (problem) kernel such that the following three conditions hold:

(i) k′ ≤ k and |I ′| ≤ g(k) for some computable function g;

(ii) the reduction from (I, k) to (I ′, k′) is computable in polynomial time;

(iii) (I, k) is a yes-instance of Π if and only if (I ′, k′) is a yes-instance of
Π.

If we slightly modify this definition by letting the instance (I ′, k′) belong
to a different problem than Π, then (I ′, k′) is called a generalized kernel for
Π in the literature. This concept has been introduced and named bikernel
by Alon, Gutin, Kim, Szeider and Yeo [3]; a related notion is compression.
An upper bound g(k) on |I ′| is called the kernel size, and a kernel is called

4



linear if its size is linear in k and quadratic if its size is quadratic in k. It
is well known that a parameterized problem is fixed-parameter tractable if
and only if it has a kernel (see for example [20]).

2 The Minimum Square Root Problem

As discussed in Section 1.1, we consider connected graphs only and parame-
terize Minimum Square Root by k = s− (n−1). From now on we denote
this problem as

Trees + k Edges Square Root
Input: a connected graph G and an integer k ≥ 0
Parameter: k
Question: does G have a square root with at most n− 1 + k edges?

We show the following result.

Theorem 1. The Tree + k Edges Square Root problem can be solved
in time 2O(k4) +O(n4m) on graphs with n vertices and m edges.

The remainder of this section is organized as follows. In Section 2.1
we show a number of structural results needed to prove Theorem 1. In
Section 2.2 we consider the more general problem

Tree + k Edges Square Root with Labels
Input: a connected graph G, an integer k ≥ 0 and two disjoint subsets

R,B ⊆ EG

Parameter: k
Question: does G have a square root H with at most n−1 +k edges, such

that R ⊆ EH and B ∩ EH = ∅?

Note that the sets R and B in this problem are given sets of required edges
(that have to be in the square root) and blocked edges (that are not allowed
to be in the square root), respectively. Also note that Tree + k Edges
Square Root with Labels generalizes Trees + k Edge Square Root;
choose R = B = ∅. We reduce Tree + k Edges Square Root to Tree
+ k Edges Square Root with Labels where the size of the graph in
the obtained instance is O(k2). In other words, we construct a quadratic
generalized kernel for Tree + k Edges Square Root. This means that
to solve an instance of Trees + k Edge Square Root, we can solve the
obtained instance of Tree + k Edges Square Root with Labels by a
brute force algorithm. In Section 2.3 we analyze the corresponding running
time and complete the proof of Theorem 1.

2.1 Structural Results

We start with the following observation that we will frequently use.
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Observation 1. Let H be a square root of a connected graph G.

(i) If u is a pendant vertex of H, then u is a simplicial vertex of G.

(ii) If u and v are pendant vertices of H adjacent to the same vertex, then
u and v are true twins in G.

(iii) If u and v are pendant vertices of H adjacent to different vertices, then
u and v are not adjacent in G unless H = K2.

We now state five useful lemmas, the first two of which, Lemmas 1 and 2,
can be found implicitly in the paper of Ross and Harary [21]. Ross and
Harary [21] consider tree square roots, whereas we are concerned with finding
general square roots. As such we give explicit statements of Lemmas 1 and 2.
We also give a proof of Lemma 2 (the proof of Lemma 1 is straightforward).

Lemma 1. Let H be a square root of a graph G. Assume that {u1, . . . , ur} ⊆
VH for some r ≥ 3 induce a star in H with central vertex u1, such that
u3, . . . , ur are pendant vertices in H, and {u2} is a ({u1, u3, . . . , ur}, VH \
{u1, . . . , ur})-separator of H. Then {u1, . . . , ur} is a clique of G, and
{u1, u2} is a minimal ({u3, . . . , ur}, VG \ {u1 . . . , ur})-separator of G.

Lemma 2. Let G be a connected graph with a square root H. Assume
that {u1, . . . , ur}, r ≥ 3 is a clique in G, such that {u1, u2} is a minimal
({u3, . . . , ur}, VG\{u1, . . . , ur})-separator of G. Let {x1, . . . , xp} = NG(u1)\
{u2, . . . , ur} for some p ≥ 1 and {y1, . . . , yq} = NG(u2) \ {u1, u3, . . . , ur} for
some q ≥ 1, as shown in Figure 1. Then the following three statements hold:

(i) u1u2 ∈ EH and, either u3u1, .., uru1 ∈ EH , u3u2, . . . , uru2 /∈ EH ,
u1x1, . . . , u1xp /∈ EH , and {u2} is a minimal ({u1, u3, . . . , ur}, VH \
{u1, . . . , ur})-separator in H, or u3u1, . . . , uru1 /∈ EH , u3u2, . . . , uru2 ∈
EH , u2y1, . . . , u2yq /∈ EH and {u1} is a minimal ({u2, .., ur}, VH \
{u1, .., ur})-separator in H (see Figure 2 (i)).

(ii) If u1 and u2 are true twins in G, then either u1x1, . . . , u1xp ∈ EH or
u2x1, . . . , u2xp ∈ EH . Moreover, in this case, G is the union of two
complete graphs with vertex sets {u1, . . . , ur} and {u1, u2, x1, . . . , xp},
respectively, and G has two (isomorphic) square roots with edge
sets {u1u2, . . . , u1ur} ∪ {u2x1, . . . , u2xp} and {u2u1, u2u3, . . . , u2ur} ∪
{u1x1, . . . , u1xp}, respectively (see Figure 2 (ii)).

(iii) If NG[u2] \ NG[u1] 6= ∅, then u2u1, . . . , uru1 ∈ EH , u3u2, . . . , uru2 /∈
EH and u1x1, . . . , u1xp /∈ EH . Moreover, the graph H ′ obtained from
H by deleting all uiuj with 3 ≤ i < j ≤ r is a square root of G
(in which {u1, . . . , ur} induces a star with central vertex u1 and with
leaves u2, u3, . . . , ur that are pendant vertices except for u2 (see Fig-
ure 2 (iii)).
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yq

u3 ur

u1 u2

x1 xp y1

Figure 1: The graph G of Lemma 2. Note that p ≥ 1 and q ≥ 1 indeed,
because {u1, u2} is a minimal ({u3, . . . , ur}, VG\{u1, . . . , ur})-separator ofG.
Also note that xi = yj for some 1 ≤ i ≤ p and 1 ≤ j ≤ q is possible.

ii)

u3 ur

u1 u2

x1 xp

u3 ur

u1 u2

x1 xp

u3 ur

u1 u2

x1 xp y1 yq

u3 ur

u1 u2

x1 xp y1 yq

i)

iii)

u3 ur

u1 u2

x1 xp

y1 yq

Figure 2: Square roots of G corresponding to statements (i)–(iii) of
Lemma 2, respectively. Edges of G that belong to the square roots are
shown by thick lines, whereas edges of G that do not belong to the square
roots are shown by dashed lines. In (i), edges of G that may be put in a
square root of G are shown by thin lines. The square roots in (ii) and (iii)
are the specific square roots defined in statements (ii) and (iii) of Lemma 2,
respectively.
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Proof. We first prove (i). As {u1, u2} is a ({u3, . . . , ur}, VG \ {u1, . . . , ur})-
separator of G, at least one vertex ui with i ≥ 3 is adjacent to u1 or u2 in H,
say to u1. Then u1x1, . . . , u1xp /∈ EH ; otherwise, that is, if u1 is adjacent
to some xj in H, then uixj ∈ EG contradicting the fact that {u1, u2} is
a ({u3, . . . , ur}, VG \ {u1, . . . , ur})-separator of G. At least one vertex yh
must be adjacent to u2 in H, because u1x1, . . . , u1xp /∈ EH (as otherwise
H is not connected and hence cannot be the square root of G, which is
a connected graph). Since {u1, u2} is a ({u3, . . . , ur}, VG \ {u1, . . . , ur})-
separator of G, we have that u3u2, . . . , uru2 /∈ EH . Consequently, u1 and
u2 are not of distance 2 in H and thus u1u2 ∈ EH , and {u2} is a minimal
({u1, u3, . . . , ur}, VH \ {u1, . . . , ur})-separator in H.

Suppose that there is a vertex ui, 3 ≤ i ≤ r, such that uiu1 /∈ EH . Since
u3, . . . , ur are not adjacent to u2, it follows that any (u2, ui)-path in H has
length at least 3, which is not possible as u2ui ∈ EG. We conclude that
u3u1, . . . , uru1 ∈ EH . Hence we have shown (i).

We now prove (ii). Since u1 and u2 are true twins, p = q and
{x1, . . . , xp} = {y1, . . . , yq}. Due to (i) either u1 or u2 is not adja-
cent to any xi. In the first case u2 must be adjacent to all xi in H,
as otherwise there is no required path of length at most 2 in H be-
tween some xi and u1. Similarly, in the second case, u1 must be ad-
jacent to all xi in H. Hence, {u1, u2, x1, . . . , xp} is a clique in G. If
H has an edge xiz with z /∈ {u1, . . . , ur, x1, . . . , xp} then zu1 ∈ EG or
zu2 ∈ EG, both of which cases are not possible. This means that G
is the union of two complete graphs with vertex sets {u1, . . . , ur} and
{u1, u2, x1, . . . , xp}, respectively. It is readily seen that G has two (iso-
morphic) square roots with edge sets {u1u2, . . . , u1ur} ∪ {u2x1, . . . , u2xp}
and {u2u1, u2u3, . . . , u2ur} ∪ {u1x1, . . . , u1xp}, respectively. Hence we have
shown (ii).

It remains to prove (iii). Let yi ∈ NG[u2] \ NG[u1] 6= ∅. Due to (i) we
have that u1u2 ∈ EH , and that either u3u1, .., uru1 ∈ EH , u3u2, . . . , uru2 /∈
EH , u1x1, . . . , u1xp /∈ EH , or u3u1, . . . , uru1 /∈ EH , u3u2, . . . , uru2 ∈ EH ,
u2y1, . . . , u2yq /∈ EH . If the latter case holds, then any (u2, yi)-path in H
has length at least 3, which is not possible as u2yi ∈ EG. Hence the former
case must hold. Let H ′ be a graph obtained from H by deleting all uiuj
for i, j ∈ {3, . . . , r}. It is readily seen that H ′2 = H2 = G. Hence we have
shown (iii).

Let G be a graph that contains (besides possibly some other vertices)
p + q + r distinct vertices u1, . . . , ur, x1, . . . , xp, y1, . . . yq for some r ≥ 3,
p ≥ 1 and q ≥ 1, such that the following conditions hold:

(i) {u1, . . . , ur} is a clique in G;

(ii) {u1, u2, u3} is a minimal ({u4, . . . , ur}, VG \ {u1, . . . , ur})-separator
in G if r ≥ 4;
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(iii) {u1, u3, . . . , ur} ∪ {x1, . . . , xp} ∪ {y1, . . . , yq} = NG(u2);

(iv) {u2, u4, u5, . . . , ur} = NG(u1) ∩NG(u3);

(v) {x1, . . . , xp} ⊆ NG(u1) and {y1, . . . , yq} ⊆ NG(u3);

(vi) xiyj /∈ EG for i = 1, . . . , p and y = 1, . . . , q.

We call G an F -graph and (u1, u2, u3) an F -triple with outer vertices u1 and
u3; see Figure 3 for an example. Here, F refers to the graph in Figure 4.
These notions are further explained by Lemmas 3 and 4.

u2

u4 ur

x1

xp

y1

yq

u1 u3

Figure 3: An example of an F -graph with r ≥ 4. Note that there are
no edges between any two vertices xi and yj . Also note that the two
outer vertices u1 and u3 of the F -triple (u1, u2, u3) may be adjacent to
vertices not adjacent to u2 (but they may not have any common neighbor
in {x1, . . . , xp} ∪ {y1, . . . , yq}).

Lemma 3. Let H be a square root of a graph G. Assume that H contains the
graph F of Figure 4 as a subgraph, such that u4, . . . , ur are pendant vertices
of H (if r ≥ 4), dH(u2) = r− 1, u1u2u3 is an induced path in H that is not
contained in any cycle of length at most 6, {x1, . . . , xp} = NH(u1) \ {u2},
and {y1, . . . , yq} = NH(u3) \ {u2}. Then G is an F -graph.

Proof. Conditions (i)-(iii) and (v) are readily seen to hold. Conditions (iv)
and (vi) follow from the condition that the path u1u2u3 is not contained in
any cycle of length at most 6 in H.

Lemma 4. Let G be a connected F -graph. If H is a square root of G,
then the graph F of Figure 4 is a subgraph of H such that dH(u2) = r − 1,
{x1, . . . , xp} = NH(u1) \ {u2} and {y1, . . . , yq} = NH(u3) \ {u2}. Moreover,
the graph obtained from H by deleting all edges uiuj with 4 ≤ i < j ≤ r is a
square root of G that contains u4, . . . , ur as pendant vertices (if r ≥ 4).

Proof. Let H be a square root of G. We consider the following three cases.

Case 1. u1u2, u2u3 ∈ EH . As x1u3, . . . , xpu3 /∈ EG and u1u2, u2u3 ∈ EH ,
we have that x1u2, . . . , xpu2 /∈ EH . Symmetrically, y1u2, . . . , yqu2 /∈ EH .
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u3

u4 ur

x1

xp

y1

yq

u2u1

Figure 4: The graph F = F (p, q, r) with p ≥ 1, q ≥ 1 and r ≥ 3; if r = 3 then
F does not contain any pendant vertices u4, . . . , ur. Here, we depicted F as
a subgraph of the graph H in Lemma 3. To be more precise, the graph F is
the graph whose vertices are u1, . . . , ur, x1, . . . , xp, y1, . . . yq and whose edges
are those displayed. In H the vertices u1, . . . , ur have only neighbors that
are in F , whereas a vertex xi or yj may have one or more neighbors in
H that are outside F ; however, no xi and yj have a common neighbor in
H. Moreover, in H, the only edges incident to vertices in F are the edges
depicted (edges of F ) and possibly some edges between two vertices xi, xj or
between two vertices yi,yj ; such edges have not been depicted in the figure.

Since each xiu2 ∈ EG but xiu2 /∈ EH , H has an (xi, u2)-path of length
2. The middle vertex of this path is in {u1, u3, . . . , ur}, because dG(u2) =
p+q+r−1. Moreover, this path goes through u1, because xi is not adjacent
to u3, . . . , ur in H (as it is not so in G). In other words, x1u1, . . . , xpu1 ∈ EH

and, by symmetry, y1u3, . . . , yqu3 ∈ EH . If a vertex z /∈ {u2, x1, . . . , xp}
is adjacent to u1 in H, then z is adjacent to both u2 and x1 in G. As
dG(u2) = p + q + r − 1, we find that z ∈ {u3, . . . , ur} or z ∈ {y1, . . . , yq}.
However, none of {u3, . . . , ur} is adjacent to x1, whereas none of {y1, . . . , yq}
is adjacent to u2. We conclude that {x1, . . . , xp} = NH(u1) \ {u2} and by
using the same arguments that {y1, . . . , yq} = NH(u3) \ {u2}.

Now we show that u4u2, . . . , uru2 ∈ EH . To prove it, assume that some
ui, 4 ≤ i ≤ r, is not adjacent to u2 in H. Then u1 and ui are at dis-
tance at least 3 in H contradicting u1ui ∈ EG. We already deduced that
x1u2, . . . , xpu2 /∈ EH and that y1u2, . . . , yqu2 /∈ EH . By assumption, u2 is
adjacent to both u1 and u3. As dG(u2) = p + q + r − 1, we then find that
dH(u2) = r − 1.

To conclude the proof for this case, it remains to observe that if some
ui, uj are adjacent in H for i, j ∈ {4, . . . , r}, then the graph H ′ obtained
from H by the removal of these edges is a square root of G.

Case 2. u1u2, u2u3 /∈ EH . Since u1u2 /∈ EH , u1u2 ∈ EG and dG(u2) =
p+ q + r− 1, there exists a vertex z ∈ {x1, . . . , xp} ∪ {u4, . . . , ur} such that
u1z, zu2 ∈ EH . We find that y1u2, . . . , yqu2 /∈ EH , because z is not adjacent
to y1, . . . , yq in G. By the same arguments, we obtain x1u2, . . . , xpu2 /∈ EH .
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Hence, z ∈ {u4, . . . , ur}. By symmetry, some vertex from {u4, . . . , ur} is
adjacent to u3 in H. Consequently, each vertex of {u1, u2, u3} is adjacent
to some vertex in {u4, . . . , ur} in H. As {u1, u2, u3} separates {u4, . . . , ur}
from VG \ {u1, . . . , ur}, this means that H has no edges that join u1, u2, u3
with the vertices of VG \ {u1, . . . , ur}; a contradiction. Hence, this case is
not possible.

By symmetry, it remains to consider the following case.

Case 3. u1u2 ∈ EH and u2u3 /∈ EH . We find that y1u2, . . . , yqu2 /∈ EH ,
because u1u2 ∈ EH and y1u1, . . . , yqu1 /∈ EG. Then H contains a (y1, u2)-
path of length 2, because y1u2 ∈ EG. Since u2u3 /∈ EH and dG(u2) = p+q+
r−1, such a path should go through one of the vertices of {u1, u4, . . . , ur}∪
{x1, . . . , xp}. However, none of these vertices is adjacent to y1 in G, and
consequently not in H either; a contradiction. Therefore, this case is not
possible either.

Lemma 5. Let u and v be true twins in a connected graph G with at least
three vertices and G′ be the graph obtained from G by deleting v. The fol-
lowing two statements hold:

(i) If H ′ is a square root of G′, then the graph H obtained from H ′ by
adding v with NH(v) = NH′(u) (that is, by adding a false twin of u)
is a square root of G.

(ii) If H is a square root of G such that u and v are false twins in H, then
the graph H ′ obtained by deleting v is a square root of G′.

Proof. We first prove (i). Let H ′ be a square root of G′, and let H be
the graph obtained from H ′ by adding a false twin v of u. Since G is a
connected graph with at least three vertices and u and v are true twins,
dG(u), dG(v) ≥ 2 and G′ is also connected. Therefore, its square root H ′

is connected and u has a neighbor z in it. Then u and v are adjacent to
z in H and thus dH(u, v) ≤ 2. Hence, uv is an edge of H2. Then it is
straightforward to see that G = H2. Statement (ii) follows from the fact
that identifying false twins does not change the distance between any two
vertices.

2.2 Construction of the Generalized Kernel

As discussed, in this section, we reduce Tree + k Edges Square Root
to Tree + k Edges Square Root with Labels in such a way that the
size of the graph in the obtained instance is O(k2).

First, we informally sketch the main steps of the reduction. Let G be a
connected graph with n vertices, and let k be a positive integer.

Suppose that H is a square root of G with at most n + k − 1 edges.
If H has a vertex u of degree at least 2 that has exactly one non-pendant
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Figure 5: Trimming; the edges of H are shown by the solid lines.

neighbor v, then we recognize the corresponding structure in G and delete
those vertices of G that are pendant vertices of H adjacent to u as shown in
Figure 5. That is, similar to the algorithm of Lin and Skiena [15], we “trim”
pendant edges in potential roots. Since the root we are looking for is not a
tree, our trimming is more sophisticated and is based on Lemmas 1 and 2.
We will show that in this way we obtain a graph G′ with n′ vertices that
has the following property: every pendant vertex of any square root H ′ of
G′ with at most n′ − 1 + k edges is adjacent to a vertex that has at least
two non-pendant neighbors in H ′.

Suppose that H ′ has a sufficiently long induced path P , such that every
internal vertex of P has exactly two non-pendant neighbors in H ′. Let u be
an internal vertex of P , and let x, y ∈ VP be the two non-pendant neighbors
of u. Using Lemmas 3 and 4, we recognize the corresponding structure in
G′ and modify G′ as shown in Figure 6, that is, we delete u in H ′ and join
x any y by an edge. By performing this operation recursively, we obtain a
graph G′′ with n′′ vertices.

y x yx u

Figure 6: Reduction of paths; the edges of H ′ are shown by the solid lines.

Suppose that H ′′ is a square root of G′′ with at most n′′+k−1 edges. Let
H∗ be the graph obtained from H ′′ by deleting all pendant vertices of H ′′.
Then H∗ has no vertices of degree 1, and the length of every path P with
internal vertices of degree 2 in H∗ is bounded by a constant. This means
that the size of H∗ is O(k). The vertices of VG′′ \ VH∗ are pendant vertices
of H ′′. Consider the set Z of pendant vertices of H ′′ adjacent to a vertex
u ∈ VH∗ . Then the vertices of Z are simplicial vertices of G′′. Moreover,
they are true twins. We use Observation 1 and Lemma 5 to show that we
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may reduce the number of true twins in G′′ if G′′ has too many. This results
in a graph G′′′ with n′′′ vertices such that n′′′ is O(k2).

During the reduction from G to G′′ we label some edges, that is, we
include some edges in sets R or B and, therefore, obtain an instance
(G′′′, k, R,B) of Tree + k Edges Square Root with Labels.

Before we give a formal description of our reduction, we introduce the
following terminology. A square root H of a graph G that has at most
|VG| − 1 + k edges for some k ≥ 0 is called a solution of the instance (G, k)
of Tree + k Edges Square Root. If R ⊆ EH and B ∩ EH = ∅ for
two disjoint subsets R and B of EG, then H is also called a solution of the
instance (G, k,R,B) of Tree + k Edges Square Root with Labels.

We are now ready to give the exact details of our reduction. Let G be
a connected graph with n vertices and m edges and k be a positive integer.
First we check whether G has a square root that is a tree by using the linear-
time algorithm of Lin and Skiena [15]. If we find such a square root, then
we stop and return a yes-answer. From now we assume that every square
root of G (if there exists one) has at least one cycle.

We note that connected graphs with non-empty edge sets that have
square roots are biconnected (as otherwise such a graph G′ has a separa-
tor {s} of size 1 implying that any of its square roots has edges st and st′

for two vertices t and t′ that are in distinct connected components of G′− s
which would yield the edge tt′ in G′; a contradiction). Hence we check
whether G is biconnected, and if not, then we stop and return a no-answer.
Otherwise we continue as follows. We introduce two sets of edges R and B.
Initially, we set R = B = ∅. Next, we “trim” pendant edges in potential
roots, that is, we exhaustively apply the following rule that consists of five
steps that must be performed in increasing order.

Trimming Rule

1. Find a set S = {u1, u2} of two adjacent vertices such that one con-
nected component of G − S consists of r ≥ 3 vertices u3, . . . , ur that
together with u1 and u2 form a clique in G.

2. If NG[u1] = NG[u2] then stop and return a no-answer.

3. If NG[u1] \NG[u2] 6= ∅ and NG[u2] \NG[u1] 6= ∅, then stop and return
a no-answer.

4. If NG[u1] \NG[u2] 6= ∅, then rename u1 by u2 and u2 by u1 (this step
is for notational convenience only and has no further meaning).

5. Define sets R′ = {u1u2, . . . , u1ur} and B′ = {uiuj | 2 ≤ i < j ≤
r} ∪ {u1x | x ∈ NG(u1) \ {u2, . . . , ur}}.
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6. If R ∩ B′ 6= ∅ or R′ ∩ B 6= ∅, then stop and return a no-answer.
Otherwise, set R = R ∪R′, B = B ∪B′, delete u3, . . . , ur from G and
also delete all edges incident to u3, . . . , ur from R and B.

Exhaustively applying the trimming rule yields a sequence of instances
(G0, k, R0, B0), . . . , (G`, k, R`, B`) of Tree + k Edges Square Root with
Labels for some integer ` ≥ 0, where (G0, k, R0, B0) = (G, k, ∅, ∅) and where
(G`, k, R`, B`) is an instance for which we have either returned a no-answer
(in steps 2, 3 or 6) or for which there does not exist a set S as specified in
step 1. For 0 ≤ i ≤ ` − 1 we denote the sets R′ and B′ constructed in the
(i+ 1)th call of the trimming rule by R′i and B′i, respectively. We need the
following lemma.

Lemma 6. The instance (G`, k, B`, R`) has no solution that is a tree, and
G` is biconnected. Moreover, (G`, k, R`, B`) has a solution if and only if
(G0, k, R0, B0) has a solution. If the trimming rule returned a no-answer
for (G`, k, R`, B`), then (G0, k, R0, B0) has no solution.

Proof. For 0 ≤ i ≤ `, we use induction to show that the graph Gi is bi-
connected and that (Gi, k, Bi, Ri) has no solution that is a tree. Moreover,
for all 1 ≤ i ≤ `, we show that (Gi, k, Ri, Bi) has a solution if and only
if (Gi−1, k, Ri−1, Bi−1) has a solution. Finally, we prove that if the trim-
ming rule returned a no-answer for (G`, k, R`, B`), then (G0, k, R0, B0) has
no solution.

If i = 0, then Gi is biconnected and (G0, k, B0, R0) has no solution
that is a tree by our initial assumption (as we had preprocessed G with
respect to these two properties). Now suppose that 1 ≤ i ≤ `. By our
induction hypothesis, we may assume that Gi−1 is biconnected and that
(Gi−1, k, Bi−1, Ri−1) has no solution that is a tree.

Since the trimming rule applied on (Gi−1, k, Ri−1, Bi−1) yielded a new
instance (Gi, k, Ri, Bi), the graph Gi−1 has a pair S = {u1, u2} of adjacent
vertices such that one connected component of G − S consists of vertices
u3, . . . , ur that together with u1 and u2 form a clique in Gi−1. Step 6
implies that Gi = Gi−1 −{u3, . . . , ur}. Since we did not return a no-answer
for (Gi−1, k, Ri−1, Bi−1), we find that NGi−1 [u1] ⊂ NGi−1 [u2]. Hence, Gi−1
is not a complete graph. Then, as Gi−1 is biconnected, we find that Gi is
biconnected,

We now show that any solution for (Gi−1, k, Bi−1, Ri−1) corresponds to
a solution for (Gi, k, Bi, Ri), and vice versa.

First suppose that Hi−1 is an arbitrary solution for (Gi−1, k, Bi−1, Ri−1).
Let NGi−1(u1) \ {u2, . . . , ur} = {x1, . . . , xp}. We find that Gi−1 − {u1, u2}
contains at least two connected components, because NGi−1 [u2]\NGi−1 [u1] 6=
∅. As Gi−1 is biconnected and Gi−1 − {u1, u2} contains at least two con-
nected components, {u1, u2} is a minimal ({u3, . . . , ur}, VGi−1\{u1, . . . , ur})-
separator of Gi−1. Hence we may apply Lemma 2 iii), which tells us that
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u2u1, . . . , uru1 ∈ EHi−1 , u3u2, . . . , uru2 /∈ EHi−1 , and u1x1, . . . , u1xp /∈
EHi−1 . As Ri ⊆ Ri−1 ∪ {u1u2} and Bi ⊆ B ∪ {u1x1, . . . , u1xp}, this
means that the graph obtained from Hi−1 by deleting u3, . . . , ur is a so-
lution for (Gi, k, Ri, Bi); in particular note that |EHi | ≤ |EHi−1 | − (r− 3) ≤
|VGi−1 | − 1 + k − (r − 3) = |VGi | − 1 + k, as required.

Now suppose that Hi is an arbitrary solution for (Gi, k, Ri, Bi). Then
adding the edges u1u3, . . . , u1ur to Hi yields a graph H that is a square root
of Gi−1. The edges u1u3, . . . , u1ur are not in Bi−1, as they are in the set
R′i−1 constructed in step 5 and R′i−1 ∩ Bi−1 = ∅ (otherwise the trimming
rule would have stopped when processing (Gi−1, k, Ri−1, Bi−1) in step 6).
Now suppose that Ri−1 contains an edge not in H. By definition of Ri,
this edge must be between some us and ut with 3 ≤ s < t ≤ r. Then
usut belongs to Ri, because it was placed in the set Rh for some h ≤ i− 1.
In step 4 of the corresponding call of the trimming rule, also one of the
edges usu1 or utu1 was placed in Bh. Hence either usu1 or utu1 belongs
to Bi−1. This yields a contraction as both usu1 and utu1 belong to R′i−1
and R′i−1 ∩ Bi−1 = ∅ (otherwise the trimming rule would have stopped
when processing (Gi−1, k, Ri−1, Bi−1) in step 6). Hence, after observing
that |EH | = |EHi |+ (r − 3) ≤ |VGi | − 1 + k + (r − 3) = |VGi−1 | − 1 + k, we
conclude that H is a solution for (Gi−1, k, Ri−1, Bi−1). We observe that Hi

cannot be a tree, as this would imply that H is a tree, which is not possible
as (Gi−1, k, Ri−1, Bi−1) does not have such a solution.

We are left to show that if the trimming rule returned a no-answer for
(G`, k, R`, B`), then (G0, k, R0, B0) has no solution. Due to the above, this
comes down to showing that (G`, k, R`, B`) has no solution.

Suppose that the trimming rule returned a no-answer for (G`, k, R`, B`).
Then this must have happened in step 2, 3 or 6, i.e., after step 1. Hence,
there exists a pair of adjacent vertices S = {u1, u2} in G`, such that one
connected component of G`−S has vertex set {u3, . . . , ur} and {u1, . . . , ur}
is a clique.

First assume that S is not a separator of G`, that is, G` is a complete
graph with vertex set {u1, . . . , ur}. Then NG[u1] = NG[u2] (and the no-
answer given by the trimming rule happens in step 2). In order to obtain
a contradiction, assume that (G`, k, R`, B`) has a solution H. Any star on
|VG`
| vertices is a square root of G` with at most |VG`

|−1+k edges. However,
H cannot be such a star, as (G`, k, R`, B`) has no solution that is a tree.
Hence, R` 6= ∅ or B` 6= ∅. Recall that B0 = R0 = ∅. Hence, ` ≥ 1, and
non-emptiness of R` or B` must have been obtained in a previous call of
the trimming rule, say in the (h + 1)th call of the trimming rule for some
0 ≤ h ≤ ` − 1. By definition of steps 5 and 6, we find that Bh 6= ∅ implies
that Rh 6= ∅. Hence, Rh 6= ∅. Let uiuj ∈ Rh. By steps 5 and 6, this edge
has an end-vertex, say ui, such that uius ∈ B` for all s ∈ {1, . . . , r} \ {i, j}.
Consequently, ujus ∈ EH for all s ∈ {1, . . . , r} \ {j}. Since the star with
central vertex uj and leaves VG`

\ {uj} is not a solution for (G`, k, R`, B`),
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there must be an edge usut ∈ R` with s, t ∈ {1, . . . , r} \ {j}. However then,
due to steps 5 and 6, ujus ∈ B` or ujut ∈ B`, that is, at least one of these
edges cannot be in H; a contradiction.

Now assume that S is a separator of G`. Both u1 and u2 have at least one
neighbor in VG`

\{u1, . . . , ur}, because G` is biconnected. Hence, {u1, u2} is
a minimal separator (and we may apply Lemma 2 in the remainder). Recall
that the trimming rule only returns a no-answer in steps 2, 3, or 6. We
consider each of these three cases separately.

Case 1. The no-answer is given in step 2. Then NG[u1] = NG[u2]. By
Lemma 2 (i) and (ii), G` is the union of two cliques {u1, . . . , ur} and
{u1, u2, x1, . . . xp} where {x1, . . . , xp} = NG(u1) \ {u2, . . . , ur}. In order
to obtain a contradiction, suppose that (G`, k, R`, B`) has a solution H.
By Lemma 2 (i) and (ii), we may assume without loss of generality that
u1u2, . . . , u1ur ∈ EH , u2u3, . . . , u2ur /∈ EH , u1x1, . . . , u1xp /∈ EH and
u2x1, . . . , u2xp ∈ EH . Recall that (G`, k, R`, B`) has no solution that is
a tree. Hence, there exists an edge uiuj ∈ R` for some i, j ∈ {2, . . . , r} or an
edge xixj ∈ R` for some i, j ∈ {x1, . . . , xp}. By symmetry, we only need to
consider the case uiuj ∈ R`. This edge was placed in R` in some previous
call of the trimming rule. However, due to steps 5 and 6 performed in that
call, we find that uiu1 ∈ B` or uju1 ∈ B`, that is, at least one of these two
edges cannot be in H; a contradiction.

Case 2. The no-answer is given in step 3. Then we have NG[u1]\NG[u2] 6= ∅
and NG[u2] \NG[u1] 6= ∅. Due to Lemma 2 (i) and (iii), (G`, k, R`, B`) has
no solution.

Case 3. The no-answer is given in step 6. Then R`∩B′` 6= ∅ or R′`∩B` 6= ∅.
By step 4, we may assume that NG[u1] \ NG[u2] = ∅ and that NG[u2] \
NG[u1] 6= ∅. In order to obtain a contradiction, suppose that (G`, k, R`, B`)
has a solution H. By Lemma 2 (iii), R′` = {u2u1, . . . , uru1} ⊆ EH . Hence
R′` ∩B` = ∅, which means that R` ∩B′` 6= ∅.

Let {x1, . . . , xp} = NG(u1) \ {u1, . . . , ur}. Then we have that B′` =
{uiuj | 2 ≤ i < j ≤ r} ∪ {u1x1, . . . , u1xp}. By the same arguments as used
in Case 1, we find that uiuj /∈ R` for all 2 ≤ i < j ≤ r. By Lemma 2 (iii),
we find that EH , and hence R`, do not contain the edges u1x1, . . . , u1xp.
We conclude that R` ∩B′` = ∅; a contradiction.

Lemma 6 shows that the trimming rule is safe, that is, we either found
that (G, k, ∅, ∅) has no solution, or that we may continue with the in-
stance (G`, k, R`, B`) instead. Suppose the latter case holds. Recall that
(G`, k, R`, B`) has no set S as specified in step 1, as otherwise we would
have applied the trimming rule once more.

To simplify notation, we write (G, k,R,B) = (G`, k, R`, B`). We need
the following properties that hold for every solution of (G, k,R,B) (should
(G, k,R,B) have a solution).
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Lemma 7. Any solution H of (G, k,R,B) satisfies the following properties:

(i) the neighbor of every pendant vertex of H has at least two non-pendant
neighbors in H;

(ii) only edges of G incident to pendant vertices of H can be in R or B;

(iii) if a pendant vertex v of H is incident to an edge of R in G, then all
other edges of G that are incident to v are in B.

Proof. In order to show (i), suppose that H is a solution of an instance
(G, k,R,B), such that H contains a pendant vertex u adjacent to a vertex
v. If dH(v) = 1, then H is isomorphic to K2, which is not possible as
(G, k,R,B) has no solution that is a tree. Hence dH(v) ≥ 2 and v has at
least one neighbor other than u. If all neighbors of v are pendant, then H is
a tree; a contradiction. Hence, v has at least one non-pendant neighbor. If v
has a unique non-pendant neighbor w, then by Lemma 1, G−{v, w} contains
a connected component induced by the pendant neighbors of v whose vertices
together with v and w form a clique in G. Hence, we can apply the trimming
rule on S = {v, w}, which is a contradiction. Properties (ii) and (iii) follow
from the construction of R and B in steps 4 and 5 of the trimming rule.

We now exhaustively apply the following rule on (G, k,R,B).

Path Reduction Rule

1. Find an F -triple S = (u1, u2, u3).

2. Set R′ = {u2u1, u2u3, . . . , u2ur} and B′ = {x1u2, . . . , xpu2} ∪
{y1u2, .., yqu2} ∪ {u1u3, . . . , u1ur} ∪ {u3u4, . . . , u3ur} (notice that
{u3u4, . . . , u3ur} = ∅ if r = 3).

3. If R ∩B′ 6= ∅ or R′ ∩B 6= ∅, then stop and return a no-answer.

4. Delete u2, u4, . . . , ur from G. Delete all edges incident to u2, u4, . . . , ur
from R and B. If u1u3 ∈ B, then delete u1u3 from B. Add u1u3 to R.
Add x1u3, . . . , xpu3 and y1u1, . . . , yqu1 in G. Put these edges in B.

Exhaustively applying the path reduction rule yields a sequence of in-
stances (G0, k, R0, B0), . . . , (G`, k, R`, B`) of Tree + k Edges Square
Root with Labels for some integer ` ≥ 0, where (G0, k, R0, B0) =
(G, k,R,B) and where (G`, k, R`, B`) is an instance for which we have either
returned a no-answer (in step 3) or for which there does not exist an F -triple
S. For 0 ≤ i ≤ ` we denote the sets R′ and B′ constructed in the (i+ 1)th
call of the path reduction rule by R′i and B′i, respectively.

We need the following lemma, which we will use at several places.
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Lemma 8. Let 1 ≤ i ≤ ` and (u1, u2, u3) be the F -triple that yielded instance
(Gi, k, Ri, Bi). If Hi is a solution for (Gi, k, Ri, Bi), then u1u3 ∈ EHi and
the graph Hi−1 obtained from Hi by removing the edge u1u3 and by adding
u2 and vertices u4, . . . , ur (if r ≥ 4) together with edges u2u1, u2u3, . . . , u2ur
is a solution for (Gi−1, k, Ri−1, Bi−1).

Proof. We find that u1u3 is an edge in Hi, because u1u3 ∈ Ri due to step
4 of the last call of the path reduction rule. The graph Hi−1 is not only
a square root of Gi−1 but even a solution for (Gi−1, k, Ri−1, Bi−1) for the
following reasons. First, Hi−1 has at most |VGi−1 | − 1 + k edges. Second,
Hi−1 contains no edge of Bi−1 as the added edges u2u1, u2u3, . . . , u2ur are
all in R′i−1 and R′i−1 ∩ Bi−1 = ∅. Third, Hi−1 contains all the edges of
Ri−1, which can be seen as follows. Suppose that Hi−1 misses an edge
of Ri−1. Then this edge must be in {x1u2, . . . , xpu2} ∪ {y1u2, .., yqu2} ∪
{u1u3, . . . , u1ur} ∪ {u3u4, . . . , u3ur}. However, this set is equal to B′i−1 and
Ri−1 ∩B′i−1 = ∅.

We also need the following lemma about true twins in G0, . . . , G` that
we will use later as well.

Lemma 9. Let 1 ≤ i ≤ ` and (u1, u2, u3) be the F -triple that yielded instance
(Gi, k, Ri, Bi). Then any true twins v, w ∈ VGi \{u1, u3} in Gi are true twins
in Gi−1.

Proof. Suppose that Gi has true twins v, w ∈ VGi \ {u1, u3} that are not
true twins in Gi−1. Consider the corresponding F -graph that yielded the
instance (Gi, k, Ri, Bi). The neighborhood of v or w is modified by the path
reduction rule, because v, w are not true twins in Gi−1. We may assume
without loss of generality that the neighborhood of v is changed. Note that
neither v = u2 nor v ∈ {u4, . . . , ur} if r ≥ 3, because these vertices have
been removed in step 4 of the path reduction rule when Gi was constructed.
As v /∈ {u1, u3} either, we find that v ∈ {x1, . . . , xp} ∪ {y1, . . . , yq}. By
symmetry we may assume that v ∈ {x1, . . . , xp}. We observe that v is
adjacent to both u1 and u3 in Gi. We find that w /∈ {x1, . . . , xp}, because
the neighborhood of each xi is modified in the same way (namely by the
removal of u2 and the addition of u3). Since v and w are true twins, they
are adjacent. We then obtain that w /∈ {y1, . . . , yq}, because no two vertices
xi and yj are adjacent in Gi. We conclude that the neighborhood of w is not
modified by the application of the path reduction rule. Then w is adjacent
to u1 and u3 in Gi−1 already, because v is adjacent to u1 and u3 in Gi

and v, w are true twins in Gi. However, by the definition of an F -graph,
NGi−1(u1) ∩ NGi−1(u3) = {u2, u4, . . . , ur}, and u2, u4, . . . , ur are not in Gi

as they were removed by the path reduction rule; a contradiction.

The next lemma is the analog of Lemma 6 for the path reduction rule.
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Lemma 10. The instance (G`, k, B`, R`) has no solution that is a tree, and
G` is biconnected. Moreover, (G`, k, R`, B`) has a solution if and only if
(G0, k, R0, B0) has a solution. If the path reduction rule returned a no-
answer for (G`, k, R`, B`), then (G0, k, R0, B0) has no solution.

Proof. For 0 ≤ i ≤ `, we use induction to show that the graph Gi is bi-
connected and that (Gi, k, Bi, Ri) has no solution that is a tree. Moreover,
for all 1 ≤ i ≤ `, we show that (Gi, k, Ri, Bi) has a solution if and only
if (Gi−1, k, Ri−1, Bi−1) has a solution. Finally, we prove that if the path
reduction rule returned a no-answer for (G`, k, R`, B`), then (G0, k, R0, B0)
has no solution.

If i = 0, then Gi is biconnected and (G0, k, B0, R0) has no solution that is
a tree by Lemma 6. Now suppose that 1 ≤ i ≤ `. By our induction hypoth-
esis, we may assume that Gi−1 is biconnected and that (Gi−1, k, Bi−1, Ri−1)
has no solution that is a tree.

The graph Gi−1 has an F -triple S = (u1, u2, u3), because the path
reduction rule applied on (Gi−1, k, Ri−1, Bi−1) yielded a new instance
(Gi, k, Ri, Bi). Since Gi−1 is biconnected, Gi is biconnected; in particular,
note that p ≥ 1 and q ≥ 1 by definition of an F -triple.

First suppose that Hi−1 is a solution for (Gi−1, k, Ri−1, Bi−1). We claim
that Hi−1 contains no edge usut ∈ Ri−1 with 4 ≤ s < t ≤ r. We prove this
claim by contradiction: let usut ∈ EHi−1 ∩Ri−1 for some 4 ≤ s < t ≤ r.

Suppose that usut ∈ R0. We may apply Lemma 7 as (G0, k, R0, B0) has
a solution H0; if i ≥ 1 this fact follows from the induction hypothesis. By
Lemma 7 we find that either us is a pendant vertex in H0 with ut as its
(unique) neighbor, or vice versa. We may assume without loss of generality
that the first case holds, that is, us is pendant in H0 and has ut as its
neighbor. Note that NG0 [us] ⊆ NG0 [ut]. We claim that NGh

[us] ⊆ NGh
[ut]

for all 0 ≤ h ≤ i− 1. To obtain a contradiction, suppose not. Then at some
point us will be made adjacent to a vertex v not adjacent to ut for the first
time in step 4 of some call of the path reduction rule. Let S = (u′1, u

′
2, u
′
3) be

the corresponding F -triple. Then we may assume without loss of generality
that either us /∈ {u′1, u′2, u′3} is adjacent to u′1 and u′2 but not to u′3 = v,
or that v /∈ {u′1, u′2, u′3} is adjacent to u′1, u

′
2 but not to u′3 = us. In the

first case, ut is not in {u′1, u′2}, but must be adjacent to u′1 and u′2 by our
assumption, and hence, the edge utu

′
3 = utv will be added in the same step;

a contradiction. In the second case, as us is adjacent to u′1 and u′2, also ut is
adjacent to u′1 and u′2 (again by our assumption). Since ut is not removed in
this step (as ut belongs to Gi−1), this violates the definition of an F -triple.
We conclude that NGh

[us] ⊆ NGh
[ut] for all 0 ≤ h ≤ i− 1.

We first assume that usu2 is an edge in G0. Step 4 of the path reduction
rule only moves an edge u′1u

′
3 from a B-set to an R-set if u′1 and u′3 are

outer vertices of an F -triple. In that case all their common neighbors will
be removed from the graph by the definition of an F -triple. We find that
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ut is a common neighbor of u2 and us in Gh for all 0 ≤ h ≤ i − 1, because
NGh

[us] ⊆ NGh
[ut] for all 0 ≤ h ≤ i − 1; in particular ut belongs to Gi−1.

Hence, the edge usu2 will never be moved from Bh to Rh in step 4 of the
(h+1)th call of the path reduction rule for some 0 ≤ h ≤ i−1. If usu2 is not
an edge in G0, then at some point it will be an edge due to step 4 of some
call of the path reduction rule, say the (h∗+1)th call for some 0 ≤ h∗ ≤ i−1.
In the same step, usu2 will be placed in the set Bh∗ . Then the edge usu2
will never be moved from Bh∗ to a set Rh for some h∗ < h ≤ i− 1, because
NGh

[us] ⊆ NGh
[ut] for all 0 ≤ h ≤ i− 1. Hence, in both cases, we find that

usu2 ∈ Bi−1 even if i ≥ 1. As usu2 ∈ R′i−1 (due to step 2 in the ith call), we
find that R′i−1 ∩ Bi−1 6= ∅. Hence, the path reduction rule would return a
no-answer for (Gi−1, k, Ri−1, Bi−1) in step 3, and consequently the instance
(Gi, k, Ri, Bi) would not exist; a contradiction.

Now suppose that usut was placed in some set Rh for some 1 ≤ h ≤ i−1.
Properties (ii) and (iii) of an F -graph together with step 4 of the path
reduction rule imply the following: if us and ut form a triangle with some
vertex z, then usz ∈ Bh or utz ∈ Bh. Moreover, in the case in which
z ∈ VGi−1 , this property is not violated by any subsequent intermediate calls
of the path reduction rule. Hence, if usut ∈ Ri−1, then usu2 ∈ Bi−1 or utu2 ∈
Bi−1, and as {usu2, utu2} ⊆ R′i−1 as well, we derive the same contradiction
as before. We conclude that Hi−1 contains no edge usut ∈ Ri−1 with 4 ≤
s < t ≤ r. Also, by Lemma 4, we may assume without loss of generality
that Hi−1 contains no edge usut /∈ Ri−1 with 4 ≤ s < t ≤ r; otherwise
we could remove such an edge from Hi−1, and the resulting graph would
still be a solution for (Gi−1, k, Ri−1, Bi−1). Consequently, u4, . . . , ur are
pendant vertices of Hi−1. This means that the graph H obtained from Hi−1
by deleting u2, u4, . . . , ur and adding the edge u1u3 is not only a square root
of Gi with at most |VGi |− 1 +k edges but even a solution for (Gi, k, Ri, Bi).

Now suppose that Hi is a solution for (Gi, k, Ri, Bi). By Lemma 8, the
graph H obtained from Hi by removing the edge u1u3 and by adding u2 and
vertices u4, . . . , ur (if r ≥ 4) together with edges u2u1, u2u3, . . . , u2ur is a so-
lution for (Gi−1, k, Ri−1, Bi−1). We observe that Hi cannot be a tree, as this
would imply that H is a tree, which is not possible as (Gi−1, k, Ri−1, Bi−1)
does not have such a solution by the induction hypothesis.

Finally, suppose that the path reduction rule returned a no-answer for
(G`, k, R`, B`). We must show that (G0, k, R0, B0) has no solution. Due to
the above this comes down to showing that (G`, k, R`, B`) has no solution.
The only step in which the path reduction rule can return a no-answer is in
step 3, meaning thatG` has an F -triple S = (u1, u2, u3) such thatR`∩B′` 6= ∅
or R′` ∩B` 6= ∅.

In order to obtain a contradiction, suppose that (G`, k, R`, B`) has a so-
lution H. By Lemma 4, the graph F shown in Figure 4 is a subgraph of H
such that dH(u2) = r − 1, {x1, . . . , xp} = NH(u1) \ {u2} and {y1, . . . , yq} =
NH(u3) \ {u2}. Consequently, R′` = {u2u1, u2u3, . . . , u2ur} ⊆ EH , and
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hence R′` ∩ B` = ∅, and moreover, EH ∩ B′` = EH ∩ ({x1u2, . . . , xpu2} ∪
{y1u2, .., yqu2} ∪ {u1u3, . . . , u1ur} ∪ {u3u4, . . . , u3ur}) = ∅, and hence R` ∩
B′` = ∅; a contradiction.

Lemma 10 shows that the path reduction rule is safe, that is, we either
found that (G0, k, R0, B0) has no solution, or that we may continue with
the instance (G`, k, R`, B`) instead. Suppose the latter case holds. Recall
that (G`, k, R`, B`) has no F -triple, as otherwise we would have applied the
path reduction rule once more. Also recall that R0 is the set of edges in
the set R immediately after the trimming rule. We write R1 = R0 ∩R` and
R2 = R`\R0. To simplify notation, from now on, we also write (G, k,R,B) =
(G`, k, R`, B`); note that R = R1∪R2. We need the following properties that
hold for every solution of (G, k,R,B) (should (G, k,R,B) have a solution).

We call an induced cycle C in a graph H semi-pendant if all but at most
one of the vertices of C are only adjacent to pendant vertices of H and their
neighbors on C. Similarly, we call an induced path P in a graph H semi-
pendant if all internal vertices of P are only adjacent to pendant vertices
of H and their neighbors on P .

Lemma 11. Any solution H of (G, k,R,B) has the following properties:

(i) the neighbor of every pendant vertex of H has at least two non-pendant
neighbors in H;

(ii) only edges of G incident to pendant vertices of H can be in R1, and
if a pendant vertex v of H is incident to an edge of R, then all other
edges of G that are incident to v are in B;

(iii) no edge of R2 is incident to a pendant vertex of H;

(iv) the length of every semi-pendant path in H is at most 5;

(v) the length of every semi-pendant cycle in H is at most 6.

Proof. We prove that property (i) holds by contradiction. Suppose that H
contains a vertex v that is the (unique) neighbor of a pendant vertex u,
such that v has at most one non-pendant neighbor in H. If all neighbors
of v in H are pendant, then H is a tree. However, this would contradict
Lemma 10. Hence, v has a unique non-pendant neighbor in H. Recall that
H is a solution for (G`, k, R`, B`). Note that if v is an outer vertex of the
corresponding F -triple, then Lemma 8 tells us that (G`−1, k, R`−1, B`−1) has
a solution H`−1 in which v is a non-pendant vertex that has at least one
pendant neighbor and that has a unique non-pendant neighbor. Hence, by
applying Lemma 8 inductively, we obtain that (G0, k, R0, B0) has a solution
H0 containing a vertex with exactly the same property. This contradicts
Lemma 7 (i). We conclude that property (i) holds.
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We now show property (ii). By Lemma 7, every edge of G0 that is in
R0 is incident to a pendant vertex u of any solution for (G0, k, R0, B0) such
that all the other edges of u belong to B0. We observe that, when applying
the path reduction rule, u will neither be in an F -triple nor removed from
the graph, but u could be a vertex in {x1, . . . , xp}∪{y1, . . . , yq}. Hence, the
path reduction rule may change the neighbors of u but if so any new edges
incident to it will be placed in B (and stay in B afterward). Consequently, u
must be a pendant vertex in any solution for (G, k,R,B)(= (G`, k, R`, B`))
as well. We conclude that (ii) holds.

We now prove property (iii). Recall that we applied the path reduction
rule only after first applying the trimming rule exhaustively. After applying
the path reduction rule on an F -triple (u1, u2, u3) vertices u1 and u3 have
degree at least 2 in any solution for the resulting instance, which can be
seen as follows. The edge u1u3 is added to R2 ⊆ R, and hence belongs to
any solution. We also have that u1 is adjacent to x1 in G, whereas the edge
u3x1 belongs to B. This means that u1 cannot be made adjacent to x1 via
the path u1u3x1 in H, and as such must have at least one other neighbor in
H. For the same reason u3, which is adjacent to y1 in G whereas u1y1 ∈ B,
must have another neighbor in H besides u1. As a consequence, any edge
in R2 cannot be incident to a pendant vertex of H, that is, we have shown
property (iii).

We now prove property (iv). Let P be a semi-pendant path of length at
least 6 in H. By definition, P is an induced path. Hence, we can take any
three consecutive vertices of P as the three vertices u1, u2, u3 in Lemma 3.
By applying this lemma, we find that G is an F -graph implying that we
could have applied the path reduction rule once more; a contradiction. Prop-
erty (v) can be proven by using the same arguments.

We need the following lemma that holds in case a solution exists for
(G, k,R,B). In this lemma we set

h(k) = max{6, 15k − 14}.

Lemma 12. The number of non-pendant vertices of any solution for
(G, k,R,B) is at most h(k).

Proof. Suppose (G, k,R,B) has a solution H. Let Z be the set of pendant
vertices of H, and let H∗ = H −Z. We need to show that VH∗ has at most
h(k) vertices. Let V ′ be the set of vertices that have degree at least 3 in H∗,
and let V ′′ be the set of vertices of degree 2 in H∗. By Lemma 11 (i) every
vertex of H that is adjacent to a pendant vertex of H has degree at least 2 in
H∗. Hence, H∗ has no vertices of degree at most 1, that is, VH∗ = V ′ ∪ V ′′.
We have that |EH | ≤ |VG| − 1 + k = |VH | − 1 + k, because H is a solution
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for (G, k,R,B). This means that

|V ′|+ |V ′′| − 1 + k = |VH | − |Z| − 1 + k

≥ |EH | − |Z|
= |EH∗ |
= 1

2

∑
v dH∗(v)

≥ 1
2(3|V ′|+ 2|V ′′|).

Hence, |V ′| ≤ 2k − 2, and moreover, |EH∗ | − |V ′′| ≤ |V ′| − 1 + k.
First suppose that H∗ is a cycle. By Lemma 11 (v) the length of H∗ is

at most 6 and we have that |VH∗ | ≤ 6 ≤ h(k).
Now suppose that H∗ is not a cycle. Then, as H∗ has no vertices of

degree 1, we have that H∗ has one or more vertices of degree at least 3. We
show that |VH∗ | ≤ 15k − 14 ≤ h(k) in this case.

Let α be the number of paths in H∗ between two distinct vertices of
degree at least 3 whose internal vertices are all of degree 2 in H∗; edge
whose end-vertices are of degree at least 3 are considered to be such paths
as well. Note that by Lemma 11 (iv) the length of such paths is at most 5.
Let β be the number of cycles in H∗ that have exactly one vertex of degree
at least 3. Note that by Lemma 11 (v) the length of such cycles is at most 6.
All these paths and cycles are edge-disjoint and every edge of H∗ is included
in one of them, because H∗ is connected, has no pendant vertices and is not
a cycle. Observe that if P is a paths of length ` in H∗ between two distinct
vertices of degree at least 3 whose internal vertices are all of degree 2 in H∗,
then P has ` − 1 vertices of degree 2 in H∗. Similarly, if C is a cycle of
length ` in H∗ that have exactly one vertex of degree at least 3 in H∗, then
C has `− 1 vertices of degree 2 in H∗. We find that α+ β = |EH∗ | − |V ′′|.
Recall that |EH∗ | − |V ′′| ≤ |V ′| − 1 + k and |V ′| ≤ 2k − 2. Therefore,
α+ β ≤ |V ′| − 1 + k ≤ 2k − 2− 1 + k = 3k − 3 implying that

α ≤ 3k − 3− β.

Any two cycles in H∗ that have exactly one vertex of degree at least 3 in H∗

have no common edges. Since the number of pairwise edge-disjoint cycles in
H∗ is at most k, we find that

β ≤ k.

Hence, |V ′′| ≤ 5β + 4α ≤ 5k + 4((3k − 3) − k) = 13k − 12. Consequently,
H∗ has at most 2k − 2 + 13k − 12 = 15k − 14 vertices.

We are now ready to state our final reduction rule. The goal of this rule
is to apply it once in order to deduce either that (G, k,R,B) has no solution
or to derive a new instance of bounded size. A true twin partition of a set
of vertices S of a graph G is a partition S1, . . . , St of S such that for all
u, v ∈ S and all 1 ≤ i ≤ t we have that u and v are in Si if and only if u and
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v are true twins in G. If S consists of simplicial vertices only we observe
that there is no edge between any two vertices that belong to different sets
Si and Sj .

Simplicial Vertex Reduction Rule

1. Find the set S of all simplicial vertices of G that are not incident to
the edges of R2, and moreover, that have all but one of their incident
edges in B should they be incident to an edge of R1.

2. If |VG \ S| > h(k), then stop and return a no-answer.

3. Construct the true twin partition S1, . . . , St of S. Let X1, . . . , Xt be
the sets of vertices incident to an edge of R1 in S1, . . . , St, respectively.

4. If t > h(k), then stop and return a no-answer.

5. If there exists a set Xi such that the edges of R1 incident to a vertex
of Xi have no common end-vertex, then stop and return a no-answer.

6. If there exists a set Si such that |Si\Xi| ≥ h(k)+1 and such that there
are three vertices u ∈ Xi, v ∈ NG(u) and x ∈ Si \ Xi with uv ∈ R1

and xv ∈ B, then stop and return a no-answer.

7. For i = 1, . . . , t, if |Xi| > 1, then take |Xi| − 1 arbitrary vertices of Xi

and delete them both from G and from Si, also delete the edges of R
and B that are incident to these vertices.

8. For i = 1, . . . , t, if |Si| > h(k) + 1, then delete |Si| −h(k)− 1 arbitrary
vertices of Si \Xi from G, also delete the edges of R and B that are
incident to these vertices.

Applying the simplicial vertex reduction rule on (G, k,R,B) either yields
a no-answer (in step 2, 4, 5 or 6) or a new instance (Ĝ, k, R̂, B̂) of Tree + k
Edges Square Root with Labels. We will show that if Ĝ exists, then
its size is bounded by a quadratic function of k. For doing so we first need
the following two lemmas.

Lemma 13. For i = 1, . . . , t, no vertex of Si\Xi is incident to an edge in R.

Proof. By definition of Si, no vertex of Si, and hence no vertex of Si \Xi, is
incident to an edge in R2. By definition of Xi, no vertex in Si\Xi is incident
to an edge in R1. Since R = R1 ∪R2, we have proven Lemma 13.

For x ∈ VG, we let B(x) denote the set of edges of B incident to x.

Lemma 14. B(x) = B(y) for all x, y ∈ Si \Xi.
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Proof. We only prove that B(x) ⊆ B(y), as B(y) ⊆ B(x) can be proven
by using the same arguments. Let x, y ∈ Si \ Xi and let xz ∈ B for some
z ∈ VG. We first show that y 6= z and we then prove that yz ∈ B.

In order to obtain a contradiction, assume that y = z. Then xy was
included in B either by an application of the trimming rule or by an appli-
cation of the path reduction rule. In both cases, xy was also made adjacent
to an edge of R. This edge may be deleted later on. Deleting an edge e
from R happens either in step 6 of the trimming rule or in step 4 of the path
reduction rule. However, both rules add a new edge e′ to R that is adjacent
to all the edges that were previously adjacent to e and that were not deleted
by the two rules. Hence, xy is still adjacent to an edge of R in G. In other
words, x or y is incident to an edge of R in G. This is not possible due to
Lemma 13, because x and y belong to Si \Xi. Hence, y 6= z.

In order to show that yz ∈ B, we again use the observation that whenever
the trimming or path reduction rule deletes an edge e ∈ R, the rule adds
a new edge e′ in R such that e′ is adjacent to all the edges uv that were
previously adjacent to e and that were not deleted by the rules. In this case
we make the extra observation that if a vertex u is an end-vertex of e that
is not deleted by the rule, then u is an end-vertex of e′. We find that z was
incident to an edge of R after applying the trimming rule or path reduction
rule that added the edge xz to B, because the vertices in Si \ Xi are not
incident to any edges in R by Lemma 13. We also observe that an edge in B
is only deleted from B if one of its end-vertices is deleted unless it is added
to R by the path reduction rule. This means that we can argue as follows.

First suppose that xz was added to B due to an application of the
trimming rule. If y was adjacent to z when the rule was applied, then yz
was included in B as well by the definition of this rule. If y was made
adjacent to z by the path reduction rule afterwards, then yz ∈ B by the
definition of the path reduction rule.

Now suppose that xz was added to B due to an application of the path
reduction rule. By definition of this rule, x and z were not adjacent to each
other before. Suppose that yz /∈ B. Then xy, yz are edges of the original
input graph of the Tree + k Edges Square Root problem. Since xz
was not such an edge, x and y only became true twins due to an application
of the path reduction rule. Then, by Lemma 9, x or y must be an outer
vertex of some F -triple, that is, at least one of these two vertices must be
incident to an edge of R. Then there is an edge of R incident to at least one
of these two vertices after the exhaustive application of the path reduction
rule. This is a contradiction to Lemma 13, because x and y are in Si \Xi.
Hence, yz ∈ B. This completes the proof of Lemma 14.

We prove the following lemma, which is the final lemma of this section;
in particular note that if Ĝ exists then its size is bounded by a quadratic
function of k.
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Lemma 15. If the simplicial vertex reduction rule returned a no-answer
for (G, k,R,B), then (G, k,R,B) has no solution. Otherwise, the new in-
stance (Ĝ, k, R̂, B̂) has a solution if and only if (G, k,R,B) has a solution.
Moreover, Ĝ has at most h(k)(h(k) + 2) vertices.

Proof. We start by showing that (G, k,R,B) has no solution if the simplicial
vertex reduction rule returned a no-answer for (G, k,R,B). This can happen
in step 2, 4, 5 or 6, each of which we discuss in a separate case.

Case 1. The no-answer is given in step 2. Suppose (G, k,R,B) has a
solution H. We will prove that |VG \S| ≤ h(k), which means that returning
a no-answer is correct if |VG \ S| > h(k).

Let Z be the set of pendant vertices of H, and let H∗ = H−Z. By Obser-
vation 1 (i), vertices in Z are simplicial vertices ofG. Then, by Lemma 11 (ii)
and (iii), we find that Z ⊆ S. Hence, |VG \ S| = |VG| − |S| = |VH | − |S| ≤
|VH |−|Z| = |VH∗ | ≤ h(k), where the last inequality follows from Lemma 12.

Case 2. The no-answer is given in step 4. Suppose (G, k,R,B) has a
solution H. We will prove that t ≤ h(k), which means that returning a
no-answer is correct if t > h(k).

Let H∗ be the graph obtained from H after removing all pendant vertices
of H. Then |VH∗ | ≤ h(k) by Lemma 12. If a set Si contains a pendant vertex
u of H, then u is adjacent to a vertex v of H∗. Then, by Observation 1 (ii),
v is not adjacent to pendant vertices of H in any Sj with j 6= i. Otherwise
Si consists of non-pendant vertices of H, that is, vertices of H∗; being
nonempty Si contains at least one vertex of H∗. We conclude that every
set in the true twin partition of S corresponds to at least one unique vertex
of H∗. If their total number t > h(k), this means that |VH∗ | > h(k); a
contradiction. Hence, t ≤ h(k), as we had to show.

Case 3. The no-answer is given in step 5. Suppose that (G, k,R,B) has a
solution H. We will prove that the edges of R1 incident to a set Xi have a
common end-vertex for i = 1, . . . , t, which means that returning a no-answer
is correct should this not be the case.

In order to obtain a contradiction, suppose that some set Xi contains
two vertices u and v that are incident to edges uu′, vv′ ∈ R1 with u′ 6= v′.
By Lemma 11 (ii), we find that uu′ and vv′ are incident to pendant vertices
of H. By Observation 1 (iii), these pendant vertices are not adjacent in G.
However, from the definition of Si we deduce that u, v, u′, v′ are mutually
adjacent; a contradiction. This completes Case 3.

Case 4. The no-answer is given in step 6. Then there exists a set Si such
that |Si \ Xi| ≥ h(k) + 1 and such that there are three vertices u ∈ Xi,
v ∈ NG(u) and x ∈ Si \Xi with uv ∈ R1 and xv ∈ B. In order to obtain a
contradiction, assume that (G, k,R,B) has a solution H.

By Lemma 12, H has at most h(k) non-pendant vertices. We have that
|Si \ Xi| ≥ h(k) + 1. Hence, at least one vertex y ∈ Si \ Xi is a pendant
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vertex of H. Also, u ∈ Xi is a pendant vertex of H that has v as its unique
neighbor, because uv ∈ R1 and all other edges incident to u belong to B
by definition of S. If y = x, then v is not adjacent to y in H, because
xv ∈ B. If y 6= x, then v is not adjacent to y in H either, since xv ∈ B and
B(x) = B(y) (due to Lemma 14) imply yv ∈ B. We conclude that u and
y are pendant vertices of H adjacent to different vertices. However, from
Observation 1 (iii) we derive that u and y are not adjacent in G. This is a
contradiction, because u and y are true twins in G by definition of Si. This
completes Case 4.

From now on assume that the simplicial vertex reduction rule did not return
a no-answer after performing step 6. Let (G′, k, R′, B′) be the instance
created after applying step 7 to some set Xi = {x1, . . . , x`} with ` ≥ 2,
that is, G′ is the graph obtained from G after deleting x2, . . . , x`, whereas
R′ and B′ are the sets obtained from R and B, respectively, after deleting
edges incident to x2, . . . , x` from them. We claim that (G′, k, R′, B′) has
a solution if and only if (G, k,R,B) has a solution. Before we prove this
claim, we first observe that in any solution H for (G, k,R,B) the vertices
x1, . . . , x` are pendant vertices in H. This is because x1, . . . , x` are incident
to exactly one edge in R1, whereas all the other edges incident to them
belong to B. Moreover, x1, . . . , x` have a (unique) common neighbor in H,
as otherwise a no-answer would have been returned in step 5. We let v
denote this common neighbor. Similarly, x1 is a pendant vertex that has v
as its (unique) neighbor in any solution H ′ for (G′, k, R′, B′).

First suppose that (G′, k, R′, B′) has a solution H ′. Then the graph
obtained fromH ′ by adding the vertices x2, . . . , x` and the edges x2v, . . . , x`v
is a square root of G by Lemma 5 (i). By definition of R′, B′ and the set
Xi (all of whose vertices are incident to one edge of R1 ⊆ R and to edges in
B) it is a solution for (G, k,R,B) as well.

Now suppose that (G, k,R,B) has a solution H. Then the graph ob-
tained from H after deleting x2, . . . , x` is a square root of G′ by Lemma 5 (ii).
By definition of R′ and B′, it is a solution for (G′, k, R′, B′) as well.

We denote the instance resulting from step 7 by (G, k,R,B) again and ob-
serve that every Xi now contains at most one vertex. It remains to consider
what happens at step 8. We let (G′, k, R′, B′) be the instance created after
applying step 8 to some set Si with |Si| > h(k) + 1, that is, G′ is the graph
obtained from G after deleting a set T of |Si| − (h(k) + 1) ≥ 1 arbitrary
vertices from Si \ Xi (note that this is possible as |Xi| ≤ 1), whereas R′

and B′ are the sets obtained from R and B, respectively, after deleting the
edges that are incident to vertices of T . We claim that (G′, k, R′, B′) has a
solution if and only if (G, k,R,B) has a solution.

First suppose that (G′, k, R′, B′) has a solution H ′. Since we could not
apply the trimming and path reduction rules for (G, k,R,B), we cannot ap-
ply these rules for (G′, k, R′, B′) either. Then, by using the same arguments
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that we applied for (G, k,R,B) in the proof of Lemma 12, we find that H ′

contains at most h(k) non-pendant vertices. Note that H ′ contains at least
h(k) + 1 vertices, which are all in Si. Hence, H ′ has at least one pendant
vertex x that belongs to Si. Let v be the (unique) vertex adjacent to x in
H ′. Then the graph H obtained from H ′ by adding the vertices of T and
their edges incident to v is a square root of G by Lemma 5 (i). We argue
that H is a solution for (G, k,R,B) as well. We have to show that none of
the |T | edges that we added in order to obtain H belong to B, because the
vertices of T ⊆ Si \Xi are not incident to the edges of R due to Lemma 13.
If x ∈ Si \Xi then xv /∈ B, and we have that yv /∈ B for all y ∈ T , because
B(x) = B(y) for all y ∈ Si \Xi. Assume that x ∈ Xi. Recall that |Xi| ≤ 1
after step 7. We have that |Si \Xi| ≥ h(k) + 1, because |Si| > h(k) + 1 after
step 7. Then yv /∈ B for all y ∈ Si \ Xi as otherwise the algorithm would
have produced a no-answer at step 6.

Now suppose that (G, k,R,B) has a solution H. By Lemma 12, the
graph H contains at most h(k) non-pendant vertices. Hence, H has at least
|Si|−h(k) ≥ h(k) + 2−h(k) = 2 pendant vertices. We may assume without
loss of generality that the vertices of T are amongst these pendant vertices
of H, because vertices in Si\Xi are true twins not incident to edges of R and
B(x) = B(y) for any x, y ∈ Si \Xi. If Xi = {x} 6= ∅, then x is a pendant
vertex in H incident to a unique edge xv ∈ R1. By Observation 1, all
pendant vertices of H that are in Si are adjacent to v in H. Then the graph
obtained from H after deleting the vertices of T is a square root of G′ by
Lemma 5 (ii). By definition of R′ and B′, it is a solution for (G′, k, R′, B′) as
well. If Xi = ∅, then all pendant vertices of H that are in Si are adjacent to
some v in H by Observation 1. Then, by Lemma 5 (ii), the graph obtained
from H by deleting the vertices of T is a square root of G′. By definition of
R′ and B′, it is a solution for (G′, k, R′, B′) as well.

From the above it follows that the instance (Ĝ, k, R̂, B̂) obtained after step 8
has a solution if and only if (G, k,R,B) has a solution. In order to complete
the proof, we must show that Ĝ has at most h(k)(h(k) + 2) vertices. Each
Si has at most h(k)+1 vertices due to step 8, and we also have t ≤ h(k) due
to step 4. Hence |S| ≤ h(k)(h(k) + 1). As the number of vertices in VG \ S
is at most h(k) due to step 2, we obtain that |VĜ| ≤ h(k)(h(k) + 1) +h(k) =
h(k)(h(k) + 2), as required.

2.3 Solving the Labeled Variant and Running Time Analysis

Let n and m denote the number of vertices and edges of the graph G of
the original instance (G, k) of Tree + k Edges Square Root. In order
to complete the proof of Theorem 1, we first note that the trimming and
path reduction rules are applied at most n times to construct the instance
(Ĝ, k, R̂, B̂). Each application of the trimming rule can be done in time
O(n2m) and each application of the path reduction rule takes time O(n3m).
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Finally, the simplicial vertex reduction rule can be done in time O(nm).
Hence, our kernelization algorithm runs in time O(n4m), and it remains
to solve the obtained reduced instance (Ĝ, k, R̂, B̂). We observe that Ĝ
has O(k4) edges, because it has at most h(k)(h(k) + 2) = max{48, (15k −
14)(15k− 12)} vertices. Therefore, we can solve Tree + k Edges Square
Root with Labels for instance (Ĝ, k, R̂, B̂) in time 2O(k4); we consider all
edge subsets of Ĝ that have size at most |VĜ|−1+k and use brute force. We

conclude that the total running time of our algorithm is 2O(k4) + O(n4m),
as required.

We finish this section with the following remarks. First, recall that our
quadratic kernel is a generalized kernel for the Tree + k Edges Square
Root problem. We believe that a quadratic kernel exists for this problem
as well by using a similar reduction. However, proving this seemed to be
more technical and also to yield a graph with more than max{48, (15k −
14)(15k − 12)} vertices. We therefore chose to prove our FPT result by
using a reduction leading to a generalized kernel. Second, it should also
be noted that our generalized kernel for Tree + k Edges Square Root
does not imply a kernel for Tree + k Edges Square Root with Labels,
because our reduction rules require that the original instance is unlabeled.
We do not know whether the (more general) problem Tree + k Edges
Square Root with Labels is FPT as well.

3 The Maximum Square Root Problem

Recall that the Maximum Square Root problem is that of testing whether
a given graph G with m edges has a square root with at least s edges
for some given integer s. In this section we give an FPT algorithm for
this problem with parameter k = m − s. In other words, we show that
the problem of deciding whether a graph G has a square root that can be
obtained by removing at most k edges of G is fixed-parameter tractable when
parameterized by k. We also present an exact algorithm for the Maximum
Square Root problem. Both algorithms are based on the observation that
in order to construct a square root H from a given graph G, we must delete
at least one of every pair of adjacent edges that do not belong to a triangle
in G. We therefore construct an auxiliary graph P(G) that has vertex set
EG and an edge between two vertices e1 and e2 if and only if e1 = xy and
e2 = yz for three distinct vertices x, y, z ∈ VG with xz /∈ EG. Observe that
P(G) is a spanning subgraph of the line graph of G. We need the following
lemma.

Lemma 16. Let H be a spanning subgraph of a graph G. Then H is a
square root of G if and only if EH is an independent set of P(G) and every
two adjacent vertices in G are at distance at most 2 in H.
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Proof. First suppose that H is a square root of G. By definition, every two
adjacent vertices in G are of distance at most 2 in H. In order to show
that EH is an independent set in P(G), assume that two edges e1, e2 ∈ EH

are adjacent vertices in P(G). Then e1 = xy and e2 = yz for three distinct
vertices x, y, z ∈ VG with xz /∈ EG. This means that x and z are of distance 2
in H implying that xz ∈ EG, which is a contradiction.

Now suppose that EH is an independent set of P(G) and that every two
adjacent vertices in G are at distance at most 2 in H. In order to show
that H is a square root of G, it suffices to show that every two non-adjacent
vertices in G have distance at least 3 in H. Let u and v be two non-adjacent
vertices in G that have distance at most 2 in H. Then there exists a vertex
z /∈ {u, v} such that uz, vz ∈ EH . Then e1 = uz and e2 = vz are adjacent
in P(G) contradicting the independence of EH in P(G).

We use Lemma 16 to prove Propositions 1 and 2. Here, we use the
O∗-notation to suppress any polynomial factors. A vertex cover is a subset
U ⊆ V such that every edge is incident with at least one vertex of U . The
Vertex Cover problem is that of testing whether a given graph has a
vertex cover of size at most p for a given integer p.

In Proposition 1 we prove that there is a O∗(2k) time algorithm to decide
whether a given graph G has square root H such that |EG \ EH | ≤ k.

Proposition 1. Maximum Square Root can be solved in time O∗(2k).

Proof. Let G be a graph with n vertices and m edges, and let k ≥ 0 be an
integer. By Lemma 16 it suffices to check whether P(G) has a vertex cover
U of size at most k such that HU = (VG, EG \ U) is a square root of G. All
vertex covers of size at most k of a graph can be enumerated by adapting
the standard O∗(2k) branching algorithm for the Vertex Cover problem
(see for example [6]). It requires O(m2) time to compute P(G) and O(nm)
time to check whether a graph HU is a square root of G. Hence the overall
running time of our algorithm is O∗(2k).

We observe that Maximum Square Root has a linear kernel for con-
nected graphs. This immediately follows from a result of Aingworth, Mot-
wani and Harary [2], who proved that if H is a square root of a connected
n-vertex graph G 6= Kn, then |EG \EH | ≥ n− 2. Hence, n ≤ k+ 2 for every
yes-instance (G, k) of Maximum Square Root with G 6= Kn (trivially,
Kn is its own square root). Note that this kernel does not lead to a faster
running time than O∗(2k).

In Proposition 2 we present our exact algorithm, which does not only
solve the decision problem but in fact determines a square root of a given
graph that has maximum number of edges.

Proposition 2. Maximum Square Root can be solved in time O∗(3m/3)
on graphs with m vertices.
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Proof. LetG be a graph with n vertices andm edges and k ≥ 0 be an integer.
We compute the graph P(G), enumerate all maximal independent sets I of
P(G), and verify for each I ⊆ EG whether G is the square of the graph
HI = (VG, I). Out of those graphs HI that are square roots of G, return the
one with maximum number edges; if no such graph HI has been found, then
G has no square roots. Correctness follows from Lemma 16. Recall that
P(G) can be computed in time O(m2). All the maximal independent sets
of the m-vertex graph P(G) can be enumerated in time O∗(3m/3) using the
polynomial delay algorithm of Tsukiyama et al. [22], since P(G) has at most
3m/3 maximal independent sets [17]. Finally, recall that for each maximal
independent set I, we can check in time O(nm) whether (HI)2 = G. Hence
the overall running time of our algorithm is O∗(3m/3).

4 Open Problems

We conclude our paper with two open problems. First, is it also possible
to construct an exact algorithm for Minimum Square Root that is better
than the trivial exact algorithm?

Second, recall that Aingworth, Motwani, and Harary [2] showed that if
a graph H is a square root of a connected n-vertex graph G 6= Kn, then
|EG \EH | ≥ n− 2. Is it FPT to decide whether a connected n-vertex graph
G 6= Kn has a square root that can be obtained by removing at most n−2+k
edges, or equivalently, whether a connected n-vertex graph G 6= Kn has a
square root with at least |EG|−n+2−k edges, when parameterized by k? In
particular, can it be decided in polynomial time whether a connected graph
G has a square root with exactly |EG| − |VG|+ 2 edges?
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