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Abstract. We present the first approximate distance oracle for sparse
directed networks with time-dependent arc-travel-times determined by
continuous, piecewise linear, positive functions possessing the FIFO prop-
erty. Our approach precomputes (1 + ε)−approximate distance sum-
maries from selected landmark vertices to all other vertices in the net-
work. Our oracle uses subquadratic space and time preprocessing, and
provides two sublinear-time query algorithms that deliver constant and
(1 + σ)−approximate shortest-travel-times, respectively, for arbitrary
origin-destination pairs in the network, for any constant σ > ε. Our
oracle is based only on the sparsity of the network, along with two quite
natural assumptions about travel-time functions which allow the smooth
transition towards asymmetric and time-dependent distance metrics.

Keywords: Time-dependent shortest paths, FIFO property, Distance oracles.

1 Introduction

Distance oracles are succinct data structures encoding shortest path information
among a carefully selected subset of pairs of vertices in a graph. The encoding
is done in such a way that the oracle can efficiently answer shortest path queries
for arbitrary origin-destination pairs, exploiting the preprocessed data and/or lo-
cal shortest path searches. A distance oracle is exact (resp. approximate) if the
returned distances by the accompanying query algorithm are exact (resp. ap-
proximate). A bulk of important work (e.g., [2,27,28,32,34,35,36]) is devoted to
constructing distance oracles for static (i.e., time-independent), mostly undi-
rected networks in which the arc-costs are fixed, providing trade-offs between
the oracle’s space and query time and, in case of approximate oracles, also of the
stretch (maximum ratio, over all origin-destination pairs, between the distance
returned by the oracle and the actual distance). For an overview of distance
oracles for static networks, the reader is referred to [31] and references therein.
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1.1 Problem setting and motivation

In many real-world applications, the arc costs may vary as functions of time (e.g.,
when representing travel-times) giving rise to time-dependent network models.
A striking example is route planning in road networks where the travel-time for
traversing an arc a = uv (modelling a road segment) depends on the tempo-
ral traffic conditions while traversing uv, and thus on the departure time from
its tail u. Consequently, the optimal origin-destination path may vary with the
departure-time from the origin. Apart from the theoretical challenge, the time-
dependent model is also much more appropriate with respect to the historic
traffic data that the route planning vendors have to digest, in order to pro-
vide their customers with fast route plans. To see why it is more appropriate,
consider, for example, TomTom’s LiveTraffic service4 which provides real-time
estimations of average travel-time values, collected by periodically sampling the
average speed of each road segment in a city, using the cars connected to the
service as sampling devices. The crux is how to exploit all this historic traf-
fic information, in order to efficiently provide route plans that will adapt to
the departure-time from the origin. A customary way towards this direction is
to consider the continuous piecewise linear (pwl) interpolants of these sample
points as arc-travel-time functions of the corresponding instance.

Computing a time-dependent shortest path for a triple (o, d, to) of an origin o,
a destination d and a departure-time to from the origin, has been studied exten-
sively (see e.g., [6,14,26]). The shape of arc-travel-time functions and the waiting
policy at vertices may considerably affect the tractability of the problem [26]. A
crucial property is the FIFO property, according to which each arc-arrival-time
at the head of an arc is a non-decreasing function of the departure-time from
the tail. If waiting-at-vertices is forbidden and the arc-travel-time functions may
be non-FIFO, then subpath optimality and simplicity of shortest paths is not
guaranteed [26]. Thus, even if it exists, an optimal route is not computable by
(extensions of) well known techniques, such as Dijkstra or Bellman-Ford. Ad-
ditionally, many variants of the problem are also NP−hard [30]. On the other
hand, if arc-travel-time functions possess the FIFO property, then the problem
can be solved in polynomial time by a straightforward variant of Dijkstra’s algo-
rithm (TDD), which relaxes arcs by computing the arc costs “on the fly”, when
scanning their tails. This has been first observed in [14], where the unrestricted
waiting policy was (implicitly) assumed for vertices, along with the non-FIFO
property for arcs. The FIFO property may seem unreasonable in some applica-
tion scenarios, e.g., when travellers at the dock of a train station wonder whether
to take the very next slow train towards destination, or wait for a subsequent
but faster train.

Our motivation in this work stems from route planning in urban-traffic road
networks where the FIFO property seems much more natural, since all cars
are assumed to travel according to the same (possibly time-dependent) average
speed in each road segment, and overtaking is not considered as an option when

4 http://www.tomtom.com/livetraffic/

http://www.tomtom.com/livetraffic/


Distance Oracles for Time-Dependent Networks 3

choosing a route plan. Indeed, the raw traffic data for arc-travel-time functions
by TomTom for the city of Berlin are compliant with this assumption [15]. Ad-
ditionally, when shortest-travel-times are well defined and optimal waiting-times
at nodes always exist, a non-FIFO arc with unrestricted-waiting-at-tail policy
is equivalent to a FIFO arc in which waiting at the tail is not beneficial [26].
Therefore, our focus in this work is on networks with FIFO arc-travel-time func-
tions.

1.2 Related work and main challenge

The study of shortest paths is one of the cornerstone problems in Computer
Science and Operations Research. Apart from the well-studied case of instances
with static arc weights, several variants towards time-evolving instances have
appeared in the literature. We start by mentioning briefly the most characteris-
tic attempts regarding non time-dependent models, and subsequently we focus
exclusively on related work regarding time-dependent shortest path models.

In the dynamic shortest path problem (e.g., [13,19,29,33]), the arcs are al-
lowed to be inserted to and/or deleted from the graph in an online fashion. The
focus is on maintaining and efficiently updating a data structure representing
the shortest path tree from a single source, or at least supporting fast shortest
path queries between arbitrary vertices, in response to these changes. The main
difference with the problem we study is exactly the online fashion of the changes
in the characteristics of the graph metric. In temporal networks (e.g., [3,18,21]),
each arc comes with a vector of discrete arc-labels determining the time-slots of
its availability. The goal is then to study the reachability and/or computation of
shortest paths for arbitrary pairs of vertices, given that the chosen connecting
path must also possess at least one non-decreasing subsequence of arc-labels, as
we move from the origin to the destination. This problem is indeed a special
case of the time-dependent shortest paths problem, in the sense that the avail-
ability patterns may be encoded as distance functions which switch between a
finite and an infinite traversal cost. Typically these problems do not possess the
FIFO property, but one may exploit the discretization of the time axis, which
essentially determines the complexity of the instance to solve. In the stochastic
shortest path problem (e.g., see [5,24,25]) the uncertainty of the arc weights is
modeled by considering them as random variables. The goal is again the com-
putation of paths with minimum expected weight. This is also a hard problem,
but in the time-dependent shortest path there is no uncertainty on the behavior
of the arcs. In the parametric shortest path problem, the graph comes with two
distinct arc-weight vectors. The goal is to determine a shortest path with respect
to any possible linear combination of the two weight vectors. It is well known
[22] that a shortest od−path may change |V |Ω(|V |) times as the parameter of the
linear combination changes. An upper bound of at most |V |O(|V |) is also well-
known [17]. The main difference with the time-dependent shortest path problem
studied in the present work is that, when computing path lengths, rather than
(essentially) composing the arrival-time functions of the constituent arcs, in the
parametric shortest path problem the arc-lengths are simply added.
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Until recently, most of the previous work on the time-dependent shortest path
problem concentrated on computing an optimal origin-destination path provid-
ing the earliest-arrival time at destination when departing at a given time from
the origin, and neglected the computational complexity of providing succinct
representations of the entire earliest-arrival-time functions, for all departure-
times from the origin. Such representations, apart from allowing rapid answers
to several queries for selected origin-destination pairs but for varying departure
times, would also be valuable for the construction of distance summaries (a.k.a.
route planning maps, or search profiles) from central vertices (e.g., landmarks or
hubs) towards other vertices in the network, providing a crucial ingredient for
the construction of distance oracles to support real-time responses to arbitrary
queries (o, d, to) ∈ V × V × R.

The complexity of succinctly representing earliest-arrival-time functions was
first questioned in [7,8,9], but was solved only recently by a seminal work [16]
which, for FIFO-abiding pwl arc-travel-time functions, showed that the prob-
lem of succinctly representing such a function for a single origin-destination
pair has space-complexity (1 +K) · nΘ(logn), where n is the number of vertices
and K is the total number of breakpoints (or legs) of all the arc-travel-time
functions. Polynomial-time algorithms (or even PTAS) for constructing point-
to-point (1+ε)-approximate distance functions are provided in [10,16], delivering
point-to-point travel-time values at most 1+ε times the true values. Such approx-
imate distance functions possess succinct representations, since they require only
O(1 +K) breakpoints per origin-destination pair. It is also easy to verify that K
could be substituted by the number K∗ of concavity-spoiling breakpoints of the
arc-travel-time functions (i.e., breakpoints at which the arc-travel-time slopes
increase).

To the best of our knowledge, the problem of providing distance oracles for
time-dependent networks with provably good approximation guarantees, small
preprocessing-space complexity and sublinear query time complexity, has not
been investigated so far. Due to the hardness of providing succinct represen-
tations of exact shortest-travel-time functions, the only realistic alternative is
to use approximations of these functions for the distance summaries that will
be preprocessed and stored by the oracle. Exploiting a PTAS (such as that in
[16]) for computing approximate distance functions, one could provide a trivial
oracle with query-time complexity Q ∈ O(log log(K∗)), at the cost of an ex-
ceedingly high space-complexity S ∈ O

(
(1 +K∗) · n2

)
, by storing succinct rep-

resentations of all the point-to-point (1 + ε)−approximate shortest-travel-time
functions. At the other extreme, one might use the minimum possible space
complexity S ∈ O(n+m+K) for storing the input, at the cost of suffering
a query-time complexity Q ∈ O(m+ n log(n)[1 + log log(1 +Kmax)]) (i.e., re-
spond to each query by running TDD in real-time using a predecessor search
structure for evaluating pwl functions)5. The main challenge considered in this
work is to smoothly close the gap between these two extremes, i.e., to achieve
a better (e.g., sublinear) query-time complexity, while consuming smaller space-

5 Kmax denotes the maximum number of breakpoints in an arc-travel-time function.
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complexity (e.g., o
(
(1 +K∗) · n2

)
) for succinctly representing travel-time func-

tions, and enjoying a small (e.g., close to 1) approximation guarantee (stretch
factor).

1.3 Our contribution

We have successfully addressed the aforementioned challenge by presenting the
first approximate distance oracle for sparse directed graphs with time-dependent
arc-travel-times, which achieves all these goals. Our oracle is based only on the
sparsity of the network, plus two assumptions of travel-time functions which are
quite natural for route planning in road networks (cf. Assumptions 1 and 2 in
Section 2). It should be mentioned that: (i) even in static undirected networks,
achieving a stretch factor below 2 using subquadratic space and sublinear query
time, is possible only when m ∈ o

(
n2
)
, as it has been recently shown [2,28]; (ii)

there is important applied work [4,11,12,23] to develop time-dependent shortest
path heuristics, which however provide mainly empirical evidence on the success
of the adopted approaches.

At a high level, our approach resembles the typical ones used in static and
undirected graphs (e.g., [2,28,34]): Distance summaries from selected landmarks
are precomputed and stored so as to support fast responses to arbitrary real-time
queries by growing small distance balls around the origin and the destination,
and then closing the gap between the prefix subpath from the origin and the suf-
fix subpath towards the destination. However, it is not at all straightforward how
this generic approach can be extended to time-dependent and directed graphs,
since one is confronted with two highly non-trivial challenges: (i) handling direct-
edness, and (ii) dealing with time-dependence, i.e., deciding the arrival-times to
grow balls around vertices in the vicinity of the destination, because we simply
do not know the earliest-arrival-time at destination – actually, this is what the
original query to the oracle asks for. A novelty of our query algorithms, contrary
to other approaches, is exactly that we achieve the approximation guarantees
by growing balls only from vertices around the origin. Managing this was a ne-
cessity for our analysis since growing balls around vertices in the vicinity of the
destination at the right arrival-time is essentially not an option.

Our specific contribution is as follows. Let U be the worst-case number of
breakpoints for an (1 + ε)−approximation of a concave distance function stored
in our oracle, and let TDP be the maximum number of time-dependent shortest
path probes required for their construction. Then, we are able to construct a
distance oracle that efficiently preprocess (1 + ε)−approximate distance func-
tions from a set of landmarks, which are uniformly and independently selected
with probability ρ, to all other vertices, in order to provide real-time responses
to arbitrary queries via a recursive query algorithm of recursion depth (bud-
get) r. The specific expected preprocessing and query bounds of our oracle are
presented in Table 1 (3rd row) along with a comparison with the best previous
approaches (straightforward oracles). Our oracle guarantees a stretch factor of

1 + ε
(1+ ε

ψ )r+1

(1+ ε
ψ )r+1−1 , where ψ is a fixed constant depending on the characteristics



6 S. Kontogiannis and C. Zaroliagis

What is preprocessed Preproc. Space Preproc. Time Query Time

All-To-All O
(
(K∗ + 1)n2U

)
O

 n2 log(n)
· log log(Kmax)
·(K∗ + 1)TDP

 O(log log(K∗))

Nothing O(n+m+K) O(1) O
(

n log(n)·
log log(Kmax)

)
Landmarks-To-All

[This paper]
O
(
ρn2(K∗ + 1)U

)
O

 ρn2 log(n)
· log log(Kmax)
·(K∗ + 1)TDP

 O(( 1
ρ

)r+1

· log
(

1
ρ

)
· log log(Kmax)

)
Kmax ∈ O(1)
ρ = n−a,
U, TDP ∈ O(1)
K∗ ∈ O(polylog(n))

Õ
(
n2−a) Õ

(
n2−a) Õ

(
n(r+1)a

)

Table 1. Our main result (third row) and its comparison to the straightforward oracles
with all-to-all preprocessing and no preprocessing at all, for a given approximation
guarantee 1 + ε of the preprocessed data. The fourth row presents an explicit trade-off
among preprocessing time/space and query time. Õ( ) hides polylogarithmic factors.

of the arc-travel-time functions, but is independent of the network size. As it
is proved in Theorem 1 (Section 3), U and TDP are independent of the net-
work size n and thus we can treat them as constants. Similarly, Kmax (which
is also part of the input) is considered to be independent of the network size.
But even if it was the case that Kmax ∈ Θ(K), this would only have a doubly-
logarithmic multiplicative effect in the preprocessing-time and query-time com-
plexities, which is indeed acceptable. Regarding the number K∗ of concavity-
spoiling breakpoints of arc-travel-time functions, note that if all arc-travel-time
functions are concave, i.e., K∗ = 0, then we clearly achieve subquadratic pre-
processing space and time for any ρ ∈ O(n−α), where 0 < α < 1

r+1 . Real data
(e.g., TomTom’s traffic data for the city of Berlin [15]) demonstrate that: (i) only
a small fraction of the arc-travel-time functions exhibit non-constant behavior;
(ii) for the vast majority of these non-constant-delay arcs, the arc-travel-time
functions are either concave, or can be very tightly approximated by a typical
concave bell-shaped pwl function. It is thus only a tiny subset of critical arcs
(e.g., bottleneck-segments in a large city) for which it would be indeed meaning-
ful to consider also non-concave behavior. Our analysis guarantees that, when
K∗ ∈ o(n), one can fine-tune the parameters of the oracles so that both sublin-
ear query times and subquadratic preprocessing space can be guaranteed. For
example, assuming K∗ ∈ O(polylog(n)), we get the trade-off presented in the
4th row of Table 1. We also note that, apart from the choice of landmarks, our
algorithms are deterministic.

The rest of the paper is organized as follows. Section 2 gives the ingredients
and presents an overview of our approach. Section 3 presents our preprocessing
algorithm. Our constant approximation query algorithm is presented in Sec-
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tion 4, while our PTAS query algorithm is presented in Section 5. Our main
results are summarized in Section 6. The details on how to compute the ac-
tual path from the approximate distance values are presented in Section 7. We
conclude in Section 8. A preliminary version of this work appeared as [20].

2 Ingredients and Overview of Our Approach

2.1 Notation

Our input is provided by a network (directed graph) G = (V,A) with n vertices
and m = O(n) arcs. Every arc uv ∈ A is equipped with a periodic, contin-
uous, piecewise-linear (pwl) arc-travel-time (a.k.a. arc-delay) function D[uv] :
R → R>0, such that ∀k ∈ Z,∀tu ∈ [0, T ), D[uv](k · T + tu) = D[uv](tu) is the
arc-travel-time of uv when the departure-time from u is k ·T +tu. D[uv] is repre-
sented succinctly as a continuous pwl function, by Kuv breakpoints describing its
projection to [0, T ). K =

∑
uv∈AKuv is the number of breakpoints to represent

all the arc-delay functions in the network, and Kmax = maxuv∈AKuv. K
∗ is the

number of concavity-spoiling breakpoints, i.e., the ones in which the arc-delay
slopes increase. Clearly, K∗ ≤ K, and K∗ = 0 for concave pwl functions. The
space to represent the entire network is O(n+m+K).

The arc-arrival function Arr[uv](tu) = tu+D[uv](tu) represents arrival-times
at v, depending on the departure-times tu from u. Note that we can express
the same delay function of an arc a = uv as a function of the arrival-time
tv = tu + D[uv](tu) at the head v. This is specifically useful when we need

to work with the reverse network (
←−
G = (V,A, (

←−
D [a])a∈A), where

←−
D [uv] is the

delay of arc a = uv, measured now as a function of the arrival-time tv at v. For
instance, consider an arc a = uv with D[uv](tu) = tu + 1, 0 ≤ tu ≤ 3. Then,
tv = 2tu + 1 and 1 ≤ tv ≤ 7. Now, the same delay function can be expressed as

a function of tv as
←−
D [uv](tv) = tv − tu = tv − tv−1

2 = tv+1
2 , for 1 ≤ tv ≤ 7.

For any (o, d) ∈ V × V , Po,d is the set of od−paths, and P = ∪(o,d)Po,d. For
a path p ∈ P, px y is its subpath from (the first appearance of) vertex x until
(the subsequent first appearance of) vertex y. For any pair of paths p ∈ Po,v and
q ∈ Pv,d, p • q is the od−path produced as the concatenation of p and q at v.

For any path (represented as a sequence of arcs) p = 〈a1, a2, · · · , ak〉 ∈ Po,d,
the path-arrival function is the composition of the constituent arc-arrival func-
tions: ∀to ∈ [0, T ), Arr[p](to) = Arr[ak](Arr[ak−1](· · · (Arr[a1](to)) · · · )). The
path-travel-time function is D[p](to) = Arr[p](to)− to. The earliest-arrival-time
and shortest-travel-time functions from o to d are: ∀to ∈ [0, T ), Arr[o, d](to) =
minp∈Po,d {Arr[p](to)} and D[o, d](to) = Arr[o, d](to) − to. Finally, SP [o, d](to)
(resp. ASP [o, d](to)) is the set of shortest (resp., with stretch-factor at most
(1 + ε)) od−paths for a given departure-time to.

2.2 Facts of the FIFO property

We consider networks (G = (V,A), (D[a])a∈A) with continuous arc-delay func-
tions, possessing the FIFO (a.k.a. non-overtaking) property, according to which
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all arc-arrival-time functions are non-decreasing:

∀tu, t′u ∈ R,∀uv ∈ A, tu > t′u ⇒ Arr[uv](tu) ≥ Arr[uv](t′u) (1)

The FIFO property is strict, if the above inequality is strict. The following
properties (Lemmata 1–3), are, perhaps, more-or-less known. We state them
here and provide their proofs only for the sake of completeness.

Lemma 1 (FIFO Property and Arc-Delay Slopes). If the network sat-
isfies the (strict) FIFO property then any arc-delay function has left and right
derivatives with values at least (greater than) −1.

Proof. Observe that, by the FIFO property: ∀a ∈ A,∀tu ∈ R,∀δ > 0,

Arr[a](tu) ≤ Arr[a](tu + δ)⇔ tu +D[a](tu) ≤ tu + δ +D[a](tu + δ)
/∗ δ>0 ∗/

⇔ D[a](tu + δ)−D[a](tu)

δ
≥ −1

This immediately implies that the left and right derivatives of D[a] are lower
bounded (strictly, in case of strict FIFO property) by −1. ut

It is easy to verify that the FIFO property also holds for arbitrary path-
arrival-time functions and earliest-arrival-time functions.

Lemma 2 (FIFO Property for Paths). If the network satisfies the FIFO
property, then ∀p ∈ P,∀t1 ∈ R,∀δ > 0, Arr[p](t1) ≤ Arr[p](t1 + δ) . In case
of strict FIFO property, the inequality is also strict. The (strict) monotonicity
holds also for Arr[o, d].

Proof. To prove the FIFO property for a path p = 〈a1, . . . , ak〉 ∈ P, we use a
simple inductive argument on the prefixes of p, based on a recursive definition of
path-arrival-time functions. ∀1 ≤ i ≤ j ≤ k, let pi,j be the subpath of p starting
with the ith arc ai and ending with the jth arc aj in order. Then:

Arr[p1,k](to)

= to +D[p1,k](to) = to +D[p1,1](to)︸ ︷︷ ︸
=Arr[p1,1](to)

+D[p2,k](to +D[p1,1](to))

= Arr[p2,k] (Arr[p1,1](to)) = (Arr[p2,k] ◦Arr[p1,1]) (to) = · · ·
= (Arr[ak] ◦ · · · ◦Arr[a1]) (to) (2)

The composition of non-decreasing (increasing) functions is well known to also
be non-decreasing (increasing). Applying a minimization operation to produce
the earliest-arrival-time function Arr[o, d] = minp∈Po,d {Arr[p]}, preserves the
same kind of monotonicity. ut

It is well-known that in FIFO (or equivalently, non-FIFO with unrestricted-
waiting-at-nodes) networks the crucial property of prefix-subpath optimality is
preserved [14]. We strengthen this observation to the more general (arbitrary)
subpath optimality, for strict FIFO networks.
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Lemma 3 (Subpath Optimality in strict FIFO Networks). If the network
possesses the strict FIFO property, then ∀(u, v) ∈ V × V , ∀tu ∈ R and any
optimal path p∗ ∈ SP [u, v](tu) , it holds for every subpath q∗ ∈ Px,y of p∗ that
q∗ ∈ SP [x, y](Arr[p∗u x](tu)). In other words, q∗ is a shortest path between its
endpoints x, y for the earliest-departure-time from x, given tu.

Proof. Let t∗x = Arr[p∗u x](tu). For sake of contradiction, assume that ∃q ∈
Px,y : D[q](t∗x) < D[q∗](t∗x) . Then, p = p∗u x •q •p∗y v suffers smaller delay than
p∗ for departure time tu. Indeed, let ty ≡ t∗x+D[q](t∗x) and t∗y ≡ t∗x+D[p∗x y](t∗x).
Due to the alleged suboptimality of p∗x y when departing at time t∗x, it holds
that ty < t∗y. Then:

Arr[p](tu) = tu +D[p](tu)

= tu +D[p∗u x](tu)︸ ︷︷ ︸
=t∗x

+D[q](t∗x) +D[p∗y v](t
∗
x +D[q](t∗x))

= t∗x +D[q](t∗x)︸ ︷︷ ︸
=ty

+D[p∗y v](t
∗
x +D[q](t∗x)) = ty +D[p∗y v](ty)

< t∗y +D[p∗y v](t
∗
y) = Arr[p∗](tu)

violating the optimality of p∗ for the given departure-time tu (the inequality is
due to the strict FIFO property of the suffix-subpath p∗y v). ut

Lemma 3 implies that both Dijkstra’s label setting algorithm and Bellman-Ford
label-correcting algorithm also work in time-dependent strict FIFO networks,
under the usual conventions for static instances (positivity of arc-delays for Di-
jkstra, and inexistence of negative-travel-time cycles for Bellman-Ford).

In the following, we shall refer to an execution of the time-dependent Di-
jkstra’s algorithm (TDD) from origin o ∈ V , with departure time to ∈ [0, T ),
either as “a run of TDD from (o, to)”, or as “growing a (TDD) ball around (or
centered at) (o, to) (by running TDD)”.

The time-complexity of TDD is slightly worse than the corresponding com-
plexity of Dijkstra’s algorithm in the static case, since during the relaxation of
each arc the actual arc-travel-time of the arc has to be evaluated rather than
simply retrieved. For example, if each arc-travel-time function D[uv] is periodic,
continuous and pwl, represented by at most Kmax breakpoints, then the evalu-
ation of arc-travel-times can be done in time O(log log(Kmax)), e.g. by using a
predecessor-search structure to determine the right leg for each function. There-
fore, the time complexity for TDD would be O([m+ n log(n)] log log(Kmax)).

2.3 Towards a time-dependent distance oracle

Our approach for providing a time-dependent distance oracle is inspired by the
generic approach for general undirected graphs under static travel-time metrics.
However, we have to tackle the two main challenges of directedness and time-
dependence. Notice that together these two challenges imply an asymmetric dis-
tance metric, which also evolves with time. Consequently, to achieve a smooth
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transition from the static and undirected world towards the time-dependent and
directed world, we have to quantify the degrees of asymmetry and evolution in
our metric.

Towards this direction, we introduce some metric-related parameters which
quantify (i) the steepness of the shortest-travel-time functions (via the parame-
ters Λmin and Λmax), and (ii) the degree of asymmetry (via the parameter ζ). We
make two assumptions on the values of these parameters, namely, that they have
constant (in particular, independent of the network size) values. These assump-
tions seem quite natural in realistic time-dependent route planning instances,
such as urban-traffic metropolitan road networks. The first assumption, called
Bounded Travel-Time Slopes, asserts that the partial derivatives of the shortest-
travel-time functions between any pair of origin-destination vertices are bounded
in a given fixed interval [Λmin, Λmax].

Assumption 1 (Bounded Travel-Time Slopes) There are constants Λmin ∈
[0, 1) and Λmax ≥ 0 s.t.: ∀(o, d) ∈ V × V, ∀t1 < t2,

D[o,d](t1)−D[o,d](t2)
t1−t2 ∈

[−Λmin, Λmax] .

The lower bound −Λmin > −1 is justified by the FIFO property (cf. Lem-
mata 1 and 2 in Section 2.2). Λmax represents the maximum possible rate of
change of shortest-travel-times in the network, which only makes sense to be
bounded (in particular, independent of the network size) in realistic instances
such as the ones representing urban-traffic time-dependent road networks.

Towards justifying this assumption, we conducted an experimental analysis
with two distinct data sets. The first one is a real-world time-dependent snap-
shot of two weeks traffic data of the city of Berlin, kindly provided to us by
TomTom [15] (consisting of n = 478, 989 vertices and m = 1, 134, 489 arcs), in
which the arc-delay functions are the continuous, pwl interpolants of five-minute
samples of the average travel-times in each road segment. The second data set
is a benchmark time-dependent instance of Western Europe’s (WE) road net-
work (consisting of n = 18, 010, 173 vertices and m = 42, 188, 664 arcs) kindly
provided by PTV AG for scientific use. The time-dependent arc travel time func-
tions were generated as described in [23], reflecting a high amount of traffic for
all types of roads (highways, national roads, urban roads), all of which posses
non-constant time-dependent arc travel time functions.

We conducted 10000 random queries (o, d, to) in the Berlin (real-world) in-
stance, focusing on the harder case of rush-hour departure times. We computed
the approximate distance functions towards all the destinations using our one-
to-all approximation algorithm (cf. Section 3) with approximation guarantee
ε = 0.001. Our observration was that all the shortest-travel-time slopes were
Λmax ≤ 0.1843. That is, the travel-time on every road segment increases at a
rate of at most 18, 43% as departure time changes. An analogous experimen-
tation with the benchmark instance of Europe (heavy-traffic variant), again by
conducting 10000 random queries, demonstrated shortest-travel-time slopes at
most Λmax ≤ 6.1866.

The second assumption, called Bounded Opposite Trips, asserts that for any
given departure time, the shortest-travel-time from o to d is not more than a
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constant ζ ≥ 1 times the shortest-travel-time in the opposite direction (but not
necessarily along the same path).

Assumption 2 (Bounded Opposite Trips) There is a constant ζ ≥ 1 such
that: ∀(o, d) ∈ V × V, ∀t ∈ [0, T ), D[o, d](t) ≤ ζ ·D[d, o](t) .

This is also a quite natural assumption in road networks, because it is most
unlikely that a trip in one direction would be, say, more than 10 times longer
than the trip in the opposite direction (but not necessarily along the reverse path)
during the same time period. This was also justified by the two instances at our
disposal. In each instance we uniformly selected 10000 random origin-destination
pairs and departure times randomly chosen from the rush-hour period, which
is the most interesting and diverging case. For the Berlin-instance the resulting
worst-case value was ζ ≤ 1.5382. For the WE-instance the resulting worst-case
value was ζ ≤ 1.174.

A third assumption that we make is that the maximum out-degree of every
node is bounded by 2. This can be easily guaranteed by using an equivalent
network of at most double size (number of vertices and number of arcs). This is
achieved by substituting every vertex of the original graph (V,A) with out-degree
greater than 2 with a complete binary tree whose leaf-edges are the outgoing
edges from v in (V,A), and each internal level consists of a maximal number
of nodes with two children from the lower level, until a 1-node level is reached.
This root node inherits all the incoming arcs from v in the original graph. All
the newly inserted arcs (except for the original arcs outgoing from v) get zero
delay functions. Figure 1 demonstrates an example of such a substitution. For

0

0
0v

x2

x3

x1

u1

u2

u3

u4

u5

Fig. 1. The node substitution operation for a vertex v ∈ V with d+G(v) = 5. The
operation ensures an out-degree at most 2 for all the newly inserted vertices in place
of v in the graph. The new graph elements (nodes and arcs) are indicated by dashed
(red) lines. The solid (black) arcs and vertices are the ones pre-existing in the graph.

each node v ∈ G with out-degree d+(v) > 2, the node substitution operation is
executed in time O(d+(v)) and introduces d+(v) − 1 new nodes and d+(v) − 2
new arcs (of zero delays). Therefore, in time O(|A|) we can ensure out-degree



12 S. Kontogiannis and C. Zaroliagis

at most 2 and the same time-dependent travel-time characteristics, by at most
doubling the size of the graph (

∑
v∈V :d+(v)>2(d+(v) − 1) < |A| new nodes and∑

v∈V :d+(v)>2(d+(v)− 2) < |A| new arcs).

2.4 Overview of our approach

We follow (at a high level) the typical approach adopted for the construction
of approximate distance oracles in the static case. In particular, we start by
selecting a subset L ⊂ V of landmarks, i.e., vertices which will act as reference
points for our distance summaries. For our oracle to work, several ways to choose
L would be acceptable, that is, we can choose the landmarks randomly among
all vertices, or we can choose as landmarks the vertices in the cut sets provided
by some graph partitioning algorithm. Nevertheless, for the sake of the analysis
we assume that landmark selection is done by deciding for each vertex randomly
and independently with probability ρ ∈ (0, 1) whether it belongs to L. After
having L fixed, our approach is deterministic.

We start by constructing (concurrently, per landmark) and storing the dis-
tance summaries, i.e., all landmark-to-vertex (1 + ε)−approximate travel-time
functions, in time and space o

(
(1 +K∗)n2

)
. Then, we provide two approxima-

tion algorithms for responding to arbitrary queries (o, d, to) ∈ V × V × [0, T ).
The first (FCA) is a simple sublinear -time constant-approximation algorithm
(cf. Section 4). The second (RQA) is a recursive algorithm growing small TDD
outgoing balls from vertices in the vicinity of the origin, until either a satisfac-
tory approximation guarantee is achieved, or an upper bound r on the depth of
the recursion (the recursion budget) has been exhausted. RQA finally responds
with a (1 + σ)−approximate travel-time to the query in sublinear time, for any
constant σ > ε (cf. Section 5). As it is customary in the distance oracle liter-
ature, the query times of our algorithms concern the determination of (upper
bounds on) shortest-travel-time from o to d. An actual path guaranteeing this
bound can be reported in additional time that is linear in the number of its arcs
(cf. Section 7).

3 Preprocessing Distance Summaries

The purpose of this section is to demonstrate how to construct the preprocessed
information that will comprise the distance summaries of the oracle, i.e., all
landmark-to-vertex (1 + ε)-approximate shortest-travel-time functions.

Our focus is on instances with concave, continuous, pwl arc-delay functions
possessing the strict FIFO property. If there exist K∗ ≥ 1 concavity-spoiling
breakpoints among the arc-delay functions, then we do the following: For each
of them (which is a departure-time tu from the tail u of an arc uv ∈ A) we run a
reverse variant of TDD (going “back in time”) with root (u, tu) on the network

(
←−
G = (V,A, (

←−
D [a])a∈A), where

←−
D [uv] is the delay of arc a = uv, measured now

as a function of the arrival-time tv at the head v. The algorithm proceeds back-
wards both along the connecting path (from the destination towards the origin)
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and in time. As a result, we compute all latest-departure-times from landmarks
that allow us to determine the images (i.e., projections to appropriate departure-
times from all possible origins) of concavity-spoiling breakpoints to the spaces of
departure-times from each of the landmarks. Then, for each landmark, we repeat
the procedure for concave, continuous, pwl arc-delay functions – described in the
rest of this section – independently for each of the (at most) K∗ + 1 consecu-
tive subintervals of [0, T ) determined by these consecutive images of concavity-
spoiling breakpoints. Within each subinterval all arc-travel-time functions are
concave, as required in our analysis.

We must construct in polynomial time, for all (`, v) ∈ L × V , succinctly
represented upper-bounding (1 + ε)−approximations ∆[`, v] : [0, T ) → R>0 of
the shortest-travel-time functions D[`, v] : [0, T ) → R>0, i.e., for each (`, v) ∈
L × V we have to compute a continuous pwl function ∆[`, v] with a constant
number of breakpoints, such that ∀to ∈ [0, T ), D[`, v](to) ≤ ∆[`, v](to) ≤ (1 +
ε) ·D[`, v](to) . An algorithm providing such functions in a point-to-point fashion
was proposed in [16]. For each landmark ` ∈ L, it has to be executed n times
so as to construct all the required landmark-to-vertex approximate functions.
The main idea of that algorithm is to keep sampling the travel-time axis of
the unknown function D[`, v] at a logarithmically growing scale, until its slope
becomes less than 1. It then samples the departure-time axis via bisection, until
the required approximation guarantee is achieved. All the sample points (in
both phases) correspond to breakpoints of a lower-approximating function. The
upper-approximating function has at most twice as many points. The number
of breakpoints returned may be suboptimal, given the required approximation
guarantee: even for an affine shortest-travel-time function with slope in (1, 2] it
would require a number of points logarithmic in the ratio of max-to-min travel-
time values from ` to v, despite the fact that we could avoid all intermediate
breakpoints for the upper-approximating function.

Our solution is an improvement of the approach in [16] in three aspects:

(i) It computes concurrently all the required approximate distance functions
from a given landmark, at a cost equal to that of a single (worst-case with
respect to the given origin and all possible destinations) point-to-point ap-
proximation of [16].

(ii) Within every subinterval of consecutive images of concavity-spoiling break-
points, it requires asymptotically optimal space per landmark, which is also
independent of the network size per landmark-vertex pair, implying that the
required preprocessing space per vertex is O(|L|). This is also claimed in
[16], but it is actually true only for their second phase (the bisection). For
the first phase of their algorithm, there is no such guarantee.

(iii) It provides an exact closed form estimation (see below) of the worst-case
absolute error, which guides our method.

In a nutshell, our approach constructs two continuous pwl-approximations
of the unknown shortest-travel-time function D[`, v] : [0, T ) → R>0, an upper-
bounding approximate function D[`, v] and a lower-bounding approximate func-
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tion D[`, v]. D[`, v] plays the role of ∆[`, v]. Our construction guarantees that
the exact function is always “sandwiched” between these two approximations.

To achieve a concurrent one-to-all construction of upper-bounding approxi-
mations from a given landmark ` ∈ L, our algorithm is purely based on bisection.
This is done because the departure-time axis is common for all these unknown
functions (D[`, v])v∈V . In order for this technique to work, despite the fact that
the slopes may be greater than one, a crucial ingredient is an exact closed-form
estimation of the worst-case absolute error that we provide. This helps our con-
struction to indeed consider only the necessary sampling points as breakpoints of
the corresponding (concurrently constructed) shortest travel-time functions. It is
mentioned that this guarantee could also be used in the first phase of the approx-
imation algorithm in [16], in order to discard all unnecessary sampling points
from being actual breakpoints in the approximate functions. Consequently, we
start by providing the closed form estimation of the maximum absolute error
and then we present our one-to-all approximation algorithm.

3.1 Absolute Error Estimation

In this section, we provide a closed form for the maximum absolute error between
the upper-approximating and the lower-approximating functions of a generic
shortest-travel-time function D within a time interval [ts, tf ) ⊆ [0, T ) that con-
tains no other primitive image, apart possibly from its endpoints.

For an interval [ts, tf ) ⊆ [0, T ), fix an unknown, but amenable to polynomial-
time sampling, continuous (not necessarily pwl) concave function D : [ts, tf )→
R>0, with right and left derivative values at the endpoints Λ+(ts), Λ

−(tf ). As-
sume that Λ+(ts) > Λ−(tf ) and L = tf − ts > 0.

Let m =
D(tf )−D(ts)+ts·Λ+(ts)−tf ·Λ−(tf )

Λ+(ts)−Λ−(tf ) and Dm = Λ+(ts) · (m− ts) +D(ts).

Lemma 4. For an interval [ts, tf ) ⊆ [0, T ) and a concanve function D : [ts, tf )→
R>0 defined as above, consider the affine function D passing via the points
(ts, D(ts)), (tf , D(tf )). Consider also the pwl function D with three breakpoints
(ts, D(ts)), (m,Dm), (tf , D(tf )). Then, ∀t ∈ [ts, tf ), D(t) ≤ D(t) ≤ D(t) and
the maximum absolute error (MAE) between D and D in [ts, tf ) is expressed by
the following form:

MAE(ts, tf ) = (Λ+(ts)−Λ−(tf ))· (m− ts) · (tf −m)

L
≤ L · (Λ+(ts)− Λ−(tf ))

4
.

Proof. Consider the affine functions (see also Figure 2):

y(x) =
D(tf )−D(tf )

L · x+
D(ts)tf−D(tf )ts

L ,

ys(x) = Λ+(ts) · (x− ts) +D(ts) ,

yf (x) = Λ−(tf ) · (x− tf ) +D(tf ) .

The point
(
m =

D(tf )−D(ts)+ts·Λ+(ts)−tf ·Λ−(tf )
Λ+(ts)−Λ−(tf ) , Dm = ys(m) = yf (m)

)
is the
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ts tf

D(ts)

Dmax = D(tf)

Λ-(tf) (x-tf) + D(tf)

m
Λ+

(t s) 
(x-

t s) 
+ D

(t s)

y(m)

(a) Λ+(ts) > Λ-(tf) ≥ 0
ts tf

D(ts)

D(tf)

Dmax

Λ -(tf ) (x-tf ) + D(tf )

m

Λ+
(t s) 

(x-
t s) 

+ D
(t s)

y(m)

(b) Λ+(ts) > 0 > Λ-(tf)
ts tf

Dmax = D(ts)

D(tf)

y(m)

Λ -(tf ) (x-tf ) + D(tf )

m

Λ+(ts) (x-ts) + D(ts)

(c) 0 ≥ Λ+(ts) > Λ-(tf)

Dm

Dm Dm

Fig. 2. Three distinct cases for upper-bounding the absolute error between two con-
secutive interpolation points. The maximum absolute error (MAE) considered is shown
by the vertical (purple) line segment at point m of the time axis.

intersection point of the lines ys(x) and yf (x). As an upper-bounding (pwl)
function of D in [ts, tf ) we consider D(t) = min{ys(t), yf (t)}, whereas the lower-
bounding (affine) function of D is D(t) = y(t).

By concavity and continuity of D, we know that the partial derivatives’ values
may only decrease with time, and at any given point in [ts, tf ) the left-derivative
value is at least as large as the right-derivative value. Thus, the restriction ofD on
[ts, tf ) lies entirely in the area of the triangle {(ts, D(ts)), (m,Dm), (tf , D(tf ))}.
The maximum possible distance (additive error) of D from D is:

MAE(ts, tf ) = max
ts≤t≤tf

{D(t)−D(t)}

This value is at most equal to the vertical distance of the two approximation
functions, namely, at most equal to the length of the line segment connecting
the points (m, y(m)) and (m,Dm)(denoted by purple color in Figure 2). The
calculations are identical for the three distinct cases shown in Figure 2. Let

Λ =
D(tf )−D(ts)

L be the slope of the line y(x). Observe that:

Λ =
D(tf )−D(ts)

L
=

(Dm −D(ts))− (Dm −D(tf ))

L

=
m− ts
L

· Dm −D(ts)

m− ts
− tf −m

L
· Dm −D(tf )

tf −m

=
m− ts
L

· Λ+(ts) +
tf −m
L

· Λ−(tf ) .

Thus we have:

MAE(c, d) = Dm − y(m) = (Dm −D(ts))− (y(m)−D(ts))

= Λ+(ts) · (m− ts)− Λ · (m− ts) = (Λ+(ts)− Λ) · (m− ts)

= (Λ+(ts)− Λ−(tf )) · (m− ts) · (tf −m)

L
≤ L · (Λ+(ts)− Λ−(tf ))

4
,

since (m − ts) + (tf −m) = tf − ts = L and the product (m − ts) · (tf −m) is

maximized at m =
ts+tf

2 . ut
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3.2 One-To-All Approximation Algorithm

We now present our polynomial-time algorithm which provides asymptotically
space-optimal succinct representations of one-to-all (1+ε)−approximating func-
tions D[`, ?] = (D[`, v])v∈V of D[`, ?] = (D[`, v])v∈V , for a given landmark
` ∈ L and all destinations v ∈ V , within a given time interval in which all
the travel-time functions from ` are concave. Recall our Assumption 1 concern-
ing the boundedness of the shortest-travel-time function slopes. Given this as-
sumption, we are able to construct a generalization of the bisection method
proposed in [16] for point-to-point approximations of distance functions, to the
case of a single-origin ` and all reachable destinations from it. Our method,
which we call BISECT, computes concurrently (i.e., within the same bisec-
tion) all the required breakpoints to describe the (pwl) lower-approximating
functions D[`, ?] = (D[`, v])v∈V , and finally, via a linear scan of it, the upper-

approximating functions D[`, ?] =
(
D[`, v]

)
v∈V . This is possible because the

bisection is done on the (common for all travel-time functions to approximate)
axis of departure-times from the origin `. The other crucial observation is that for
each destination vertex v ∈ V we keep as breakpoints of D[`, v] only those sample
points which are indeed necessary for the required approximation guarantee per
particular vertex, thus achieving an asymptotically optimal space-complexity of
our method, as we shall explain in the analysis of BISECT. This is possible
due to our closed-form expression for the (worst-case) approximation error be-
tween the lower-approximating and the upper-approximating distance function,
per destination vertex (cf. Lemma 4). Moreover, all the travel-times from ` to
be sampled at a particular bisection point t` ∈ [0, T ) are calculated by a single
time-dependent shortest-path-tree (e.g., TDD) execution from (`, t`).

Let the (unknown) concave travel-time function we wish to approximate be
within a subinterval [ts, tf ) ⊆ [0, T ). LetDmin[`, v](ts, tf ) = mint∈[ts,tf ]{D[`, v](t)},
and Dmax[`, v](ts, tf ) = maxt∈[ts,tf ]{D[`, v](t)}. Due to the concavity of D[`, v]
in [ts, tf ], we have that Dmin[`, v](ts, tf ) = min{D[`, v](ts), D[`, v](tf )}.

The BISECT algorithm proceeds as follows: for any subinterval [ts, tf ] ⊆
[0, T ] we distinguish the destination vertices into active, i.e., the ones for which
the desired value ε·Dmin[`, v](ts, tf ) of the maximum absolute error within [ts, tf ]
(whose closed form is provided by Lemma 4) has not been reached yet, and the
remaining inactive. Starting from [ts, tf ] = [0, T ], as long as there is at least one
active destination vertex for [ts, tf ], we bisect this time interval and recur on the
subintervals [ts, (ts + tf )/2] and [(ts + tf )/2, tf ]. Prior to recurring to the two
new subintervals, every destination vertex v ∈ V that is active for [ts, tf ] stores
the bisection point (ts + tf )/2 (and the corresponding sampled travel-time) in
a list LBP [`, v] of breakpoints for D[`, v]. All inactive vertices just ignore this
bisection point. The bisection procedure is terminated as soon as all vertices
have become inactive.

Apart from the list LBP [`, v] of breakpoints for D[`, v], a linear scan of this
list allows also the construction of the list UBP [`, v] of breakpoints for D[`, v]:
per consecutive pair of breakpoints in LBP [`, v] that are added to UBP [`, v],
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we must also add their intermediate breakpoint (m,Dm) to UBP [`, v] (cf. proof
of Lemma 4).

In what follows, L[`, v] = |LBP [`, v]| is the number of breakpoints for D[`, v],
U [`, v] = |UBP [`, v]| is the number of breakpoints for D[`, v] and, finally, U∗[`, v]
is the minimum number of breakpoints of any (1 + ε)−upper approximating
function of D[`, v], within the time-interval [0, T ).

The following theorem summarizes the space-complexity and time-complexity
of our bisection method for providing concurrently one-to-all shortest-travel-
time approximate travel-time functions in time-dependent instances with con-
cave6, continuous, pwl arc-travel-time functions, with bounded shortest-travel-
time slopes.

Theorem 1. For a given ` ∈ L and any v ∈ V , BISECT computes an asymp-
totically optimal, independent of the network size, number of breakpoints

U [`, v] ≤ 4U∗[`, v] ≤ 4 log1+ε

(
Dmax[`,v](0,T )
Dmin[`,v](0,T )

)
∈ O

(
1
ε log

(
Dmax[`,v](0,T )
Dmin[`,v](0,T )

))
where Dmax[`, v](0, T ) and Dmin[`, v](0, T ) denote the maximum and minimum
shortest-travel-time values from ` to v within [0, T ). The number TDP of time-
dependent (forward) shortest-path-tree probes for the construction of all the lists
of breakpoints for (D[`, v])v∈V , is:

TDP ∈ O
(

maxv∈V

{
log
(

T ·(Λmax+1)
εDmin[`,v](0,T )

)}
· 1ε ·maxv∈V

{
log
(
Dmax[`,v](0,T )
Dmin[`,v](0,T )

)})
.

Proof. The time complexity of BISECT will be asymptotically equal to that of
the worst-case point-to-point bisection from ` to some destination vertex v. In
particular, BISECT concurrently computes the new breakpoints for the lower-
bounding approximate distance functions of all the active nodes, within the same
TDD-run. This is because the departure-time axis is common for all the shortest-
travel-time functions from the common origin `. Moreover, due to being able to
(exactly) calculate the worst-case maximum absolute error per destination vertex
in each interval of the bisection, the algorithm is able to deactivate (and thus,
stop producing breakpoints for) those vertices which have already reached the
required approximation guarantee. The already deactivated node will remain so
until the end of the algorithm. Nevertheless, the bisection continues as long as
there exists at least one active destination vertex.

We now bound the number of breakpoints produced by BISECT. The initial
departure-times interval to bisect is [0, T ). Assume that we are currently at an
interval [ts, tf ) ⊆ [0, T ), of length tf − ts. A new bisection halves this subinterval

and creates new breakpoints at
ts+tf

2 , one for each vertex that remains active.
Thus, at the k−th level of the recursion tree all the subintervals have length
L(k) = T/2k. Since for any shortest-travel-time function and any subinterval
[ts, tf ) of departure-times from ` it holds that 0 ≤ Λ+[`, v](ts) − Λ−[`, v](tf ) ≤
Λmax + 1 (cf. Assumption 1), the absolute error between D[`, v] and D[`, v] in

6 If concavity is not ensured, then these numbers must be multiplied by 1 + K∗,
since the proposed approximation procedure has to be repeated per subinterval of
consecutive images of concavity-spoiling breakpoints.



18 S. Kontogiannis and C. Zaroliagis

this interval is (by Lemma 4) at most L(k)·(Λmax+1)
4 ≤ T ·(Λmax+1)

2k+2 . This implies
that the bisection will certainly stop at a level kmax of the recursion tree at
which for any subinterval [ts, tf ) ⊆ [0, T ) and any destination vertex v ∈ V the
following holds:

MAE[`, v](ts, tf ) ≤ T · (Λmax + 1)

2kmax+2
≤ εDmin[`, v](ts, tf ) ≤ εDmin[`, v](0, T )

From this we conclude that setting

kmax = max
v∈V

{⌈
log2

(
T · (Λmax + 1)

εDmin[`, v](0, T )

)⌉}
− 2 (3)

is a safe upper bound on the depth of the recursion tree.
On the other hand, the parents of the leaves in the recursion tree correspond

to subintervals [ts, tf ) ⊂ [0, T ) for which the absolute error of at least one vertex
v ∈ V is greater than εDmin[`, v](ts, tf ), indicating that (in worst case) no pwl
(1+ε)−approximation may avoid placing at least one interpolation point in this
subinterval. Therefore, the proposed bisection method BISECT produces at
most twice as many interpolation points (to determine the lower-approximating
vector function D[`, ?]) required for any (1 + ε)-upper-approximation of D[`, ?].
But, as suggested in [16], by taking as breakpoints the (at most two) intersections
of the horizontal lines (1 + ε)j · Dmin[`, v](0, T ) with the (unknown) function
D[`, v], one would guarantee the following upper bound on the minimum number
of breakpoints for any (1 + ε)−approximation of D[`, v] within [0, T ):

U∗[`, v] ≤
⌈

log1+ε

(
Dmax[`, v](0, T )

Dmin[`, v](0, T )

)⌉
−1

Therefore, ∀v ∈ V it holds that:

L[`, v] ≤ 2 · log1+ε

(
Dmax[`, v](0, T )

Dmin[`, v](0, T )

)
(4)

The produced list UBP [`, v] of breakpoints for the (1 + ε)-upper-approximation
D[`, v] produced by BISECT uses at most one extra breakpoint for each pair
of consecutive breakpoints in LBP [`, v] for D[`, v]. Therefore, ∀v ∈ V :

U [`, v] ≤ 4 · log1+ε

(
Dmax[`, v](0, T )

Dmin[`, v](0, T )

)
∈ O

(
1

ε
log

(
Dmax[`, v](0, T )

Dmin[`, v](0, T )

))
We now proceed with the time-complexity of BISECT. We shall count the

number TDP of time-dependent shortest-path (TDSP) probes, e.g., TDD runs,
to compute all the candidate breakpoints during the entire bisection. The crucial
observation is that the bisection is applied on the common departure-time axis:
In each recursive call from [ts, tf ], all the new breakpoints at the new departure-

time tmid =
ts+tf

2 , to be added to the breakpoint lists of the active vertices,
are computed by a single (forward) TDSP-probe. Moreover, for each vertex v,
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every breakpoint of LBP [`, v](0, T ) requires a number of (forward) TDSP-probes
that is upper bounded by the path-length leading to the consideration of this
point for bisection, in the recursion tree. Any root-to-node path in this tree
has length at most kmax, therefore each breakpoint of LBP [`, v](0, T ) requires
at most kmax TDSP-probes, to be computed. In overall, taking into account
relations (3) and (4), the total number TDP of forward TDSP probes required
to construct LBP [`, ?](0, T ), is upper-bounded by

TDP ≤ kmax ·max
v∈V
|LBP [`, v](0, T )|

∈ O
(

max
v∈V

{⌈
log

(
T (Λmax + 1)

εDmin[`, v](0, T )

)⌉}
1

ε
max
v∈V

{
log

(
Dmax[`, v](0, T )

Dmin[`, v](0, T )

)})
We can construct UBP [`, ?](0, T ) from LBP [`, ?](0, T ) without any execution
of a TDSP-probe, by just sweeping once for every vertex v ∈ V LBP [`, v](0, T )
and adding all the intermediate breakpoints required. The time-complexity of
this procedure is O(|LBP [`, ?](0, T )|) and this is clearly dominated by the time-
complexity (number of TDSP-probes) for constructing LBP [`, ?](0, T ) itself. ut

Let U = max(`,v)∈L×V {U [`, v]}. Theorem 1 dictates that U and TDP are
independent of n and they only depend on the degrees of asymmetry and time-
dependence of the distance metric. Therefore, they can be treated as constants.
Combining the performance of BISECT with the fact that the expected number
of landmarks is E {|L|} = ρn, it is easy to deduce the required preprocessing time
and space complexities for constructing all the (1 + ε)−approximate landmark-
to-vertex distance summaries, which is culminated in the next theorem.

Theorem 2. The preprocessing phase of our time-dependent distance oracle
has expected space/time complexities E {S} ∈ O

(
ρn2(1 +K∗)U

)
and E {P} ∈

O
(
ρn2 log(n) log log(Kmax)(1 +K∗)TDP

)
.

Proof. For every landmark ` ∈ L and every destination vertex d, there are
(1 + K∗) subintervals that need to be bisected and BISECT can generate
at most U new breakpoints in each such interval. Since there are n destina-
tions, the total number of breakpoints that need to be stored for all land-
marks (and all destinations) is |L|n(1 + K∗)U . This total number of break-
points can be computed concurrently for all landmarks and all destinations
(cf. proof of Theorem 1) by |L|(1 + K∗)TDP runs of TDD. Each such runs
takes time O((m+ n log(n)) log log(Kmax)), where the extra log log(Kmax) term
in the Dijkstra-time is due to the fact that the arc-travel-times are continuous
pwl functions of the departure-time from their tails, represented as collections of
breakpoints. A predecessor-search structure would allow the evaluation of such
a function to be achieved in time O(log log(Kmax)). The space and time bounds
now follow from the fact that m = O(n) and E {|L|} = ρn. ut

4 Constant-approximation Query Algorithm

Our next step towards a distance oracle is to provide a fast query algorithm
providing constant approximation to the shortest-travel-time values of arbitrary
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queries (o, d, to) ∈ V ×V × [0, T ). The proposed query algorithm, called Forward
Constant Approximation (FCA), grows an outgoing ball

Bo := B[o](to) = {x ∈ V : D[o, x](to) ≤ min{D[o, d](to), D[o, `o](to)}}

from (o, to), by running TDD until either d or the closest landmark `o ∈
arg min`∈L{D[o, `](to)} is settled. We call Ro = min{D[o, d](to), D[o, `o](to)} the
radius of Bo. If d ∈ Bo, then FCA returns the exact travel-time D[o, d](to); oth-
erwise, it returns the approximate travel-time value Ro+∆[`o, d](to+Ro) via `o.
Figure 3 gives an overview of the whole idea. Figure 4 provides the pseudocode.

td = to + D[o,d](to)

Ro

x

lo

w od
P  SP[o,d](to)

to

Q  SP[o,lo](to)

Π  ASP[lo,d](to+Ro)

Fig. 3. The rationale of FCA. The dashed (blue) path P is a shortest od−path for
(o, d, to). The dashed-dotted (green and red) path Q •Π is the via-landmark od−path
indicated by the algorithm, if the destination vertex is out of the origin’s TDD ball.

FCA(o, d, to)

1. if o ∈ L then return (∆[o, d](to)) /∗ (1 + ε)−approximate answer ∗/

2. Bo = TDD-ball around (o, to) until either d or the first landmark is settled
3. if d ∈ Bo then return (D[o, d](to)) /∗ exact answer ∗/

4. `o = Bo ∩ L;Ro = D[o, `o](to);
5. return (Ro +∆[`o, d](to +Ro)) /∗ (1 + ε + ψ)−approximation ∗/

Fig. 4. The pseudocode describing FCA.

4.1 Correctness of FCA

The next theorem demonstrates that FCA returns od−paths whose travel-times
are constant approximations to the shortest travel-times.



Distance Oracles for Time-Dependent Networks 21

Theorem 3. ∀(o, d, to) ∈ V × V × [0, T ), FCA returns either an exact path
P ∈ SP [o, d](to), or a via-landmark od−path Q •Π, s.t. Q ∈ SP [o, `o](to), Π ∈
ASP [`o, d](to+Ro), and D[o, d](to) ≤ Ro+∆[`o, d](to+Ro) ≤ (1+ε)·D[o, d](to)+
ψ·Ro ≤ (1+ε+ψ)·D[o, d](to) , where ψ = 1+Λmax(1+ε)(1+2ζ+Λmaxζ)+(1+ε)ζ.

Proof. In case that d ∈ Bo, there is nothing to prove since FCA returns the
exact distance. So, assume that d /∈ Bo, implying that D[o, d](to) ≥ Ro. As for
the returned distance value Ro +∆[`o, d](to +Ro), it is not hard to see that this
is indeed an overestimation of the actual distance D[o, d](to). This is because
∆[`o, d](to +Ro) is an overestimation (implying also a connecting `od−path) of
D[`o, d](to + Ro), and of course Ro = D[o, `o](to) corresponds to a (shortest)
o`o−path that was discovered by the algorithm on the fly. Therefore, Ro +
∆[`o, d](to + Ro) is an overestimation of an actual od−path for departure time
to, and cannot be less than D[o, d](to). We now prove that it is not arbitrarily
larger than this shortest distance:

Ro +∆[`o, d](to +Ro) ≤ Ro + (1 + ε)D[`o, d](to +Ro)
/∗ triangle ∗/

≤ Ro + (1 + ε)[D[`o, o](to +Ro) +D[o, d](to +Ro +D[`o, o](to +Ro))]
/∗ Assum.1 ∗/

≤ Ro + (1 + ε)[(1 + Λmax)D[`o, o](to +Ro) + ΛmaxRo +D[o, d](to)]
/∗ Assum.2 ∗/

≤ Ro + (1 + ε)[(1 + Λmax)ζD[o, `o](to +Ro) + ΛmaxRo +D[o, d](to)]
/∗ Assum.1 ∗/

≤ Ro + (1 + ε)[(1 + Λmax)ζ(Ro + ΛmaxRo) + ΛmaxRo +D[o, d](to)]

=
[
1 + (1 + ε)(1 + Λmax)2ζ + (1 + ε)Λmax

]
R0 + (1 + ε)D[o, d](to)

= [1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ]︸ ︷︷ ︸
=ψ

R0 + (1 + ε)D[o, d](to)

= (1 + ε) ·D[o, d](to) + ψ ·Ro
ut

Note that FCA is a generalization of the 3−approximation algorithm in [2]
for symmetric (i.e., ζ = 1) and time-independent (i.e., Λmin = Λmax = 0) net-
work instances, the only difference being that the stored distance summaries we
consider are (1+ε)−approximations of the actual shortest-travel-times. Observe
that our algorithm smoothly departs, through the parameters Λmin, Λmax and ζ,
towards both asymmetry and time-dependence of the travel-time metric.

4.2 Complexity of FCA

The main cost of FCA is to grow the ball Bo = B[o](to) by running TDD.
Therefore, what really matters is the number of vertices in Bo, since the max-
imum out-degree is 2. Recall that L is chosen randomly by selecting each ver-
tex v to become a landmark independently of other vertices, with probability
ρ ∈ (0, 1). Hence, for any o ∈ V and any departure-time to ∈ [0, T ), the size of the
outgoing TDD−ball Bo = B[o](to) centered at (o, to) until the first landmark
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vertex is settled, behaves as a geometric random variable with success probabil-
ity ρ ∈ (0, 1). Consequently, E {|Bo|} = 1/ρ, and moreover (as a geometrically
distributed random variable), ∀k ≥ 1 ,P {|Bo| > k} = (1 − ρ)k ≤ e−ρk. By
setting k = (1/ρ) ln(1/ρ) we conclude that: P {|Bo| > (1/ρ) ln(1/ρ)} ≤ ρ. Since
the maximum out-degree is 2, TDD will relax at most 2k arcs. Hence, we have
established the following.

Theorem 4. For the query-time complexity QFCA of FCA the following hold:

E {QFCA} ∈ O((1/ρ) ln(1/ρ) log log(Kmax)) .

P
{
QFCA ∈ Ω

(
(1/ρ) ln2(1/ρ) log log(Kmax)

)}
∈ O(ρ) .

5 (1 + σ)−approximate Query Algorithm

The Recursive Query Algorithm (RQA) improves the approximation guarantee
of the chosen od−path provided by FCA, by exploiting carefully a number of
recursive calls of FCA, based on a given bound – called the recursion budget r –
on the depth of the recursion tree to be constructed. Each of the recursive calls
accesses the preprocessed information and produces another candidate od−path.
The crux of our approach is the following: We ensure that, unless the required
approximation guarantee has already been reached by a candidate solution, the
recursion budget must be exhausted and the sequence of radii of the consecutive
balls that we grow from centers lying on the unknown shortest path, is lower-
bounded by a geometrically increasing sequence. We prove that this sequence
can only have a constant number of elements until the required approximation
guarantee is reached, since the sum of all these radii provides a lower bound on
the shortest-travel-time that we seek.

A similar approach was proposed for undirected and static sparse networks [2],
in which a number of recursively growing balls (up to the recursion budget) is
used in the vicinities of both the origin and the destination nodes, before even-
tually applying a constant-approximation algorithm to close the gap, so as to
achieve improved approximation guarantees.

In our case the network is both directed and time-dependent. Due to our
ignorance of the exact arrival time at the destination, it is difficult (if at all
possible) to grow incoming balls in the vicinity of the destination node. Hence,
our only choice is to build a recursive argument that grows outgoing balls in the
vicinity of the origin, since we only know the requested departure-time from it.
This is exactly what we do: As long as we have not discovered the destination
node within the explored area around the origin, and there is still some remain-
ing recursion budget r − k > 0 (k ∈ {0, . . . , r}), we “guess” (by exhaustively
searching for it) the next node wk along the (unknown) shortest od−path. We
then grow a new out-ball from the new center (wk, tk = to +D[o, wk](to)), until
we reach the closest landmark-vertex `k to it, at distance Rk = D[wk, `k](tk).
This new landmark offers an alternative od−path solk = Po,k • Qk • Πk by a
new application of FCA, where Po,k ∈ SP [o, wk](to), Qk ∈ SP [wk, `k](tk), and
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Πk ∈ ASP [`k, d](tk+Rk) is the approximate suffix subpath provided by the dis-
tance oracle. Observe that solk uses a longer optimal prefix-subpath Pk which
is then completed with a shorter approximate suffix-subpath Qk •Πk. Figure 5
provides an overview of RQA’s execution. Figure 6 provides the pseudocode of
RQA.

to

lk

d

P0,k  SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk  SP[wk , lk](tk)

Πk  ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

Fig. 5. Overview of the execution of RQA.

5.1 Correctness and Quality of RQA

The correctness of RQA implies that the algorithm always returns some od−path.
This is true due to the fact that it either discovers the destination node d as it
explores new nodes in the vicinity of the origin node o, or it returns the short-
est of the approximate od−paths sol0, . . . , solr via one of the closest landmarks
`o, . . . , `r to “guessed” nodes w0 = o, w1, . . . , wr along the shortest od−path
P ∈ SP [o, d](to), where r is the recursion budget. Since the preprocessed dis-
tance summaries stored by the oracle provide approximate travel-times corre-
sponding to actual paths from landmarks to vertices in the graph, it is clear that
RQA always returns an od−path whose travel-time does not exceed the alleged
upper bound on the actual distance.

Our next task is to study the quality of the 1 +σ stretch provided by RQA.
Let δ > 0 be a parameter such that σ = ε + δ and recall the definition of ψ
from Theorem 3. The next lemma shows that the sequence of ball radii grown
from vertices of the shortest od−path P [o, d](to) by the recursive calls of RQA
is lower-bounded by a geometrically increasing sequence.

Lemma 5. Let D[o, d](to) = td − to and suppose that RQA does not discover
d or any landmark wk ∈ SP [o, d](to) ∩ L, k ∈ {0, 1, . . . , r}, in the explored area
around o. Then, the entire recursion budget r will be consumed and in each round

k of recursively constructed balls we have that either Rk >
(

1 + ε
ψ

)k
· δψ ·(td− to)

or ∃ i ∈ {0, 1, . . . , k} : D[soli](to) ≤ (1 + ε+ δ) ·D[o, d](to) .
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RQA(o, d, to, r)

1. if o ∈ L then return (ASP [o, d](to),∆[o, d](to)) /∗ (1 + ε)−approximation ∗/

2. B[o](to) := TDD-ball from (o, to) until either d or a landmark is settled
3. if d ∈ Bo then return (D[o, d](to)) /∗ exact suffix-subpath ∗/

4. `0 ∈ B[o](to) ∩ L; R0 = D[o, `0](to)
5. sol0 = (Q0 •Π0 , ∆[sol0](to) = R0 +∆[`0, d](to +R0)) /∗ via-`o approximation ∗/

6. k := 0; tk = to;
7. while k < r do
7.1. “guess” the first vertex wk+1 ∈ SP [wk, d](tk) \B[wk](tk)/∗ exhaustive search ∗/

7.2. tk+1 = tk +D[wk, wk+1](tk);
7.3. if wk+1 ∈ L
7.4. then return (P0,k+1 •Π[wk+1, d](tk+1), tk+1 − t0 +∆[wk+1, d](tk+1))

/∗ approximate answer via wk+1 ∗/

7.5. B[wk+1](tk+1) := TDD-ball until d or a landmark is settled
7.6 if d ∈ B[wk+1](tk+1) then

7.7. then solk+1 =

(
P0,k+1 • Pk+1,d,

∆[solk+1](to) = tk+1 − to +D[wk+1, d](tk+1)

)
7.8. else
7.8.1 `k+1 ∈ L ∩B[wk+1](tk+1); Rk+1 = D[wk+1, `k+1](tk+1)

7.8.2 solk+1 =

P0,k+1 •Qk+1 •Πk+1,

∆[solk+1](to) = tk+1 − to +Rk+1

+∆[`k+1, d](tk+1 +Rk+1)


/∗ approximate answer via `k+1 ∗/

7.9. k = k + 1
8. endwhile
9. return min0≤k≤r {solk}

Fig. 6. The recursive algorithm RQA providing (1 +σ)−approximate time-dependent
shortest paths. Qk ∈ SP [wk, `k](tk) is the shortest path connecting wk to its closest
landmark w.r.t. departure-time tk. P0,k ∈ SP [o, wk](to) is the prefix of the shortest
od−path that has been already discovered, up to vertex wk. Πk = ASP [`k, d](tk +Rk)
denotes the (1 + ε)−approximate shortest `kd−path precomputed by the oracle.

Proof. As long as none of the discovered nodes o = w0, w1, . . . , wk is a landmark
node and the recursion budget has not been consumed yet, RQA continues
guessing new nodes of P ∈ SP [o, d](to). If any of these nodes (say, wk) is a
landmark node, the (1 + ε)−approximate solution P0,k •Π[wk, d](tk) is returned
and we are done. Otherwise, RQA will certainly have to consume the entire
recursion budget.

For any k ∈ {0, 1, . . . , r}, if ∃ i ∈ {0, 1, . . . , k} : D[soli](to) ≤ (1 + ε +
δ) ·D[o, d](to) then there is nothing to prove from that point on. The required
disjunction trivially holds for all rounds k, k + 1, . . . , r. We therefore consider
the case in which up to round k− 1 of the recursion no good approximation has
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been discovered, and we shall prove inductively that either solk is a (1 + ε+ δ)−

approximation, or else Rk >
(

1 + ε
ψ

)k
· δψ · (td − to).

Basis. Recall that FCA is used to provide the suffix-subpath of the returned
solution sol0, whose prefix (from o to `o) is indeed a shortest path. Therefore:

D[sol0](to) ≤ R0 +∆[`0, d](to +R0)
/∗ Theorem 3 ∗/

≤ (1 + ε) ·D[o, d](to) + ψ ·R0 =
(

1 + ε+ ψR0

td−to

)
· (td − to)

Clearly, either ψR0

td−to ≤ δ ⇔ R0 ≤ δ
ψ ·(td−to), which then implies that we already

have a (1 + ε+ δ)−approximate solution, or else it holds that R0 >
δ
ψ · (td− to).

Hypothesis. We assume inductively that ∀ 0 ≤ i ≤ k, no (1+ε+δ)−approximate

solution has been discovered up to round k, and thus it holds thatRi >
(

1 + δ
ψ

)i
·

δ
ψ · (td − to).
Step. We prove that for the (k+1)−st recursive call, either the new via-landmark
solution solk+1 = P0,k+1 • Qk+1 •Πk+1 is a (1 + ε + δ)−approximate solution,

or else Rk+1 >
(

1 + δ
ψ

)k+1

· δψ · (td − to). For the travel-time along this path we

have:

D[solk+1](to)

≤ tk+1 − to +Rk+1 +∆[`k+1, d](tk+1 +Rk+1)
/∗ Theorem 3 ∗/

≤ tk+1 − to + (1 + ε) ·D[wk+1, d](tk+1) + ψ ·Rk+1

/∗ wk+1∈SP [o,d](to) ∗/

= tk+1 − to + (1 + ε) · (td − tk+1) + ψ ·Rk+1

= (1 + ε) · (td − to)− ε · (tk+1 − to) + ψ ·Rk+1

/∗ tk+1−to≥R0+...+Rk ∗/

≤ (1 + ε) · (td − to)− ε · (R0 + . . .+Rk) + ψ ·Rk+1

/∗ Induction Hypothesis ∗/

< (1 + ε)(td − to)− ε
k∑
i=0

(
1 +

ε

ψ

)i
δ

ψ
(td − to) + ψRk+1

=

(
1 + ε− εδ

ψ
·
k∑
i=0

(
1 +

ε

ψ

)i
+
ψ ·Rk+1

td − to

)
· (td − to)

=

(
1 + ε− δ ·

[(
1 +

ε

ψ

)k+1

− 1

]
+
ψ ·Rk+1

td − to

)
· (td − to)

Once more, it is clear that either D[solk+1](to) ≤ (1 + ε+ δ) ·D[o, d](to), or else

it must hold that Rk+1 >
(

1 + ε
ψ

)k+1

· δψ · (td − to) as required. ut

The next theorem shows that RQA indeed provides (1 + σ)−approximate
distances in response to arbitrary queries (o, d, to) ∈ V × V × [0, T ).
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Theorem 5. For the stretch of RQA the following hold:

1. If r =

⌈
ln(1+ ε

δ )
ln(1+ ε

ψ )

⌉
−1 for δ > 0, then, RQA guarantees a stretch 1 + σ =

1 + ε+ δ.
2. For a given recursion budget r ∈ N, RQA guarantees stretch 1 + σ, where

σ = σ(r) ≤ ε · (1+ε/ψ)r+1

(1+ε/ψ)r+1−1 .

Proof. If none of the via-landmark solutions is a (1 + ε + δ)−approximation,
then:

td − to ≥ R0 +R1 + . . .+Rr
/∗ Lemma 5 ∗/

>
δ

ψ
· (td − to) ·

r∑
i=0

(
1 +

ε

ψ

)i

=
δ

ψ
· (td − to) ·

(
1 + ε

ψ

)r+1

− 1

1 + ε
ψ − 1

=
δ

ε
· (td − to) ·

[(
1 +

ε

ψ

)r+1

− 1

]

⇒ ε

δ
>

(
1 +

ε

ψ

)r+1

− 1⇒

 r < ln(1+ε/δ)
ln(1+ε/ψ) − 1

δ < ε
(1+ε/ψ)r+1−1

If r =
⌈

ln(1+ε/δ)
ln(1+ε/ψ) − 1

⌉
≤ ψ/δ

1−ε/ψ − 1 ∈ O
(
ψ
δ

)
, we have reached a contradiction7.

For this value of the recursion budget RQA either discovers the destination
node, or at least a landmark node that also belongs to SP [o, d](to), or else it
returns a via-landmark path that is a (1 + ε+ δ)−approximation of the required
shortest od−path.

On the other hand, for a given recursion budget r ∈ N, it holds that σ =

σ(r) = ε+ ε
(1+ε/ψ)r+1−1 = ε·(1+ε/ψ)r+1

(1+ε/ψ)r+1−1 is guaranteed by RQA.
ut

Note that for time-independent, undirected-graphs (for which Λmin = Λmax =
0 and ζ = 1) it holds that ψ = 2 + ε. If we equip our oracle with exact rather
than (1 + ε)−approximate landmark-to-vertex distances (i.e., ε = 0), then in
order to achieve σ = δ = 2

t+1 for some positive integer t, our recursion budget r

is upper bounded by ψ
δ − 1 = t. This is exactly the amount of recursion required

by the approach in [2] to achieve the same approximation guarantee. That is,
at its one extreme (Λmin = Λmax = 0, ζ = 1, ψ = 2) our approach matches
the bounds in [2] for the same class of graphs, without the need to grow balls
from both the origin and destination vertices. Moreover, our approach allows for
a smooth transition from static and undirected-graphs to directed-graphs with
FIFO arc-delay functions. The required recursion budget now depends not only
on the targeted approximation guarantee, but also on the degree of asymmetry
(the value of ζ ≥ 1) and the steepness of the shortest-travel-time functions (the

7 The inequality r ≤ ψ/δ
1−ε/ψ − 1 holds due to the following bound: ∀z ≥ − 1

2
, z − z2 ≤

ln(1 + z) ≤ z.
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value of Λmax) for the time-dependent case. It is noted that we have recently
become aware of an improved bidirectional approximate distance oracle for static
undirected graphs [1] which outperforms [2] in the stretch-time-space tradeoff.

5.2 Complexity of RQA

It only remains to determine the query-time complexity QRQA of RQA. This is
provided by the following theorem.

Theorem 6. For the query-time complexity QRQA of RQA the following hold:

E {QRQA} ∈ O((1/ρ)r+1 · ln(1/ρ) · log log(Kmax)) .

P

{
QRQA ∈ O

((
ln(n)

ρ

)r+1 [
ln ln(n) + ln

(
1

ρ

)]
log log(Kmax)

)}
∈ 1−O

(
1

n

)
.

Proof. Recall that for any vertex w ∈ V and any departure-time tw ∈ [0, T ),
the size of the outgoing TDD−ball Bw = B[w](tw) centered at (w, tw) until the
first landmark vertex is settled, behaves as a geometric random variable with
success probability ρ ∈ (0, 1). Thus, E {|Bw|} = 1

ρ and ∀β ∈ N, P {|Bw| > β} ≤
exp(−ρ · β). By applying the trivial union bound, one can then deduce that:
∀W ⊆ V,P {∃w ∈W : |Bw| > β} ≤ |W | exp(−ρβ) = exp (−ρβ + ln(|W |)) .

Assume now that we somehow could guess an upper bound β∗ on the num-
ber of vertices in every ball grown by an execution of RQA. Then, since the
out-degree is upper bounded by 2, we know that the boundary ∂B of each ball
B will have size |∂B| ≤ 2|B|. This in turn implies that the branching tree that
is grown in order to implement the “guessing” of step 7.1 in RQA (cf. Figure 6)
via exhaustive search, would be bounded by a complete (2β∗)−ary tree of depth
r. For each node in this branching tree we have to grow a new TDD−ball out-
going from the corresponding center, until a landmark vertex is settled. The size
of this ball will once more be upper-bounded by β∗. Due to the fact that the
out-degree is bounded by 2, at most 2β∗ arcs will be relaxed. Therefore, the
running time of growing each ball is O(β∗ ln(β∗)). At the end of each TDD
execution, we query the oracle for the distance of the newly discovered land-
mark to the destination node. This will have a cost of O(log log((K∗ + 1) · U)),
where U is the maximum number of required breakpoints between two concavity-
spoiling arc-delay breakpoints in the network, since all the breakpoints of the
corresponding shortest-travel-time function are assumed to be organized in a
predecessor-search data structure. The overall query-time complexity of RQA
would thus be bounded as follows:

QRQA ≤
(2β∗)r+1 − 1

2β∗ − 1
· O(β∗ ln(β∗) + log log((K∗ + 1) · U))

∈ O
(
(β∗)r+1 ln(β∗) + βr log log((K∗ + 1) · U)

)
Assuming that log log((K∗ + 1) · U) ∈ O(β∗ log(β∗)), we have that QRQA ∈
O
(
(β∗)r+1 ln(β∗)

)
. If we are only interested on the expected running time of
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the algorithm, then each ball has expected size O
(

1
ρ

)
and thus E {QRQA} ∈

O
((

1
ρ

)r+1

ln
(

1
ρ

))
.

In general, if we set β∗ = r ln(n)
ρ , then we know that RQA will grow |W | ∈

O
((

r ln(n)
ρ

)r)
balls, and therefore:

P
{
∀w ∈W, |Bw| ≤

r ln(n)

ρ

}
≥ 1− exp

(
−ρr ln(n)

ρ
+ r · [ln ln(n) + ln(1/ρ)]

)
∈ 1−O

(
1

n

)
Thus, we conclude that:

P

{
QRQA ∈ O

((
ln(n)

ρ

)r+1

·
[
ln ln(n) + ln

(
1

ρ

)])}
∈ 1−O

(
1

n

)
.

ut

6 Main Results

In this section, we summarize the main result of our paper and establish the
tradeoff between preprocessing, query time and stretch. Recall that U is the
worst-case number of breakpoints for an (1+ε)−approximation of a concave (1+
ε)-approximate distance function stored in our oracle, and TDP is the maximum
number of time-dependent shortest path probes during their construction8. The
following theorem summarizes our main result.

Theorem 7. For sparse time-dependent network instances compliant with As-
sumptions 1 and 2, a distance oracle is provided with the following characteris-
tics: (a) it selects among all vertices, uniformly and independently with proba-
bility ρ, a set of landmarks; (b) it stores (1 + ε)−approximate distance functions
(summaries) from every landmark to all other vertices; (c) it uses a query algo-
rithm equipped with a recursion budget (depth) r. Our time-dependent distance
oracle achieves the following expected complexities:
(i) preprocessing space O

(
ρn2(1 +K∗)U

)
;

(ii) preprocessing time O
(
ρn2(1 +K∗) log(n) log log(Kmax)TDP

)
;

(iii) query time O
((

1
ρ

)r+1

log
(

1
ρ

)
log log(Kmax)

)
.

The guaranteed stretch is 1+ε
(1+ ε

ψ )r+1

(1+ ε
ψ )r+1−1 , where ψ is a fixed constant depending

on the characteristics of the arc-travel-time functions, but is independent of the
network size.

Proof. Immediate consequence of Theorems 2, 5, and 6. ut
8 As it is proved in Theorem 1, U and TDP are independent of the network size n.
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Note that, apart from the choice of landmarks, our preprocessing and query
algorithms are deterministic. The following theorem expresses explicitly the
tradeoff between subquadratic preprocessing, sublinear query time and stretch
of the proposed oracle.

Theorem 8. Let G = (V,A, (D[a])a∈A) be a sparse time-dependent network
instance compliant with Assumptions 1 and 2. Assume that our distance or-
acle is deployed on G for: (a) creating the landmark set uniformly at ran-

dom with probability ρ = n−a, for some a ∈
(

0, 1
r+1

)
; (b) computing with the

BISECTION method the (1+ε)-approximate distance summaries for landmark-
to-vertex distances; (c) running RQA to respond to arbitrary queries (o, d, to) ∈
V × V × [0, T ), with approximation guarantee 1 + γε, for some constant γ =
(1+ε/ψ)r+1

(1+ε/ψ)r+1−1 > 1 . Provided that the degree of disconcavity of G is K∗ ∈ polylog(n),

then the following expected complexities hold:

Preprocessing space: E {S} ∈ Õ
(
n2−a

)
Preprocessing time: E {P} ∈ Õ

(
n2−a

)
Query time: E {Q} ∈ Õ

(
n(1+r)a

)
Proof. Since we have assumed that K∗ ∈ polylog(n) and since by Theorem 1
U and TDP are independent of the network size n and hence can be treated
as constants, it follows from Theorem 7 that the expected preprocessing space
and time complexities, E {S} ∈ Õ

(
n2−a

)
and E {P} ∈ Õ

(
n2−a

)
, are indeed sub-

quadratic. It similarly follows from the same theorem that the expected query
time is E {QRQA} ∈ Õ

(
n(1+r)a

)
. Hence, to complete the proof is remains to

show that Õ
(
n(1+r)a

)
is also sublinear, i.e., (r + 1)a < 1. Recall that, by Theo-

rems 7 and 5, a (1 + γε)-approximate solution is returned, for γ = (1+ε/ψ)r+1

(1+ε/ψ)r+1−1
which holds by our assumption. Alternatively, to assure a desired approximation
guarantee 1 + γε for arbitrary queries, value γ > 1 and a given approximation
guarantee 1 + ε for the preprocessed distance summaries, we should set appro-
priately the recursion budget to

r =
log
(

γ
γ−1

)
log
(

1 + ε
ψ

) − 1

ut

7 Approximate Shortest Path Reconstruction

As it is customary in the distance oracles literature, the query-time complexities
of our algorithms concern only the determination, for a given query (o, d, to) ∈
V×V×[0, T ), of an upper bound∆[o, d](to) on the shortest-travel-timeD[o, d](to),
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or equivalently an arrival-time τd := to + ∆[o, d](to) at d which guarantees this
upper bound on the travel-time.

Our goal in this section is to describe a method for reconstructing an actual
od−path (roughly) guaranteeing this travel-time bound, in time (additional to
the already reported query-time) that is roughly linear in the number of its
constituent arcs. Indeed, our goal is only to exploit the precomputed landmarks-
to-vertices approximate distance summaries, along with the value τd that was
computed on the fly, in order to discover such a path. Indeed, the origin-to-
landmark path is computed “on-the-fly” and the main challenge is to construct
the remaining landmark-to-destination approximate path that would guarantee
the reported arrival-time at the destination. A natural approach would be to
mimick the path reconstruction from the destination back to the landmark,
based only on the (upper bound on the) arrival-time at the destination, as is
typically done in the time-independent case. This would indeed be possible, if we
had at our disposal exact landmark-to-vertices distance summaries. But we can
only afford for (1+ε)−approximate distance summaries of the actual travel-time
functions and thus the only thing we know is that τd ∈ to+D[o, d](to) · [1, 1 + ε].
Thus, we cannot be sure that such a reconstruction is indeed possible: It might
be the case that τd = td := to + D[o, d](to) while at the same time some of
the approximate distances from the landmark to intermediate vertices along the
path are indeed inexact.

To resolve this issue, we shall exploit the fact that the approximate dis-
tance summaries created during preprocessing, correspond to travel-time func-
tions along a shortest-paths tree from the landmark to all possible destinations,
for the given departure time. This tree is actually a valid approximate shortest
paths tree, not only for the sampled departure time, but also for the entire time-
interval of departures till the next sample point. Due to the sparsity of the graph,
we can be sure that only a constant number of bits is required per breakpoint in
the pwl-approximations, in order for each vertex to memoize its own parent in
such a tree (as a function of the departure-time from the landmark). The path
reconstruction is then conducted by moving from the destination towards the
landmark, evaluating the right leg of the corresponding approximate distance
summary in each intermediate vertex, so that the appropriate parent (and the
latest departure time from it) is selected. In overall, the construction time will
be almost linear in the number of arcs constituting the required approximate
shortest path (times an O(log log(Kmax)) factor, for evaluating the right leg in
the approximate distance summary of each intermediate vertex).

8 Conclusions

We have presented the first time-dependent distance oracle for sparse networks,
compliant with Assumptions 1 and 2, that achieves subquadratic preprocessing
space and time, sublinear query time, and stretch factor arbitrarily close to 1.
Our approach is based on a new algorithm, built upon the bisection method,
that computes one-to-all approximate distance summaries from a set of selected
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landmarks to all other vertices of the network as well as on a new recursive
query algorithm. Our assumptions, justified by an experimental analysis of real-
world and benchmark data, allow us to achieve a smooth transition, from the
undirected (symmetric) and static world to the directed (asymmetric) and time-
dependent world, through two parameters that quantify the degree of asymmetry
(ζ) and its evolution over time (expressing the steepness of the shortest travel-
time functions via Λmin and Λmax).

It would be quite interesting to come up with a new method for computing
approximate distance summaries, that avoids the dependence of the preprocess-
ing complexities on the number K∗ of concavity-spoiling breakpoints.

Finally, almost all distance oracles with provable approximation guarantees in
the literature, even for the static case, target at sublinearity in query times with
respect to the network size. A very important aspect would be to propose query
algorithms that are indeed sublinear not only in worst-case, but also sublinear
on the Dijkstra rank of the destination vertex.
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