
Finding Shortest Paths between
Graph Colourings?

Matthew Johnson1, Dieter Kratsch2, Stefan Kratsch3,
Viresh Patel4, and Daniël Paulusma1

1 School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, United Kingdom

{matthew.johnson2,daniel.paulusma}@durham.ac.uk
2 Laboratoire d’Informatique Théorique et Appliquée, Université de Lorraine,

57045 Metz Cedex 01, France, dieter.kratsch@univ-lorraine.fr
3 Institut für Softwaretechnik und Theoretische Informatik,

Technische Universität Berlin, Germany, stefan.kratsch@tu-berlin.de
4 School of Mathematical Sciences, Queen Mary, University of London,

Mile End Road, London E1 4NS, United Kingdom viresh.patel@qmul.ac.uk

Abstract. The k-colouring reconfiguration problem asks whether, for
a given graph G, two proper k-colourings α and β of G, and a positive
integer `, there exists a sequence of at most `+ 1 proper k-colourings of
G which starts with α and ends with β and where successive colourings
in the sequence differ on exactly one vertex of G. We give a complete
picture of the parameterized complexity of the k-colouring reconfigura-
tion problem for each fixed k when parameterized by `. First we show
that the k-colouring reconfiguration problem is polynomial-time solv-
able for k = 3, settling an open problem of Cereceda, van den Heuvel
and Johnson. Then, for all k ≥ 4, we show that the k-colouring reconfig-
uration problem, when parameterized by `, is fixed-parameter tractable
(addressing a question of Mouawad, Nishimura, Raman, Simjour and
Suzuki) but that it has no polynomial kernel unless the polynomial hi-
erarchy collapses.

1 Introduction

Graph colouring has its origin in a nineteenth century map colouring problem
and has now been an active area of research for more than 150 years, find-
ing many applications within and beyond Computer Science and Mathematics.
Given a graph G = (V,E) and a positive integer k, a k-colouring of G is a map
c : V → {1, . . . , k}; it is proper if c(u) 6= c(v) for all u, v with uv ∈ E. The prob-
lem of deciding whether a graph has a proper k-colouring for fixed k ≥ 3 was
an early example of an NP-complete problem [23]. If, however, one knows that a
graph has a proper k-colouring, or several of them, one may wish to know more
about them such as how many there are or what structural properties they have.

? Supported by EPSRC (EP/G043434/1), by a Scheme 7 grant from the London
Mathematical Society, and by the German Research Foundation (KR 4286/1).

One way to study these questions is to consider the k-colouring reconfigura-
tion graph: given a graph G, the k-colouring reconfiguration graph Rk(G) of G
is a graph whose vertices are the proper k-colourings of G and where an edge
is present between two k-colourings if and only if the two k-colourings differ on
only a single vertex of G.

There are several algorithmic questions one can ask about the graph Rk(G)
such as whether Rk(G) is connected, whether there exists a path between two
given vertices of Rk(G), or how long is the shortest path between two given
vertices of Rk(G). (Note that in general Rk(G) has size exponential in the size
of G, making these questions highly non-trivial.) It is the latter question, stated
formally below, that we address in this paper.

k-Colouring Reconfiguration

Instance : An n-vertex graph G = (V,E), two proper k-colourings α and β
and a positive integer `.

Question : Is there a path in the reconfiguration graph Rk(G) of G between
α and β of length at most `?

1.1 General Motivation

Reconfiguration graphs can be defined for any search problem: the vertices cor-
respond to all solutions to the problem and the edges are defined by a symmetric
adjacency relation normally chosen to represent a smallest possible change be-
tween solutions. They arise naturally when one wishes to understand the solution
space for a search problem.

There has been much research over the last ten years on the structure and
algorithmic aspects of reconfiguration graphs, not only for k-Colouring [2, 3,
7, 10–12] but also for many other problems, such as Satisfiability [14], Inde-
pendent Set [5, 9, 21], List Edge Colouring [17, 19], L(2, 1)-Labeling [18],
Shortest Path [4, 6, 22], and Subset Sum [20]. From these studies, the follow-
ing subtle phenomenon has been observed, which one would like to better under-
stand: it is often (but not always) the case that NP-complete search problems give
rise to PSPACE-complete5 reconfiguration problems, whereas polynomial-time
solvable search problems often give rise to polynomial-time solvable reconfigura-
tion problems. For further background we refer the reader to the recent survey
of van den Heuvel [15].

Reconfiguration graphs are also important for constructing and analyzing
algorithms that sample or count solutions to a search problem. Indeed, under-
standing connectivity properties of the k-colouring reconfiguration graph is fun-
damental in analyzing certain randomized algorithms for sampling and counting
k-colourings of a graph and in analyzing certain cases of the Glauber dynamics
in statistical physics (see Section 5 of [15]).

5 PSPACE-completeness appears to be the default complexity for intractable instances
of this kind of problem; see [16].

2

1.2 Our Results

Our first result, which we prove in Section 2, shows that k-Colouring Re-
configuration can be solved in polynomial time when k = 3, which settles a
problem raised by Cereceda, van den Heuvel and Johnson [12]. Note that the
cases k = 1, 2 are easily seen to be polynomial-time solvable.

In [12], Cereceda et al. were mainly concerned with determining whether,
given a graph G on n vertices and m edges, and two proper 3-colourings α and β,
there exists any path between α and β in Rk(G). They found a polynomial-time
algorithm to solve this problem and further showed that, for certain instances,
their algorithm in fact finds a shortest path between α and β (a precise statement
is given in Section 2). Here we complete their result by giving an algorithm for
all instances.

Theorem 1. 3-Colouring Reconfiguration can be solved in time O(n+m).

For k ≥ 4, we cannot expect a polynomial-time algorithm for k-Colouring
Reconfiguration: Bonsma and Cereceda [7] showed that, for each k ≥ 4,
the problem of determining if there is any path between two given proper k-
colourings of a given graph is PSPACE-complete. On the other hand, our second
result (proven in Section 3) is that for each k ≥ 4, k-Colouring Reconfigu-
ration is fixed-parameter tractable when parameterized by the path length `.

Recall that, informally, a parameterized problem is a decision problem (in
our case k-Colouring Reconfiguration) in which every problem instance I
has an associated integer parameter p (in our case the path length `). A param-
eterized problem is fixed-parameter tractable (FPT) if every instance I can be
solved in time f(p)|I|c where f is a computable function that only depends on p
and c is a constant independent of p (see, for example, Niedermeier [26] for an
overview).

Theorem 2. For each fixed k ≥ 4, k-Colouring Reconfiguration can be
solved in time O((k·`)`2+`·`n2). In particular, for each fixed k ≥ 4, k-Colouring
Reconfiguration is FPT when parameterized by `.

Once a problem is shown to be FPT (and it is unlikely that the problem is
polynomial-time solvable), one can go further and ask whether it has a poly-
nomial kernel. It is well known [26] that a problem is FPT with respect to a
parameter p if and only if it can be kernelized, i.e., if and only if, for any in-
stance (I, p) of the given parameterized problem, it is possible to compute in
polynomial time an equivalent instance (I ′, p′) such that |I ′|, p′ ≤ g(p) for some
computable function g (two problem instances are equivalent if and only if they
are both yes-instances or both no-instances). If g(p) is a polynomial, then the
given parameterized problem is said to have a polynomial kernel. We prove the
following theorem in Section 4.

Theorem 3. For each fixed k ≥ 4, k-Colouring Reconfiguration parame-
terized by ` does not admit a polynomial kernel unless NP ⊆ coNP/poly.

3

In fact Theorem 3 holds even when we restrict attention to inputs where the two
proper k-colourings of the input graph differ in only two vertices (note that the
problem becomes trivial if the two given k-colourings differ in only one vertex).

Our three results give a complete picture of the parameterized complexity of
k-Colouring Reconfiguration for each fixed k when parameterized by `.

1.3 Related work

Fixed-parameter tractability of k-Colouring Reconfiguration was proved
independently in recent work of Bonsma, Mouawad, Nishimura and Raman [8]
(their algorithm is different from ours). They also prove various hardness results
for other parameterizations of k-Colouring Reconfiguration. In particular,
they proved that if k is part of the input then k-Colouring Reconfigura-
tion is W[1]-hard when parameterized only by ` (note that the problem, when
parameterized only by k, is para-PSPACE-complete due to the aforementioned
result of Bonsma and Cereceda [7]).

Mouawad, Nishimura, Raman, Simjour and Suzuki [25] were the first to con-
sider reconfiguration problems in the context of parameterized complexity. For
various NP-complete search problems, they showed that determining whether
there exists a path of length at most ` in the reconfiguration graph between two
given vertices is W[1]-hard (when ` is the parameter); they asked if there exists
an NP-complete problem for which the corresponding reconfiguration problem,
parameterized by `, is FPT. Theorem 2 and [8] give the second positive answer to
this question, the first being an FPT algorithm for a reconfiguration problem re-
lated to Vertex Cover [24]. However, perhaps surprisingly, Theorem 1 shows
that there even exists an NP-complete problem for which the corresponding
shortest path problem in the reconfiguration graph is polynomial-time solvable,
and thus trivially FPT when parameterized by `.

As mentioned earlier, deciding whether there exists any path in Rk(G) be-
tween two k-colourings α and β of an input graph G is polynomial-time solv-
able for k ≤ 3 [12] and PSPACE-complete for k ≥ 4 [7]. The problem remains
PSPACE-complete for bipartite graphs when k ≥ 4, for planar graphs when
4 ≤ k ≤ 6 and for planar bipartite graphs for k = 4 [7].

The algorithmic question of whether Rk(G) is connected for a given G is
addressed in [10, 11], where it is shown that the problem is coNP-complete for
k = 3 and bipartite G, but polynomial-time solvable for planar bipartite G.

Finally, the study of the diameter ofRk(G) raises interesting questions. In [12]
it is shown that every component of R3(G) has diameter polynomial (in fact
quadratic) in the size of G. On the other hand, for k ≥ 4, explicit construc-
tions [7] are given of graphs G for which Rk(G) has at least one component with
diameter exponential in the size of G. It is known that if G is a (k−2)-degenerate
graph then Rk(G) is connected and it is conjectured that in this case Rk(G) has
diameter polynomial in the size of G [10]; for graphs of treewidth k − 2 the
conjecture has been proved in the affirmative [2].

4

1.4 Definitions and Terminology

Here are some definitions needed throughout the paper. Let G = (V,E) be a
graph on n vertices and m edges. For any two colourings c and d, we say that
c and d agree on a vertex u if c(u) = d(u) and that otherwise they disagree on
u. A (c0→c`)-recolouring of G of length ` is a sequence R = c0, . . . , c` of proper
colourings of G, where, for 1 ≤ q ≤ `, cq and cq−1 disagree on at most one vertex.
So possibly cq = cq−1 though in this case cq could be deleted and the sequence
that remained would also be an (c0→c`)-recolouring (of length ` − 1). The set
{cq−1cq : cq−1 6= cq} is a set of edges in the reconfiguration graph corresponding
to a walk from c0 to c`. An edge of the reconfiguration graph corresponds to the
recolouring of a single vertex, and we say that it is possible to recolour a vertex
v, with respect to a colouring c, if there is a colour other than c(v) that does not
appear on any neighbour of v.

2 A Polynomial-Time Algorithm for k = 3

We consider 3-Colouring Reconfiguration. Throughout this section G =
(V,E) is a 3-colourable graph with n vertices and m edges, α and β are two of
its 3-colourings, and ` is a positive integer. We will prove Theorem 1 by showing
that we can decide in time O(n + m) whether there is a path in R3(G) from α
to β of length at most `. Cereceda et al. [12] provided a partial solution to 3-
Colouring Reconfiguration. They introduced a polynomial-time algorithm
that determines whether or not α and β belong to the same component of R3(G),
and, when they are connected, finds a path between them of length O(n2). They
noted that in some, but not all, cases the path found by their algorithm is
shortest possible. Our approach here extends the techniques they introduced.

We describe the section in outline. We will introduce two features of 3-
coloured graphs: fixed vertices and height functions. The fixed vertices of a 3-
colouring c are those that have the same colour in every colouring in the same
connected component of the reconfiguration graph as c; for example, three ver-
tices that induce K3 will always be fixed. Given a sequence of colourings that
form a path in the reconfiguration graph, we assume that every vertex has height
zero with respect to the first colouring and then raise or lower each vertex that is
recoloured as we move along the sequence; this is illustrated in Figure 1. These
concepts are defined carefully in the following subsections. In Lemmas 1 and 5,
we will prove necessary conditions for α and β to belong to the same component
of the reconfiguration graph, and, in Lemmas 2 and 6 show that these conditions
can be checked in time O(n + m). We will then show that these conditions are
sufficient by describing an algorithm that finds a path between α and β when-
ever the conditions are satisfied. Furthermore, in Lemma 11, we will give a lower
bound on the length of the shortest path from α to β and we will show that
the path found by our algorithm achieves that bound. Finally, in Lemma 12, we
show that the lower bound can be computed in time O(n + m), and so this is
sufficient time to decide whether or not there is a path from α to β of length at
most `, proving Theorem 1.

5

2.1 Fixed Vertices

Let G = (V,E) be a graph and let c be a 3-colouring of G with colours 1, 2,
and 3. As in [12, Claim 8], we define a vertex v to be a fixed vertex of G (with
respect to c) if there is no sequence of recolourings from c that will allow us to
recolour v, i.e. for every 3-colouring c′ that is in the same component of R3(G) as
c, we have c(v) = c′(v). For example, if a cycle with 0 mod 3 vertices is coloured
123123 · · · 123 by c, then every vertex on the cycle is fixed (as none can be the
first to be recoloured): we call such a cycle a fixed cycle (as a subgraph of G, and
with respect to the 3-colouring c). The set of fixed vertices of G with respect to
c is denoted FG,c and F iG,c ⊆ FG,c denotes the set of fixed vertices coloured i.

The next lemma follows immediately from the definition of fixed vertices, but
we state it formally so that we can refer to it later.

Lemma 1. Let G be a graph and let α and β be two 3-colourings of G. If α and
β belong to the same component of R3(G), then F iG,α = F iG,β for i = 1, 2, 3.

Lemma 2. Let G = (V,E) be a graph and let c be a 3-colouring of G. The set
of fixed vertices FG,c can be found in time O(n+m).

Proof. We present an algorithm to find FG,c.
Let S be set initially to be V . The algorithm will delete vertices from S

and we will claim that when the algorithm terminates it is equal to FG,c. For
i = 1, 2, 3, for each v ∈ V , let ni(v) be −1 if c(v) = i or otherwise the number
of neighbours of v in G[S] coloured i. Mark each vertex v, for which ni(v) = 0
for some i, as waiting. This initialization can be done in time O(n+m).

The algorithm repeatedly chooses a waiting vertex v (at which point it is
processed and no longer waiting). Then v is deleted from S, and so, for each of
its neighbours w, ni(w) is decremented by 1, where i = c(v). If ni(w) = 0, and
w is not processed, it is marked as waiting. The algorithm terminates when no
vertex is waiting. Within all the executions of this loop, each edge is considered
at most twice so again time O(n+m) suffices.

Consider S when the algorithm terminates. Each vertex v in S has not been
processed and so ni(v) 6= 0 for each i = 1, 2, 3. Thus, for this terminal S, every
vertex in G[S] has at least one neighbour of each of the two colours distinct from
c(v). This implies that these vertices are fixed since none can be recoloured until
at least one of the others has been recoloured.

For each vertex v that is deleted from S, let d(v) be a colour i such that
ni(v) = 0 when v is deleted. Note that this implies d(v) 6= c(v) since nc(v)(v) =
−1.

To complete the proof, we show that a vertex u that has been deleted from
S can be recoloured. Consider the vertices in the order of their deletion from S
up to and including u: for each vertex v with d(v) − c(v) ≡ d(u) − c(u) mod 3,
recolour v with d(v). Thus u is ultimately recoloured and we need only show
that when a vertex v is recoloured with d(v) each neighbour w with c(w) = d(v)
has already been recoloured and each neighbour with d(w) = d(v) has not been
recoloured. Without loss of generality, suppose that c(v) = 1 and that d(v) = 2.

6

Using the definition of d(v) twice, any neighbour w of v with c(w) = 2 must
have been deleted from S before v, and d(w) must be 3. So w will be recoloured
from 2 to 3 before v is recoloured from 1 to 2 since d(v) − c(v) ≡ d(w) − c(w).
If a neighbour w of v has d(w) = 2, then c(w) = 3 (else c(v) = c(w)) and so w
will not be recoloured as d(v)− c(v) 6≡ d(w)− c(w) mod 3. ut

2.2 Vertex Heights

In this subsection we define the height of a vertex with respect to a 3-colouring
and prove some properties of this function. The notion of height is similar to that
in [12]. Before heights, we have weights. Let G be a graph and c a 3-colouring
of G. The weight of an edge oriented from u to v is a value w(c,−→uv) ∈ {−1, 1}
such that w(c,−→uv) ≡ c(v)−c(u) mod 3. That is, we think of the colours cyclically:
the weight of the edge reflects whether the colour is being increased or decreased
mod3 as the oriented edge is traversed. Note that we always have w(c,−→uv) =
−w(c,−→vu).

To orient a path P or cycle C of G is to orient each edge so that a directed

path
−→
P or cycle

−→
C is obtained. The weight of an oriented path w(c,

−→
P) or an

oriented cycle w(c,
−→
C) is the sum of the weights of its edges. The following lemma

is from [10, 11].

Lemma 3. Let G be a graph and let c and d be two 3-colourings of G. If c
and d belong to the same component of R3(G), then, for every cycle C of G,

w(c,
−→
C) = w(d,

−→
C).

Let u be a given vertex of a connected graph G = (V,E) and α a given

3-colouring of G. Let T be a spanning tree of G. For any vertex v ∈ V , let
−−→
Puv

be the (unique) oriented path from u to v in T . For any 3-colouring c of G, the
relative height of c, v (with respect to α and u) is hα,u(c, v), where

hα,u(c, v) = w(c,
−−→
Puv)− w(α,

−−→
Puv).

The next result says that the particular choice of u in the definition above is not
too important, although it will play a role later.

Lemma 4. Let u, u′ be two given vertices of a connected graph G = (V,E) and
let α, β be two given 3-colourings of G. There exists a constant D such that for
every v ∈ V , we have

hα,u(β, v) = hα,u′(β, v) +D.

Proof. We have for all v ∈ V that

hα,u(β, v)− hα,u′(β, v) = w(β,
−−→
Puv)− w(α,

−−→
Puv)− w(β,

−−→
Pu′v) + w(α,

−−→
Pu′v)

= w(β,
−−→
Puu′)− w(α,

−−→
Puu′) = D.

7

(Possibly u, u′ and v are not distinct and some of the paths have weight 0.) The

second equality follows because when evaluating w(·,
−−→
Puv) − w(·,

−−→
Pu′v), we are

summing the weights of edges in a walk on T which consists of
−−→
Puv concatenated

with
−−→
Pvu′ and after cancellation of edges traversed in opposite directions, we are

left with
−−→
Puu′ . ut

The next lemma shows how relative heights change when the vertex in the
second argument changes.

Lemma 5. Let G = (V,E) be a connected graph and let α and c be two 3-
colourings of G. If α and c belong to the same component of R3(G), then, for
each vw ∈ E,

hα,u(c, v)− hα,u(c, w) + w(c,−→vw) = w(α,−→vw). (1)

Proof. If vw ∈ T , the lemma follows from the definition of relative height. Oth-

erwise let x be the vertex farthest from u that lies on both
−−→
Puv and

−−→
Puw. So, for

any colouring,

w(·,
−−→
Pxv) = w(·,

−−→
Puv)− w(·,

−−→
Pux), (2)

w(·,
−−→
Pxw) = w(·,

−−→
Puw)− w(·,

−−→
Pux). (3)

(We note that only v and w are known to be distinct and u and x can, possibly,
be equal to each other and to v or w, and so some of the path weights can be

zero.) Notice that
−−→
Pxv,

−→vw and
←−−
Pxw form an oriented cycle so, from Lemma 3,

we have

w(α,
−−→
Pxv) + w(α,−→vw)− w(α,

−−→
Pxw) = w(c,

−−→
Pxv) + w(c,−→vw)− w(c,

−−→
Pxw),

and substituting (2) and (3) (with · = α, c), and cancelling terms we obtain

w(α,
−−→
Puv) + w(α,−→vw)− w(α,

−−→
Puw) = w(c,

−−→
Puv) + w(c,−→vw)− w(c,

−−→
Puw).

Rearranging and applying the definition of relative height shows that (1) holds.
ut

Next we show we can compute relative heights efficiently.

Lemma 6. Let G be connected a graph, let α be a given 3-colouring of G and
let u be a given vertex of G. For any 3-colouring β of G it is possible to find
hα,u(β, v) for every vertex v of G in time O(n).

Proof. From the definition of relative height, we need only find the weight of
each oriented path from u to v in T for both α and β. This can be done with
two breadth-first searches on T in time O(n). ut

8

2.3 Recolouring: Changing the Height of a Vertex

In order to understand the role of vertex heights in finding shortest paths between
colourings, we investigate how the heights of vertices change along the colourings
in a recolouring sequence. Let G be a connected graph, let α and β be two 3-
colourings of G and let R = c0, c1, . . . , c` be an (α→β)-recolouring. For a given
vertex u of G, we call HR

u (ci, v) the absolute height of vertex v (with respect to
u,R, ci) and define it as follows:

– HR
u (c0, u) = 0;

– For i > 0,

HR
u (ci, u) =

HR
u (ci−1, u), if ci(u) = ci−1(u);

HR
u (ci−1, u) + 2, if ci(u) ≡ ci−1(u)− 1 mod 3;

HR
u (ci−1, u)− 2, if ci(u) ≡ ci−1(u) + 1 mod 3;

– For i ≥ 0, HR
u (ci, v) = HR

u (ci, u) + hα,u(ci, v).

Let us elaborate on this a little and see how heights change along the recolouring
sequence. We define the height of u to be initially zero. If its colour is increased
(decreased), then the height is decreased (increased) by 2. We use an example
to explain the motivation of the definition. If the colour of u is increased from 1
to 2, then all the neighbours of u are coloured 3. When u is coloured 1, all the
edges from its neighbours (oriented towards u) have weight +1; in some sense,
u is sitting above all its neighbours. When u is coloured 2, all the edges from
its neighbours have weight −1, and we think of u as being below them. So the
increase in colour corresponds to a reduction in height. Similarly if the colour
decreases, the height is raised.

The next lemma tells us that as other vertices are recoloured their heights
change in the same way as u. (It also tells us that the heights of vertices do not
depend on the choice of u or of the spanning tree T .)

Lemma 7. Let G = (V,E) be a connected graph, let α and β be two 3-colourings
of G, let R = c0, . . . , c` be an (α→β)-recolouring and let u be a given vertex of
G. For each v ∈ V , HR

u (c0, v) = 0. For i > 0, for each v ∈ V :

HR
u (ci, v)−HR

u (ci−1, v) =

0, if ci(v) = ci−1(v);
2, if ci(v) ≡ ci−1(v)− 1 mod 3;
−2, if ci(v) ≡ ci−1(v) + 1 mod 3.

Proof. We prove the lemma by induction on the number of vertices. To ease
notation, define Di(v) = HR

u (ci, v)−HR
u (ci−1, v).

Recall that we define hα,u and hence HR
u by first fixing a spanning tree T ,

and for every vertex v ∈ V , we define
−−→
Puv to be the directed path in T from u

to v. Let v1, . . . , vn be a breadth-first ordering of the vertices of T with v1 = u.
From the definition of HR

u , we see that for all i, Di(v) satisfies the conclusion
of the lemma when v = v1 = u. Assume that Di(v) satisfies the conclusion of

9

the lemma for all i and all v ∈ {v1, . . . , vk−1}. Observe that if vk∗ is the ancestor
of vk in T (so k∗ < k) then for all i, we have

HR
u (ci, vk) = HR

u (ci, u) + hα,u(ci, vk)

= HR
u (ci, u) + hα,u(ci, vk∗) + w(ci,

−−−→vk∗vk)− w(α,−−−→vk∗vk)

= HR
u (ci, vk∗) + w(ci,

−−−→vk∗vk)− w(α,−−−→vk∗vk),

and hence

Di(vk) = Di(vk∗) + [w(ci,
−−−→vk∗vk)− w(ci−1,

−−−→vk∗vk)] . (4)

Now let us check that for each i, Di(vk) satisfies the conclusion of the lemma
given that for all i, Di(vk∗) satisfies the conclusion of the lemma.

Suppose ci−1(vk∗) = ci(vk∗) and ci−1(vk) = ci(vk). Then both terms on the
RHS of (4) are zero, and so Di(vk) = 0 as required.

Suppose ci−1(vk∗) 6= ci(vk∗) (and hence ci−1(vk) = ci(vk)). Then both terms
on the RHS of (4) are non-zero, but they cancel and so Di(vk) = 0 as required.
(For example, if the colour of vk∗ increases by 1 (say from 2 to 3) then Di(vk∗) =
−2 by induction, and we must have ci−1(vk) = ci(vk) = 1, from which we get that
w(ci,

−−−→vk∗vk)− w(ci−1,
−−−→vk∗vk) = 2 as required. All other cases follow similarly.)

Finally suppose ci−1(vk) 6= ci(vk) (and hence ci−1(vk∗) = ci(vk∗)). Then,
by induction, Di(vk∗) = 0, and w(ci,

−−−→vk∗vk) − w(ci−1,
−−−→vk∗vk) takes exactly the

value required. (For example, if the colour of vk decreases by 1 (say from 3
to 2) then we must have ci−1(vk∗) = ci(vk∗) = 1, from which we get that
w(ci,

−−−→vk∗vk)− w(ci−1,
−−−→vk∗vk) = 2 as required. All other cases follow similarly.)

ut

In summary: for an (α→β)-recolouring R, we have defined an absolute height
function HR

u such that the height of each vertex is initially zero and changes by
+2 or −2 whenever its colour is, respectively, decreased or increased mod3. An
illustration is given in Figure 1.

2.4 Total Heights

In this subsection we obtain a lower bound on the length of an (α→β)-recolouring
in terms of vertex heights. We also see that the value of the lower bound can
be found in time O(n + m), and in the next subsection we will show that a
(α→β)-recolouring that achieves the bound can be found.

Let G be a connected graph, let α and β be two 3-colourings of G and let
R = c0, . . . , c` be an (α→β)-recolouring. For a given vertex u of G, the total
height of R (with respect to u) is given by

Tu(R) =
∑
v∈V
|HR

u (β, v)| =
∑
v∈V

∣∣HR
u (β, u) + hα,u(β, v)

∣∣
Lemma 8. Let G = (V,E) be a connected graph with given vertex u and let α
and β be two 3-colourings of G. Let R be a (α→β)-recolouring of length `. Then
` ≥ 1

2Tu(R).

10

u
graph G with a spanning tree T
oriented away from u highlighted

height
0

2

4

-2

2 1 3 1 2 1 3 3-colouring α = c0

height
0

2

4

-2

2 1

2

1 2 1 3 3-colouring c1

height
0

2

4

-2

2

3 2

1 2 1 3 3-colouring c2

height
0

2

4

-2

2

3 2 3

2 1 3 3-colouring c3

height
0

2

4

-2

2

3 2 3

2 1

1

3-colouring c4

height
0

2

4

-2

2

3 2 3

2

3

1

3-colouring c5

height
0

2

4

-2

2

3

1

3

2

3

1

3-colouring c6 = β

Fig. 1. A sequence α = c0, . . . , c6 = β of 3-colourings of a graph G that form a path
in R3(G) and the absolute heights of the vertices, and an example choice of u and T
that can be used to calculate the heights. Note that the heights are independent of the
choice of u and T .

11

Proof. We know that for all v ∈ V ,HR
u (α, v) = 0 by Lemma 7. For each colouring

in R, the absolute height of only one vertex differs from the previous colouring
in R and the height difference is 2, again by Lemma 7. Thus, each vertex v
must change colour at least |HR

u (β, v)|/2 times in R and so the total number of
colourings in R must be at least Tu(R)/2. ut

Lemma 9. Let G = (V,E) be a connected graph with a given vertex u and let
α and β be two 3-colourings of G. For any (α→β)-recolouring R = c0, . . . , c`,
for each vertex v in V , and for each i,

2(α(v)− ci(v)) ≡ HR
u (ci, v) mod 6. (5)

Proof. We use induction on i. If i = 0, the LHS of (5) is zero since c0 = α and
the RHS of (5) is zero by Lemma 7.

Assume (5) holds for ci−1 by induction. Then in order to show (5) holds for
ci, it is sufficient to show

2(ci−1(v)− ci(v)) ≡ HR
u (ci, v)−HR

u (ci−1, v) mod 6.

This holds by Lemma 7. ut

Let G be a connected graph with two 3-colourings α and β. We define a
function which gives a lower bound on the length of any (α→β)-recolouring.

A focal vertex u∗ = u∗(β) of β is defined as follows. If G has any fixed vertex
with respect to β then take u∗ to be an arbitrary fixed vertex. Otherwise, pick
any vertex u and order the vertices of G according to their heights hα,u(β, v):
the order is the same irrespective of the choice of u by Lemma 4. Choose u∗ to
be a median vertex in this order.

Now define

J(k) = Jα,β(k) =
∑
v∈V
|k + hα,u∗(β, v)|.

Comparing with the definition of Tu∗(R), we observe that if k is the height
of u∗ when β is reached by a (α → β)-recolouring R, (i.e. k = HR

u∗(β, u
∗)),

then Tu∗(R) = J(k). Thus we could find a lower bound on the length of the
shortest (α → β)-recolouring if we could find the k that minimises J(k) for
k ≡ 2(α(u∗)− β(u∗)) mod 6 (this latter condition is required by Lemma 9).

The next (non-graph-theoretic) proposition shows how to solve such optimi-
sation problems in general.

Proposition 1. Suppose we have a sequence of integers x1, . . . , xn. Let xmed

be a median value in the sequence and assume xmed = 0. For each k ∈ Z, let
Q(k) := |k + x1|+ · · ·+ |k + xn|.

Let C ⊆ Z and let c+ ≥ 0 (resp. c− ≤ 0) be the smallest non-negative (resp.
largest non-positive) element in C. Then

min
k∈C

Q(k) = min{Q(c+), Q(c−)}.

12

Proof. Suppose k > c+ ≥ 0 and observe that k + xmed > 0 is a median value
in the sequence sk = k + x1, . . . , k + xn, and so this sequence contains at least
as many positive values as non-positive values. Let p (resp. n) be the number of
positive (resp. non-positive) values in sk. Then

Q(k − 1) = Q(k)− p+ n ≤ Q(k).

Iterating this argument we see that Q(c+) ≤ Q(k). An exactly analogous argu-
ment shows that if k < c− then Q(c−) ≤ Q(k), proving the lemma. ut

In order to apply this proposition, let us define Cα,β to be the set of in-
tegers congruent to 2(α(u∗) − β(u∗)) modulo 6 and let k1, k2 be the smallest
non-negative and largest non-positive integers in Cα,β (thus we have (k1, k2) ∈
{(0, 0), (2,−4), (4,−2)}).

Lemma 10. Let G be a connected graph, let α and β be two 3-colourings of G
and let u∗ be a focal vertex of β. Suppose that u∗ is not fixed (with respect to β)
and let k ∈ Cα,β. Then J(k) ≥ min{J(k1), J(k2)}.

Proof. Simply note that the sequence of numbers hα,u∗(β, v) (which has median
hα,u∗(β, u

∗) = 0) satisfies the premise of Proposition 1 with Q = J , C = CR,
c+ = k1, and c− = k2. ut

Lemma 11. Let G = (V,E) be a connected graph, let α and β be two 3-
colourings of G and let u∗ be a focal vertex of β. For any (α→β)-recolouring R
of length `, ` ≥ 1

2 min{J(k1), J(k2)}.

Proof. Let k = HR
u∗(β, u

∗). Using Lemma 8 and the definitions of heights and
J , we have

` ≥ 1

2
Tu∗(R)

=
1

2

(∑
v∈V
|HR

u∗(β, u
∗) + hα,u∗(β, v)|

)

=
1

2

(∑
v∈V
|k + hα,u∗(β, v)|

)

=
1

2
J(k).

If u∗ is not fixed, the lemma follows from Lemma 10. If u∗ is fixed, then k =
HR
u∗(β, u

∗) = 0 (by Lemma 7 and recalling that the colour of u∗ can never
change). Thus J(k) = J(0) = J(k1) = J(k2) and we are done. ut

Lemma 12. Let G be a connected graph, let α and β be two 3-colourings of
G and let u∗ be a focal vertex of β. The value of 1

2 min{J(k1), J(k2)} can be
computed in time O(n).

Proof. All that is needed is to find the relative heights hα,u∗(β, v) for each vertex
v, which, as we noted in the proof of Lemma 6, can be done in time O(n). ut

13

2.5 A Recolouring Algorithm

In this subsection, we present an algorithm to find an (α→β)-recolouring R.
First we show that we can focus on heights rather than colours. That is, if

we find a colouring that achieves certain values for the vertex heights, we will
know the colours of the vertices.

Lemma 13. Let G = (V,E) be a connected graph with given vertex u and let α
and β be two 3-colourings of G. Let k ≡ 2(α(u)− β(u)) mod 6 be an integer. If
R = c0, . . . , c` is a recolouring such that for all v ∈ V , HR

u (c`, v) = k+hα,u(β, v),
then c` = β.

Proof. All congruences are mod6. We prove the lemma by induction on the
number of vertices. Let T be the spanning tree used to define h, and let {v1, . . . , vn}
be a breadth-first ordering of T with v1 := u.

First we consider u. As hα,u(β, u) = 0 (by the definition of relative height),
we have HR

u (c`, u) = k and so HR
u (c`, u) ≡ 2(α(u)− β(u)). Using Lemma 9, we

find

2(α(u)− c`(u)) ≡ 2(α(u)− β(u)).

which implies c`(u) = β(u).
Now assume that c`(v) = β(v) for all v ∈ {v1, . . . , vk−1} and let vk∗ be

the ancestor of vk in T (so k∗ < k). By the premise of the lemma, we have
HR
u (c`, vk) = k + hα,u(β, vk). Also,

HR
u (c`, vk) = HR

u (c`, u) + hα,u(c`, vk) = k + hα,u(c`, vk)

where the first equality is by definition of H and the second was noted above.
Combining, we have hα,u(β, vk) = hα,u(c`, vk). Noting that

hα,u(·, vk) = hα,u(·, vk∗) + w(·,−−−→vk∗vk)− w(α,−−−→vk∗vk),

we deduce

hα,u(β, vk∗) + w(β,−−−→vk∗vk) = hα,u(c`, vk∗) + w(c`,
−−−→vk∗vk).

But since β and c` are identical on v1, . . . , vk∗ , then hα,u(β, vk∗) = hα,u(c`, vk∗)
which together with the above implies that w(β,−−−→vk∗vk) = w(c`,

−−−→vk∗vk). Since
β(vk∗) = c`(vk∗), we have β(vk) = c`(vk) as required. ut

Lemma 14. Let G = (V,E) be a connected graph, let α and β be two 3-
colourings of G and let u∗ be a focal vertex of β. If u∗ is fixed with respect
to β, let k = 0; otherwise, let k ≡ 2(β(u∗)− α(u∗)) mod 6 be an integer. If

(A1) F iG,α = F iG,β for i = 1, 2, 3,

(A2) for each vw ∈ E, hα,u∗(β, v)− hα,u∗(β,w) + w(β,−→vw) = w(α,−→vw).

then there exists an (α→β)-recolouring R of length ` such that ` = 1
2J(k).

14

Proof. We will define R by describing how to recolour from α to a colouring c
such that, for all v, HR

u∗(c, v) = k + hα,u∗(β, v). Then, by Lemma 13, c = β as
required. Let t(v) denote k + hα,u∗(β, v). This is the target height of v. When
every vertex has reached its target, we are done. Note that J(k) =

∑
v∈V |t(v)|.

In order to construct an (α→β)-recolouring of length ` = 1
2J(k), it is suffi-

cient to ensure that at each given stage, if v is the vertex that changes colour,
then this change reduces the difference between the current absolute height of
v and t(v) by 2 (recall that by Lemma 7 the absolute height of v changes by 2
while all other absolute heights remain the same).

More definitions: for a vertex v in G and colouring c, a rising path from
v is a path on vertices v = v0, v1, . . . vt such that, for 1 ≤ i ≤ t, c(vi) ≡
c(vi−1) + 1 mod 3. If vt has no neighbours coloured c(vt) + 1 mod 3 then the
path is maximal (and in this case we can recolour vt to c(vt) + 1 if we wish).
A falling path from v is the same except that the colours decrease rather than
increase moving along the path from v. (That is, the colours along a rising path
are, for example, 231231231231 · · · , and along a falling path are, for example,
321321321321 · · ·)

It might not always be possible to find a maximal rising (or falling) path
from a vertex v, but the following claim will be enough for us.

Claim 1. Let R be an (α→c)-recolouring of G and let v be a vertex of G. If
t(v)−HR

u∗(c, v) < 0, then there is a maximal rising path P from v, and, for every
vertex w on P ,

t(w)−HR
u∗(c, w) ≤ t(v)−HR

u∗(c, v) < 0. (6)

If t(v) − HR
u∗(c, v) > 0, then there is maximal falling path Q from v, and, for

every vertex w on Q,

t(w)−HR
u∗(c, w) ≥ t(v)−HR

u∗(c, v) > 0.

We will prove the first statement of Claim 1 (the second can be proved in a
similar way) by finding a maximal rising path. To do this, we start with the
trivial rising path on the single vertex v, and show that we can always extend
the path or that it is maximal. So suppose that we have found a rising path
w0w1 · · ·wq where w0 = v and each wi, 0 ≤ i ≤ q, satisfies (6).

If wq has no neighbour coloured c(wq) + 1, the path is maximal and we are
done.

Suppose that wr, r < q, is a neighbour of wq and is coloured c(wq) + 1. Then
wr, wr+1, . . . , wq are fixed vertices (since the graph they induce is a fixed cycle
coloured · · · 123123 · · ·). But the absolute height of a fixed vertex is always 0 so
t(wq) = HR

u∗(c, wq) = 0 contradicting (6).

The remaining possibility is that wq has a neighbour wq+1 coloured c(wq)+1
that is not already part of the rising path. If we can show that (6) is satisfied
with w = wq+1, then we can extend the rising path to include wq+1. We have,

15

using definitions of heights and Lemma 5,

HR
u∗(c, wq+1) = HR

u∗(c, u
∗) + hα,u∗(c, wq+1)

= HR
u∗(c, u

∗) + hα,u∗(c, wq) + w(c,−−−−−→wqwq+1)− w(α,−−−−−→wqwq+1)

= HR
u∗(c, wq) + w(c,−−−−−→wqwq+1)− w(α,−−−−−→wqwq+1).

And using (A2), we find

t(wq+1) = k + hα,u∗(β,wq+1)

= k + hα,u∗(β,wq) + w(β,−−−−−→wqwq+1)− w(α,−−−−−→wqwq+1)

= t(wq) + w(β,−−−−−→wqwq+1)− w(α,−−−−−→wqwq+1).

Subtracting

t(wq+1)−HR
u∗(c, wq+1) = t(wq)−HR

u∗(c, wq) + w(β,−−−−−→wqwq+1)− w(c,−−−−−→wqwq+1)

Noting that w(c,−−−−−→wqwq+1) = 1 ≥ w(β,−−−−−→wqwq+1), we have

t(wq+1)−HR
u∗(c, wq+1) ≤ t(wq)−HR

u∗(c, wq),

and Claim 1 is proved.

We now inductively describe how to obtain an (α→β)-recolouring of G of length
` = 1

2J(k). Suppose we have a partial recolouring R from α to c. Recall that it
is sufficient for us to specify which vertex should be recoloured (to give a new
proper colouring) and to show that this change reduces the difference between
the current height and the target height of v (while keeping all other heights
unchanged).

1. Find a vertex x for which |t(x)−HR
u∗(c, x)| is maximum.

2. If t(x)−HR
u∗(c, x) < 0, find a maximal rising path from x. Else find a maximal

falling path from x. In either case, let v be the end-vertex of the path.
3. Change the colour of v so that |t(v)−HR

u∗(c, v)| is reduced by 2.

Consider the case where t(x)−HR
u∗(c, x) < 0 (the other case is analagous). Then,

by Claim 1, t(v) −HR
u∗(c, v) < 0. By Lemma 7, we can decrease HR

u∗(c, v) by 2
(while keeping the absolute heights of all other vertices unchanged) by increasing
the colour of v and this reduces |t(x) − HR

u∗(c, x)| by 2. As v is at the end of
a maximal rising path this increase in colour results in a proper colouring, as
required. ut

Proof of Theorem 1. Let G = (V,E) be a graph and let α and β be two 3-
colourings of G. Assume G is connected; otherwise consider each component
separately. By Lemmas 1 and 5, a path between α and β in R3(G) only exists if

– F iG,α = F iG,β for i = 1, 2, 3,

– for each vw ∈ E, hu(β, v)− hu(β,w) + w(β,−→vw) = w(α,−→vw).

16

and by Lemma 14 these conditions are also sufficient. By Lemmas 2 and 6, these
conditions can be tested in time O(n+m). Moreover if a path between α and β
does exist, then, by Lemma 11, it has length at least 1

2 min{J(k1), J(k2)}, and,
by Lemma 14, a path of exactly this length does exist. By Lemma 12, the value
of 1

2 min{J(k1), J(k2)} can be found in time O(n + m) and so the length of a
shortest path between α and β can be found in time O(n + m). This implies
Theorem 1. ut

It is straightforward to see that 1
2 min{J(k1), J(k2)} is O(n2), and we note

that in [12], examples of families of graphs with pairs of 3-colourings at distance
Ω(n2) were given. The purpose of the description of the algorithm in Lemma 14
was to estabish the sufficiency of the necessary conditions of Lemmas 1 and 5
and its running time is not optimised; it can easily be adapted to run in time
O(n2). The key is to note that once a vertex x for which |t(x) − HR(c, x)| is
maximum is found, then |t(v) − HR(c, v)| is maximum for every vertex on a
maximal rising path from x (if t(x)−HR(c, x) > 0, else consider falling paths)
and each of these vertices must be recoloured in turn.

3 An FPT Algorithm for k-Colouring Reconfiguration

In this section we will present our FPT algorithm for k-Colouring Reconfig-
uration when parameterized by `. Let G = (V,E) be a graph on n vertices, and
let α, β be two proper k-colourings of G. First we prove three lemmas concern-
ing the vertices that might be recoloured if a path between α and β of length
at most ` does exist. That is, we assume that (G,α, β, `) is a yes-instance of
k-Colouring Reconfiguration. This means that there exists an (α→β)-
recolouring R = c0, . . . , c` with c0 = α and c` = β. We assume that R has
minimum length.

We say that R recolours a vertex u if cq(u) 6= α(u) for some q. Notice that
if for each recoloured vertex u we find the least q such that cq(u) 6= α(u), these
values must be distinct (else cq and cq−1 disagree on more than one vertex).
Thus the number of distinct vertices recoloured by R is at most `. We will prove
something stronger. For 0 ≤ q ≤ `, let Wq be the set of vertices on which c0
and cq disagree, that is, Wq = {u ∈ V : c0(u) 6= cq(u)}.

Lemma 15. For all q with 1 ≤ q ≤ `, the set Wq has size |Wq| ≤ q.

Proof. Suppose this is false and let r be the smallest value such that |Wr| > r. So
|Wr−1| ≤ r−1 (clearly r−1 ≥ 0 as W0 is the empty set). Then there are (at least)
two vertices v1, v2 in Wr\Wr−1, and so, for i ∈ {1, 2}, cr−1(vi) = c0(vi) 6= cr(vi),
and cr and cr−1 disagree on more than one vertex; a contradiction. ut

For any u ∈ V , let N(u) be the set of neighbours of u. For any v ∈ N(u), let
N(u, v) = {w ∈ N(u) : α(w) = α(v)}; that is, the set of neighbours of u with the
same colour as v in α. Let A0 = {v ∈ V : α(v) 6= β(v)} be the set of vertices on
which α and β disagree. For i ≥ 1, let Ai =

⋃
u∈Ai−1

{v ∈ N(u) : |N(u, v)| ≤ `}.

17

That is, to find Ai consider each vertex u in Ai−1 and partition N(u) into colour
classes (according to the colouring α). Vertices in N(u) that belong to colour
classes of size at most ` belong to Ai. Note that two sets Ah and Ai need not be
disjoint.

Intuitively, vertices that are recoloured by R will not be expected to be of
distance larger than ` from vertices in A0. Moreover, if we need to recolour
the neighbour v of a certain vertex u then we also need to recolour the other
neighbours of u that belong to the same colour class as v. Hence such neighbour
sets are bounded by ` as well. Our first goal is to formally prove these claims,
that is, we show that each vertex recoloured by R must be in A∗ =

⋃`−1
h=0Ah.

We will then show that the size of A∗ is bounded by a function of k+`. This will
enable us to use brute-force to find R or some other (α→β)-recolouring of G (if
it exists).

Lemma 16. Each vertex recoloured by R belongs to A∗.

Proof. Let L0 = A0 and, for i ≥ 1, let Li = Ai \ (
⋃
h<iAh) be the set of vertices

that are in Ai but not in any Ah with h < i. Note that the sets Li are mutually
disjoint. Let z be the greatest value such that R recolours a vertex in Lz; denote
this vertex by vz. As c0 6= c`, we find that z ≥ 1. By the definition of A0, every
vertex in A0 is recoloured by R. Let v0 ∈ A0. We claim that also for 1 ≤ i ≤ z−1,
there is a vertex vi ∈ Li that is recoloured by R. Note that, as the sets Li are
mutually disjoint, the vertices v0, . . . , vz are z + 1 distinct vertices. Then, as
v0, . . . , vz are distinct vertices and R has length `, we have z ≤ `−1 proving the
lemma. For contradiction, assume there is a set Li (1 ≤ i ≤ z− 1) that contains
no vertex recoloured by R.

From R we construct a new recolouring sequence R′ by ignoring every re-
colouring step done to a vertex in V \

⋃
h<i Lh = V \ (L0 ∪ · · · ∪ Lh−1). For

0 ≤ q ≤ `, let dq be a colouring of G such that

– if u ∈
⋃
h<i Lh, dq(u) = cq(u);

– if u /∈
⋃
h<i Lh, dq(u) = α(u).

Let R′ be the sequence d0, . . . , d`. Note that d0 = α, as d0(u) is either c0(u) or
α(u), and c0 = α. Moreover, if u ∈

⋃
h<i Lh =

⋃
h<iAi then d`(u) = c`(u) =

β(u), and if u /∈
⋃
h<i Lh then d`(u) = α(u) = β(u) (since α and β only disagree

on vertices in A0); thus d` = β. This means that if we can show that d1, . . . , d`−1
are proper colourings, then R′ is an (α→β)-recolouring. We will prove this first.

Assume to the contrary that R′ contains a colouring dq that is not proper.
Then there is an edge uv with dq(u) = dq(v). If u and v both belong to

⋃
h<i Lh

then cq(u) = cq(v), and if neither belong to
⋃
h<i Lh then α(u) = α(v). Both

cases are not possible, as cq and α are proper colourings. Hence we may assume,
without loss of generality, that u ∈

⋃
h<i Lh and v /∈

⋃
h<i Lh. Then cq(u) =

dq(u) = dq(v) = α(v) by the definition of dq.
As v ∈ N(u), the set N(u, v) exists. First suppose |N(u, v)| ≤ `. Then v ∈ Ai

by the definition of Ai. Hence v ∈ Lh for some h ≤ i. As v /∈
⋃
h<i Lh, we obtain

v ∈ Li. By assumption, no vertex of Li is recoloured by R. Hence cq(v) = α(v)
and thus cq(u) = cq(v) contradicting the fact that cq is a proper k-colouring.

18

Now suppose |N(u, v)| > `. Because cq(u) = α(v) and cq is proper, we find
that cq(w) 6= cq(u) = α(v) = α(w) for all w ∈ N(u, v). Thus Wq ⊇ N(u, v) and
so |Wq| ≥ |N(u, v)| > ` ≥ q contradicting the fact that |W (q)| ≤ q by Lemma 15.
So, dq must be proper. We conclude that R′ is an (α→β)-recolouring of length `.

We now proceed as follows. Recall that vz ∈ Lz. Then there is a pair of
colourings cq and cq+1 that differ only on vz. Because vz ∈ Lz, vz /∈

⋃
h<i Lh.

Hence, dq and dq+1 are identical colourings. We remove dq from R′ to obtain an-
other (α→β)-recolouring, which has length shorter than `, contradicting that R
has minimum length. This completes the proof. ut

We now show that |A∗| is bounded by a function that depends only on k and `.

Lemma 17. The set A∗ has size |A∗| ≤ ` · (k`)`.

Proof. Recall that A0 is the set of vertices on which α and β disagree. Hence,
all vertices of A0 need to be recoloured by R. Thus we have |A0| ≤ `. Now
let i be such that 1 ≤ i ≤ ` − 1. Recall that the set Ai is defined as Ai =⋃
u∈Ai−1

{v ∈ N(u) : |N(u, v)| ≤ `}. By this recursive definition, each vertex of
Ai is a neighbour of a vertex of Ai−1, and each vertex of Ai−1 has at most k · `
neighbours in Ai. Consequently |Ai| ≤ |Ai−1| · k · `, for all 1 ≤ i ≤ `− 1. Hence,

|A∗| =
∑`−1
i=0 |Ai| ≤

∑`−1
i=0 ` · (k · `)i ≤ ` ·

(k·`)`−1
k·`−1 ≤ ` · (k · `)

`. ut

We are now ready to present our FPT algorithm and prove Theorem 2.

Proof of Theorem 2. Let k ≥ 1, and let (G,α, β, `) be an instance of k-Colouring
Reconfiguration, where G is a graph on n vertices, and α, β are two proper
k-colourings of G. Our algorithm does as follows. First compute the set A∗ in
O(n2) time. By Lemma 17, we find that |A∗| ≤ ` · (k`)`. By Lemma 16, we
only have to search for a path of length at most ` in Rk(G) among the ver-
tices of A∗. By allowing consecutive recolourings to be equal we may restrict
our search to (α→β)-recolourings of length exactly `. Use brute force to enu-
merate all possible sequences of pairs (vi, ci), such that for all 0 ≤ i ≤ ` − 1,
vi is a vertex in A∗ and ci is a colour in {1, . . . , k}. For each such sequence
do as follows. Starting from α, recolour vi with colour ci for i = 0, . . . , ` − 1.
As soon as this results in a k-colouring that is not proper, stop considering the
sequence. If not, check whether the resulting colouring is equal to β. If this hap-
pens, then there is a path of length ` in Rk(G). Hence, return yes. Otherwise,
that is, if no sequence has this property, return no. Processing one sequence
takes time O(`n2). By using Lemma 17, the number of sequences is at most

(|A∗| · k)` ≤ ((` · (k · `)`) · k)` ≤ (k · `)`2+`, leading to a total running time of

O((k · `)`2+` · `n2). This completes the proof. ut

4 A Lower Bound for Kernelization for k ≥ 4

This section provides a proof for Theorem 3, i.e., that k-Colouring Recon-
figuration, for k ≥ 4, does not admit a polynomial kernelization in terms of `,

19

unless NP ⊆ coNP/poly (it is known that the latter would imply a collapse of the
polynomial hierarchy). To prove the result we give a so-called polynomial param-
eter transformation from a problem that, assuming NP * coNP/poly, is known
not to admit a polynomial kernelization and also no polynomial compression.6 A
polynomial parameter transformation, short PPT, is a standard Karp reduction
with the additional property that the parameter value of the returned instance
is polynomially bounded in the parameter of the input instance. It is well known
and easy to see that a PPT from a source problem without polynomial com-
pression implies that the target problem admits no polynomial compression and
hence also no polynomial kernelization (cf. [1]).

As our source problem we use Hitting Set. This problem takes as input
a finite set U , a set F ⊆ 2U and an integer p, and asks whether there exists
a hitting set S ⊆ U of size at most p, that is, a set S with |S| ≤ p such that
every F ∈ F contains at least one element of S. The Hitting Set problem can
also be formulated as the Red-Blue Dominating Set problem, which takes
a bipartite graph with partition classes R and B and an integer k, and asks
whether there exists a set D ⊆ R of size at most k such that every vertex of
B has at least one neighbour in D. Dom, Lokshtanov, and Saurabh [13] showed
that the Red-Blue Dominating Set problem, parameterized by k+ |B|, does
not admit a polynomial kernelization (unless NP ⊆ coNP/poly). As k ≤ |B| holds
for any non-trivial instance, the same result holds with parameter |B| instead
of k + |B|. Since the result for Red-Blue Dominating Set makes use of the
standard framework of giving or/and-compositions, it is known to also rule out
polynomial compressions (cf. [1]).

Lemma 18 ([13]). The Hitting Set problem parameterized by |F| does not
admit a polynomial compression unless NP ⊆ coNP/poly.

We are now ready to prove Theorem 3. The main idea for the reduction is to
create a 4-coloured tree that serves as a selection gadget for each set, which
requires a recolouring at its root. This in turn requires a chain of earlier re-
colourings starting in one of the leaves; the selection of possible leaves encodes
the elements of the set. Finally, recolouring any leaf requires a recolouring in
a set of vertices corresponding to the ground set; this encodes the selection of
a hitting set. Crucially, the height of the tree construction, which factors into
the number ` of needed recolourings, can be bounded polynomially in the input
parameter m = |F|.

Proof of Theorem 3. By Lemma 18 it suffices to show that there is a poly-
nomial parameter transformation from Hitting Set parameterized by |F| to
k-Colouring Reconfiguration parameterized by `.

Let (U,F , p) be an instance of Hitting Set. Let m = |F|. We give a
polynomial-time construction of an equivalent instance (G,α, β, `) of the k-
Colouring Reconfiguration problem, where ` is polynomially bounded inm.

6 A (polynomial) compression is a relaxed form of (polynomial) kernelization: The
output may be with respect to any (possibly unparameterized) problem.

20

Note that p < m or else the instance (U,F , p,m) is trivially yes and our trans-
formation is trivial.

Construction. We begin with a standard argument for bounding the size of U :
If any two elements of U occur exactly in the same sets of F then we will never
need both for a minimum hitting set and can safely discard either one of them.
Thus, without loss of generality, we may assume that no two such elements
exist, which implies that |U | ≤ 2|F| = 2m. Thus, our final parameter value `
may depend polynomially on log |U | = O(m). For convenience let n = |U | and
let U = {1, . . . , n}.

The graph G will consist of four components:

1. Two adjacent vertices s, t with α(s) = β(t) = 2 and α(t) = β(s) = 3. These
are the only two vertices with different colours in α and β.

2. A clique of k vertices u1, . . . , uk with colours α(ui) = β(ui) = i that will be
used to control permissible colours for all other vertices.

3. An independent set of vertices v1, . . . , vn, one for each element of U , each
with colour α(vi) = β(vi) = 4 that will be used to simulate selection of a
hitting set of size at most p.

4. One selection gadget for each set F ∈ F that simulates a selection of one
element of the hitting set to hit F . These will be described later as they are
somewhat more involved.

Clearly, since each vertex of the clique is adjacent to all other colours but its
own, it is impossible to recolour any vertex ui and obtain a proper k-colouring.
Thus, we can use adjacency to parts of the clique to forbid certain colours from
being used for other vertices. Generally, all other vertices are made adjacent to
all of u5, . . . , uk, effectively reducing the setting to the case that k = 4. (Mainly
this ensures that our reduction works for all values k ≥ 4.) Additionally, all
vertices v1, . . . , vn are made adjacent to u2 and u3, which in total allows only
colours 1 and 4 to be used for the independent set.

Finally, we restrict vertex s to colours 2 and 3 and vertex t to colours 2, 3,
and 4. Note that if only 2 and 3 were possible for both s and t, then it would be
impossible to recolour even just the graph on s and t. Using the additional option
of colour 4 for t the following sequence works: (1) recolour t to 4, (2) recolour s
to 3, and (3) recolour t to 2. The hitting set question will be encoded in a part
of the graph that requires recolouring in order not to obstruct colouring t with
colour 4 (and will be reverted once t is coloured 2).

We will now describe the construction of the selection gadgets. The basic
building block is a claw on vertices a†, b†, c†, d† with c† the center vertex (adjacent
to a†, b†, d†) and with the following α and β colours and forbidden colours:

1. For a† we have α(a†) = β(a†) = 2, and, using adjacency to the k-clique, only
colours 2 and 4 allow proper k-colourings.

2. Similarly, for b† we have α(b†) = β(b†) = 3, and only colours 3 and 4 are
possible.

3. For the center vertex c† we have α(c†) = β(c†) = 1, and only colours 1, 2,
and 3 are possible.

21

4. For vertex d† we have α(d†) = β(d†) = 4, and only colours 1 and 4 are
possible.

The idea is that connecting such claws in a tree-like fashion gives the desired
selection gadget. For the basic functionality that is to recolour d† with 1 it
is necessary to first recolour c† to either 2 or 3. This in turn first requires a
recolouring of (accordingly) either a† to 4 or b† to 4. Now if both a† and b† are
adjacent to, say, d‡ and d‡′ of further such claws then the same argumentation
continues since we again would need to recolour first d‡ from 4 to 1 or d‡′ from 4
to 1.

Now, let us describe the tree-like arrangement in more detail. For conve-
nience, let us assume that n = 2r for some integer r, which we can achieve
by adding at most n − 1 dummy elements to U that never occur in any set
(thereby at most doubling n). We make copies of the claw construction that we
just explained, for all values of

† ∈ {(F, x, y) | F ∈ F , x ∈ {0, . . . , r − 1}, y ∈ {1, . . . , 2x}}.

We connect these claws as follows (see Figure 2):

1. Each vertex dF,0,1 is made adjacent to the vertex t.
2. Each vertex dF,x,y, with x ∈ {1, . . . , r−1} is made adjacent to aF,x−1,(y+1)/2

if y is odd, and to bF,x−1,y/2 if y is even.
3. Each vertex aF,r−1,y is made adjacent to vertex v2y−1 of the independent

set.
4. Each vertex bF,r−1,y is made adjacent to vertex v2y.

The idea is that to recolour dF,0,1 to 1 it is ultimately necessary to first recolour
some vertex vj in the independent set from 4 to 1. This in turn allows to recolour
the adjacent aF,·,· or bF,·,· vertex to 4 and then propagate possible recolourings
towards dF,0,1.

Note that so far we have made no distinction between trees made for differ-
ent sets F ∈ F ; we now make the following modifications to vertices aF,r−1,y
and bF,r−1,y: If j ∈ U is not contained in F then we do not want that a recolour-
ing of vj in the independent set allows a recolouring in the tree for F . Thus, we
use adjacency to the k-clique to forbid the adjacent a- or b-vertex from taking
colour 4 (which is exactly the one recolouring option that would have been possi-
ble by recolouring vj). Formally, if j is odd then we make aF,r−1,(j+1)/2 adjacent
to vertex u4 of the k-clique (forbidding colour 4 for aF,r−1,(j+1)/2), and if j is
even then we make bF,r−1,j/2 adjacent to u4.

This completes the construction of the graph G. We have already specified
colours under α and β for all vertices, and we recall that only s and t have
different colours with respect to α and β. The necessary recolouring of t to 4,
however, will cause a substantial number of recolourings and, along the way,
capture the selection of a hitting set for F . We define the maximum number `
of recolouring steps as

` = 3 + 2p+ 2m · 3 log n.

22

{2, 3}
s

{2,3, 4}
t

{1,4}
dF,0,1

{1, 2, 3}
cF,0,1

{3, 4}
bF,0,1

{2, 4}
aF,0,1

{1,4}
dF,1,1

{1, 2, 3}
cF,1,1

{3, 4}
bF,1,1

{2, 4}
aF,1,1

{1,4}
dF,1,2

{1, 2, 3}
cF,1,2

{3, 4}
bF,1,2

{2}
aF,1,2

{1,4}
dF ′,0,1

{1, 2, 3}
cF ′,0,1

{3, 4}
bF ′,0,1

{2, 4}
aF ′,0,1

{1,4}
dF ′,1,1

{1, 2, 3}
cF ′,1,1

{3, 4}
bF ′,1,1

{2}
aF ′,1,1

{1,4}
dF ′,1,2

{1, 2, 3}
cF ′,1,2

{3, 4}
bF ′,1,2

{2, 4}
aF ′,1,2

{1,4}
v1

{1,4}
v2

{1,4}
v3

{1,4}
v4

Fig. 2. A small example of the lower bound construction for (U,F , p) and k = 4
when U = {1, 2, 3, 4} and F = {F, F ′} with F = {1, 2, 4} and F ′ = {2, 3, 4}. For ease
of presentation the clique on vertices u1, . . . , u4 is not shown; instead sets in the nodes
state the allowed colours, where the boldface number is the initial (alpha) colour and
the underlined number is the target (beta) colour.

23

Intuitively, this value is intended as follows: (1) p recolourings for the vertices in
the independent set that correspond to a p-hitting set, (2) m · 3 log n recolour-
ings to propagate the selected hitting set up to all vertices dF,0,1 (giving them
colour 1), (3) three recolourings for s and t, namely t→ 4, s→ 3, and t→ 2 (4)
m·3 log n recolourings to undo the hitting set propagation, and (5) p recolourings
to undo the selection of the hitting set. We return (G,α, β, `) as the output of
our transformation. Since p < m and log n = O(m), we have that ` is polynomi-
ally bounded in m, in fact ` = O(m2), as claimed. Clearly, our transformation
can be performed in polynomial time. It remains to prove correctness.

Completeness. Assume that the initial instance (U,F ,m, p) of Hitting Set(m)
is yes and let S be a hitting set of size at most p for F . We outline a recolouring
procedure following exactly the stated intuition for the budget `. (All steps are
strictly serial but we do not insist on an ordering if it is immaterial.):

1. Recolour all vj from 4 to 1 for all j ∈ S. The only neighbours are a- or b-
vertices that have colours 2 or 3. This uses at most p steps.

2. For each F ∈ F , recolour bottom-up the vertices in the tree-like claw struc-
ture, beginning with some a- or b-vertex whose adjacent independent set
vertex has been recoloured from 4 to 1. Since S is a hitting set for F , such
a vertex can always be found.
(a) Recolour the a (or b) vertex from 2 (or 3) to 4; there is no conflict with

the c-vertex since that has colour 1, same as the adjacent independent
set vertex.

(b) Recolour the c-vertex from 1 to either 2 or 3; only one choice is possible
depending on whether we previously recoloured the a or the b-vertex.

(c) Recolour the d-vertex from 4 to 1; there is no conflict with the c-vertex
of (now) colour 2 or 3.

At this point the argument can be repeated since the recolouring of, say, dF,x,y
with x ≥ 1, to 1 permits a recolouring of aF,x−1,(y+1)/2 or bF,x−1,y/2 to 4 de-
pending on the parity of y. Ultimately, we end up with dF,0,1 getting colour 1
(which does not conflict with t being colour 3).
Over all sets F this uses m · 3 log n steps since the tree arrangement has
height r = log n and we recolour three vertices in each claw.

3. We then recolour t to 4, s to 3, and t to 2. This costs three steps and fulfills
the requirement of β for both vertices. Clearly there are no conflicts.

4. We then trace back the recolourings in each tree structure, using m · 3 log n
steps, followed by undoing the recolourings on vertices vj corresponding to
the hitting set S, using at most p steps. This meets the requirement β for
all vertices other than s and t. (Note that dF,0,1 changing back from 1 to 4
makes no conflicts with t which now has colour 2.)

Overall we obtain a recolouring sequence of length at most `, as claimed. Thus
(G,α, β, `) is indeed yes for k-Colouring Reconfiguration.

Soundness. Let us assume that the obtained instance (G,α, β, `) is yes for k-
Colouring Reconfiguration and let α = γ0, . . . , γ` = β be a sequence of
proper recolourings. (We can repeat the last colouring in case that less than `

24

colouring steps are needed.) We begin with some basic arguments about the
behaviour of γ0, . . . , γ`.

If t would never receive colour 4 in any γi then it can be easily seen that
the sequence must be infeasible: Indeed, this would restrict s to colours 2 and 3,
and t to colours 2 and 3. This makes it impossible to, effectively, swap the colours
of s and t since they are adjacent. Thus, let z ∈ {1, . . . , `} be the smallest integer
such that γz(t) = 4. Clearly, since β(t) = 2 and α(s) = 2 6= 3 = β(s) at least 3
recolouring steps address vertices s and t, leaving at most 2p + 2m · 3 log n for
the remaining vertices.

Since α(dF,0,1) = 4 for all F ∈ F it follows that each dF,0,1 must be recoloured
to a colour other than 4 before step z (in which t for the first time is coloured 4),
and recall that the adjacency to the k-clique forbids all colours other than 1
and 4. As discussed earlier, this propagates the need for earlier recolourings
through each tree-like arrangement of claws. Ultimately, for each F ∈ F at least
one a- or one b-vertex with index (F, r − 1, ·) must be recoloured before step z,
along with a total 3 log n vertices in that tree. Since all these vertices need to be
reverted to their original colours later, this leaves only a budget of at most 2p
for the independent set vertices.

In the independent set, there are forced recolourings from 4 to 1 for all vj
that have adjacent recoloured a- or b-vertices with index (·, r − 1, ·). Since all
these must return to colour 4 in γ` = β latest, at most p of these vertices can
ever be recoloured. Let S ⊆ U denote the elements of U that correspond to these
vertices. We will prove that S is a hitting set for F ; clearly |S| ≤ p.

Fix any set F ∈ F . We already argued that a recolouring of dF,0,1 from 4
to 1 ultimately requires a prior recolouring of some a- or b-vertex with in-
dex (F, r− 1, ·). Recall, however, that we disallowed such recolourings whenever
the corresponding element j ∈ U is not contained in F . (Here, correspond-
ing refers to our construction where aF,r−1,y is adjacent to v2y−1 and bF,r−1,y
is adjacent to v2y.) Thus, we must have recoloured an a- or b-vertex with in-
dex (F, r−1, y) such that the corresponding element j ∈ {2y−1, 2y} is contained
in F . This in turn, as discussed earlier, requires a prior recolouring of vj which
implies that j ∈ S. Thus, S indeed has a nonempty intersection with F , implying
that S is a hitting set for F , as claimed. ut

5 Conclusions

We showed that k-Colouring Reconfiguration is fixed-parameter tractable
for any fixed k ≥ 1, when parameterized by the number of recolourings `. It
is a natural question to ask whether a single-exponential FPT algorithm can
be achieved for this problem. We also proved that the k-Colouring Recon-
figuration problem is polynomial-time solvable for k = 3, which solves the
open problem of Cereceda et al. [12], and that it has no polynomial kernel for
all k ≥ 4, when parameterized by ` (up to the standard complexity assumption
that NP * coNP/poly).

25

We mention a very recent result of Wrochna [27] on graph homomorphisms.
A graph homomorphism from a graph G to a graph H is a vertex mapping
f : V (G) → V (H) such that for every edge uv ∈ E(G), f(u)f(v) ∈ E(H).
This can also be called an H-colouring of G, and the problem H-Colouring
asks whether a graph G has an H-colouring (for some fixed graph H). Note
that a graph G has a k-colouring for some integer k if and only if G has a Kk-
colouring. The H-Colouring Reconfiguration problem is that of asking
whether, for some given integer `, there is a path of length at most ` between
two homomorphisms f and g from G to H in the H-colouring reconfiguration
graph of G. Wrochna [27] proved that H-Colouring Reconfiguration is
polynomial-time solvable for certain H including H = K3 which is equivalent to
3-colouring.

Acknowledgements. We are grateful to several reviewers for insightful comments
that greatly improved our presentation.

References

1. H. L. Bodlaender, B.M.P. Jansen and S. Kratsch, Kernelization lower bounds by
cross-composition, SIAM Journal on Discrete Mathematics 28 (2014) 277–305.

2. M. Bonamy and N. Bousquet, Recoloring bounded treewidth graphs, Electronic
Notes in Discrete Mathematics 44 (2013) 257–262.

3. M. Bonamy, M. Johnson, I.M. Lignos, V. Patel and D. Paulusma, Reconfiguration
graphs for vertex colourings of chordal and chordal bipartite graphs, Journal of
Combinatorial Optimization 27 (2014) 132–143.

4. P. Bonsma, The complexity of rerouting shortest paths, In B. Rovan, V. Sassone,
P. Widmayer (eds.) Mathematical Foundations of Computer Science (MFCS 2012).
Lecture Notes in Computer Science, vol. 7464, pp. 222–233. Springer Berlin Hei-
delberg (2012).

5. P. Bonsma, Independent set reconfiguration in cographs, In D. Kratsch, I. Tod-
inca (eds.) Graph-Theoretic Concepts in Computer Science (WG 2014). Lecture
Notes in Computer Science, vol. 8747, 2014, pp 105–116. Springer Berlin Heidelberg
(2014).

6. P. Bonsma, Rerouting shortest paths in planar graphs, In D. D’Souza, T. Kavitha,
J. Radhakrishnan (eds.) IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2012). LIPIcs, vol. 18,
pp. 337–349. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2012).

7. P. Bonsma and L. Cereceda, Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances, Theoretical Computer Science 410
(2009) 5215–5226.

8. P. Bonsma, A. E. Mouawad, N. Nishimura and V. Raman, The complexity of
bounded length graph recoloring and CSP reconfiguration. In M. Cygan, P. Heg-
gernes (eds.) Parameterized and Exact Computation (IPEC 2014). Lecture Notes
in Computer Science, vol. 8894, 2014, pp 110–121. Springer Berlin Heidelberg
(2014).

9. P. Bonsma, M. Kamiński, M. Wrochna, Reconfiguring independent sets in claw-free
graphs, In 14th Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT 2014), Lecture Notes in Computer Science, vol. 8503, pp. 86–97. Springer
Berlin Heidelberg (2014).

26

10. L. Cereceda, J. van den Heuvel and M. Johnson, Connectedness of the graph of
vertex-colourings, Discrete Mathematics 308 (2008) 913–919.

11. L. Cereceda, J. van den Heuvel and M. Johnson, Mixing 3-colourings in bipartite
graphs, European Journal of Combinatorics 30 (2009) 1593–1606.

12. L. Cereceda, J. van den Heuvel and M. Johnson, Finding paths between 3-
colourings, Journal of Graph Theory 67 (2010) 69–82.

13. Michael Dom, Daniel Lokshtanov, and Saket Saurabh, Incompressibility through
colors and ids, Proc. ICALP 2009, Lecture Notes in Computer Science 5555 (2009)
378–389.

14. P. Gopalan, P. G. Kolaitis, E. N. Maneva and C. H. Papadimitriou, The connec-
tivity of boolean satisfiability: computational and structural dichotomies, SIAM
Journal on Computing 38 (2009) 2330–2355.

15. J. van den Heuvel, The complexity of change, Surveys in Combinatorics 2013,
London Mathematical Society Lecture Notes Series 409.

16. T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara
and Y. Uno, On the complexity of reconfiguration problems, Theoretical Computer
Science 412 (2010) 1054–1065.

17. T. Ito, M. Kamiński and E. D. Demaine, Reconfiguration of list edge-colorings
in a graph, Proc. WADS 2009, Lecture Notes in Computer Science 5664 (2009)
375–386.

18. T. Ito, K. Kawamura, H. Ono, X. Zhou, Reconfiguration of list L(2, 1)-labelings in
a graph, In K-M. Chao, T-S. Hsu, D-T. Lee (eds.) Algorithms and Computation
(ISAAC 2012). Lecture Notes in Computer Science, vol. 7676, pp. 34–43. Springer
Berlin Heidelberg (2012).

19. T. Ito, K Kawamura, X. Zhou, An improved sufficient condition for reconfigu-
ration of list edge-colorings in a tree, In M. Ogihara, J. Tarui (eds.) Theory and
Applications of Models of Computation (TAMC 2011). Lecture Notes in Computer
Science, vol. 6648, pp. 94–105. Springer Berlin Heidelberg (2011).

20. T. Ito, E. D. Demaine, Approximability of the subset sum reconfiguration problem,
In M. Ogihara, J. Tarui (eds.) Theory and Applications of Models of Computation
(TAMC 2011). Lecture Notes in Computer Science, vol. 6648, pp. 58–69. Springer
Berlin Heidelberg (2011).

21. M. Kamiński, P. Medvedev and M. Milanič, Complexity of independent set recon-
figurability problems, Theoretical Computer Science 439 (2012) 9–15.

22. M. Kamiński, P. Medvedev and M. Milanič, Shortest paths between shortest paths,
Theoretical Computer Science 412 (2011) 5205–5210.

23. L. Lovász, Coverings and coloring of hypergraphs, Proc. 4th Southeastern Con-
ference on Combinatorics, Graph Theory, and Computing, Utilitas Math. (1973)
3–12.

24. A. E. Mouawad, N. Nishimura and V. Raman, Vertex cover reconfiguration and
beyond, In H.-K. Ahn, C.-S. Shin (eds.) Algorithms and Computation (ISAAC
2014). Lecture Notes in Computer Science, vol. 8889, pp. 452–463. Springer Berlin
Heidelberg (2014).

25. A. E. Mouawad, N. Nishimura, V. Raman, N. Simjour, A. Suzuki, On the pa-
rameterized complexity of reconfiguration problems, In G. Gutin, S. Szeider (eds.)
Parameterized and Exact Computation (IPEC 2013). Lecture Notes in Computer
Science, vol. 8246, pp. 281–294. Springer Berlin Heidelberg (2013).

26. R. Niedermeier, Invitation to fixed-parameter algorithms, vol. 31 of Oxford Lecture
Series in Mathematics and its Applications, Oxford University Press, Oxford, 2006.

27

27. M. Wrochna, Homomorphism reconfiguration via homotopy, In E.W. Mayr, N.
Ollinger (eds.) 32nd International Symposium on Theoretical Aspects of Computer
Science (STACS 2015). LIPIcs, vol. 30, pp. 730–742. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik (2015).

28

