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Abstract A variety of algorithms have been proposed for reconstructing trees
that show the evolutionary relationships between species by comparing differ-
ences in genetic data across present-day taxa. If the leaf-to-leaf distances in
a tree can be accurately estimated, then it is possible to reconstruct this tree
from these estimated distances, using polynomial-time methods such as the
popular ‘Neighbor-Joining’ algorithm. There is a precise combinatorial condi-
tion under which distance-based methods are guaranteed to return a correct
tree (in full or in part) based on the requirement that the input distances all lie
within some ‘safety radius’ of the true distances. Here, we explore a stochas-
tic analogue of this condition, and mathematically establish upper and lower
bounds on this ‘stochastic safety radius’ for distance-based tree reconstruction
methods. Using simulations, we show how this notion provides a new way to
compare the performance of distance-based tree reconstruction methods. This
may help explain why Neighbor-Joining performs so well, as its stochastic
safety radius appears close to optimal (while its more classical safety radius is
the same as many other less accurate methods).
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1 Introduction

A central task in evolutionary biology is the reconstruction of ‘phylogenetic’
(evolutionary) trees from genetic data sampled from present-day species that
describe how these species evolved from a common ancestor. These trees can
be estimated from a variety of different types of data, but a common approach
involves data that are based on some measure of ‘evolutionary distance’ be-
tween species. A variety of fast (polynomial-time) methods have been devised
for building a phylogenetic X-tree from an arbitrary distance function d on X.
The most popular by far is ‘Neighbor-Joining,’ (NJ) and the paper [21] that
described this heuristic algorithm has now been cited more than 36,000 times.

A desirable property of such methods is that when a distance function fits
exactly on a binary (fully resolved) tree with branch lengths, then the method
will return that underlying tree (up to the placement of the root) and its edge
lengths. Moreover, when a distance function δ is close to an exact fit on some
binary tree T , many methods also come with a guarantee that they will return
T when applied to δ.

How close δ needs to be to a ‘tree metric’ d depends crucially on wmin,
the smallest interior edge length of T ; a distance-based tree reconstruction
method is said to have ‘safety radius’ ρ if the method is guaranteed to return
the underlying binary tree T when δ differs from d by less than ρ ·wmin on each
pair of leaves (a precise definition is given shortly). This notion was introduced
by Kevin Attenson 25 years ago in this journal [1], where he established that
for NJ, this safety radius is ρ = 1

2 ; moreover, this is the largest possible safety
radius for any distance-based tree reconstruction method.

While this classical safety radius has provided a precise formal way to com-
pare different tree reconstruction methods, it is not always a good predictor
of which method will perform more accurately on simulated (or real) data; for
instance, methods that perform well (e.g. NJ) often have a safety radius that
is equivalent to those of methods that perform poorly (e.g. the Buneman tree
[2]). In this paper, we consider a more relaxed, statistically-based version of
the purely combinatorial safety radius that treats the differences between ob-
served and expected distances as independent random variables. We develop
and apply this notion of a ‘stochastic safety radius’, derive formal upper and
lower bounds, and compare different tree reconstruction methods using it.

1.1 Classical safety radius

For a phylogenetic X–tree T with positive edge lengths w, let d(T,w) denote
the associated tree metric on X and let wmin denote the minimal interior edge
length of T . A method M for reconstructing a phylogenetic X–tree from each
dissimilarity map δ on X is said to have a l∞ safety radius ρn if, for any binary
phylogenetic tree T with n leaves we have:

‖δ − d(T,w)‖∞ < ρn · wmin =⇒M(δ) = T.
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Here ‖ ∗ ‖∞ refers to the largest difference between δ and d over all pairs from
X. Beginning with the pioneering work of Atteson [1] it is now well known that
no method can have l∞ safety radius ρn >

1
2 and that certain methods such as

NJ and ‘Balanced Minimimum Evolution’ (BME) [18] achieve this bound for
all n [16]. However, for other methods, the l∞ safety radius is less than 1

2 and
it can even converge to 0 as n grows [11], [16]. We will refer to the following
constraint:

‖δ − d(T,w)‖∞ <
1

2
· wmin

as the Atteson l∞ bound.
Despite the mathematical elegance of these results, there are two problems

associated with the l∞ safety radius approach. Firstly, it is a strict combina-
torial condition and the l∞ metric is extremely sensitive, particularly for large
values of n, since it takes only one pair of taxa to have a δ value that conflicts
substantially with its d value to result in a violation of the safety radius. A
second related point is that simulations show that methods such as NJ often
return the correct tree even when the safety radius is violated. One combina-
torial approach that goes some way towards addressing this second point was
taken in [15] and developed further in [8]. This latter paper also showed that
NJ has a l2 safety radius 1√

3
≈ 0.5773 for trees with n = 5 leaves.

A related “edge safety radius” approach was also pioneered by Atteson
[1], who showed that ADDTREE [22] is optimal, whereas NJ is not. However,
simulations show that NJ performs well (i.e. as well as ADDTREE) regarding
the edge safety radius, which somewhat contradicts the theory. Recent results
by Bordewich and Mihaescu [3] also indicate that this theory has some short-
comings and produces a ranking among methods (Greedy BME/NJ) which is
not observed in practice. (there are also examples where the standard safety
radius produces strange ranking, e.g. UPGMA/LS methods [11]).

2 Stochastic safety radius

Let us regard δ as differing from d by a random ‘error’. More precisely, we
suppose that:

δ(x, y) = d(T,w)(x, y) + εxy, (1)

where the εxy values are independent normal random variables, each with a
mean of 0 and a variance equal to σ2. We refer to this simple model as the
random errors model.

Note that in the context of this random errors model, maximum likelihood
estimation (MLE) of a tree is equivalent to the ordinary least squares (OLS)
tree-reconstruction method, since the OLS score that this method seeks to
minimise is proportional to minus the log of the likelihood function. Several
heuristic approaches have been designed to search for the OLS tree, starting
with the seminal 1967 papers of Cavalli-Sforza and Edwards [6] and Fitch and
Margoliash [9].
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Throughout this paper, we let N(µ, σ2) denote a normal random variable
with mean µ and variance σ2. Thus εxy has the distribution N(0, σ2). The
following inequality and asymptotic equality (as x → ∞) are helpful in the
results that follow (their proof is in the Appendix). For x > 0:

1

2
e−x

2/2 < P(N(0, 1) > x) ∼ e−x
2/2

x
√

2π
, (2)

where ∼ denotes asymptotical equivalence as x grows.

2.1 Example: the four-taxon case

With four taxa, most methods (if not all) will use the “four-point rule” [23]
and select the topology xy|wz if:

δ(x, y) + δ(w, z) < min{δ(x,w) + δ(y, z), δ(x, z) + δ(y, w)}.

Now, under the random errors model, the three sums

δ(x, y) + δ(w, z), δ(x,w) + δ(y, z), δ(x, z) + δ(y, w),

constitute three independent normal random variables, each with variance of
2σ2. Moreover, if the tree generating d has topology xy|wz with an interior
edge of length w, then the second and third sum have the same mean, which is
larger than the mean of the first sum by 2w. In particular P(δ(x,w)+δ(y, z) >
δ(x, y) + δ(w, z)) and P(δ(x, z) + δ(y, w) > δ(x, y) + δ(w, z)) are both equal to

P(N(2w, 4σ2) > 0).

Consequently, the probability that the correct tree topology xy|wz is selected
from δ is at least:

1− 2P(N(2w, 4σ2) < 0) = 1− 2P(N(0, 1) < −w/σ). (3)

Thus, there will be (say) a ∼ 98% probability of correctly inferring the tree
topology if σ is 1

2w (or less).
It is interesting to compare this to the l∞ bound of Atteson [1] for methods

such as NJ. Recall that this holds when |d(x, y)− δ(x, y)| < w
2 for all six pairs

x, y. Now, under the random effects model, the probability of these events all
holding is exactly:

(−w/2 < P(N(0, σ2) < w/2))6 = (1− 2P(N(0, 1) > w/2σ))6.

Consequently, for σ set equal to 1
2w, as above, the probability the l∞ bound

holds is (1 − 2P(N(0, 1) > 1))6 ≈ 0.1, which is much lower than the 98%
probability described previously; moreover, in order to ensure the l∞ bound
holds with 98% probability, we would need to reduce σ to around w/6.
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2.2 Larger values of n

To extend the above analysis from n = 4 to larger values of n, it is useful to
allow σ2 to depend on n (the reason for this becomes clear shortly). Specifically,
let us write:

σ2 =
c2

log(n)
, (4)

for some value c 6= 0.
Notice that σ is converging to zero but very slowly (i.e. larger trees require

more accuracy, but not a lot more). First we consider what happens with the
l∞ bound as n grows.

Proposition 1 Under the random errors model, the probability that the At-
teson l∞ bound holds for all pairs x, y in a tree with n leaves converges to 0
for c > 1

4 · wmin and converges to 1 for c < 1
4 · wmin.

Proof Let w∗ be the minimal interior edge length in T . Then:

P(|δ(x, y)− d(T,w)(x, y)| < w∗/2) = P(N(0, σ2) ∈ (−w∗/2, w∗/2)),

where N(0, σ2) refers to a normal random variable with mean 0, and variance
σ2 given by Eqn. (4). Thus:

P(|δ(x, y)− d(T,w)(x, y)| < w∗/2) = 1− 2P
(
N(0, 1) >

w∗

2c

√
log(n)

)
.

Now, the l∞ bound is satisfied precisely when |δ(x, y) − d(T,w)(x, y)| < w∗/2
for all x, y, and so the probability of this l∞ bound occurring – call it P∞ – is
given by:

P∞ =

(
1− 2P

(
N(0, 1) >

w∗

2c

√
log(n)

))(n2)
. (5)

Proposition 1 now follows from the asymptotic equivalence in (2) and the ob-

servation that, for any sequence xn with xn ∼ 1

nβ
√

log(n)
, we have (1− xn)(

n
2)

which converges to 0 and 1 when β < 2 and β > 2, respectively, as n grows. 2

We now define a ‘stochastic safety radius’ that is scaled in such a way as
to allow comparisons that are meaningful even as n tends to infinity.

Definition [Stochastic safety radius] For any η > 0, we will say that a
distance-based tree reconstruction method M has η-stochastic safety radius
s = sn if for every binary phylogenetic X-tree T on n leaves, with minimum
interior edge length wmin, and with the distance δ on X described by the
random errors model, we have:

c < s · wmin =⇒ P(M(δ) = T ) ≥ 1− η.
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Proposition 2 For any method M that has l∞ safety radius ρn > 0, and for
any η > 0, there is a value s = sn > 0 so that M has η-stochastic radius (at
least) s for all binary trees on n leaves. Moreover, as n → ∞ we can take sn
arbitrarily close to 1

2ρn.

Proof If c ≥ s · wmin then, from the analogue of (5) (with 1
2w
∗ replaced by

ρ · w∗), we have:

P∞ ≥
(

1− 2P
(
N(0, 1) >

ρ

s

√
log(n)

))(n2)
.

Applying the inequality in (2) gives:

P∞ ≥
(

1− n−ρ2/2s2
)(n2) ≥ 1−

(
n

2

)
n−ρ

2/2s2 ,

and the very last term on the right can be made < η by selecting s = sn
sufficiently small. Moreover, as n → ∞, we can take sn to approach 1

2ρn for
any η > 0. 2

Notice that this proof just sets a lower bound on the η-stochastic safety
radius. This shows that any method having non-zero l∞ safety radius (e.g.
1/2 for NJ) also has non-zero η-stochastic safety radius, which is roughly
equal to half of the l∞ safety radius (i.e. 1/4 with NJ). In other words, our
definition provides non-trivial performance criteria for those methods, with a
lower bound that is easily computed from the l∞ results. However, the bound
in Proposition 2 is very severe in that it requires that the l∞ bound to hold for
all pairwise distances. We will see that much better bounds do exist. Moreover,
the following definition avoids having to consider the effect of η, which plays
a minor role in all calculations.

Definition [Limiting stochastic safety radius] We say that a distance-
based tree reconstruction method M has a limiting stochastic safety radius
(LSSR) r if for every s < r and every η > 0 the η-stochastic safety radius of
M is at least s for all binary trees with sufficiently many leaves.

3 Theoretical Results

We first show that the limiting stochastic safety radius of a relatively simple
quartet-based approach is considerably larger than the value 1

4 that is required
by Proposition 2 to satisfy the Atteson bound (where ρ = 1

2 ). We then present
our main theoretical result (Theorem 1), an absolute upper bound on the
limiting stochastic safety radius of any distance-based method.

Proposition 3 There is a distance-based tree reconstruction method which
has a limiting stochastic safety radius of 1√

2
.
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Proof We use a result from [17] (see also [14]) which provides a tree recon-
struction method that can recover a binary tree with n leaves by asking for the
topology of Θ(n log(n)) quartets (the questions asked are allowed to depend
on the answers obtained up to that point). Provided that all these quartet
trees are correctly returned, we will infer the correct underlying parent tree.
Now, suppose we set σ = sw∗/

√
log n. From Eqn. (3), the probability that any

particular quartet is correctly inferred is at least:

1− 2P

(
N(0, 1) < −w

√
log(n)

w∗s

)
,

where w is the length of the interior path of the quartet in the parent tree.
Since w/w∗ ≥ 1, Boole’s inequality implies that the probability that every
particular quartet is correctly inferred is at least:

1− 2Cn log(n)P

(
N(0, 1) < −

√
log(n)

s

)
, (6)

where C is an upper bound constant in the Θ(n log(n)) construction. Notice
that this holds even though the quartet decisions are not (stochastically) in-
dependent. The expression in (6) now converges to 1 for any value s < 1√

2
as

n→∞, by the asymptotic equivalence in (2). 2

Theorem 1 No distance-based tree reconstruction method has a limiting
stochastic safety radius greater than 1.

Proof The idea of the proof is to show that MLE (maximum likelihood esti-
mation) cannot allow a safety radius with c > 1 on a subset of trees (with
prescribed branch lengths), from which it will follow that no other method
could do so either on that subclass of trees (and thereby on all binary trees
and with variable edge lengths).

Consider the binary tree T3n on the leaf set L =
⋃n
i=1{ai, a′i, bi} of size

3n, obtained from any fixed binary tree on leaf set {1, 2, . . . , n} by replacing
each leaf i by the rooted triplet subtree (ai, a

′
i)bi. For T3n assign length 1 to

all the interior edges and to the pendant edges that are incident with leaves
of type ai and a′i (for all i), and assign the length 2 to the pendant edges that
are incident with leaves of type bi (for all i). For a sequence t = (t1, t2, . . . , tn)
where ti ∈ {−1, 1} let T (t) be the tree obtained from T3n by interchanging
the leaf labels a′i and bi precisely for each i for which ti = −1 (leaving all edge
lengths unchanged – thus all cherry pendant edges have length 1,while the
non-cherry pendant edges have length 2). Thus T = {T3n(t) : t ∈ {−1, 1}n}
is a set of 2n binary trees, each with a leaf set L of 3n leaves, and with the
prescribed branch lengths described (see Fig. 1).

Let dt denote the tree metric induced on L by the tree T3n(t) with its
associated branch lengths, and let δt denote the corresponding distances under
the random errors model (so δt = dt+ε, for a vector ε of independent Gaussians
with mean 0 and variance σ2 (and independent of t)). Notice that we can
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ai a′i

bi

ti = 1

aj bj

a′j

tj = −1
Fig. 1 The tree T3n(t).

partition any vector of distances δ on L into two parts δB and δW , where δB
compares leaves between different triplet-subtrees (B = ‘between’) and δW
compares leaves within given triplet-subtrees (W = ‘within’); formally:

– δB is the sequence of δ-values for all pairs ω ∈ B where:

B = {(li, lj) : i, j ∈ {1, . . . , n}, i 6= j, li ∈ {ai, a′i, bi}, lj ∈ {aj , a′j , bj}};

– δW is the sequence of δ-values for all pairs ω ∈W , where:

W = {(li, l′i) : i ∈ {1, . . . , n}, li, l′i ∈ {ai, a′i, bi}, li 6= l′i}

It is useful to partition the ‘within’ pairs further as follows. For each j ∈
{1, . . . , n}, let V (j) = {(aj , a′j), (aj , bj)} and let U(j) = {(a′j , bj)}.

A fundamental observation at this point is that the probability distribution
of δt on all pairs from B and the pair in U(j) (for each j) does not depend on
t at all. Moreover, for pairs from V (j), the dependence of δt on t is only via
tj . By this invariance and the independence assumption in the random errors
model, for any δ and t ∈ {−1, 1}n, the probability density function for δt can
be written in the following factored way:

f(δ|t) =
∏
ω∈B

f(δω) ·
n∏
j=1

f(δ(a′j , bj)) ·
n∏
j=1

f(δ(aj , a
′
j)|tj)f(δ(aj , bj)|tj), (7)

where, for ω ∈ V (j), the terms in the third product are given by:

f(δ(ω)|tj) =
1

σ
√

2π
exp

(
− (δ(ω)− dwj (ω))2

2σ2

)
, (8)

in which:

dwj (ω) =

{
2, if tj = 1 and ω = (aj , a

′
j) or tj = −1 and ω = (aj , bj);

4, if tj = −1 and ω = (aj , a
′
j) or tj = 1 and ω = (aj , bj).

Notice that from our fundamental observation above, the terms in the first
two products appearing in (7) do not depend at all on t.
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Thus, for any δ, the maximum likelihood estimate of t given δ is the se-
quence (t1, . . . , tn) where, for each j ∈ {1, . . . , n}, tj maximises the product

f(δ(aj , a
′
j)|tj) · f(δ(aj , bj)|tj).

For such a ML estimate t, the following inequality must hold for all j ∈
{1, . . . , n}:

Lj :=
f(δ(aj , a

′
j)|tj)

f(δ(aj , a′j)| − tj)
· f(δ(aj , bj)|tj)
f(δ(aj , bj)| − tj)

≥ 1. (9)

Assume now that t = 1 = (1, 1, . . . , 1). Then if we let ∆j = δ(aj , bj) −
δ(aj , a

′
j), application of (8) in (9) simplifies (after some algebra) to the more

attractive equation:

Lj = exp

(
2∆j

σ2

)
. (10)

To this point, δ has been an arbitrary distance. Now, let us further assume
that δ is generated on T3n(1) under the random errors model; in other words,
δ = δt for t = 1. We wish to calculate the probability – call it pn – that MLE
will correctly estimate the generating tree T3n(1). By (9) and independence
assumptions in the random errors model, this probability pn satisfies:

pn ≤ P(

n⋂
j=1

Lj ≥ 1|t = 1) =

n∏
j=1

P(Lj ≥ 1|t = 1). (11)

Now, from (10),

P(Lj ≥ 1|t = 1) = P(∆j > 0|tj = 1),

and ∆j has a normal distribution with a mean of 2 and a variance of 2σ2.
Thus:

P(∆j > 0|tj = 1) = 1− P

(
Z < −

√
2

σ

)
, (12)

where Z = N(0, 1) is a standard normal random variable. Substituting (4)
and (2) into (12) gives:

P(∆j > 0|tj = 1) = 1− βn,

where
βn ∼

c

2
√
π log(n)

n−1/c
2

.

Applying this to Eqn. (11) gives that the probability pn that MLE correctly
estimates the generating tree satisfies

pn ≤ (1− βn)n.

Straightforward calculus now shows that as n → ∞, the sequence (1 − βn)n

(and hence pn) converges to 0 if c > 1.
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This shows that we cannot recover T3n(1) with an accuracy bounded away
from 0 as n becomes large, by using MLE, if s > 1 in the definition of the
stochastic safety radius (since the interior edges all have length 1, we have
w∗ = 1 and so c > 1 for s > 1). Moreover, by symmetry, the same conclusion
applies to any of the 2n trees T3n(t) (there is nothing ‘special’ about t = 1). We
now invoke a classic result that MLE is an estimation method that maximises
the average reconstruction accuracy of a discrete parameter when a family
of distributions depends on just that parameter (c.f. Theorem 10.3.1 of [5]
or Theorem 17.2 of [13]) – in our case, the discrete parameter is the vector
t (which determines the tree T3n(t)). It follows that for any distance-based
reconstruction method, the limiting stochastic safety radius cannot be larger
than 1. 2

4 Simulation Results

We have seen in the previous section that the limiting stochastic safety radius
(LSSR) of any algorithm is at most 1 (Theorem 1), and that a simple quartet
algorithm [17] has a LSSR value at least 1√

2
≈ 0.71 (Proposition 3). The

gap is relatively small between these two bounds and we expect that more
sophisticated algorithms have LSSR values that are substantially higher than
1√
2
. In this section, we turn to simulations to study the accuracy of mainstream

distance-based methods under the random errors model, with realistic numbers
of taxa (previous results are asymptotic). Our goal is to compare these methods
and to check how close they come in practice to the 1 bound prescribed by
Theorem 1. Notice that this theorem was established using the pronged trees of
Figure 1. These trees are expected to be difficult for two reasons: (1) all internal
branches have the same length and thus no branch is easy; (2) a large number
(2n/3) of taxon pairs are separated by a single internal branch and are likely
to be wrongly exchanged, when trying to infer these trees from noisy data.
Not all tree shapes possess this property; for example, in a perfectly balanced
tree, all non-cherry taxon pairs are separated by at least two internal edges.
Thus, we also compare, using simulations, different tree shapes, to establish
if some of them are (stochastically) ‘harder’ than the others to reconstruct
(depending, perhaps, on the inference method), or whether the opposite is
true and all tree shapes seem to be equally difficult.

In the following, we first describe the methods being compared and the
comparison criteria, we then study their performance with pronged and other
(e.g. perfectly balanced) extreme trees, and, lastly, we use randomly generated
tree shapes to obtain average accuracy measures under the random errors
model.
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4.1 Methods tested and comparison criteria

We ran four standard algorithms using FastME implementation (http://www.atgc-
montpellier.fr/fastme/):

(1) GME+OLS (Greedy minimum evolution with ordinary least squares) [7] is
a greedy algorithm that iteratively adds taxa on a growing tree, minimizing
at each step the ordinary least squares (OLS) tree length estimate, in
accordance with the OLS version of the minimum evolution principle [20].
The performance of this algorithm was analysed by [16], who showed that
its l∞ safety radius tends to 0 with increasing n.

(2) UNJ (Unweighted NJ) [10], which is the unweighted (OLS) version of NJ,
with an l∞ safety radius of 1

2 [1].
(3) GME+BME [7] which uses the same iterative taxon addition scheme as

GME+OLS, but optimizes the balanced version of minimum evolution
(BME, [18]) and has an optimal l∞ safety radius of 1

2 [16].
(4) NJ [21] with l∞ safety radius of 1

2 [1]. We showed [12] that NJ greedily
minimises BME at each agglomeration step (and not the OLS version of
minimum evolution, as was originally suggested).

The aim was to see if there is any difference between the algorithmic
schemes (taxon addition versus cherry agglomeration), and between the crite-
ria being optimised (BME vs OLS minimum evolution). Because of the OLS-
type noise in the random errors model, better accuracy is expected for OLS-
based algorithms (UNJ and GME+OLS). On the other hand, the l∞ safety ra-
dius differs widely among these algorithms and converges to 0 for GME+OLS;
thus the second aim was to check whether Atteson’s predictions are observed
in practice.

In addition, we implemented the quartet method of [17] using the first al-
gorithm described by [14] with O(n2) time complexity and O(n log2(n)) quar-
tet queries. The usual four-point rule [22] [23] was used to answer the quartet
queries. Our aim was to compare the accuracy of this simple algorithm, mostly
used for theoretical purposes, to that of algorithms being widely used in phy-
logenetics, and to check how this algorithm behaves regarding our 1√

2
bound

of Proposition 3.

Two criteria were used to compare algorithm accuracy: (1) the probability
Pc of recovering the entire topology of the simulated tree; (2) the normalized
bipartition distance (Robinson-Foulds (RF) [19]) between the inferred and sim-
ulated trees, which is equal to 0 when both trees define the same bipartitions,
and to 1 when they do not share any bipartition in common.

4.2 Algorithm accuracy with pronged and other extreme trees

We used pronged trees (Fig. 1, used in the proof of Theorem 1) with a num-
ber of taxa n = 12, 30, 90, 270 and 810. We also used: caterpillar trees with

http://www.atgc-montpellier.fr/fastme/
http://www.atgc-montpellier.fr/fastme/
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Table 1 Algorithm accuracy with the limiting noise level (σ = w∗/
√

log(n)) and extreme
tree shapes

GME+OLS GME+BME UNJ NJ
Tree shape #taxa Pc RF Pc RF Pc RF Pc RF

pronged (Fig. 1)

12 0.748 0.03111 0.750 0.03088 0.898 0.01266 0.890 0.01377
30 0.734 0.01103 0.758 0.00992 0.884 0.00444 0.872 0.00488
90 0.768 0.00303 0.804 0.00243 0.888 0.00128 0.888 0.00128
270 0.834 0.00069 0.840 0.00063 0.924 0.00029 0.920 0.00030
810 0.856 0.00019 0.850 0.00020 0.931 0.00009 0.944 0.00007

caterpillar
90 0.736 0.00360 0.426 0.00937 0.996 0.00005 0.966 0.00039
270 0.792 0.00095 0.392 0.00348 0.998 0.00001 0.992 0.00003

balanced
96 0.892 0.00133 0.884 0.00133 0.980 0.00032 0.976 0.00037
384 0.892 0.00031 0.918 0.00024 0.976 0.00009 0.976 0.00009

balanced + pronged
72 0.828 0.00281 0.846 0.00243 0.918 0.00130 0.916 0.00136
288 0.854 0.00055 0.876 0.00047 0.938 0.00022 0.938 0.00022

n = 90 and 270; perfectly balanced trees with n = 96 and 384; and “bal-
anced+pronged” trees, where each leaf of a perfectly balanced tree is replaced
by the same three-taxon tree as in the pronged trees, with n = 72 and 288.
Caterpillar and perfectly balanced tree shapes are extreme regarding a number
of measurements (e.g. diameter, number of cherries, etc.), and the pronged 3-
taxon tree is assumed to make tree inference difficult (see above). In all of these
trees, all internal branches had an equal length of 1, which (again) makes tree
inference difficult. The length of the external branches was 1 for the caterpillar
and balanced trees, and as shown in Fig. 1 for the pronged trees. The pairwise
distances were computed and perturbed by an independent and identically
distributed normal noise with standard deviation equal to 1/

√
log(n), i.e. the

highest possible noise level regarding Theorem 1, beyond which no algorithm
can accurately recover every tree correctly as n grows. The goal was to check if,
in these especially difficult conditions, the standard algorithms (e.g. NJ) still
show some ability to recover the correct tree. In these conditions, the quartet
method had very poor results that are not shown (but see below). For each of
the tree shapes and n values, 500 data-sets were generated to obtain average
error estimates. The results are summarised in Table 1. We see the following:

– Pronged trees are indeed difficult to reconstruct accurately, compared to
perfectly balanced trees. However, for all algorithms, the probability of re-
covery (Pc) increases with n. According to this result, the four tested algo-
rithms could have LSSR equal to 1. However, the algorithms are not equiv-
alent in their performance. We see a clear advantage of the agglomerative
scheme (NJ and UNJ) over taxon addition (GME+OLS and GME+BME),
a finding that has already been observed in other simulation studies (e.g.
[7]). On the other hand, there is no significant difference (considering both
Pc and RF) between the algorithms that minimise the OLS version of
minimum evolution (GME+OLS and UNJ) and their BME counterparts
(GME+BME and NJ, respectively). Notably, we do not see any sign of
weakness of GME+OLS, as predicted by its limiting l∞ safety radius of
zero [16].
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– Caterpillar trees give another view. Again we observe the clear advantage
of the agglomeration scheme that obtains nearly perfect results (Pc ≈ 1),
especially with UNJ, which is substantially better than NJ regarding both
Pc and RF criteria. This latter finding is expected with such unbalanced
trees, where the matrix reduction step is better achieved by UNJ, which
accounts for the number of taxa in both agglomerated subtrees, while NJ
uses equal weights of 1

2 . Based on these results, NJ and UNJ seem again
to have LSSR of (close to) 1. GME-OLS has a lower Pc value, but this
increases with n. In the opposite, GME-BME not only has low Pc (< 0.5),
but this decreases with n. We have no clear explanation for this poor
performance but, based on this result, it is unlikely that GME+BME has
LSSR equal to 1.

– Perfectly balanced trees confirm again the superiority of the agglom-
eration scheme, compared to taxon addition. NJ and UNJ are nearly the
same, as expected with well-balanced trees (see above). However, although
these trees are relatively easy for all algorithms (Pc ≥ 0.9), we do not
see any improvement with larger n values. This questions our previous as-
sumption that LSSR could be equal to 1 for the algorithms tested, unless
the convergence towards LSSR is slow.

– Balanced+pronged trees are more difficult than balanced trees, as ex-
pected. However, for all algorithms, the accuracy increases with n. Algo-
rithm comparisons are consistent with the previous ones: the agglomeration
scheme performs better than taxon addition; there is little difference be-
tween the OLS and BME versions of algorithms, especially regarding NJ
versus UNJ, which are nearly equivalent with such well-balanced trees.

To summarise, NJ and UNJ have remarkably high accuracy with these
difficult trees and conditions. These results suggest that these two methods
might have an LSSR equal to the optimal value of 1. Note, however, that
the performance of NJ and UNJ with perfectly balanced trees lags a little
behind, as their accuracy does not seem to improve when n increases; although,
this may be because the convergence is slow. The taxon addition scheme is
clearly less accurate and the results of GME-BME with caterpillar trees seem
to indicate that this algorithm does not have an optimal LSSR of 1. Even
though these conclusions are somewhat speculative, as n remained relatively
moderate in all of our experiments, these results provide directions for future
investigations on the LSSR of mainstream methods.

4.3 Algorithm accuracy with random trees

Up to this point, our experiments have used a limited number of extreme tree
shapes. In this subsection, we use random trees in the search for other poten-
tially difficult cases and to estimate the average accuracy of tested algorithms
under the random errors model.

Tree shapes were generated uniformly at random (the so-called ‘Proportional-
to-Distinguishable-Arrangements (PDA) model’) and all branch lengths were
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Table 2 Algorithm accuracy with random trees and a limiting noise level (σ =

w∗/
√

log(n))

GME+OLS GME+BME UNJ NJ
#taxa Pc RF Pc RF Pc RF Pc RF

10 0.710 0.04714 0.672 0.05542 0.904 0.01457 0.854 0.02171
30 0.778 0.00918 0.800 0.00822 0.948 0.00199 0.936 0.00251
90 0.762 0.00328 0.830 0.00209 0.964 0.00045 0.960 0.00051
270 0.646 0.00164 0.800 0.00080 0.966 0.00014 0.966 0.00014
810 0.498 0.00089 0.798 0.00027 0.970 0.00004 0.970 0.00004

set to 1. The number of taxa was n = 10, 30, 90, 270 and 810. The pairwise
distances were perturbed by an i.i.d. normal noise with standard deviation
equal to 1/

√
log(n), as in previous experiments. Again, these noise level and

trees (with equal branch lengths) make tree inference difficult.

The average results over 500 data-sets are displayed in Table 2. NJ and UNJ
results are quite consistent with those obtained with extreme tree shapes (cf
Table 1). With moderate values of n, UNJ is slightly more accurate than NJ,
as expected with the OLS-type noise used in these simulations. With large
values of n, UNJ and NJ are nearly perfect (Pc ≈ 1), and both algorithms
become strictly equivalent. Again, the results seem to indicate that both UNJ
and NJ could have an optimal LSSR of 1. We cannot exclude that particularly
difficult trees do exist, but these must be rare, and in average NJ and UNJ
appear to be highly accurate at a noise level that is four times larger than the
limit for Atteson’s approach to apply.

With taxon addition, the picture is different. GME+OLS has low accuracy
that drops when n increases, a finding which may be seen as consistent with the
predictions from [16] using the l∞ safety radius. GME+BME performs better
but its accuracy is not that high and seems to stabilise around 0.8 when n
increases. This observation is probably explained by the fact that some trees
(e.g. caterpillars, Table 1) are difficult for this algorithm. In both cases, the
results in Table 2 seem to indicate that neither GME+BME nor GME+OLS
has an optimal LSSR of 1.

4.4 Algorithm accuracy with various noise levels

We also ran simulations where the noise level varied around the limiting value
used in previous experiments (σ = rw∗/

√
log(n), r = 1), in order to study

the sharpness of our bounds with realistic numbers of taxa. Our goal was to
check whether the accuracy improves substantially for taxon addition when r
is less than 1, and whether the agglomeration algorithms (NJ and UNJ) still
show some ability to recover the correct tree when r is larger than 1. We also
studied the performance of the quartet method with (relatively) low r values.
We used the same random trees (with all branch lengths equal to 1 = w∗), as
in the previous subsection, but used r = 3/5, 3/4 and 4/3 instead of r = 1.
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Table 3 Algorithm accuracy with various noise levels

GME+OLS GME+BME UNJ NJ
r (noise level) #taxa Pc RF Pc RF Pc RF Pc RF

3/4
30 0.986 0.00051 0.992 0.00029 1.0 0.0 1.0 0.0
90 0.974 0.00029 0.986 0.00016 1.0 0.0 1.0 0.0
270 0.982 0.00007 0.996 0.00001 0.998 <0.00001 0.998 <0.00001

1
30 0.778 0.00918 0.800 0.00822 0.948 0.00199 0.936 0.00251
90 0.762 0.00328 0.830 0.00209 0.964 0.00045 0.960 0.00051
270 0.646 0.00164 0.800 0.00080 0.966 0.00014 0.966 0.00014

4/3
30 0.316 0.04170 0.314 0.04177 0.670 0.01414 0.606 0.01696
90 0.204 0.01972 0.240 0.01696 0.634 0.00556 0.616 0.00590
270 0.054 0.01099 0.122 0.00776 0.592 0.00202 0.560 0.00217

Table 4 Accuracy of the quartet method with various noise levels

r (noise level) 3/5 3/4
#taxa Pc RF Pc RF

30 0.902 0.556 0.556 0.09170
90 0.946 0.479 0.479 0.10795
270 0.952 0.370 0.370 0.12478

The average results over 500 data sets are displayed in Table 3 for the stan-
dard algorithms. We see that our previous conclusions are confirmed when r
differs from 1: the agglomeration scheme performs better than taxon addition;
there is little difference between both minimum evolution versions; however,
UNJ is slightly better than NJ (e.g. see r = 4/3, with both Pc and RF). We
also see that the 1 bound prescribed by Theorem 1 is rather sharp with mod-
erate number of taxa: with r = 3/4, both taxon addition algorithms have high
accuracy for all n values, and NJ and UNJ are nearly perfect. Conversely,
with r = 4/3, the accuracy of all algorithms drops dramatically, especially
that of the taxon addition scheme where Pc approaches 0 with n = 270. This
confirms that the limiting optimal bound of Theorem 1, obtained with spe-
cial (“pronged”) trees, is robust and found again, at least qualitatively, with
random trees and realistic n values.

Table 4 displays the results of the quartet method for r = 3/5 and 3/4 (the
results with r = 1 are quite poor and are not shown). Again, the stochastic
radius framework and our bounds of Proposition 3 (LSSR ≥ 1/

√
2 ≈ 0.71)

and Theorem 1 (LSSR ≤ 1) have a good predictive accuracy. With r = 3/5,
the accuracy is high and increases with n, while we observe the opposite with
r = 3/4, which seems to indicate that the quartet method has a LSSR close
to our 1/

√
2 bound. Note, however, that when r approaches 1√

2
from below

(e.g. r = 2/3 or r = 0.70), the accuracy is not that high and does not increase
with the moderate values of n used in these simulations. This is most likely
explained by the very slow convergence of the bound in Equation (6), combined
with asymptotic equivalence (2), when r is close to 1√

2
.
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5 Discussion

Our simulation results show that the stochastic radius framework introduced in
this paper has a good predictive capacity and seems to be robust. The optimal
bound (r = 1) of Theorem 1, which was obtained with special “pronged”
trees, seems to apply to a large variety of trees (no tree is easy or else these
are quite rare). Moreover, when the noise level decreases below r = 1, the
accuracy rises for all algorithms and all values of n. The behaviour of the
quartet method (with moderate n values) is also consistent with the (limiting)
prediction of Proposition 3. We thus believe that the LSSR approach will show
a high capacity in predicting algorithm performance in realistic conditions, a
property which does not hold in several cases with the l∞ safety radius, as
noted in the Introduction.

An important outcome of the simulations is that the ability to recover
single branches may still be high, even when the probability of recovering
the entire tree drops due to high noise level; for example, with r = 4/3 and
n = 270, the probability that any given branch is correct is higher than ∼ 0.99
for all standard algorithms (Table 3, RF values). This strongly suggests the
development of stochastic ‘edge radius’ approaches (analogous to the classical
non-stochastic concept considered also by Atteson [1]) which would account for
the length of the branch being considered, and thus will not use the worst-case
approach used here in several places, where all branches have the same length.
In other words, the tree T may have some very short edges, however, provided
a given edge is not too short, then we may be able to recover the corresponding
split with high accuracy, even if the entire tree cannot be reconstructed. Finer
algorithm analyses should follow from such a framework.

Our study also suggests two further theoretical questions that would be
worth investigating in future. Firstly, it would be of interest to analytically
calculate the precise limiting stochastic safety radius of NJ and other standard
methods; in particular, to determine if it takes the value 1 or some number
less than this.

It would also be of interest to study the stochastic safety radius of distance-
based tree reconstruction methods for the more general class of models in
which the εxy values have a multivariate normal distribution, with means of
0 and a covariance matrix Σ (the OLS model we considered in this paper
assumes that Σ is the diagonal matrix with each diagonal entry equal to σ2).
In such models, the variance of εxy would typically increase with the path
length between leaves x and y in the tree (the weighted least squares (WLS)
assumption [9]), while the covariance for two pairs of taxa would typically
increase with the total length of the shared branches that are present in both
paths connecting each pair (the generalized least-squares (GLS) assumption
[4]).
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7 Appendix: Proof of (2)

Substituting t = x+ u, u ≥ 0 in P(N(0, 1) > x) =
∫∞
x

1√
2π
e−t

2/2dt gives:

P(N(0, 1) > x) = e−x
2/2

∫ ∞
0

1√
2π
e−xue−u

2/2du < e−x
2/2

∫ ∞
0

1√
2π
e−u

2/2du,

where the second inequality is from e−xu < 1 for all x, u > 0. Since the last
term on the right is 1

2 , we get the inequality in (2). Turning to the asymptotic
relationship, consider:

lim
x→∞

1√
2π

∫∞
x
e−t

2/2dt

1
x
√
2π
e−x2/2

. (13)

Since the numerator and denominator limits are both zero, we can apply
L’Hôpital’s rule. Straightforward calculus (using the fundamental theorem of
calculus for the numerator) establishes that the limit in (13) equals 1. 2
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