arXiv:1303.1559v4 [cs.DS] 29 May 2014

On Resilient Graph Spanners*

Giorgio Ausiellof Paolo G. Franciosat Giuseppe F. Italiano®
Andrea Ribichini¥

Abstract

We introduce and investigate a new notion of resilience in graph spanners. Let S be a
spanner of a weighted graph G. Roughly speaking, we say that S is resilient if all its point-
to-point distances are resilient to edge failures. Namely, whenever any edge in G fails, then
as a consequence of this failure all distances do not degrade in S substantially more than in
G (i.e., the relative distance increases in S are very close to those in the underlying graph G).
In this paper we show that sparse resilient spanners exist, and that they can be computed
efficiently.

1 Introduction

Spanners are fundamental graph structures that have been extensively studied in the last decades
since they were introduced in [24]. Given a graph G, a spanner is a (sparse) subgraph of G that
preserves the approximate distance between each pair of vertices. More precisely, a t-spanner
of a graph G = (V, E) is a subgraph S = (V, Eg), Es C F, that distorts distances in G up to
a multiplicative factor ¢: i.e., for all vertices x,y, ds(x,y) < t - dg(x,y), where dg denotes the
distance in graph G. We refer to t as the stretch factor (or distortion) of the spanner S. It is
known how to compute in O(m + n) time a (2k — 1)-spanner, with O(n**#) edges [2, 9] (which
is conjectured to be optimal for any k), where m and n are respectively the number of edges
and vertices in the original graph G. We note that t-spanners are only considered for ¢ > 3, as
2-spanners can have as many as ©(n?) edges.

Several other spanners have been considered in the literature. For « > 1 and 8 > 0, an («, 3)-
spanner of an unweighted graph G = (V| E) is a subgraph S = (V, Eg), Es C E, that distorts
distances in G up to a multiplicative factor o and an additive term f: i.e., for all vertices z,y,
ds(z,y) < a-dg(z,y) + . In [8], it is shown how to compute a (k,k — 1)-spanner containing
O(k - n'T1/*) edges, for any integer k& > 2. Note that t-spanners can be referenced to as (t,0)-
spanners, while (1, 3)-spanners are also known as purely additive spanners (ds(z,y) < dg(z,y) +
B). Algorithms for computing (1,2)-spanners with O(n3/2) edges are given in [17, 25], for
(1,4)-spanners with O(n7/®) edges in [12], and for (1,6)-spanners with O(n*/3) edges in [g].

Spanners have been investigated also in the fully dynamic setting, where edges may be added
to or deleted from the original graph. In [4], efficient dynamic deterministic algorithms are first
presented for low-stretch spanners. A faster randomized dynamic algorithm for spanners has

*Work partially supported by the Italian Ministry of Education, University, and Research (MIUR) under PRIN
2012C4E3KT national research project “AMANDA — Algorithmics for MAssive and Networked DAta”. A prelimi-
nary version of this paper was presented at the 21st Annual European Symposium on Algorithms [6].

TDipartimento di Ingegneria Informatica, Automatica e Gestionale, Universitd di Roma “La Sapienza”, via
Ariosto 25, 00185 Roma, Italy. Email: ausiello@dis.uniromal.it.

fDipartimento di Scienze Statistiche, Universitd di Roma “La Sapienza”, piazzale Aldo Moro 5, 00185 Roma,
Italy. Email: paolo.franciosa@uniromal.it.

$Dipartimento di Ingegneria Civile e Ingegneria Informatica, Universita di Roma “Tor Vergata”, via del Politec-
nico 1, 00133 Roma, Italy. Email: giuseppe.italiano@uniroma2.it.

IDipartimento di Ingegneria Informatica, Automatica e Gestionale, Universitd di Roma “La Sapienza”, via
Ariosto 25, 00185 Roma, Italy. E-mail: ribichini@dis.uniromal.it.

been later proposed by Baswana [7]: given an unweighted graph, a (2k — 1)-spanner of expected
size O(k - n'*1/%) can be maintained in O(—s% - polylogn) amortized expected time for each
edge insertion/deletion, where m is the current number of edges in the graph. For k = 2,3
(i.e., 3- and 5-spanners, respectively), the amortized expected time of the randomized algorithm
becomes constant. The algorithm by Elkin [I8] maintains a (2k — 1)-spanner with expected
O(kn'+1/%) edges in expected constant time per edge insertion and expected O(-1%) time per
edge deletion. More recently, Baswana et al. [9] proposed two faster fully dynamic randomized
algorithms for maintaining (2k — 1)-spanners of unweighted graphs: the expected amortized time
per insertion/deletion is O(7%/2) for the first algorithm and O(k?log®n) for the second algorithm,
and in both cases the spanner expected size is optimal up to a polylogaritmic factor.

As observed in [13], this traditional fully dynamic model may be too pessimistic in several
application scenarios, where the possible changes to the underlying graph are rather limited.
Indeed, there are cases where there can be only temporary network failures: namely, graph edges
may occasionally fail, but only for a short period of time, and it is possible to recover quickly
from such failures. In those scenarios, rather than maintaining a fully dynamic spanner, which
has to be updated after each change, one may be more interested in working with a static spanner
capable of retaining many of its properties during edge deletions, i.e., capable of being resilient to
transient failures.

Being inherently sparse, a spanner is not necessarily resilient to edge deletions and it may indeed
lose some of its important properties during a transient failure. Indeed, let S be a t-spanner of
G: if an edge e fails in G, then the distortion of the spanner may substantially degrade, i.e., S\ e
may no longer be a t-spanner or even a valid spanner of G \ e, where G \ e denotes the graph
obtained after removing edge e from G. In their pioneering work, Chechik et al. [I3] addressed
this problem by introducing the notion of fault-tolerant spanners, i.e., spanners that are resilient
to edge (or vertex) failures. Given an integer f > 1, a spanner is said to be f-edge (resp. vertex)
fault-tolerant if it preserves its original distortion under the failure of any set of at most f edges
(resp. vertices). More formally, an f-edge (resp. vertex) fault-tolerant t-spanner of G = (V, E) is
a subgraph S = (V, Eg), Es C E, such that for any subset FF C E (resp. F' C V), with |F| < f,
and for any pair of vertices z,y € V (resp. z,y € V \ F) we have dg\p(z,y) < t-de\r(2z,y),
where G \ F' denotes the subgraph of G obtained after deleting the edges (resp. vertices) in F'.
Algorithms for computing efficiently fault-tolerant spanners can be found in [5l [T} 13} [16].

The distortion is not the only property of a spanner that may degrade because of edge failures.
Indeed, even when the removal of an edge cannot change the overall distortion of a spanner (such as
in the case of a fault-tolerant spanner), it may still cause a sharp increase in some of its distances.
Note that while the distortion is a global property, distance increases are local properties, as they
are defined for pairs of vertices. To address this problem, one would like to work with spanners
that are not only globally resilient (such as fault-tolerant spanners) but also locally resilient. In
other terms, we would like to make the distances between any pair of vertices in a spanner resilient
to edge failures, i.e., whenever an edge fails, then the increases in distances in the spanner must be
very close to the increases in distances in the underlying graph. More formally, given a graph G
and an edge e in G, we define the fragility of edge e as the maximum relative increase in distance
between any two vertices when e is removed from G:

frags(e) = max {dc\e(az,y)}
zyev | da(z,y)

Our definition of fragility of an edge is somewhat reminiscent of the notion of shortcut value, as
contained in [22], where the distance increase is alternatively measured by the difference, instead
of the ratio, between distances in G \ e and in G. Note that for unweighted graphs frag.(e) > 2
for any edge e. The fragility of edge e can be seen as a measure of how much e is crucial for the
distances in G, as it provides an upper bound to the increase in distance in G between any pair of
vertices when edge e fails: the higher the fragility of e, the higher is the relative increase in some
distance when e is deleted.

Our contribution. To obtain spanners whose distances are resilient to transient edge failures,

the fragility of each edge in the spanner must be as close as possible to its fragility in the original
graph. In this perspective, given a positive o, we say that a spanner S of G is o-resilient if
fragg(e) < max{o, frag.(e)} for each edge e € S, where o > 1. Note that in case of unweighted
graphs, for o = 2 this is equivalent to fragg(e) = frag.(e). We show that finding sparse 2-resilient
spanners may be an overly ambitious goal, as we prove that there exists a family of dense graphs
for which the only 2-resilient spanner coincides with the graph itself. It can be easily seen that,
in general, spanners are not necessarily o-resilient. Furthermore, it can be shown that even edge
fault-tolerant multiplicative t-spanners are not o-resilient, since they can only guarantee that the
fragility of a spanner edge is at most ¢ times its fragility in the graph. In fact, we exhibit 1-edge
fault tolerant t-spanners, for any ¢ > 3, with edges whose fragility in the spanner is at least t/2
times their fragility in G.

It seems quite natural to ask whether sparse o-resilient spanners exist, and how efficiently
they can be computed. We show that it is possible to compute o-resilient 3-spanners containing
O(W - n?/?) edges for graphs with positive edge weights in [wyin, Wmax], where W = omax - The
size is optimal for small edge weights. = The total time required to compute our spgffners is
O(mn + n%logn) in the worst case. To compute our o-resilient spanners, we start from a non-
resilient spanner, and then add to it O(W - n®/2) edges from a carefully chosen set of short cycles
in the original graph. The algorithm is simple and thus amenable to practical implementations,
while the upper bound on the number of added edges is derived from sophisticated combinatorial
arguments.

The same approach can be used for turning any given t-spanner into a o-resilient t-spanner,
for o >t > 3. Once again, the total number of edges added to the initial spanners is O(W -n3/2).
Our results for ¢ = ¢t = 3 and for small edge weights seem to be the most significant ones, both
from the theoretical and from the practical point of view. From a theoretical perspective, our
o-resilient 3-spanners have the same asymptotic size as their non-resilient counterparts. From a
practical perspective, there is empirical evidence [3] that small stretch spanners provide the best
performance in terms of stretch/size trade-offs, and that spanners of larger stretch are not likely
to be of practical value. Table[I] puts our results in perspective with the fragility and the size of
previously known spanners.

l Spanner S [fragg(e) [Size | Ref. |
(2k — 1)-spanner, k > 2 unbounded O (nl'*'%) 2]
1-edge fault-tolerant 141
< —1)-
(2k — 1)-spanner, k > 2 < (Zk—1) -fragg(e) | O (n k) 113}
o-resilient (2k — 1)-spanner, 3 This
o> 2%—1, k> 2 < max{o, frag;(e)} | O (W . n2) paper

Table 1: Fragility and size of spanners. Factor W in the last line is the ratio between maximum
and minimum edge weight.

Also («, 8)-spanners of unweighted graphs can be turned into o-resilient (v, 8)-spanners, for
any o > « + (3, using the same technique, adding O(n3/2) edges in the worst case.

The remainder of this paper is organized as follows. We start with few preliminary definitions
and basic observations in Section In Section [3| we show some negative results on 2-resilient
spanners and 1-edge fault-tolerant spanners. In Section [l we describe our algorithm for computing
o-resilient spanners. In particular, we first describe in Section [£:I] a trivial approach. Next, in
Section 4.2 we show how to bound the size of o-resilient spanners. Finally, in Section [4.3] we
show how to compute efficiently o-resilient spanners. Section [p| lists some concluding remarks.

2 Preliminaries

We assume that the reader is familiar with standard graph terminology. In our paper, we deal
with weighted undirected graphs, i.e., undirected graphs having weights associated to their edges.
The length of a path is the sum of the weights of its edges. In unweighted graphs the length of
a path is given by the number of its edges. Note that unweighted graphs can be seen as special
cases of weighted graphs, where all the weights are 1. A shortest path is a path of minimum length
between two vertices, and the distance between two vertices is given by the length of a shortest
path between the two vertices. Let G = (V, E) be an undirected graph. Throughout this paper,
we use the notation dg(u,v) to denote the distance between vertices v and v in G. Let F' C E be
any subset of edges in G: we denote by G \ F' the graph obtained after deleting edges in F' from
G. Note that, as a special case G \ e denotes the graph obtained after deleting edge e from G.
Similary, we let G U H denote the graph obtained after adding edges in H to G, where H and G
have the same set of vertices.

Let G = (V, E) be an undirected (weighted or unweighted) graph, with m edges and n vertices.
A bridge is an edge e € E whose deletion increases the number of connected components of G.
Note that an edge is a bridge if and only if it is not contained in any cycle of G. Graph G is
2-edge-connected if it does not have any bridges. The 2-edge-connected components of G are its
maximal 2-edge-connected subgraphs. Let e be an edge in GG, and denote by C. the set of all the
cycles containing e: if G is 2-edge-connected, then C, is non-empty for each e € E. We refer to a
shortest cycle among all cycles in C, as a short cycle for edge e. Note that if G is 2-edge-connected,
then at least one short cycle always exists for any edge. Short cycles are not necessarily unique:
for each e € E, we denote by I'.(G) the set of short cycles for e in graph G. Let G be an undirected
unweighted graph: the girth of G, denoted by girth(G), is the length of a shortest cycle in G.

dg\e(z,

Given a graph G and a t-spanner S of GG, and given ¢ > 1, we say that edge e is o-fragile in S
if fragg(e) > max {o,frag,(e)}. A t-spanner R is o-resilient if fragp(e) < max{o, frag,(e)} for
each edge e € R, i.e., if R does not contain o-fragile edges.

The following lemma shows that in the definition of fragility of an edge e = (u, v), the maximum
is obtained for {z,y} = {u, v}, i.e., exactly at its two endpoints.

The fragility of an edge e = (u,v) in graph G is defined as frag(e) = max, yev {

Lemma 1 Let G = (V,E) be a connected graph with positive edge weights, and let e = (u,v) be
any edge in G. Then fragg(e) = %ﬁ.
Proof. Let z and y be any two vertices in G. To prove the lemma it suffices to show that
da\e(z,y) < daye(u,v)
da(z,y) — dg(u,v)
G between x and y that avoids edge e or not. If there is such a shortest path, then dey.(z,y) =
da(z,y). Since dg\¢(u,v) > da(u,v), the lemma trivially holds.
Assume now that all shortest paths between x and y in G go through edge e = (u,v). In this

case, dg(x,y) > dg(u,v). If edge e is a bridge, then frag.(e) = % = 400, and again the

. We distinguish two cases, depending on whether there is a shortest path in

lemma trivially holds. If e is not a bridge, then the graph G \ e is connected. Since there is at
least a (not necessarily shortest) path in G \ e between x and y containing the shortest path in
G\ e from u to v, we have that den.(z,y) < da(2,y) — da(u,v) + dg\e(u, v), or equivalently

dG\e (513, y) dG('rv y) —dg (uv U) + dG\e (u’ U)
de(z,y) — de(z,y)

(1)

Since dg(z,y) — da(u,v) + de\e(u,v) > dg(z,y), we can upper bound the right-hand side of
by subtracting dg(x,y) — dg(u,v) > 0 from both its numerator and denominator, thus yielding
the lemma. O

Note that for unweighted graphs dg(u,v) = 1, and thus Lemma [1| can be simply stated as
fragg(e) = de\e(u,v). The following simple lemma shows that, when inserting new edges into a
graph G, the fragility of the old edges cannot increase.

Lemma 2 Let G and H be any pair of weighted graphs on the same set of vertices, and let GU H
be the graph obtained after adding edges in H to G. Then, fragq i(e) < fragao(e) for each edge e
inQG.

Proof. Consider an edge e = (u,v) in G. Since G € GU H, dgun(u,v) < dg(u,v). If
daun (u,v) < dg(u,v), a shortest path from u to v in G U H avoids edge e. This is equivalent
to saying that d(gum)\e(u,v) = dgun(u,v), and hence fragg z(e) = 1 < fragg(e). Otherwise,
daun (u,v) = dg(u,v) and digumye(u,v) < deve(u,v): again, fragg g(e) < fragg, (e). O

The fragility of all edges in a graph G = (V, E) with positive edge weights can be trivially
computed in a total of O(m?n + mn?logn) worst-case time by simply computing, for each edge
e € E, all-pairs shortest paths in graph G'\ e. A faster bound of O(mn +n?logn) can be achieved
by using either a careful modification of algorithm fast-exclude in [I5] or by applying n times
a modified version of Dijkstra’s algorithm, as described in [20]. For unweighted graphs, the above
bound reduces to O(mn).

3 Some negative results

In this section we show some negative results on 2-resilient spanners and edge fault-tolerant span-
ners. We first establish that finding sparse 2-resilient spanners may be an overly ambitious goal,
as there are dense graphs for which the only 2-resilient spanner is the graph itself.

Theorem 3 There is an infinite family F of graphs such that for each graph G € F the following
properties hold:

(1) G has ©(n®) edges, with § > 1.72598, where n is the number of vertices of G.
(2) No proper subgraph of G is a 2-resilient spanner of G.

(3) There exists a 2-spanner S of G such that ©(n®) edges of G\ S, with § > 1.72598, need to
be added back to S in order to make it 2-resilient.

Proof. The family F is defined as the set of graphs {Is, Ig, Io, . . ., I3, ...}, with each I5; being
the complement of the intersection graph of all the k-sets contained in a 3k-set, &k > 1. Given a
set U, with |U| = 3k, graph I3, contains a vertex v for each subset A C U with |A| = k, and
vertex v, is adjacent to vertex vg if and only if AN B = 0.

Graph I3; has (3kk) vertices, each having degree (2kk), since this is the number of k-sets that

can be chosen from the remaining 2k elements. Let n = (3kk) be the number of vertices in I3:

2
where m > 0.72598. This proves Property (1).

We now turn to Property (2). We first claim that there is only one path of length 2 between any
pair of adjacent vertices in I3;. Indeed, for any two adjacent vertices v4 and wvg, there is exactly
one vertex, namely vi\ (auB), Which is adjacent to both v4 and vg. Thus each edge belongs to
exactly one triangle, which implies that the fragility of any edge in I3 is 2, and that there is only
one path of length 2 between any pair of adjacent vertices. Let S C I3, be a 2-spanner of I3;,. We
show that S is not 2-resilient. Let v4 and v be two adjacent vertices in I3 such that (va,vg) € S,
and let C =U \ (AU B). We know that va,ve,vp is the only path of length 2 from v4 to vp in
I5j. Since S is a 2-spanner of I5i, both (v4,v¢) and (ve,vp) must be in S. For the same reason
above, the only path of length 2 in I3, from v to vc is va,vB, Ve, 50 dg\{(va,we)} (VA V) > 2,
because (va,vp) € S. Thus fragg((va,vc)) > 2, while frag;, ((va,vc)) = 2, which implies that
S is not 2-resilient.

To prove Property (3), let S be a subgraph of Is; obtained by deleting exactly one edge from
each triangle in I3;. Since each edge in I3 is contained in exactly one triangle, there is always

m

such an S, and it is a 2-spanner of I3,. Furthermore, by Property (1), % = ©(n’) edges, with

2
then I5; has m = ﬂ(215) edges. By Stirling approximation, we have that m = © (n1+31°g23*2>,

Figure 1: A 1-edge fault tolerant ¢-spanner that is not o-resilient for any o < t/2. Edges e;,
1 <1 < t, are not included in the t-spanner.

§ > 1.72598, have to be deleted from I3, in order to produce S. By Property (2), ©(n’) edges of
I3, \ S, with § > 1.72598, need to be added back to S in order to make it a 2-resilient 2-spanner
of ng. O

Edge fault-tolerant spanners [13] provide a simple way to bound distance increases under edge
faults. However, they are not o-resilient, as the next theorem shows.

Theorem 4 Let G = (V, E) be a graph.

(a) Let Sy be any 1-edge fault tolerant t-spanner of G. Then fragg (e) < t-fragg(e) for each
e c Sf.

(b) There exist 1-edge fault-tolerant t-spanners that are not o-resilient, for any o < t/2.

Proof. We first prove (a). By definition of 1-edge fault tolerant t-spanner, we have dg .\ (u,v) <
t-de\e(u,v) for each edge e = (u,v), and since e € Sy we have ds, (u,v) = dg(u,v). The fragility
of e in Sy is then:

ds \e (uv v) t- dG\e(“v U) t- dG\e(ua U)
f =1 < =
rags, (€) ds;(u,v) = dg;(u,v) de(u,v)

To prove (b), consider the graph illustrated in Figure|l] The subgraph defined by bold edges (i.e.,
the whole graph except edges e;, with 1 <i <) is a 1-edge fault tolerant ¢-spanner. The fragility
of edge e in the original graph is ¢, while its fragility in the spanner is t2/2, i.e., it is greater than
the fragility in the original graph by a factor of ¢/2. U

=t-frag,(e).

4 On o-resilient spanners

In this section we present our algorithm for computing o-resilient spanners, We start by describing
a trivial approach in Section Then, in Section we introduce the notion of parsimonious
sequence of cycles, which allows us to bound the size of a o-resilient spanner. Finally, in Section[4.3]
we show how to compute efficiently a parsimonious sequence of cycles.

4.1 A simple-minded algorithm for computing o-resilient spanners
Given a graph G, a o-resilient spanner R of G can be computed with the following simple approach:
1. Initialize R to S, where S is any t-spanner of G, with ¢t < o.

2. For each edge e = (u,v) that is o-fragile in S, select a shortest path between v and v in G\ e
and add it to R.

We refer to a shortest path between v and v in G'\ (u,v) as a backup path for edge (u,v). The
correctness of our approach hinges on the following theorem.

Theorem 5 Let S be a t-spanner of a weighted graph G, and let R be computed by adding to S
a backup path for each o-fragile edge e in S, with 0 > t. Then R is a o-resilient t-spanner of G.

Proof. R is trivially a t-spanner of G, since it contains a t-spanner S. It remains to show that R
is o-resilient, i.e., fragp(e) < max{o, frag,(e)} for each edge e € R. We first claim that this holds
for each edge e € R\ S. Indeed, in this case we have that dg\.(u,v) < ds(u,v) < t-da(u,v),
where the latter inequality follows immediately from the fact that S is a ¢-spanner of G, hence
also R\ e is a t-spanner of G. This implies that

_dr\e(u,v) dg(u,v)
fragp(e) = dn(u,0) < 'dR(u,v)

<t <o < max{o,frag;(e)}.

To complete the proof, it suffices to show that fragp(e) < max{o, frag,(e)} for each edge e € S.
Let e = (u,v) be any edge in S. If fragg(e) < o, the fact that S C R implies by Lemma [2| that
fragp(e) < o < max{o, frag.(e)}. If fragg(e) > o, then a shortest path between u and v in G \ e
is added as a backup path for e, at which point the fragility of edge e in the resulting graph will
be equal to frag.(e). Once again, Lemma [2| guarantees that the fragility of e will never decrease
after adding other backup paths for different edges. At the end, when all the backup paths have
been added, we will have fragp(e) < frag(e) < max{o, frag-(e)}. O

In the special case of unweighted graphs, Theorem [5 can be extended to («, 8)-spanners:

Corollary 6 Let S be an («, 5)-spanner of an unweighted graph G, and let R be computed by
adding to S a backup path for each o-fragile edge e € S, with o > a+ 3. Then R is a o-resilient
(a, B)-spanner of G.

Proof. We proceed as in the proof of Theorem 5] except in showing that fragp(e) < max{o, frag(e)}
for each edge e € R\ S. Since R\ e is an («, §)-spanner of G and dgr(u,v) > 1, we have

. dR\e(u7 U) « - dG(uﬂ ’U) + ﬂ ﬂ
fragp(e) = dn (0 0) < dn(0.0) <a+ dnlu0) <a+ f <o < max{o, fragg(e)}.

O

Note that this approach has the additional benefit of producing a o-resilient spanner R which
inherits all monotone increasing properties of the underlying spanner S, i.e., all properties that
are preserved under edge additions: for example, if S is fault-tolerant then R is fault-tolerant
too. On the other hand, there can be several choices of backup paths for an edge with high
fragility: if no particular care is taken in selecting suitable backup paths, we may end up with a
resilient spanner of large size. In more detail, let S(n) and T'(m,n) be respectively the number
of edges of the initial spanner S and the time required for its computation, where m and n are
respectively the number of edges and vertices in the original graph G. A trivial implementation
of the above algorithm computes a o-resilient spanner R with O(n - S(n)) edges in a total of
O(T(m,n) + (m +nlogn) - S(n)) time.

In the next sections we will show how to refine our algorithm in order improve these bounds,
by reducing both the total number of edges added to the initial spanner S and the total time
required to compute a o-resilient spanner R from S.

4.2 TImproving the size of o-resilient spanners

In this section we show how to refine our algorithm in order to build a o-resilient 3-spanner for a
graph with positive edge weights, containing O(W - n%) edges in the worst case, where W is the
ratio between maximum and minimum edge weight. Our improvement is based on the following
two high-level ideas:

(1) Bound the number of edges with high fragility (Theorem [7)).

(2) Select carefully the shortest paths to be added as backup paths so that the total number of
additional edges required is small (Theorem .

We start by bounding the number of high fragility edges.

Theorem 7 Let G = (V, E) be a graph with positive edge weights, an let o > 1. Then, the number
of edges of G having fragility greater than o is O(n'*+/Le+1)/2])

Proof. Let L be the subgraph of G containing only the edges with fragility greater than ¢ in G.
If L contains no cycle, then L has at most (n — 1) edges and the theorem trivially holds.

Otherwise, let C be a cycle in L, and let £ be the number of edges in C. Let e = (u,v) be a
maximum weight edge in C, and let €1, €3, ...,es_1 be the remaining edges in C. Since L contains
e and it is a subgraph of G, we have by Lemma 2}

o < fragq(e) < fragy (e) . (2)

We claim that it must be dr(u,v) = w(e). Indeed, if dr,(u,v) < w(e), we would have dp\.(u,v) =
dr(u,v), and thus by Lemmall|

dL\e(u7 U)

=1
dr,(u,v)

frag, (¢) =
which contradicts (2)). Since dr,(u,v) = w(e) and w(e;) < w(e), for 1 <i < £ — 1, we have that

dL\e(uvv) < Zf;% ’LU(@Z)

dr(u,v) — w(e) se-1.

o < frag(e) < frag; (e) =

This implies that any cycle in L must have more than (o + 1) edges. Let L’ be the unweighted
version of L, i.e., L' has the same vertices and edges as L, but its edges are unweighted. Clearly,

girth(L') >0 +1.

The theorem now follows directly from a result by Bondy and Simonovits [10], which states that
a graph with girth greater than ¢ 4+ 1 contains at most O(n1+1/L(‘7+1)/2J) edges. (]

We now show that the shortest paths to be added as backup paths can be suitably chosen, so
that the total number of additional edges is small. In the following, we assume that our input
graph G is 2-edge-connected. This is without loss of generality: if G is not 2-edge-connected, then
our algorithm can be applied separately to every 2-edge-connected component of G. Let e = (u, v)
be an edge of high fragility in the initial ¢-spanner. Note that, in order to identify a backup path
for edge e, we can refer either to a shortest path between v and v in G \ e or, equivalently, to a
short cycle for e in G (i.e., the short cycle defined by one of the shortest paths in G\ e and the
edge e itself). In the following, we will identify backup paths by short cycles in G rather than by
shortest paths in G\ e.

An ordered sequence of cycles C1, Cy, ..., Cy is said to be parsimonious if the following property
holds: for any pair of cycles C; and C;, with 1 < ¢ < j < g, if C; and C; have two common vertices
x and y, where 2 and y split C;; into paths P’ and P”, then either P’ C U;;ll Cy or P" C U;;ll Cy.
Intuitively speaking, in a parsimonious sequence of cycles, each new cycle C; reuses as much as

¢

S

&

¢

Figure 2: The sequence of four cycles C7,C5y,C3,Cy on the left is not parsimonious, while the
sequence C1, Co, C3,C} on the right (where C} is represented by the bold line) is parsimonious.

possible portions of paths from the union of previous cycles Ci, ..., C;_1. Figure |Z| illustrates the
notion of parsimonious sequence of cycles.. The sequence of cycles C1, Csy, Cs, Cy shown in the left
side of Figure [2] is not parsimonious, since each path joining a and b along Cj is not contained
into C1 UCy U C3. A parsimonious sequence Cy, Cy, C3, C} is shown in the right side of Figure
where cycle C} is shown in bold. Cycles C) and Cj5 intersect in two points, namely b and d, and
the path in C} joining b to d through c is contained in C; UCy U C3. The same holds for the path
joining a and ¢, the two common vertices of Cy and C}, through b, and for the path joining ¢ and
e, the two common vertices of Cy and C}, through d.

The following theorem bounds the total number of different edges in a parsimonious sequence
of cycles.

Theorem 8 Given a graph G, any parsimonious sequence C1,Cy, ..., Cy of cycles in G contains

O(min{gy/n +n,n,/q + q}) edges.

Proof. Let V; and E; be respectively the vertex set and the edge set of cycle Cj, for 1 < j <g.
We partition each edge set E; into the following three disjoint sets:

. E;?Id (old edges): edges already in some E;, i < j, i.e., edges in E; N (Uz;ll El>
o [V (new edges): edges with at least one endpoint not contained in Uf;ll Vi.
A . . . 1d . . . J—1
o 57 (cross edges): edges not contained in E¥'¢ but with both endpoints in (J;_; V.

To prove the theorem, we have to bound the total number of edges in U?:l E;. Note that we
only need to bound the total number of new and cross edges (i.e., | U?:l E7¥[and | U?:l E§ross)),
since each old edge in E;-’ld, for any 1 < j < ¢, is already accounted for either as a new edge or
as a cross edge in some cycle Cj, @ < j. Furthermore, each new edge in E7°" can be amortized
against a newly discovered vertex (i.e., a vertex v ¢ Uf;ll Vi), and in cycle C; there can be at
most two such edges which are incident to the same newly discovered vertex v: this implies that
| U?:1 BV <2-n.

To complete the proof, it remains to bound the total number of cross edges in the sequence.
We do this as follows. For each cycle C; we choose arbitrarily an orientation Cj, in one of the two
possible directions, and direct its edges accordingly. Given a directed edge e = (x,y), we denote
its endpoint x as tail(e) and its endpoint y as head(e). We build a bipartite graph B in which one
vertex class repreﬁnts.;ohe n _x)lertices v1,V9,...,0, in GG, and the other vertex class represents the
q directed cycles C, Cs, ...,Cy. There is an edge in B joining vertex v and cycle C; if and only if
v is the tail of an edge in E}™* (hence, the degree of C; in B is equal to the size of EJC-“’SS). Note

Figure 3: On the proof of Theorem [8| If i < j, then either edge f or g in Cj is not in E$™%. In
fact, either 7 or w5 should be included in Ufc;ll Ch.

that there is a one-to-one correspondence between edges in B and U?:1 E57%8. Thus, to prove the
theorem it suffices to show that the number of edges in B is O(min{gy/n + n,n,/q + q}).

We claim that there cannot exist two vertices x and y that are tails of two pairs of directed
edges in EF™™ and E5% (see Figure 3). Indeed, assuming i < j, the fact that the sequence of
cycles is parsimonious implies that one of the two portions of C; defined by x and y must contain
only edges in E{'9. The previous claim implies that the bipartite graph B does not contain K5 » as
a subgraph. Determining the maximum number of edges in B is a special case of Zarankiewicz’s
problem [26]. This problem has been solved by Kévéri, Sés, Turdn [2I] (see also [23], p. 65), who
proved that any bipartite graph G with vertex classes of size m and n containing no subgraph
K, s, with the r vertices in the class of size m and the s vertices in the class of size n, has
O (min {mn'=Y/" +n,m!'=1/*n + m}) edges, where the constant of proportionality depends on r
and s. Since in our case the bipartite graph B has vertex classes of size n and ¢, and r = s = 2,
it follows that B contains O(min{g\/n + n,n./q + q}) edges, which yields the theorem. O

We observe that Theorem [8| can be adapted to provide an alternative proof of a result of
Coppersmith and Elkin [I4] on distance preservers. Given a graph G and p pairs of vertices
{(v1,w1), (v2,w2), ..., (vp,wp)}, a pairwise distance preserver is a subgraph S of G such that
ds(vi,w;) = da(vi, w;), for 1 <4 < p. In particular, Coppersmith and Elkin [I4] showed that it is
always possible to compute a pairwise distance preserver containing O(min{p\/n + n,n./p + p})
edges.

4.3 Efficiently computing a parsimonious sequence of short cycles

To compute a o-resilient t-spanner of graph G we start from a t-spanner S of G and add to S
a parsimonious sequence of short cycles, in order to apply Theorem Let Es(o) be the set of
o-fragile edges in S (i.e., edges e with fragg(e) > max {o, frag-(e)}). For each edge e € Eg(0), we
find a short cycle for edge e in graph G and add that cycle to S. To guarantee the parsimonious
property, we choose in a greedy fashion short cycles that reuse paths contained in the union of
previously added cycles. We first describe how to find o-fragile edges and next show how to
compute a short cycle for each such edge.

The computation of o-fragile edges can be accomplished in O(mn + n?logn) worst-case time
by using an algorithm by Brandes for computing shortcut values (described in [20], Section 4.2.2).
We recall here that, given an edge e in graph G, the shortcut value of e, denoted by shvalg(e), is
defined as the maximum distance increase between any two vertices after the deletion of e:

hval = d —d .
shvalg () = max {de\.(2,y) - da(z,y)}
Brandes’ algorithm performs n Dijkstra-like visits, each time considering a different vertex as root;

when starting a new visit from a root r, the algorithm computes the shortcut value of each edge
incident to r. It can be seen ([22], Section 3.6.3) that the distance increase after the deletion of

10

edge e = (u,v) is maximum for the endpoints of e, i.e.,
shvalg(e) = dg\e(u,v) — da(u,v) .
As a consequence of Lemma the fragility of an edge e = (u,v) can be expressed as

shvalg(e)

— 41
dg(u,v) T

frago(e) =
and thus it can be easily determined once the shortcut value of the same edge e is known.

A trivial algorithm for computing a parsimonious sequence of short cycles can be obtained
as follows. For each edge (u,v) € Eg(o), we compute a shortest path from u to v in G\ (u,v):
when comparing paths with the same weight, we select the path containing the smallest number
of new edges (ties can be broken arbitrarily). This can be done by means of a slight modification
of Dijkstra’s algorithm and it requires a total of O (|Eg(o)| - (m + nlogn)) worst-case time, which
is O (n'+¥/Le+D/2] . (m 4+ nlogn)) by Theorem @

We next show how to improve this time to O (mn +n?log n) in the worst case. Consider
Algorithm ResilientSpanner illustrated in Figure[d For each vertex r in G, we first compute all
the o-fragile edges incident to r. Next, we augment the current spanner with one short cycle for
each o-fragile edge. Throughout, we will guarantee the important property that the total sequence
of short cycles added during all the iterations of Algorithm ResilientSpanner is parsimonious.
This will be accomplished by Algorithm ParsimoniousCycles, invoked in Line [which is the
crux of the method.

Algorithm ResilientSpanner(G, S, o)
input:

graph G

a t-spanner S of G

a fragility threshold o, with o > ¢
output:

a o-resilient t-spanner R of G, with R O §

let ' =S5

for each vertex r in G
let E, be the set of o-fragile edges in S’ incident to r
S’ = §" U ParsimoniousCycles(G, S', r, E,.)

return R = 5’

CUp N

Figure 4: Algorithm ResilientSpanner.

Before describing the Algorithm ParsimoniousCycles in detail, we need few preliminary defi-
nitions. Let S” be the spanner at a generic iteration of the loop of Algorithm ResilientSpanner.
Given a vertex r, we define a shortest path tree T;. of G rooted at r to be parsimonious if the
following condition holds:

for each vertex x # r, the path from r to z in T, is a shortest path between r and x
in G with the smallest number of edges in G\ S’.

It can be seen that, if T, is parsimonious, then for each pair of vertices z’,z” such that z’ is an
ancestor of 2’ in T;., also the path from z’ to =’ in T, is a shortest path in G with the smallest
number of edges in G\ S’. Note that a parsimonious shortest path tree 7). can be computed using
a slight modification of the shortest path algorithm by Dijkstra: whenever two or more alternative
paths with the same weight reach a vertex, we select the path with the smaller number of edges
in G\ S’ (ties can be broken arbitrarily). Moreover, let v be a vertex adjacent to r in T, and let

11

Figure 5: On the proof of Lemma[J] Solid paths are contained in T;.

I1,. (v) be the set of all shortest paths from r to v in G\ (r,v). We denote a path m, € II,.(v) having
the smallest number of edges from G\ S’ as a best backup path for edge (r,v). By definition, a best
backup path for (r,v) does not contain edge (r,v) and thus it must contain at least one edge in
G\ T,. The following lemma shows that there must exist a best backup path for (r,v) containing
exactly one edge of G \ T.

Lemma 9 Let v be a vertex adjacent to r in T,.. There is at least one best backup path for (r,v)
that contains exactly one edge of G\ T

Proof. Let m, be a best backup path for (r,v), and let T,.(v) be the subtree of T, rooted at v.
Walk along the path m, starting from the root r, and let z be the first vertex encountered in the
subtree T,.(v) (see Figure . Let y be the vertex immediately before z in m,; clearly y is not in
T,(v) and (y, z) is an edge of G \ T;.

Let w(r,y) be the path between r and y in T,.. Since T, is a parsimonious shortest path tree,
m(r,y) is a shortest path between r and y in G with the smallest number of edges in G \ 5’.
The same argument holds for the path 7(z,v) between z and v in 7,.. Hence, the path 7] =
m(r,y) - (y, z) - w(z,v) obtained by concatenating the path between r and y in 7,., edge (y, z), and
the path between z and v in T} must be a best backup path for (r,v), and it contains only one
edge, i.e., (y,2), from G\ T,. O

We denote by single-cross backup paths the best backup paths that contain exactly one edge
from G\ T, (as in Lemma E[) Single-cross backup paths will be a crucial ingredient for finding
efficiently a parsimonious sequence of short cycles. Note that, given a root r and a vertex v
adjacent to 7 in T}, combining the edge (r,v) with a single-cross backup path for (r,v) yields a
short cycle for edge (r,v).

While computing a parsimonious shortest path tree T,. in O(m + nlogn) time, in the same
bound we can compute and store in each vertex x the following information:

e §(x): the distance from r to x;
e k(z): the number of edges from G \ S’ in the (shortest) path from r to z in T};

e apex(x): the vertex such that (r,apex(z)) is the first edge in the (shortest) path from r to
xin T,

e p(x): the vertex immediately before x in the (shortest) path from r to x in 7.

We are now ready to complete the low-level details of Algorithm ResilientSpanner of Figure@
by showing how to implement Algorithm ParsimoniousCycles, whose pseudo-code is illustrated

12

in Figure [f] We first sketch the main ideas behind the algorithm. We are given the current
spanner S, a vertex r, and the set E, of o-fragile edges incident to r. In the following, we denote
by 7, a single-cross backup path for (r,v). The objective of Algorithm ParsimoniousCycles is
to compute m, for each vertex v such that (r,v) € E,. By Lemma @ m, must be of the form
mp = 7(r,y) - (y,2) - w(z,v), where 7(u,w) denotes the unique path between vertices v and w in
T,, and (y,2) is an edge in G \ T, with apex(y) # v and apex(z) = v. To compute 7, it thus
suffices to identify such an edge (y, z) in G \ T}, so that the following two properties hold:

(1) The path m, = 7(r,y) - (v, 2) - 7(2,v) is a shortest path in G \ (r,v). Note that the weight
of the path 7(r,y) - (y,2) - 7(z,v) can be computed in constant time as (0(y) + w(y, z) +

(0(2) = w(r,v))).

(2) Among all shortest paths between r and v in G\ (r,v), 7, has the smallest number of edges
from G\ S’. Note that the number of edges from G \ S’ in 7(r,y) - (y, 2) - 7(2z,v) can be
computed in constant time as (k(y)+k(z)) if (y,2) € S’, and as (k(y)+k(z)+ 1) otherwise.

Having this in mind, Algorithm ParsimoniousCycles works as follows. It stores in best(v)
the currently best single-cross backup path computed for each edge (r,v) € F,, where best(v) is
initialized in Lines 2-3 of Figure [f| Next, the algorithm scans all edges (y, z) in G \ 7). such that
(r,apex(z)) € E,, as illustrated in Lines 4-5. Note that apex(y) # apex(z) is further checked on
Line 5, since by Lemma |§| when apex(y) = apex(z) then the edge (y,z) cannot be in a single-
cross backup path. Otherwise, the edge (y, z) can potentially induce a single-cross backup path
v =mn(r,y) - (y,2) - 7(z,apex(z)) for edge (r,apex(z)): if 4 improves the previously known value
for best(apex(z)), then best(apex(z)) gets updated in Line 8. At the end of the loop in Lines 4-8,
the algorithm has computed m, = best(v) for all edges (r,v) € E,. On Lines 9-11 it returns the
corresponding short cycles.

Algorithm ParsimoniousCycles(G, S, r, E)
input:

graph G,

t-spanner S’ of G,

the root vertex r,

the set F, of o-fragile edges in S incident to r
output:

a set of short cycles, one for each edge in F,

1 compute a parsimonious shortest path tree T,

2. for each v such that (r,v) € E,

3 set the current backup path best(v) =

4. for each ye V\r

5. for each edge (y,z) € G\ T, with apex(y) # apex(z) and such that (r, apex(z)) € E,
6 let v = n(r,y) - (y,2) - 7(z,apex(z)) /* where - denotes path concatenation */

7 if path - improves over best(apex(z))

8. best(apex(z)) =y
9. letC.=10
10. for each v such that (r,v) € E,
11. Cr = Cr U {best(v) U (r,v)}
12. return C,

Figure 6: Algorithm ParsimoniousCycles.

The next theorem shows that the set of short cycles computed in Algorithm ResilientSpanner
by the n calls to ParsimoniousCycles yields a parsimonious sequence (of short cycles).

13

(a) (b)

Figure 7: Proof of Theorem Case i’ < i.

Theorem 10 There exists an ordering of the short cycles computed by Algorithm ResilientSpanner
so that the resulting sequence is parsimonious.

Proof. Let ry,79,...,7, be the order in which the vertices in G are considered as roots by
Algorithm ResilientSpanner (on Line 2 in Figure |4). For each root r;, with 1 < ¢ < n, let
E,, be the set of o-fragile edges incident to r; in the original spanner S. Note that Algorithm
ResilientSpanner computes a short cycle C; ; for each edge (r;,v; ;) € E,,, with 1 < j < |E,,|.
Moreover, the short cycle C; ; consists of a single-cross backup path for edge (r,v; ;) and the edge
(ri,v; ;) itself. To prove the theorem, we show that the sequence of short cycles, C; ;, for 1 <i<n
and 1 < j < |E,,|, sorted lexicographically by increasing (4, j), is parsimonious.

Let C;; and Cy j» be any two short cycles in this sequence that share two vertices, with the
pair (#/,7’) preceding pair (i,j) lexicographically. We now distinguish two cases, depending on
whether (i/ <) or (i =14 and j' < j).

Case ' < i: when cycle C;; is computed by Algorithm ParsimoniousCycles, all the edges in
Cy j are already in the current spanner S’. Recall that C; ; is a short cycle for edge (75, v; ;),
and let (y, z) be the unique edge in C; ; that does not belong to T;.,. By Lemma@, the short
cycle C; ; consists of the edge (y, z) plus two subpaths in 7,..: a path m; from r; to y and a
path mo consisting of edge (r;, v; ;) followed by a path from v; ; to z (see Figure . If Ci;
and Cy j share two vertices a and b, two cases may occur: either a and b are in the same
subpath or they are in two different subpaths of C; ;. Furthermore, since both C; ; and Cy j/
are short cycles, the portion of C; ; from a to b must have the same weight as the portion of
Cy j» from a to b. We now consider the two cases separately.

In the first case, assume without loss of generality that both a and b are in m; (see Figure
(a)). Note that at this point the portion of the cycle Cy j between a and b is already
contained in S’. Since T;, is a parsimonious shortest path tree, the subpath 7; in T, must
contain the minimum number of edges in G \ S/, which implies that also the portion of the
subpath 7 between a and b must be contained in S (i.e., cycles Cy ;» and C; ; satisfy the
condition for being part of a parsimonious sequence).

In the second case, assume without loss of generality that a is in 71 and b is in 7o (see Figure
(b)). Once again, at this point the portion of the cycle Cys j» between a and b is already
contained in S’. When C; ; is computed by Algorithm ParsimoniousCycles, the portion
of C; ; between a and b passing through edge (y, z) must be contained in S’ (otherwise the
portion of C j» between a to b would have produced a cycle with the same weight and fewer
edges of G'\ S’). Once again, cycles Cy j» and C; ; satisfy the condition for being part of a
parsimonious sequence.

14

i

(a) (b)
Figure 8: Proof of Theorem Case ¢/ =i.

Case ¢/ = i and j' < j: cycles C;; and C;j are computed during the same call of Algo-
rithm ParsimoniousCycles from a root 7;. Since Algorithm ParsimoniousCycles com-
putes single-cross backup paths, each short cycle produced passes through the root r; and
traverses exactly two subtrees of r;. We observe that if C; ; and C;;; do not share any
subtree, then they can intersect only at the root r;. Hence, only the following two cases are
possible for short cycles C; ; and Cy ;- intersecting at two vertices:

e (;; and C,; ;s are contained in the same two subtrees: this case is shown in Figure
(a). The intersection among cycles C; ; and C; ;s is the path in 7)., joining the lowest
common ancestor a of y and 2z’ and the lowest common ancestor b of ¥’ and z, where
(y,2) (resp., (y',7')) is the cross edge for C; ; (resp., C; ;). In this case, any relative
ordering among C; ; and C; j» produces a parsimonious sequence.

e C;; and Cj ;s share one subtree: this case is shown in Figure 8| (b). Also in this case,
cycles C; ; and C; j+ share exactly a path, namely the path between the root r; and
the lowest common ancestor of z and y’. The same argument as in the previous case
applies.

0

The following theorems bound the running time of Algorithm ResilientSpanner and the
number of edges in the computed o-resilient ¢-spanner.

Theorem 11 Algorithm ResilientSpanner runs in O(mn + n?logn) time in the worst case.

Proof. We first bound the time required by Algorithm ParsimoniousCycles in Figure [The
parsimonious shortest path tree 7, in Line[I]can be computed by a slight modification of Dijkstra’s
shortest path algorithm in O(m+mnlogn) worst case time, together with the auxiliary information
about d(x), k(x), apex(z) and p(z) for each vertex x € T,.. Using this auxiliary information, each
edge (y, z) can be processed in constant time in Lines 5-8. This implies that the total time spent
through the loop in Lines 4-8 is bounded by O(m). Also the time spent in the initialization (Lines
2-3) and for returning all short cycles (Lines 9-12) is O(m). As a result, each call to Algorithm
ParsimoniousCycles can be implemented in time O(m + nlogn) in the worst case.

We now turn to Algorithm ResilientSpanner of Figure[6] As it was previously mentioned, all
the o-fragile edges (Lines 2-3) can be computed in O(mn+n? log n) worst-case time by using Bran-
des’ algorithm for computing shortcut values [20]. Since each call to Algorithm ParsimoniousCycles
requires O(m + nlogn) worst-case time, the overall running time of the algorithm is O(mn +
n?logn) in the worst case. O

15

Theorem 12 Let G be a graph with n vertices, with positive edge weights in [Win, Wmax|, and let

W = fmex_ Algorithm ResilientSpanner computes a o-resilient t-spanner R of G, o > t, with

R D S, containing O (W . n3/2) edges.

Proof. By Theorem [5] the subgraph R computed by Algorithm ResilientSpanner is a o-
resilient ¢-spanner of G, since it is obtained by adding a parsimonious sequence C of short cycles
to a t-spanner S, one for each o-fragile edge e in S.

Let C. be the cycle in I'.(G) added to the spanner, and let S(n) be the number of edges in S.
We partition o-fragile edges e € S into three subsets, Ey, E,, and E}, according to their fragility
in G. For each subset we separately bound the number of edges in the union of cycles in C.

low fragility edges: E, ={e € S | o < fragg(e) <5}. By Theorem |7, we have

|Ef| =0 (min {S(n),n1+m}> -0 (nHL“ilJ) ,

Thus, if 3 < 0 < 5 we have |Ey| = O (min {S(n),n3/?}), while E, = § for o > 5. Let e be
any edge in E;. Since frags(e) < 5, cycle C, contains at most 5W + 1 edges (C. contains
exactly frago(e) - W + 1 edges when w(e) = wpax and all other edges in C,. have weight

Wmin)- S0, we have
U ¢

eckE,

Ce|=0for025;

:O<W~n3/2) for 3<o0<5,

while |Ue€El

medium fragility edges: E,, = {e€ S | 5 < frags(e) <logn}. By Theorem [7| since the
fragility of each edge in E,, is greater than max {o,5}, then

. 1 a4 . +—1 4
|Em| =0 (mln{S(n),n1+ [G+072] , n3 }) =0 (mln {n BRGNS }) .

Each cycle Ce, with e € E,,, contains at most logn - W + 1 edges, so we have

e

eekE,,

=0 (W -logn - min {nHm,n%})

high fragility edges: E, = {e€ S | frags(e) >logn}. By Theoremﬁ, |En| = O (n”ﬁ) =
O(n), and by Theorem |8 we have

Ue

ecEp

— 0 (n ViET) =0 (n?)

The total number of edges in R depends on values of o and W:

efor3<oc<h
the number of edges is O (W . n%);

o for 5 <o <logn and W = Q ((néfm) /logn)
the number of edges is O (W logn -n't [T D72]);

e for 0 > logn,oroc >5and W =0 ((n%_ HHIW?J) /logn)
the number of edges is O (n%)

16

O

Note that, in the case of unweighted graphs, the number of edges in R is always O (n?’/ 2). Thanks
to Corollary |§|, Algorithm ResilientSpanner can also be used to compute a o-resilient («, 3)-
spanner R of an unweighted graph, for any ¢ > « + (, containing O (ng/ 2) edges in the worst
case.

5 Conclusions and further work

In this paper, we have investigated a new notion of resilience in graph spanners by introducing
the concept of o-resilient spanners. In particular, we have shown that it is possible to compute
small stretch o-resilient spanners of optimal size for graphs with small positive edge weights.

The techniques introduced for small stretch o-resilient ¢-spanners can be used to turn any
generic spanner (e.g., a fault-tolerant spanner, or, in the unweighted case, an («, §)-spanner, for
o > a+ > 3) into a o-resilient spanner, by adding a suitably chosen set of at most O(W - n3/2)
edges (that is, O(n%/2) in the unweighted case).

We expect that in practice our o-resilient t-spanners, for ¢ > t > 3, will be substantially
sparser than what it is implied by the bounds given in Theorem and thus of higher value
in applicative scenarios. Towards this aim, we plan to perform a thorough experimental study.
Another intriguing question is whether our theoretical analysis on the number of edges that need
to be added to a t-spanner in order to make it o-resilient provides tight bounds, or whether it can
be further improved for o > 3.

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and
shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167-1181, 1999.

[2] 1. Althofer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry, 9:81-100, 1993.

[3] G. Ausiello, C. Demetrescu, P. G. Franciosa, G. F. Italiano, and A. Ribichini. Graph spanners
in the streaming model: An experimental study. Algorithmica, 55(2):346-374, 2009.

[4] G. Ausiello, P. G. Franciosa, and G. F. Italiano. Small stretch spanners on dynamic graphs.
Journal of Graph Algorithms and Applications, 10(2):365-385, 2006.

[5] G. Ausiello, P. G. Franciosa, G. F. Italiano, and A. Ribichini. Computing graph spanner
in small memory: fault-tolerance and streaming. Discrete Mathematics, Algorithms and
Applications, 2(4):591-605, 2010.

[6] G. Ausiello, P. G. Franciosa, G. F. Italiano, and A. Ribichini. On resilient graph spanners.
In ESA, volume 8125 of Lecture Notes in Computer Science, pages 85-96. Springer, 2013.

[7] S. Baswana. Dynamic algorithms for graph spanners. In Proc. of 15th Annual European
Symposium on Algorithms (ESA’06), pages 76-87, 2006.

[8] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and (alpha, beta)-
spanners. ACM Transactions on Algorithms, 7(1):5, 2010.

[9] S. Baswana, S. Khurana, and S. Sarkar. Fully dynamic randomized algorithms for graph
spanners. ACM Trans. Algorithms, 8(4):35:1-35:51, October 2012.

[10] J.A. Bondy and M. Simonovits. Cycles of even length in graphs. Journal of Combinatorial
Theory, Series B, 16(2):97-105, 1974.

17

[11]

[12]

[13]

[19]

[20]

[26]

G. Braunschvig, S. Chechik, and D. Peleg. Fault tolerant additive spanners. In Graph-
Theoretic Concepts in Computer Science - 38th International Workshop, (WG’12), volume
7551 of LNCS, pages 206—214. Springer, 2012.

S. Chechik. New additive spanners. In Proc. of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’13), pages 498-512, 2013.

S. Chechik, M. Langberg, D. Peleg, and L. Roditty. Fault-tolerant spanners for general
graphs. In Proc. of 41st Annual ACM Symposium on Theory of Computing (STOC’09),
pages 435-444, 2009.

D. Coppersmith and M. Elkin. Sparse sourcewise and pairwise distance preservers. SIAM J.
Discrete Math., 20(2):463-501, 2006.

C. Demetrescu, M. Thorup, R.A. Chowdhury, and V. Ramachandran. Oracles for distances
avoiding a failed node or link. STAM J. Comput., 37(5):1299-1318, 2008.

M. Dinitz and R. Krauthgamer. Fault-tolerant spanners: better and simpler. In Proc. of the
30th Annual ACM Symposium on Principles of Distributed Computing (PODC’11), pages
169-178, 2011.

D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM J. Comput.,
29(5):1740-1759, 2000.

M. Elkin. Streaming and fully dynamic centralized algorithms for constructing and maintain-
ing sparse spanners. In Proc. of the 34th International Colloguium on Automata, Languages
and Programming (ICALP’07), volume 4596 of LNCS, pages 716-727. Springer, 2007.

S. Halperin and U. Zwick. Linear time deterministic algorithm for computing spanners for
unweighted graphs. Unpublished manuscript, 1996.

R. Jacob, D. Koschiitzki, K.A. Lehmann, L. Peeters, and D. Tenfelde-Podehl. Algorithms for
centrality indices. In U. Brandes and T. Erlebach, editors, Network Analysis, volume 3418 of
LNCS, pages 62-82. Springer, 2005.

T. Ko6vari, V. T. Sés, and P. Turdn. On a problem of K. Zarankiewicz. Colloguium Mathe-
maticae, 3(1):50-57, 1954.

D. Koschiitzki, K.A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and O. Zlotowski.
Centrality indices. In U. Brandes and T. Erlebach, editors, Network Analysis, volume 3418
of LNCS, pages 16-61. Springer, 2005.

J. Matousek. Lectures on Discrete Geometry. Springer, 2002.
D. Peleg and A. Shéffer. Graph spanners. Journal of Graph Theory, 13:99-116, 1989.

L. Roditty, M. Thorup, and U. Zwick. Deterministic constructions of approximate distance
oracles and spanners. In Proc. of the 32nd International Colloguium on Automata, Languages
and Programming (ICALP’07), volume 3580 of LNCS, pages 261-272. Springer, 2005.

K. Zarankiewicz. Problem p 101. Colloquium Mathematicae, 2:301, 1951.

18

	1 Introduction
	2 Preliminaries
	3 Some negative results
	4 On -resilient spanners
	4.1 A simple-minded algorithm for computing -resilient spanners
	4.2 Improving the size of -resilient spanners
	4.3 Efficiently computing a parsimonious sequence of short cycles

	5 Conclusions and further work

