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Abstract

In the Boundary Labeling problem, we are given a set of n points, referred to as sites,
inside an axis-parallel rectangle R, and a set of n pairwise disjoint rectangular labels that are
attached toR from the outside. The task is to connect the sites to the labels by non-intersecting
rectilinear paths, so-called leaders, with at most one bend.

In this paper, we study the Multi-Sided Boundary Labeling problem, with labels lying on
at least two sides of the enclosing rectangle. We present a polynomial-time algorithm that
computes a crossing-free leader layout if one exists. So far, such an algorithm has only been
known for the cases in which labels lie on one side or on two opposite sides of R (here a
crossing-free solution always exists). The case where labels may lie on adjacent sides is more
difficult. We present efficient algorithms for testing the existence of a crossing-free leader
layout that labels all sites and also for maximizing the number of labeled sites in a crossing-
free leader layout. For two-sided boundary labeling with adjacent sides, we further show how
to minimize the total leader length in a crossing-free layout.

1 Introduction

Label placement is an important problem in cartography and, more generally, information visu-
alization. Features such as points, lines, and regions in maps, diagrams, and technical drawings
often have to be labeled so that users understand better what they see. Even very restricted versions
of the label-placement problem are NP-hard [22], which explains why labeling a map manually is
a tedious task that has been estimated to take 50% of total map production time [19]. The ACM
Computational Geometry Impact Task Force report [9] identified label placement as an important
research area. The point-labeling problem in particular has received considerable attention, from
practitioners and theoreticians alike. The latter have proposed approximation algorithms for var-
ious objectives (label number versus label size), label shapes (such as axis-parallel rectangles or
disks), and label-placement models (so-called fixed-position models versus slider models).
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Fig. 1: Labeling of kindergartens in Karlsruhe, Germany. The pictures show different types of
leaders with labels on adjacent sides of the map. For better readability, we have simplified the
label texts.

The traditional label-placement models for point labeling require that a label is placed such
that a point on its boundary coincides with the point to be labeled, the site. This can make it
impossible to label all sites with labels of sufficient size if some sites are very close together. For
this reason, Freeman et al. [11] and Zoraster [23] advocated the use of leaders, (usually short)
line segments that connect sites to labels. In order to ensure that the background image or map
remains visible even in the presence of large labels, Bekos et al. [6] took a more radical approach.
They introduced models and algorithms for boundary labeling, where all labels are placed beyond
the boundary of the map and are connected to the sites by straight-line or rectilinear leaders (see
Fig. 1).

Problem statement. Following Bekos et al. [6] we define the BOUNDARY LABELING prob-
lem as follows. We are given an axis-parallel rectangle R = [0,W ] × [0, H], which is called
the enclosing rectangle, a set P ⊂ R of n points p1, . . . , pn, called sites, within the rectangle R,
and a set L of m ≤ n axis-parallel rectangles `1, . . . , `m of equal size, called labels. The labels
lie in the complement of R and touch the boundary of R. No two labels overlap. We denote an
instance of the problem by the triplet (R,L, P ). A solution of a problem instance is a set of m
curves c1, . . . , cm in the interior of R, called leaders, that connect sites to labels such that the
leaders a) induce a matching between the labels and (a subset of) the sites, b) touch the associ-
ated labels on the boundary of R. Following previous work, we do not define labels as the text
associated with the sites, but as the empty rectangles into which that text will be placed (during a
post-processing step). This approach is justified by our assumption that all label rectangles have
the same size.

A solution is planar if the leaders do not intersect. We call an instance solvable if a planar
solution exists. Note that we do not prescribe which site connects to which label. The endpoint
of a curve at a label is called a port. We distinguish two versions of the BOUNDARY LABELING
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Fig. 2: Length-minimal solutions may have crossings. By increasing ∆ we can make the ratio
between the length-minimal matching and the length-minimal crossing-free matching arbitrarily
small.

problem: either the position of the ports on the boundary of R is fixed and part of the input, or the
ports slide, i.e., their exact location is not prescribed.

We restrict our solutions to po-leaders, that is, starting at a site, the first line segment of a
leader is parallel (p) to the side of R touching the label it leads to, and the second line segment
is orthogonal (o) to that side; see Fig. 1c. (Fig. 1b shows a labeling with so-called opo-leaders,
which were investigated by Bekos et al. [6]). Bekos et al. [5, Fig. 16] observed that not every
instance admits a planar solution with po-leaders in which all sites are labeled (even if m = n).

Previous and related work. For po-labeling, Bekos et al. [6] gave a simple quadratic-time al-
gorithm for the one-sided case that, in a first pass, produces a labeling of minimum total leader
length by matching sites and ports from bottom to top. In a second pass, their algorithm removes
all intersections without increasing the total leader length. This result was improved by Benkert et
al. [7] who gave an O(n log n)-time algorithm for the same objective function and an O(n3)-time
algorithm for a very general class of objective functions, including, for example, bend minimiza-
tion. They extend the latter result to the two-sided case (with labels on opposite sides of R),
resulting in an O(n8)-time algorithm. For the special case of leader-length minimization, Bekos
et al. [6] gave a simple dynamic program running in O(n2) time. All these algorithms work both
for fixed and sliding ports.

Leaders that contain a diagonal part have been studied by Benkert et al. [7] and by Bekos et
al. [4]. Recently, Nöllenburg et al. [20] have investigated a dynamic scenario for the one-sided
case, Gemsa et al. [12] have used multi-layer boundary labeling to label panorama images, and
Fink et al. [10] have boundary labeled focus regions, for example, in interactive on-line maps. Lin
et al. [18] consider boundary labeling where more than one site may be labeled by the same label.
Lin [17] and Bekos et al. [3] study hyperleaders that connect each label to a set of sites.

At its core, the boundary labeling problem asks for a non-intersecting perfect (or maximum)
matching on a bipartite graph. Note that an instance may have a planar solution, although all of
its leader-length minimal matchings have crossings. In fact, the ratio between a length-minimal
solution and a length-minimal crossing-free matching can be arbitrarily bad; see Fig. 2. When
connecting points and sites with straight-line segments, the minimum Euclidean matching is nec-
essarily crossing-free. For this case an O(n2+ε)-time O(n1+ε)-space algorithm exists [1].

Boundary labeling can also be seen as a graph-drawing problem where the class of graphs to
be drawn is restricted to matchings. The restriction concerning the positions of the graph vertices
(that is, sites and ports) has been studied for less restricted graph classes under the name point-
set embeddability (PSE), usually following the straight-line drawing convention for edges [13].
For polygonal edges, Bastert and Fekete [2] proved that PSE with minimum number of bends or
minimum total edge length is NP-hard, even when the graph is a matching. For minimizing the
total edge length and the same graph class, Liebling et al. [16] introduced heuristics and Chan et
al. [8] presented approximation algorithms. Chan et al. also considered paths and general planar
graphs. PSE has also been combined with the ortho-geodesic drawing convention [15], which gen-
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eralizes po-labeling by allowing edges to have more than one bend. The case where the mapping
between ports and sites is given has been studied in VLSI layout [21].

Our contribution. In the first part of the paper, we investigate the problem TWO-SIDED BOUND-
ARY LABELING WITH ADJACENT SIDES where all labels lie on two adjacent sides of R, without
loss of generality, on the top and right side. Note that point data often comes in a coordinate sys-
tem; then it is natural to have labels on adjacent sides (for example, opposite the coordinate axes).
We argue that this problem is more difficult than the case where labels lie on opposite sides, which
has been studied before: with labels on opposite sides, (a) there is always a solution where all sites
are labeled (if m = n) and (b) a feasible solution can be obtained by considering two instances of
the one-sided case.

We present an algorithm that, given an instance with n labels with fixed ports and n sites,
decides whether a planar solution exists where all sites are labeled and, if yes, computes a layout
of the leaders (see Section 3). Our algorithm uses dynamic programming to “guess” a partition of
the sites into the two sets that are connected to the leaders on the top side and on the right side.
The algorithm runs in O(n2) time and uses O(n) space.

We study several extensions of our main result (see Section 4). First, we show that our ap-
proach for fixed ports can also be made to work for sliding ports. Second, we optimally solve the
label-number maximization problem (in O(n3 log n) time using O(n) space). This is interesting
if the position of the sites and labels does not allow for a perfect matching or if there are more sites
than labels. Finally, we present a modification of our algorithm that minimizes the leader length
(in O(n8 log n) time and O(n6) space).

In the second part of the paper, we investigate the problems THREE-SIDED BOUNDARY LA-
BELING and FOUR-SIDED BOUNDARY LABELING where the labels may lie on three or even
all four sides of R, respectively. To that end we generalize the concept of partitioning the sites
labeled by leaders of different sides. In this way we obtain subinstances that we can solve us-
ing the algorithm for the two-sided case. We obtain an algorithm solving the four-sided case in
O(n9) time andO(n) space and an algorithm solving the three-sided case inO(n4) time andO(n)
space. Except for the leader-length minimization, all extensions presented previously extend to the
three- and four-sided case, of course with a corresponding impact on the running time and space
requirements.

Notation. We call the labels that lie on the right (left/top/bottom) side ofR right (left/top/bottom)
labels. The type of a label refers to the side of R on which it is located. The type of a leader (or
a site) is simply the type of its label. We assume that no two sites lie on the same horizontal or
vertical line, and no site lies on a horizontal or vertical line through a port or an edge of a label.

For a solution L of a boundary labeling problem, we define several measures that will be
used to compare different solutions. We denote the total length of all leaders in L by length(L).
Moreover, we denote by |L|x the total length of all horizontal segments of leaders that connect a
left or right label to a site. Similarly, we denote by |L|y the total length of the vertical segments of
leaders that connect top or bottom labels to sites. Note that generally, |L|x + |L|y 6= length(L).

We denote the (uniquely defined) leader connecting a site p to a port t of a label ` by λ(p, t).
We denote the bend of the leader λ(p, t) by bend(p, t). In the case of fixed ports, we identify ports
with labels and simply write λ(p, `) and bend(p, `), respectively.

2 Structure of Two-Sided Planar Solutions

In this section, we tackle the two-sided boundary labeling problem with adjacent sides by present-
ing a series of structural results of increasing strength. We assume that the labels are located on
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Fig. 3: Illustration of the proof of Lemma 1. Rerouting λ(p, `) and λ(p′, `′) to λ(p, `′) and λ(p′, `)
changes leaders only on the boundary of K ′

the top and right sides of R. For simplicity, we assume that we have fixed ports. By identifying
the ports with their labels, we use L to denote the set of ports of all labels. For sliding ports, we
can simply fix all ports to the bottom-left corner of their corresponding labels. First we show that
a planar two-sided solution admits a transformation sustaining planarity such that the result of the
transformation can be split into two one-sided solutions by constructing an xy-monotone, recti-
linear curve from the top-right to the bottom-left corner of R; see Fig. 4. Afterwards, we provide
a necessary and sufficient criterion to decide whether there exists a planar solution for a given
separation. This will form the basis of our dynamic programming algorithm, which we present in
Section 3.

Lemma 1. Consider a solution L for (R,L, P ) and let P ′ ⊆ P be sites of the same type. Let L′ ⊆
L be the set of labels of the sites in P ′. Let K ⊆ R be a rectangle that contains all bends of the
leaders of P ′. If the leaders of P \ P ′ do not intersect K, then we can rematch P ′ and L′ such
that the resulting solution L′ has the following properties: (i) all intersections in K are removed,
(ii) there are no new intersections of leaders outside of K, (iii) |L′|x = |L|x, |L′|y = |L|y, and
(iv) length(L′) ≤ length(L).

Proof. Without loss of generality, we assume that P ′ contains top sites; the other cases are sym-
metric. We first prove that, no matter how we change the assignment between P ′ and L′, new
intersection points can arise only in K. This enables us to construct the required solution.

Claim 1. Let `, `′ ∈ L′ and p, p′ ∈ P ′ such that ` labels p and `′ labels p′. Changing the matching
by rerouting p to `′ and p′ to ` does not introduce new intersections outside of K.

Let K ′ ⊆ K be the rectangle spanned by bend(p, `) and bend(p′, `′). When rerouting, we
replace λ(p, `) ∪ λ(p′, `′) restricted to the boundary of K ′ by its complement with respect to the
boundary of K ′; see Fig. 3 for an example. Thus, any changes concerning the leaders occur only
in K ′. The statement of the claim follows.

Since any rerouting can be seen as a sequence of pairwise reroutings, the above claim shows
that we can rematch L′ and P ′ arbitrarily without running the risk of creating new conflicts outside
of K. To resolve the conflicts inside K, we use the length-minimization algorithm for one-sided
boundary labeling by Benkert et al. [7], with the sites and ports outside K projected onto the
boundary of K. Thus, we obtain a solution L′ satisfying properties (i)–(iv).

Definition 1. We call an xy-monotone, rectilinear curve connecting the top-right to the bottom-left
corner of R an xy-separating curve. We say that a planar solution to TWO-SIDED BOUNDARY

LABELING WITH ADJACENT SIDES is xy-separated if and only if there exists an xy-separating
curve C such that
a) the sites that are connected to the top side and all their leaders lie on or above C
b) the sites that are connected to the right side and all their leaders lie below C.

It is not hard to see that a planar solution is not xy-separated if there exists a site p that is
labeled to the right side and a site q that is labeled to the top side with x(p) < x(q) and y(p) >
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Fig. 5: A planar solution that contains any of the above four pat-
terns P1–P4 is not xy-separated.

y(q). There are exactly four patterns in a possible planar solution that satisfy this condition; see
Fig. 5. In Lemma 2, we show that these patterns are the only ones that can violate xy-separability.

Lemma 2. A planar solution is xy-separated if and only if it does not contain any of the patterns
P1–P4 in Fig. 5.

Proof. Obviously, the planar solution is not xy-separated if one of these patterns occurs. Let us
assume that none of these patterns exists. We construct an xy-monotone curve C from the top-
right corner of R to its bottom-left corner. We move to the left whenever possible, and down only
when we reach the x-coordinate of a site p that is connected to the top, or when we reach the
x-coordinate of a port of a top label, labeling a site p. If we have to move down, we move down as
far as necessary to avoid the corresponding leader, namely down to the y-coordinate of p. Finally,
when we reach the left boundary of R, we move down to the bottom-left corner of R. If C is free
of crossings, then we have found an xy-separating curve. (For an example, see curve C in Fig. 4.)

Assume for a contradiction, that a crossing arises during the construction, and consider the
topmost such crossing. Note that, by the construction of C, crossings can only occur with leaders
that connect a site p to a right port r. We distinguish two cases, based on whether the crossing
occurs on a horizontal or a vertical segment of the curve C.

If C is crossed on a vertical segment, then this segment belongs to a leader connecting a
site q to a top port t, and we have reached the x-coordinate of either the port or the site. Had
we, however, reached the x-coordinate of the port, this would imply a crossing between λ(p, r)
and λ(q, t). Thus, we have reached the x-coordinate of q. This means that p lies to the left of and
above q, and we have found one of the patterns P1 and P2; see Fig. 5.

If C is crossed on a horizontal segment, then p must lie above r. Otherwise, there would be
another crossing of C with the same leader, which is above the current one. This would contradict
the choice of the topmost crossing. Consider the previous segment of C, which is responsible
for reaching the y-coordinate of the current segment. This vertical segment belongs to a leader
connecting a site q to a top port t. Since leaders do not cross, q is to the right of p, and the crossing
on C implies that q is below p. We have found one of the patterns P3 and P4; see Fig. 5.

Observe that patterns P1 and P2 can be transformed into patterns P3 and P4, respectively, by
mirroring the instance diagonally. Next, we prove constructively that, by rerouting pairs of leaders,
any planar solution can be transformed into an xy-separated planar solution.

Proposition 1. If there exists a planar solution L to TWO-SIDED BOUNDARY LABELING WITH

ADJACENT SIDES, then there exists an xy-separated planar solution L′ with length(L′) ≤
length(L), |L′|x ≤ |L|x, and |L′|y ≤ |L|y.

Proof. Let L be a planar solution of minimum total leader length. We show that L is xy-separated.
Assume, for the sake of contradiction, that L is not xy-separated. Then, by Lemma 2, L contains
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one of the patterns P1–P4. Without loss of generality, we can assume that the pattern is of type P3
or P4. Otherwise, we mirror the instance diagonally.

Consider all patterns (p, q) in L of type P3 or P4 such that p is a right site (with port r) and q
is a top site (with port t). Among all such patterns, consider the ones where p is rightmost and
among these pick one where q is bottommost. Let A be the rectangle spanned by p and t; see
Fig. 6.. Let A′ be the rectangle spanned by bend(q, t) and p. Let B be the rectangle spanned by q
and r. Let B′ be the rectangle spanned by q and bend(p, r). Then we claim the following:

(i) Sites in the interiors of A and A′ are connected to the top.
(ii) Sites in the interiors of B and B′ are connected to the right.

Property (i) is due to the choice of p as the rightmost site involved in such a pattern. Similarly,
property (ii) is due to the choice of q as the bottommost site that forms a pattern with p. This
settles our claim.

Our goal is to change the labeling by rerouting p to t and q to r, which decreases the total
leader length, but may introduce crossings. We then use Lemma 1 to remove the crossings with-
out increasing the total leader length. Let L′′ be the labeling obtained from L by rerouting p to t
and q to r. We have |L′′|y ≤ |L|y − (y(p) − y(q)) and |L′′|x = |L|x − (x(q) − x(p)). More-
over, length(L′′) ≤ length(L)− 2(y(p)− y(q)), as at least twice the vertical distance between p
and q is saved; see Fig. 6. Since the original labeling was planar, crossings may only arise on the
horizontal segment of λ(p, t) and on the vertical segment of λ(q, r).

By properties (i) and (ii), all leaders that cross the new leader λ(p, t) have their bends insideA′,
and all leaders that cross the new leader λ(q, r) have their bends inside B′. Thus, we can apply
Lemma 1 to the rectangles A′ and B′ to resolve all new crossings. The resulting solution L′ is
planar and has length less than length(L). This is a contradiction to the choice of L.

Since every solvable instance of TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES

admits an xy-separated planar solution, it suffices to search for such a solution. Moreover, an xy-
separated planar solution that minimizes the total leader length is a solution of minimum length.
In Lemma 3 we provide a necessary and sufficient criterion to decide whether, for a given xy-
monotone curve C, there is a planar solution that is separated by C. We denote the region of R
above C by RT and the region of R below C by RR. We do not include C in either RT or RR, so
these regions are open at C.

For any point a ∈ R, we define the rectangle Ra, spanned by the top-right corner of R and a.
We define Ra such that it is closed but does not contain its top-left corner. In particular, we
consider the port of a top label as contained in Ra, only if it is not the upper left corner.

A rectangle Ra is valid if the number of sites of P above C that belong to Ra is at least as
large as the number of ports on the top side of Ra. The central idea is that the labels on the top
side of a valid rectangle Ra can be connected to the sites in Ra by leaders that are completely
contained inside that rectangle. We are now ready to present the strip condition.

Condition 1. The horizontal strip condition of the point b ∈ C is satisfied if there exists a point a ∈
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RT with y(a) = y(b) and x(a) ≤ x(b) such that Ra is valid.

Without loss of generality we may assume that the curve C is rectilinear. The condition is
named after the horizontal segments through points in C.

We now prove that, for a given xy-monotone curve C connecting the top-right corner to the
bottom-left corner of R, there exists a planar solution in RT for the top labels if and only if all
points of C satisfy the strip condition.

Lemma 3. Let C be an xy-monotone curve from the top-right corner of R to the bottom-left
corner of R. Let P ′ ⊆ P be the sites that are in RT. There is a planar solution that uses all top
labels of R to label sites in P ′ in such a way that all leaders are in RT if and only if each point
of C satisfies the strip condition.

Proof. For the proof we call a region S ⊆ R balanced if it contains the same number of sites as it
contains ports. To show that the conditions are necessary, let L be a planar solution for which all
top leaders are above C. Consider a point b ∈ C. If y(p) ≥ y(b) for all sites p ∈ P ′, rectangle Ra

with a = (0, y(b)) is clearly valid, and thus the strip condition for b is satisfied. Hence, assume
that there is a site p ∈ P ′ with y(p) < y(b) that is labeled by a top label; see Fig. 7a. Then, the
vertical segment of this leader crosses the horizontal line h through b. Let a denote the rightmost
such crossing of a leader of a site in P ′ with h. We claim that Ra is valid. To see this, observe that
all sites of P ′ top-right of a are contained in Ra. Since no leader may cross the vertical segment
defining a, the number of sites in Ra ∩RT is balanced, i.e., Ra is valid.

Conversely, we show that if the conditions are satisfied, then a corresponding planar solution
exists. For each horizontal segment of C consider the horizontal line through the segment. We
denote the part of these lines within R by h1, . . . , hl, respectively, and let h0 be the top side of R.
The line segments h1, . . . , hl partition RT into l strips, which we denote by S1, . . . , Sl from top to
bottom, such that strip Si is bounded by hi from below for i = 1, . . . , l; see Fig. 7b. Additionally,
we define S0 to be the empty strip that coincides with h0. Let Sk be the last strip that contains sites
of P ′. For i = 0, . . . , k − 1, let a′i denote the rightmost point of hi ∩ RT such that Ra′i

is valid.
Such a point exists since the leftmost point of hi ∩ C satisfies the strip condition. We define ai to
be the point on hi∩RT, whose x-coordinate is minj≤i{x(a′j)}. Note that Rai is a valid rectangle,
as, by definition, it completely contains some valid rectangle Ra′j

with x(a′j) = x(ai). Also by
definition the sequence formed by the points ai has decreasing x-coordinates, i.e., the Rai grow to
the left; see Fig. 7c.

We prove inductively that, for each i = 0, . . . , k, there is a planar labeling Li that matches
the labels on the top side of Rai to points contained in Rai , in such a way that there exists an xy-
monotone curve Ci from the top-left to the bottom-right corner of Rai that separates the labeled
sites from the unlabeled sites without intersecting any leaders. Then Lk is the required labeling.
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For i = 0, L0 = ∅ is a planar solution. Consider a strip Si with 0 < i ≤ k; see Fig. 7c.
By the induction hypothesis, we have a curve Ci−1 and a planar labeling Li−1, which matches
the labels on the top side of Rai−1 to the sites in Rai−1 above Ci−1. To extend it to a planar
solutionLi, we additionally need to match the remaining labels on the top side ofRai and construct
a corresponding curve Ci. Let Pi denote the set of unlabeled sites in Rai . By the validity of Rai ,
this number is at least as large as the number of unused ports at the top side of Rai . We arbitrarily
match these ports to the topmost sites of Pi that are not labeled in Li−1. We denote the resulting
labeling by L′i. We observe that no leader of L′i crosses the curve Ci−1, and hence such leaders
cannot cross leaders in Li−1. Let h be the topmost horizontal line such that all labeled sites of L′i
lie above h. Further, let K be the rectangle that is spanned by the top-left corner of Rai−1 and
the intersection of h with the left side of Rai . Since the ports of L′i lie on the top side of K, any
leader’s bend of L′i lies in K. We apply Lemma 1 on L′i to obtain a planar labeling L′′i , which has
no crossings with Li−1. Hence, the set Li = L′′i ∪ Li−1 is the required labeling.

It remains to construct the curve Ci. For this, we start at the top-left corner of Rai and move
down vertically, until we have passed all labeled sites. We then move right until we either hit Ci−1
or the right side of R. In the former case, we follow Ci−1 until we arrive at the right side of R.
Finally, we move down until we arrive at the bottom-right corner ofRai . Note that all labeled sites
are above Ci, unlabeled sites are below Ci, and no leader is crossed by Ci. This is true since we
first move below the new leaders and then follow the previous curve Ci−1.

A symmetric strip condition (with vertical strips) can be obtained for the right region RR of a
partitioned instance. The characterization is completely symmetric.

In the following we observe two properties of the strip condition. The first observation states
that the horizontal strip condition at (x, y) is independent of the exact shape of the curve between
the top-right corner r of R and (x, y), as long as the number of sites above the curve remains the
same. This is crucial for using dynamic programming to test the existence of a suitable curve. The
second observation states that the horizontal strip condition can only be violated when the curve
passes the x-coordinate of a top site. This enables us to discretize the problem.

Observation 1. The horizontal strip condition for a point a ∈ C depends only on the number of
sites in Ra above C, in the following sense: Let C and C ′ be two xy-monotone curves from r to a
with u sites in Ra above C and C ′, respectively. Then, a satisfies the strip condition for C if and
only if it satisfies the strip condition for C ′.

Observation 2. Let a, b ∈ C, x(a) ≤ x(b) such that there is no top site `with x(a) < x(`) ≤ x(b).
Then, a satisfies the horizontal strip condition for C if and only if b satisfies the horizontal strip
condition for C.

Symmetric statements hold for the vertical strip condition. In the following, we say that a
point (x, y) on a curve C satisfies the strip condition if it satisfies both the horizontal and the
vertical strip condition.

3 Algorithm for the Two-Sided Case

How can we find an xy-monotone curve C that satisfies the strip conditions? For that purpose we
only consider xy-monotone curves contained in some graph G that is dual to the rectangular grid
induced by the sites and ports of the given instance. Note that this is not a restriction since all
leaders are contained in the grid induced by the sites and ports. Thus, every xy-monotone curve
that does not intersect the leaders can be transformed into an equivalent xy-monotone curve that
lies on G.
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B↑(s, t)

B↓(s, t)

B→(s, t)B←(s, t)

r = (N,M)

(0, 0)

Fig. 8: The four boxes B↑(s, t), B↓(s, t), B←(s, t) and B→(s, t) defined by grid point (s, t).

When traversing an edge e of G, we pass the x- or y-coordinate of exactly one entity of our
instance; either a site (site event) or a port (port event). When passing a site, the position of the
site relative to e (above/below e or right/left of e) decides whether the site is connected to the top
or to the right side. Clearly, there is an exponential number of possible xy-monotone traversals
through the grid. In the following, we describe a dynamic program that finds an xy-separating
curve in O(n3) time.

Let mR and mT be the numbers of ports on the right and top side of R, respectively. Also, let
N = n + mT + 2 and M = n + mR + 2, then the grid G has size N ×M . We define the grid
points as G(s, t), 0 ≤ s ≤ N , 0 ≤ t ≤ M with G(0, 0) being the bottom-left and r := G(N,M)
being the top-right corner of R. Finally, let Gx(s) := x(G(s, 0)) and Gy(t) := y(G(0, t)).

For each grid point (s, t) that is neither on the topmost row nor on the rightmost column, we
define four boxes B↑(s, t), B↓(s, t), B←(s, t) and B→(s, t) as follows; see Fig. 8 for an illustra-
tion.

1. B↑(s, t) = {(x, y) ∈ R | Gx(s) ≤ x ≤ Gx(s+ 1) ∧ y ≥ Gy(t)}
2. B↓(s, t) = {(x, y) ∈ R | Gx(s) ≤ x ≤ Gx(s+ 1) ∧ y ≤ Gy(t)}
3. B←(s, t) = {(x, y) ∈ R | Gy(t) ≤ y ≤ Gy(t+ 1) ∧ x ≤ Gx(s)}
4. B→(s, t) = {(x, y) ∈ R | Gy(t) ≤ y ≤ Gy(t+ 1) ∧ x ≥ Gx(s)}

We define a table T [(s, t), u, b] that assigns to each grid position (s, t) and number of points u and b
a Boolean value. We define T [(s, t), u, b] to be true if and only if there exists an xy-monotone
curve C satisfying the following conditions.

(i) Curve C starts at r and ends at G(s, t).
(ii) Inside the rectangle spanned by r and G(s, t), there are u sites of P above C and b sites of P

below C.
(iii) For each grid point on C, the strip condition holds.

These conditions together with Proposition 1 and Lemma 3 imply that the instance admits a
planar solution if and only if T [(0, 0), u, b] = true for some u and b.

We define a Boolean function S[(s, t), u, b] that is true if and only if the strip condition at (s, t)
is satisfied for some xy-monotone curve C (and thus by Observation 1 for all such curves) from r
to G(s, t) with u sites above and b sites below C. The following lemma gives a recurrence for T ,
which is essentially a disjunction of two values, each of which is determined by distinguishing
three cases.

Lemma 4. For s = N and t = M , it holds that T [(s, t), 0, 0] = true. For s ∈ [0, N − 1] and
t ∈ [0,M − 1], it holds that
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T [(s+ 1, t), u, b] ∧ S[(s, t), u, b] L ∩B↑(s, t) 6= ∅
T [(s+ 1, t), u− 1, b] if P ∩B↑(s, t) 6= ∅
T [(s+ 1, t), u, b] P ∩B↓(s, t) 6= ∅





T [(s, t), u, b] =
∨




T [(s, t+ 1), u, b] ∧ S[(s, t), u, b] L ∩B→(s, t) 6= ∅
T [(s, t+ 1), u, b− 1] if P ∩B→(s, t) 6= ∅
T [(s, t+ 1), u, b] P ∩B←(s, t) 6= ∅



.

Proof. We show equivalence of the two terms. Let C be an xy-monotone curve from r to (s, t).
Let e be the last segment of C and let C ′ = C − e. Since C is xy-monotone, C ′ ends either
at the grid point (s + 1, t) or at (s, t + 1). Without loss of generality, we assume that C ′ ends
at (s+ 1, t). We show that T [(s, t), u, b] = true if and only if the first term of the right hand side
is true. Analogous arguments apply for C ′ ending at (s, t + 1) and the second term. Note that,
by construction, property (i) is satisfied for C and C ′.

We distinguish cases based on whether the traversal along the segment e from (s+1, t) to (s, t)
is a port event or a site event.

Case 1: Traversal of e is a port event. Since e passes a port, all sites that lie in the rectangle
spanned by r andG(s, t) also lie in the rectangle spanned by r andG(s+1, t). Thus, the numbers u
and b of such sites above and below C is the same as the numbers of sites above and below C ′,
respectively. Hence, property (ii) holds for C if and only if it holds for C ′.

Because C ′ is a subset of C, the strip condition holds for every point of C if and only if it
holds for every point of C ′ and for (s, t). Thus, property (iii) is satisfied for C if and only if it is
satisfied for C ′ and S[(s, t), u, b] = true.

Case 2: Traversal of e passes a site p. For property (iii), observe that, since the traversal of e
is a site event, the strip conditions for (s, t) and (s+ 1, t) are equivalent by Observation 2.

For property (ii), note that, except for p, the sites that lie in the rectangle spanned by r
and G(s, t) also lie in the rectangle spanned by r and G(s + 1, t). If p lies above e, there are u
sites above and b sites below C if and only if there are u − 1 sites above and b sites below C ′,
respectively. Symmetrically, if p lies below e, there are u sites above and b sites below C if and
only if there are u sites above and b − 1 sites below C ′, respectively. In either case, C satisfies
condition (ii) if and only if C ′ does.

Clearly, the recurrence from Lemma 4 can be used to compute T in polynomial time via dy-
namic programming. Note that it suffices to store u, as the number of sites below the curve C can
directly be derived from u and all sites that are contained in the rectangle spanned by r andG(s, t).
Thus, in the following we work with T [(s, t), u]. The running time crucially relies on the number
of strip conditions that need to be checked. We show that after a O(n2) preprocessing phase, such
queries can be answered in O(1) time.

To implement the test of the strip conditions, we use a table BT, which stores in BT[s, t] how
large a deficit of sites to the right can be compensated by sites above and to the left of G(s, t).
That is,BT[s, t] is the maximum value k such that there exists a rectangleKBT[s,t] with lower right
corner G(s, t) whose top side is bounded by the top side of R, and that contains k more sites in its
interior, than it has ports on its top side. Once we have computed this matrix, it is possible to query
the strip condition in the dynamic program that computes T in O(1) time as follows: Assume we
have an entry T [(s, t), u], and we wish to check its strip condition. Consider a curve C from r
to G(s, t) such that u sites are above C. The strip condition is satisfied if and only if u+BT[s, t]
is at least as large as the number of top ports to the right of G(s, t). This is true if the rectangle
spanned by the lower left corner of KBT[s,t] and r contains at least u+BT[s, t] sites, which is an
upper bound on the number of ports on the top side of that rectangle.

We now show how to compute BT in O(n2) time. We compute each row separately, starting
from the left side. We initialize BT[0, t] = 0 for t = 0, . . . ,M , since in the final column, no
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deficit can be compensated. The matrix B can be filled by a horizontal sweep. The entry BT[s, t]
can be derived from the already computed entry BT[s − 1, t]. If the step from s − 1 to s is a site
event, the amount of the deficit we can compensate increases by 1. If it is a port event the amount
of the deficit we can compensate decreases by 1. Moreover, the compensation potential never goes
below 0. We obtain

BT[s, t] =

{
BT[s− 1, t] + 1 if step is site event,
max{BT[s− 1, t]− 1, 0} if step is port event.

The table can be clearly filled out in O(n2) time. A similar matrix BR can be computed for the
vertical strips. Altogether, this yields an algorithm for TWO-SIDED BOUNDARY LABELING WITH

ADJACENT SIDES that runs in O(n3) time and uses O(n3) space. However, the entries of each
row and column of T depend only on the previous row and column, which allows us to reduce
the storage requirement to O(n2). Using Hirschberg’s algorithm [14], we can still backtrack the
dynamic program and find a solution corresponding to an entry in the last cell in the same running
time. We have the following theorem.

Theorem 1. TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES can be solved inO(n3)
time using O(n2) space.

Our next goal is to improve the performance of our algorithm by reducing the number of
dimensions of the table T by 1. As a first step, we show that for any search position c = (s, t), the
set of all u with T [c, u] = true is an interval.

Lemma 5. Let T [c, u] = T [c, u′] = true with u < u′. Then T [c, u′′] = true for u ≤ u′′ ≤ u′.

Proof. Let C be a curve corresponding to the entry T [c, u]. That is C connects r to c such that
any point on C satisfies the strip condition. Similarly, let C ′ be a curve corresponding to T [c, u′];
see Fig. 9.

Since u and u′ differ, there is a rightmost site p, such that p is below C and above C ′. Let v
and v′ be the grid points of C and C ′ that are immediately to the left of p. Note that v is above v′

since C is above p and C ′ is below it. Consider the curve C ′′ that starts at r and follows C
until v, then moves down vertically to v′, and from there follows C ′ to p. Obviously C ′′ is an
xy-monotone curve, and it has above it the same sites as C ′, except for p, which is below it. Thus
there are u′′ = u′−1 sites above C ′′ in the rectangle spanned by p and r. If all points of C ′′ satisfy
the strip condition, then this implies T [c, u′′] = true.

We show that indeed the strip condition is satisfied for any point onC ′′. LetC1 be the subcurve
of C ′′ that connects r to v, let C2 be the segment vv′ and let C3 be the subcurve of C ′′ that
connects v′ to c. Since C1 is also a subcurve of C and it starts at r, it directly follows that any
point of C1 satisfies the strip condition. For the points on C2 we can argue as follows. Since C2

lies below C and any point of C satisfies the horizontal strip condition, any point of C2 must
satisfy the horizontal strip condition. Analogously, because C2 lies above C ′ and any point of
C ′ satisfies the vertical strip condition, each point of C2 must satisfy the vertical strip condition.
Finally, since C3 is a subcurve of C ′, any point of C ′ satisfies the strip condition and any point of
C1 and C2 satisfies the strip condition, it directly follows that any point of C3 satisfies the strip
condition.

Using Lemma 5, we can reduce the dimension of the table T by 1. It suffices to store at each
entry T [c] the boundaries of the u-interval. This reduces the amount of storage to O(n2) with-
out increasing the running time. Using Hirschberg’s algorithm, the storage for T even decreases
to O(n). Tables BT and BR still have size O(n2), however.
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Our next goal is to reduce the running time to O(n2). An entry in BT[s, t] tells us which
deficits can be compensated. This can also be interpreted as a lower bound on the number of sites
a curve from r to G(s, t) must have above it, in order to satisfy the horizontal strip condition.
Namely, let τs,t denote the number of ports on the top side of the rectangle spanned by G(s, t)
and r. Then u ≥ τs,t − BT[s, t] is equivalent to satisfying the horizontal strip condition for the
strip directly above G(s, t). Similarly, the corresponding entry BR[s, t] gives a lower bound on
the number of sites below such a curve, which in turn, together with the number of sites contained
in the rectangle spanned by G(s, t) and r implies an upper bound on the number of sites above the
curve. Thus, BT, BR, and the information on how many sites, top ports and right ports are in the
rectangle spanned byG(s, t) and r together imply a lower and an upper bound, and thus an interval
of u-values, for which the horizontal and vertical strip conditions at G(s, t) is satisfied. Hence the
program can simply intersect this interval with the union of the intervals obtained from T [(s, t)−
∆c], where ∆c has exactly one non-zero entry, which is 1. Consequently, the amount of work per
entry of T is still O(1). Note that by Lemma 5 the result of this computation is again an interval.

Now we turn to the space consumption. Hirschberg’s algorithm [14] immediately reduces the
space consumption of T to O(n). We would like to apply the same trick to BT and to BR. Recall
that BT is computed from left to right and BR from bottom to top. Unfortunately, this is opposite
to the order we use for computing T , where we proceed from top-right to bottom-left. We can fix
this problem by running the dynamic programs for computing BT and BR backwards, by precom-
puting the entries ofBT andBR on the top and right side, and then running the updates backwards.
This allows us to use Hirschberg’s algorithm, and the algorithms can run in a synchronized manner
such that at any point in time the required data is available, using only O(n) space.

A new issue, however, appears. The update BT[s, t] = max{BT[s− 1, t]− 1, 0} is not easily
reversible. When running the dynamic program backwards, it is not clear whether BT[s, t] = 0
implies BT[s − 1, t] = 0 or BT[s − 1, t] = 1 at a port step. To remedy this issue, fix a column s
of the table corresponding to a port event and consider the circumstances under which BT[s −
1, t] − 1 = −1, i.e., BT[s − 1, t] = 0. This implies that, for any rectangle K with lower right
corner G(s− 1, t) whose top side is contained in the top side of R, there are at most as many sites
in K as there are ports in the top side of K. Assume that this is the case for some fixed value t0,
i.e., BT[s − 1, t0]. Since the possible rectangles for an entry BT[s − 1, t] with t ≥ t0 contain at
most as many sites as the ones for BT[s − 1, t0], this implies BT[s − 1, t0] = BT[s − 1, t] = 0
for all t ≥ t0. If on the other hand, t0 is such that BT[s − 1, t0] > 0, then the rectangles
corresponding toBT[s−1, t] for t < t0 contain at least as many sites as the ones forBT[s−1, t0],
and we have BT[s − 1, t] ≥ BT[s − 1, t0] for t < t0. Thus, there is a single gap t0 such that, for
any t ≥ t0, we have BT[s− 1, t] = 0 and, for any t < t0, we have BT[s− 1, t] > 0; see Fig. 10.
Storing this gap for each column s that is a port event allows us to efficiently reverse the dynamic
program. Note that storing one value per column only incurs O(n) space overhead. Of course,
the same approach works for the dynamic program computing BR. Overall, we have shown the
following theorem.

Theorem 2. TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES can be solved in
O(n2) time using O(n) space.

4 Extensions

The techniques we used to obtain Theorem 2 can be applied to solve a variety of different exten-
sions of the two-sided labeling problem with adjacent sides. We now show how to a) generalize to
sliding ports instead of fixed ports, b) maximize the number of labeled sites, and c) minimize the
total leader length in a planar solution.
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Fig. 9: Sketch for the
proof of Lemma 5.

Fig. 10: The gap t0 is defined such that
we have BT[s− 1, t] = 0 for any t ≥ t0,
and BT[s− 1, t] > 0 for any t < t0.

Fig. 11: Sketch for the
proof of Lemma 6

4.1 Sliding Ports

First, observe that Proposition 1, which guarantees the existence of an xy-separated planar solu-
tion, also holds for sliding ports. The same proofs apply by conceptually fixing the ports of a given
planar solution when applying the rerouting operations. The following lemma shows that, with-
out loss of generality, we can simply fix all ports at the bottom-left corner of their corresponding
labels. This immediately solves the problem.

Lemma 6. If there exists an xy-separated planar solution L for the two-sided boundary label-
ing problem with adjacent sides and sliding ports, then there also exists an xy-separated planar
solution L′ in which the ports are fixed at the bottom left corners of the labels.

Proof. We show how to transform L into L′. Let C be the xy-monotone curve that separates
the top leaders from the right leaders of L. We move the ports induced by L to the bottom-left
corner of their corresponding labels such that the assignment between labels and sites remains;
see Fig.11. Obviously, the bends of the leaders connected to the right side only move downwards.
Thus, the leaders lie entirely below C. Symmetrically, the bends of the leaders connected to the
top side only move to the left and thus these leaders lie entirely above C.

Consequently, only conflicts between the same type of leaders can arise. Consider the topmost
intersection of two leaders λ(p, `) and λ(p′, `′) connected to the right side and assume that p lies
to the left of p′. Let K be the rectangle that is spanned by the bends of λ(p, `) and λ(p′, `′). Due
to moving the ports downwards, the leaders lie entirely below C and the bend of λ(p′, `′) must lie
below λ(p, `). Hence, K lies completely in RR. In order to resolve the conflict, we reroute p to `′

and p′ to ` using the bottom-left corners of ` and `′ as ports. Obviously, the leaders only change
on ∂K. Therefore, new conflicts can only arise on the left and bottom sides of K. In particular,
only the leader of `′ can be involved in new conflicts, while the leader of ` is free of any conflict.
Thus, after finitely many such steps we have resolved all conflicts, from top to bottom. Symmetric
arguments apply for the leaders connected to the top side.

Theorem 3. TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES AND SLIDING PORTS

can be solved in O(n2) time using O(n) space.

4.2 Maximizing the Number of Labeled Sites

So far our algorithm only returns a leader layout if there is a planar solution that matches each label
to a site. As Bekos et al. [5, Fig. 16] observed, this need not always be the case, so it becomes
important to be able to maximize the number of labels connected to sites in a planar solution. We
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Fig. 12: Illustration of the curveC and the rectangleK spanned byG(s, t) and the top-right corner
of R. a) There are more sites than ports in K above C. The unlabeled sites are connected to a
dummy port located at the top-left corner of K. The dummy port is illustrated as a square. b)
There are more ports than sites in K above C. The unlabeled ports are labeled to sites that lie to
the left of K, which induce the front with bottom-left point FT.

achieve this by removing labels from a given instance and using our algorithm to decide whether
a crossing-free solution exists.

Lemma 6 shows that we can move top ports to the left and right ports to the bottom without
making a solvable instance unsolvable. Thus, it suffices to remove the rightmost top labels and
the topmost right labels. Let k be the number of labels we want to use with kT of them being
top labels and kR right labels, so that kT + kR = k. For a given k, we can decide whether a
crossing-free solution that uses exactly k labels exists by removing the mT − kT rightmost top
labels and the mR − kR topmost right labels for any possible kT and kR. We therefore start
with kT = min{k,mT} and kR = k − kT. We keep decreasing kT and increasing kR by 1,
until a crossing-free solution is found or kR = min{k,mR}. In the latter case, no crossing-free
solution that uses exactly k labels exists. With this approach we can use binary search to find the
maximum k, using our algorithm up to k times per step. Since k ≤ n, this yields an algorithm
for TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES that maximizes the number of
labeled sites that runs in O(n3 log n) time and uses O(n) space.

Theorem 4. TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES can be solved in
O(n3 log n) time using O(n) space such that the number of labeled sites is maximized.

Assume that t sites cannot be labeled. Then TWO-SIDED BOUNDARY LABELING WITH AD-
JACENT SIDES can be solved in O(n2t log t) time using O(n) space and such that the number of
labeled sites is maximized. To that end we use the following approach. We check for h = 2i

with i = 0, 1, 2, . . . whether there is a planar solution with h unlabeled sites. We stop this pro-
cedure when we have found such a solution, which takes place after dlog(t)e steps. Using the
approach described above, we need O(n2t) time for each test. We then know that h

2 < t ≤ h. We
apply a binary search to determine t. Overall, this approach needs O(n2t log t) time.

4.3 Minimizing the total leader length

Recall that, by Proposition 1, there always exists a length-minimal planar solution that is xy-
separated. To obtain a length-minimal planar solution, we mainly change the table T used by the
dynamic program given in Section 3. Let C be an xy-monotone curve C that starts at r and ends
at G(s, t). We assign to every table entry the length of the leaders that are connected to the ports
in the rectangle K spanned by r and G(s, t).

If there are more sites than top ports in K above C, we have to connect some of these sites to
ports that lie to the left ofK; see Fig. 12a. The vertical lengths of their leaders, however, are fixed.
We imagine a dummy top port at the left border of K and connect all unlabeled sites to this port.
When traversing the grid horizontally, this dummy port moves to the left. In order to update the
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total length of the leaders in K, we only have to keep track of the number of unlabeled sites and
increase the horizontal length of their leaders. The sites in K below C are handled analogously.

If there are more top ports than sites in K above C, we have to connect these ports to sites
that lie to the left of K; see Fig. 12b. In order to remember which sites are already labeled, we
store the top front as the rectangle with top-right corner r that includes all sites that are already
connected to a top port inside K, and the right front as the rectangle with top-right corner r that
includes all sites that are already connected to a right port inside K.

Let FT = (xT, yT) be the bottom-left point of the top front for a given xy-monotone curve C
that starts at r and ends at G(s, t). Similarly, let FR = (xR, yR) be the right front for C. We
define T [c = (s, t), u,FT,FR] = (l, gT, gR) if there exists an xy-monotone curve C and leaders
inside K ∪ FT ∪ FR such that the following conditions hold, otherwise it contains (−1, 0, 0).

(i) Curve C starts at the top-right corner r of R and ends at G(s, t).
(ii) Inside the rectangle K spanned by r and G(s, t), there are u sites of P above C.

(iii) For each strip in the two regions RT and RR defined by C the strip condition holds.
(iv) The sites in K ∪FT∪FR are connected to the ports on the border of K ∪FT∪FR such that

the induced solution is planar, length-minimal, the sites aboveC or in FT are only connected
to top ports, and the sites below C or in FR are only connected to right ports.

(v) There are gT unlabeled top sites and gR unlabeled right sites in K.
Note that gT and gR depend on s, t, u and can be precomputed, but to make the algorithm more

intuitive, we update these values on-line and store them in T . We first describe how to handle the
top front while traversing the grid. Initially, FT = G(s, t). As long as we have more top sites than
top ports in K, we can connect all ports to sites and thus can maintain FT = G(s, t). Once we
have exactly the same number of top ports and top sites in K and we encounter a port event for a
top port, we have to check the strip condition and find the rightmost point FT with y(FT) = Gy(t)
such that the rectangle RFT

spanned by FT and r is valid. By storing FT, we know that all ports
to the right of x(FT) are already connected to a site, all sites to the top-right of FT are already
connected to a port, and all top sites to the bottom-left of FT have to be connected to a port that
lies to the left of x(FT). Thus, we do not have to check new strip conditions until s < x(FT). We
handle FR similarly.

We now look at the length of the top leaders, the length of the right leaders can be handled
similarly. Note that by moving from t to t − 1, the length of the top leaders does not change.
If gT > 0, we imagine an additional port at x(FT) that can be connected to gT top sites. When
moving from s to s−1, we add gT · (Gx(s)−Gx(s−1)) to l. When we calculate a new value FT

by checking the strip condition, we can immediately connect all top sites inside the top front to
top ports, and add the corresponding leader length to l. Thus, we only encounter site events for
sites that are a) inside FT \K or b) have to be connected to a top port that lies to the left of x(FT).
In case a) we do not change l, in case b) we connect the site to the imaginary port, add the length
of the corresponding leader to l and increase gT by 1. When we encounter a port event, if the port
lies inside FT \K, we do not change l, otherwise we can connect any of the unlabeled sites to this
port. We add the horizontal distance between Gx(s) and the port to l and decrease gT by 1. Note
that by choosing any unlabeled site, the resulting solution may not be planar. However, because
the bends of all unconnected sites will be above C, we can use Lemma 1 to remove the crossings
without changing the total leader length.

Since the matrix now has four additional fields, the running time and storage is increased by a
factor of n4 over the algorithm from Theorem 1. Additionally, we need O(n log n) time to check
the strip condition and to compute a length-minimal solution for the sites and ports inside FT \K
and FR \K.

Theorem 5. TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES can be solved in
O(n8 log n) time using O(n6) space such that the total leader length is minimized.
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Fig. 13: The curves C1, C2, C3 and C4 meeting at the point o partition the rectangle into four
regions.

Using an appropriate data structure to precompute the fronts, it may be possible to decrease
the running time slightly.

5 The Three- and Four-Sided Cases

In this section, we also allow labels on the bottom and the left side of R. In order to solve an
instance of the three- and four-sided case, we adapt the techniques we developed for the two-sided
case. We assume that the ports are fixed and the number of labels and sites is equal. In Section 5.1
we first analyze the structure of planar solutions obtaining a result similar to Proposition 1. In
Sections 5.2 and 5.3, we present algorithms for the three- and four-sided cases.

5.1 Structure of Three- and Four-Sided Planar Solutions

Similar to our approach to two-sided boundary labeling, we pursue the idea that if there exists
a planar solution, then we can also find a planar solution such that there are four xy-monotone
curves connecting the four corners of R to a common point o, and such that these curves separate
the leaders of the different label types from each other; see Fig. 13. To that end, we first show
that leaders of left and right labels can be separated vertically and leaders of top and bottom labels
can be separated horizontally. Afterwards, we apply the result of Lemma 2 in order to resolve the
remaining overlaps, e.g., between top and right leaders. We first introduce some notions.

Definition 2. A planar solution for the four-sided boundary labeling problem is
(i) x-separated if there exists a vertical line ` such that the sites that are labeled to the left side

are to the left of ` and the sites that are labeled to the right side are to the right of `, and
(ii) y-separated if there exists a horizontal line ` such that the sites that are labeled to the top

side are above ` and the sites that are labeled to the bottom side are below `.

A left leader λ and a right leader λ′ overlap if x(bend(λ)) > x(bend(λ′)). Analogously,
a bottom leader λ and a top leader λ′ overlap if y(bend(λ)) > y(bend(λ′)). Hence, a planar
solution L is both x-separated and y-separated if and only if no left and right leaders overlap, and
no bottom and top leaders overlap. We are now ready to prove that we can always find a planar
solution that is both x-separated and y-separated, if a solution exists.

Lemma 7. If there exists a planar solution for the four-sided boundary labeling problem, then
there exists a planar solution L that is both x-separated and y-separated.
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Fig. 14: Different constellations of leaders intersecting the rectangle A. a) The rectangle A is
empty. b)–d) Different cases where A is intersected by a top leader. A is not explicitly illustrated,
but spanned by bend(λR) and bend(λL).

Proof. Among all planar solutions let L be one that minimizes |L|x + |L|y. We prove that then L
is x- and y-separated by showing that otherwise we could reroute some leaders and obtain a planar
solution L′ with |L′|x + |L′|y < |L|x + |L|y.

Assume that L is not x-separated. Symmetric arguments hold for the case that L is not y-
separated. Then there exist sites pR and pL with x(pR) < x(pL), such that pR is labeled by a right
port r, and pL is labeled by a left port `; see Fig. 14a. Without loss of generality, assume that the
horizontal segment of λR = λ(pR, r) is above the horizontal segment of λL = λ(pL, `), otherwise
we mirror the instance vertically.

We choose pL and pR as a closest pair in the sense that the horizontal segments of their leaders
have minimum vertical distance among all such pairs. LetA be the rectangle spanned by bend(λL)
and bend(λR). By the minimality of pL and pR, that rectangle can only be intersected by top and
bottom leader, but not by left or right leaders. If no such leader intersects A, we reroute pR to the
port of λL and pL to the port of λR, which decreases |L|x without increasing |L|y; see Fig. 14a. It
does not introduce any crossings.

In the following we assume that some leaders intersect A. Without loss of generality we
assume that there is a top leader λT that intersects A; otherwise we rotate the instance by 180◦.
We denote its site by pT. Let S be the rectangle spanned by the ports ` and r; see Fig. 14a.
Depending on the leaders intersecting S, we distinguish two cases. Note that in particular λT
intersects S.

Case 1: For any top leader λ intersecting S and for any bottom leader λ′ intersecting S such
that λ and λ′ overlap, the site of λ lies to the left of the site of λ′; see Fig. 14b. Let qR denote
the bottommost site that is connected by a right leader, and that lies in the rectangle spanned
by bend(λT) and pR. Since pR lies in that rectangle, the site qR exists. We denote the leader of qR
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by λ′R. Further, let qT be the topmost site that is connected by a top leader and that lies in the
rectangle spanned by bend(λ′R) and the bottom-right corner of R. Since pT lies in that rectangle,
the site qT exists. We denote its leader by λ′T.

We now define two rectangles that we use to reroute leaders such that |L|x + |L|y is decreased
and arising crossings can be resolved. The rectangle K1 is spanned by bend(λ′R) and qT, and the
rectangle K2 is spanned by bend(λ′T) and qR.

Claim 2.
(1) K1 is only intersected by right leaders whose bends are contained in K1,
(2) K2 is only intersected by top leaders whose bends are contained in K2, and
(3) K1 and K2 are internally disjoint.

Assuming that the claim holds, we can reroute the sites as follows; we illustrate this rerouting
by dash-dotted lines in Fig. 14b. The site qT is rerouted to the port of λ′R creating crossings only
on the right side of K1. The site qR is rerouted to the port of λ′T creating crossings only on the top
side of K2. Each rerouting decreases either |L|x or |Ly| increasing the other one. Further, only
crossings between leaders of the same type are created. We apply Lemma 1 to resolve the conflicts
without increasing |L|x or |Ly|. In the remainder of this case we show that the stated claim holds.

First, we show that K1 is only intersected by right leaders whose bends lie in K1. It is not
intersected by any bottom leader, because such a leader would overlap λ′T, and its site would lie
to the left of qT—a contradiction to the assumption of this case. It is not intersected by any left
leader, because such a leader would intersect λ′T. It is not intersected by any top leader, because
such a leader would either intersect λ′R or contradict the choice of λ′T. Hence, K1 can only be
intersected by right leaders. Further, all those leaders have their bend in K1, because the bottom-
right corner is a site connected by a top leader. That leader would be intersected if a right leader
intersecting K1 had its bend outside of K1.

Next, we show that K2 is only intersected by top leaders whose bends lie in K2. It is not
intersected by any right leader, because such a leader would contradict the choice of λ′R or inter-
sect λT. It is not intersected by any bottom leader, because such a leader would overlap λ′T, and its
site would lie to the left of qT—a contradiction to the assumption of this case. It is not intersected
by any left leader, because such a leader would intersect λ′T. Hence, K2 can only be intersected
by top leaders. Further, all those leaders have their bend in K2, because the top-right corner is a
site connected by a right leader.

Finally, the rectangles K1 and K2 are internally disjoint, because K1 lies to the right of the
vertical line through qR, while K2 lies to the left of that line.

Case 2: There exist a top leader λT intersecting S and a bottom leader λB intersecting S such
that they overlap and the site of λT lies to the right of the site of λB; see Fig. 14c. Among all such
pairs we choose λT and λB such that their horizontal segments have minimal vertical distance. We
denote the site of λT by pT and the site of λB by pB. Due to the choice of λT and λB, the open
rectangle that is spanned by pB and pT is intersected by no leader. The open rectangle spanned
by bend(λT) and bend(λB) is denoted by B. Depending on the sites that are contained in B, we
distinguish four cases.

Case 2.1: The rectangle B contains no sites that are connected by left of right leaders; see
Fig. 14c. Let K1 be the rectangle spanned by bend(λT) and pB, and let K2 be the rectangle
spanned by bend(λB) and pT. While K1 is only intersected by left leaders, K2 is only intersected
by right leaders. Further, both rectangles are disjoint. We reroute pB to the port of λT and pT to
the port of λB. Obviously, this decreases |L|y without increasing |L|x. By applying Lemma 1, we
resolve the arising conflicts.

Case 2.2: The rectangle B contains sites that are connected by left leaders as well as sites that
are connected by right leaders; see Fig. 14d. Let qR be the bottommost site in B that is connected
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to the right. We denote the leader of qR by λ′R. Let qB be the leftmost site with y(qB) ≥ y(pB)
and x(qB) ≤ x(pB) that is connected to the bottom. Since pB also satisfies these requirements,
the site qB exists. We denote the leader of qB by λ′B. Let qL be the topmost site in B that is
connected to the left. We denote the leader of qL by λ′L. Finally, let qT be the rightmost site
with y(qT) ≤ y(pT) and x(qT) ≥ x(pT) that is connected to the top. Since pT also satisfies these
requirements, the site qT exists. We denote the leader of qT by λ′T.

We now define four rectangles that we use to reroute leaders such that |L|x + |L|y is decreased
and arising crossings can be resolved. The rectangle K1 is spanned by bend(λ′R) and qB, the
rectangle K2 is spanned by bend(λ′B) and qL, the rectangle K3 is spanned by bend(λ′L) and qT,
and the rectangle K4 is spanned by bend(λ′T) and qR. Note that the rectangles K3 and K4 are
rotationally symmetric to K1 and K2, respectively.

Claim 3.
(1) K1 is only intersected by right leaders whose bends are contained in K1,
(2) K2 is only intersected by bottom leaders whose bends are contained in K2,
(3) K3 is only intersected by left leaders whose bends are contained in K3,
(4) K4 is only intersected by top leaders whose bends are contained in K4, and
(5) K1, K2, K3 and K4 are pairwise internally disjoint.

Assuming that the claim holds, we can reroute the sites in a circular fashion as follows; we
illustrate the rerouting as dash-dotted lines in Fig. 14d. The site qB is rerouted to the port of λ′R
creating crossings only on the right side of K1. The site qL is rerouted to the port of λ′B creating
crossings only on the bottom side ofK2. The site qT is rerouted to the port of λ′L creating crossing
only on the left side of K3. Finally, the site qR is rerouted to the port of λ′T creating crossings only
on the top side of K4. Each rerouting decreases either |L|x or |Ly| without increasing the other
one. Further, only crossings between leaders of the same type are created. We apply Lemma 1 to
resolve the conflicts. In the remainder of this case we show that the stated claim holds.

First, we show that K1 is only intersected by right leaders whose bends lie in K1. This rect-
angle is not intersected by any bottom leader, because qB is the leftmost site with y(qB) ≥ y(pB)
and x(qB) ≤ x(pB) that is connected to the bottom. It is not intersected by any top leader, because
such a leader would intersect λ′R whose site lies below qB. Finally, it is not intersected by any
left leader, because such a leader would intersect λ′T whose site lies to the right of qB. Hence,
only right leaders intersect K1. In particular, all those leaders have their bend in K1, because the
bottom-right corner of K1 is the site of a bottom leader. That leader would be intersected if a right
leader intersecting K1 had its bend outside of K1. Since K3 is rotationally symmetric to K1, we
can use symmetric arguments to prove that K3 is only intersected by left leaders whose bends are
contained in K3

Next, we show that K2 is only intersected by bottom leaders whose bends lie in K2. This
rectangle is not intersected by any left leader, because such a leader would contradict the choice
of qL. It is also not intersected by any top leader, because such a leader would intersect λ′R or
contradict the choice of λT and λB. Finally, it cannot be intersected by any right leader, because
such a leader would intersect λ′B. Hence, K2 is only intersected by bottom leaders. Further, all
those leaders have their bend in K2, because the bottom-left corner of K2 is a site connected to a
left leader. That leader would be intersected if a bottom leader intersectingK2 had its bend outside
of K2. Since K4 is rotationally symmetric to K2, we can use symmetric arguments to prove that
K4 is only intersected by top leaders whose bends are contained in K4.

Finally, we show that the rectangles K1, K2, K3 and K4 are pairwise internally disjoint.
For a site p let v(p) denote the vertical line through p and let h(p) denote the horizontal line
through p. By construction we have that h(qB) lies above h(qT), K1 lies above h(qB), and K3

lies below h(qT). Hence, the rectangles K1 and K3 are internally disjoint. Analogously, we
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have that v(qL) lies to the right of v(qR), K2 lies to the right of v(qL), and K4 lies to the left
of v(qR). Hence, the rectangles K2 and K4 are internally disjoint. Further, the sites qL and qR lie
in between h(qB) and h(qT), because both lie in B. Consequently, K1 and K3 do not intersect K2

and K4, respectively.
Case 2.3: The rectangle B contains only sites connected by right leaders. We apply the same

procedure as in the previous case. However, we do not need to consider left leaders. Hence, K3

is removed and K2 is the rectangle that is spanned by bend(λ′B) and pT. By the choice of B,
the rectangle K2 is only intersected by right leaders whose bend is contained in K2. Further, the
remaining rectangles K1, K2 and K4 are pairwise internally disjoint. The reroutings are again
done in a circular fashion decreasing |L|x + |L|y. Finally, we apply Lemma 1 to resolve crossings.

Case 2.4: The rectangle B contains only sites connected by left leaders. This case can be
handled analogously to the previous case by mirroring the instance vertically.

This lemma shows that, when searching for a planar solution of the labeling problem, we can
restrict ourselves to solutions that are x-separated and y-separated. Let L denote such a solution,
and let `v and `h be the lines separating the sites labeled by left and right labels, and the ones
labeled by top and bottom labels, respectively. Let o ∈ R denote the intersection of `v and `h,
called center point. Let r1, . . . , r4 denote the corners of R, named in counterclockwise ordering,
and such that r1 is the top-right corner. Consider the rectangles that are spanned by o and ri
for i = 1, . . . , 4. Each of them contains only two types of leaders. For example, the top-right
rectangle contains only top and right leaders. An x- and y-separated planar solution is partitioned
if, for each rectangle spanned by o and one of the corners ri of R, there exists an xy-monotone
curve Ci from ri to o that separates the two different types of leaders contained in that rectangle;
see Fig. 13. Our next step is to show that a planar solution can be transformed into a partitioned
solution without increasing |L|x and |L|y.

Proposition 2. If there exists a planar solution L for FOUR-SIDED BOUNDARY LABELING, then
there exists a partitioned solution L′.

Proof. By Lemma 7, we can assume that L is x- and y-separated. Let o be the center point as
defined above and let `v be the vertical line through o. We show how to ensure that the area K
of R right of `v admits an xy-monotone curve from the top-right corner of R to o that separates
the top leaders from the right leaders inside K. The remaining cases are symmetric.

Essentially, we proceed as in the proof of Proposition 1 to remove obstructions of types (P1)–
(P4); see Fig. 5. We note that in the rerouting, we only shorten vertical segments of top leaders
and right segments of right leaders; hence the solution remains x- and y-separated. Moreover, in
each step we decrease both |L|x and |L|y. Hence, after finitely many steps all patterns between
top and right leaders have been removed without creating new patterns with other types of leaders.

After all patterns have been removed, an xy-monotone curve connecting the top-right corner
of R to o, separating the top labels from the right labels, can be found as in the proof of Lemma 2.

5.2 Algorithm for the Three-Sided Case

In the three-sided case, we assume that the ports of the given instance I are located on three sides
of R; without loss of generality, on the left, top and right side of R. Basically, we solve a three-
sided instance by splitting the instance into two two-sided L-shaped instances that can be solved
independently; see Fig. 15a.

Let G be the dual of the grid that is induced by the sites and ports of the given instance. The
idea is that each grid point s of G induces two two-sided L-shaped instances with some useful
properties. We will show that there is a planar solution for I if and only if there is a grid point
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Fig. 15: a) The three-sided instance partitioned into two two-sided L-shaped instances Is and I ′s.
The instances are induced by the grid point s ofG and are balanced. b) Illustration of the proof for
Lemma 8. Assuming that the grid point s of G, the balanced instances Is and I ′s, and the curves C
and C ′ are given, a planar solution for the whole instance can be constructed.

s of G such that its induced two-sided instances both have planar solutions. Thus, considering
all O(n2) grid points of G the problem reduces to solve those L-shaped instances of the two-sided
case. By means of a simple adaption of the dynamic program presented in Section 3 we solve
these instances in O(n2) time achieving O(n4) running time in total.

In the following we call horizontal and vertical lines through grid points of G horizontal and
vertical grid lines, respectively. We now define the two two-sided L-shaped instances Is and I ′s of
a grid point s of G formally. To that end, let R1 be the rectangle that is spanned by the top-right
corner of R and s, and let R2(p) be the rectangle that is spanned by a point p on the horizontal
grid line h through s and the bottom-right corner of R; see Fig. 15a. The instance Is(p) contains
all sites and ports in R1 ∪ R2(p) and I ′s(p) contains all sites and ports in R \ (R1 ∪ R2(p)).
We say that Is(p) and I ′s(p) are balanced if all right ports lie in R1 ∪ R2(p), all left ports lie
in R \ (R1 ∪R2(p)) and R1 ∪R2(p) contains the same number of sites as it contains ports. Since
the number of ports and sites in I is equal, this directly implies that R \ (R1 ∪ R2(p)) contains
the same number of sites as it contains ports. In particular, the choice of balanced instances Is(p)
and I ′s(p) for a grid point s of G is unique with respect to the contained sites and ports; only the
location of p might differ. We can therefore write Is and I ′s for balanced instances and R1 and
R2 for their defining rectangles. For any solution of Is and any solution of I ′s, we require that all
leaders are completely contained in R1 ∪R2 and in R \ (R1 ∪R2), respectively. The next lemma
states that a three-sided instance I has a planar solution if and only if it can be partitioned into two
two-sided L-shaped instances that have planar solutions. To that end let hs denote the horizontal
grid line through s. Figure 15 illustrates the lemma.

Lemma 8. There is a planar solution L for a three-sided instance I if and only if there is a grid
point s ofG with balanced instances Is and I ′s over rectangles (R1, R2), an xy-monotone curve C
from the top-right corner to the bottom-left corner of R and an xy-monotone curve C ′ from the
top-left corner to the bottom-right corner of R such that

1. each point on C satisfies the strip condition with respect to the ports and sites in Is,
2. C contains the top-left corner of R2 and the intersection of hs with the left segment of R,
3. each point on C ′ satisfies the strip condition with respect to the ports and sites in I ′s,
4. C ′ contains the top-left corner of R2 and the intersection of hs with the right segment of R.

Proof. First, assume that s, Is, I ′s, (R1, R2), C andC ′ exist as required; see Fig. 15b. The curveC
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Fig. 16: Illustration of the proof for Lemma 8. It is assumed that the partitioned planar solution L
for the three-sided instance is given. a) By Proposition 2 we can assume thatL is partitioned by the
curves C1 and C2. The extremal top leader λT induces the site s and the extremal right leader λR
induces the line v′. b) Based on C1, C2, h and v′, the curves C and C ′ can be constructed such
that they do not cross any leader of L.

partitions R into two regions; we denote the region above C by A1 and the region below C by A2.
By Lemma 3, there is a planar solution L1 for the sites and ports in A1 such that all leaders of L1
lie in A1. Since C contains the top-left corner of R2 and does not cross hs until it reaches the
intersection point of hs with the left segment of R, we know that all leaders of L1 are contained
in R1 ∪ R2. Analogously, there is a planar solution L2 for the sites and ports in A2 such that all
leaders of L2 lie in A2. Consequently, we can combine L1 and L2 into a planar solution Ls for
the sites and ports in Is. Using symmetric arguments, we obtain a planar solution L′s for I ′s. As Is
and I ′s are defined over complementary areas, the solutions Ls and L′s can be combined into a
planar solution of I .

Assume that there is a planar solutionL for a three-sided instance I; see Fig. 16. First, note that
we can imagine an instance of THREE-SIDED BOUNDARY LABELING as a degenerated instance
of FOUR-SIDED BOUNDARY LABELING with no bottom ports. Thus, Proposition 2 also holds for
the three-sided case, when assuming that the four xy-monotone curves partitioning the solution
meet on the bottom segment of R. Hence, without loss of generality, we assume that L is also
partitioned by four xy-monotone curves C1, C2, C3 and C4. In particular, let C1 denote the curve
that starts at the top-right corner of R and let C2 denote the curve that starts at the top-left corner
of R; see Fig. 16a. The curves C3 and C4 are completely contained in the bottom side of R and
can therefore be omitted. We first show how to construct the grid point s and the instances Is
and I ′s such that they are balanced. Afterwards, we explain how to obtain C and C ′ from C1

and C2, respectively. Finally, we prove that each point on C and C ′ satisfies the strip condition
with respect to Is and I ′s, respectively.

Let λT be the top leader in L with the longest vertical segment of all top leaders in L. In case
the site of λT lies to the right of bend(λT), let v be the rightmost vertical grid line that lies to the
left of λT, and otherwise if the site of λT lies to the left of bend(λT), let v be the leftmost vertical
grid line that lies to the right of λT. Furthermore, let h be the topmost horizontal grid line that
lies below bend(λT); see Fig. 16a. Due to the choice of h and v all top leaders lie above h and
none of them intersects h or v. Furthermore, no right or left leader of L intersects v above h. The
desired grid point s is then the intersection point of h and v.

Now, let λR be the right leader in L with longest horizontal segment among all right leaders
in L and let v′ be the rightmost vertical grid line that lies to the left of bend(λR). Note that
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Fig. 17: There are no balanced instances Is and I ′s for the grid point s. However, by Lemma 8
there must be another grid point t with balanced instances It and I ′t if the instance has a planar
solution.

v′ cannot be intersected by a left or a right leader, because both leader types are x-separated. We
defineR1 to be the rectangle that is spanned by the top-right corner ofR and s. Also, we defineR2

to be the rectangle spanned by the bottom-right corner of R and the intersection point of v′ and h.
The instance Is is defined byR1∪R2 and the instance I ′s byR\(R1∪R2). We show that Is and I ′s
are balanced. To that end, we prove that a leader of L is either completely contained in R1 ∪ R2

or in R \ (R1 ∪ R2), that R1 ∪ R2 contains only right and top leaders, and that R \ (R1 ∪ R2)
contains only left and top leaders.

Due to the choice of v′, all right leaders lie to the right of v′. Moreover, all right leaders
whose site or port lies above h, must lie to the right of v, because by definition of v no right leader
intersects v above h (otherwise it would intersect λT ), and because otherwise C1 could not be an
xy-monotone curve separating right and top leaders. Thus, all right leaders lie inR1∪R2. For left
leaders we can argue similarly. Since left and right leaders of L are x-separated, all left leaders lie
to the left of v′. All left leaders whose site or port lies above h, must lie to the left of v, because by
definition of v no left leader intersects v above h, and because otherwise C2 could not be an xy-
monotone curve separating left from top leaders. Thus, all left leaders lie inR\(R1∪R2). Finally,
consider the top leaders in L. By definition of h and v, none of the top leaders intersects h or v.
In particular all top leaders lie above h and cannot intersect R2. Consequently, each top leader
is either contained in R1 or in R \ (R1 ∪ R2). This concludes the argument that Is and I ′s are
balanced.

We are left with the construction of the curves C and C ′; see Fig. 16b. The curve C is derived
from C1 as follows. Starting at the top-right corner of R, the curve C coincides with C1 until C1

intersects h or v′ above h. If C intersects v′ above h, it follows v′ downwards until it hits h. Then,
in both cases, it follows h until h intersects the left segment of R. Finally, C follows the left
segment of R to the bottom-left corner of R. The curve C ′ is constructed symmetrically.

By construction, C contains the top-left corner of R2 and the intersection point of h with the
left segment of R. Symmetrically, C ′ contains the top-left corner of R2 and the intersection point
of h with the right segment of R. We finally show that each point on C satisfies the strip condition
with respect to the sites and ports in Is. Using symmetric arguments we can prove the analogous
statement for C ′ and I ′s.

By the previous reasoning, we know that each leader of L either lies completely inside or
completely outside ofR1∪R2. Each leader that lies inR1∪R2 is either a top or a right leader and
does not intersect C. Otherwise, if such a leader intersected C, it would also intersect C1 or the
segment x of v′ that is contained in C. In particular, x cannot be intersected by any leader because
it lies to the left of all right leaders and below C1. Thus, the leaders in R1 ∪ R2 form a planar
solution for Is without intersecting C. Hence, the claim directly follows from Lemma 3.
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Our approach now works as follows. For each grid point s of G we compute the instances Is
and I ′s such that they are balanced. Then, by Lemma 8, we can apply our algorithm presented in
Section 3 in order to solve Is and I ′s independently. To that end, we slightly adapt the dynamic
program such that it only considers curves satisfying the properties required by Lemma 8. If both
instances can be solved, we combine these solutions into one solution and return that solution as
the final result. Otherwise, we continue with the next grid point of G. If all grid points of G
have been explored without finding a planar solution, the algorithm decides that there is no planar
solution.

Note that it may happen that, for a grid point s, there are no balanced instances Is and I ′s; for
an example see Fig. 17. However, in that case, if I has a solution, we also know by Lemma 8 that
there is another grid point t such that for t we find balanced instances. Hence, we can refrain from
considering s.

Creating the two instances Is and I ′s for a grid point s takes linear time, if we assume that the
sites are sorted by their x-coordinates. By Theorem 2 we then need O(n2) time and O(n) space
to solve Is and I ′s. Consequently, we need O(n2) time and O(n) space to process a single grid
point s. Since we consider O(n2) grid points, the following theorem follows.

Theorem 6. THREE-SIDED BOUNDARY LABELING can be solved in O(n4) time using O(n)
space.

Note that, except for the length minimization, our approach for the three-sided case also car-
ries over to the extensions from Section 4, because we only solve subinstances of TWO-SIDED

BOUNDARY LABELING WITH ADJACENT SIDES. In particular with corresponding impact on the
running time we can soften the restriction that the number of labels and sites is equal.

5.3 Algorithm for the Four-Sided Case

In this section, we consider the case that the ports lie on all four sides of R. The main idea is to
seek a partitioned solution, which exists by Proposition 2. For a given partitioned solution L, we
call a leader extremal if all other leaders of the same type in L have shorter orthogonal segments;
recall that the orthogonal segment of a po-leader is the segment connecting the bend to the port.
The algorithm consists of two steps. First, we explore all choices of (non-overlapping) extremal
leaders λL and λR for the left and the right side of R, respectively, plus a horizontal line h that
separates the top leaders and the bottom leaders. This information splits the instance into two
independent three-sided instances; see Fig. 18a. There are, however, two crucial differences from
a usual three-sided instance. First, one side of the instance is not a straight-line segment but an
x-monotone orthogonal curve C that is defined by λL, λR and h. Second, the extremal positions
of λL and λR imply a separation of the points that are labeled from the left and the right side.
Let I31 be the three-sided instance above C and let I32 be the three-sided instance below C. The
algorithm solves I31 and I32 independently from each other. If for at least one of the two instances
there is no solution, the algorithm continues with the next choice of λL, λR and h. Otherwise, it
combines the planar solutions of I31 and I32 into one planar solution and returns this solution. In
case that all choices of λL, λR and h have been explored without finding a solution, the algorithm
returns that there is no planar solution.

We next describe how to solve the three-sided instance I31 . A symmetric approach can be
applied to I32 . The algorithm explores all choices of the extremal leader λT for the top side of R.
This extremal leader partitions the instance into two two-sided subinstances I21 and I22 as follows.
LetAT,R be the rectangle that is spanned by bend(λT) and the top-right corner ofR; see Fig. 18b.
Analogously, let AT,L be the rectangle that is spanned by bend(λT) and the top-left corner of R.
Analogously, for λR we define the area AR,T to be the rectangle that is spanned by bend(λR) and
the top-right corner ofR, andAR,B to be the rectangle spanned by bend(λR) and the bottom-right
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Fig. 18: a) The right leader λL, the left leader λR and the horizontal line h split the instance into
two three-sided instances I31 and I32 . a) Sketch of the areas AT,L, AT,R, AR,T, AR,B, AL,T and
AL,B. c) The leaders λL, λR and λT split the three-sided instance into two two-sided instances.

corner of R. For the leader λL we define AL,B to be the rectangle spanned by bend(λL) and the
bottom-left corner ofR, andAL,T to be the rectangle spanned by bend(λL) and the top-left corner
of R. We assume that the port p of λT is only contained in that area A ∈ {AT,R, AT,L} that also
contains the site of λT. We make analogous assumptions for λL and λR.

The instance I21 consists of all ports and sites in A1 = (AR,T ∪ AT,R) \ (AT,L ∪ AR,B),
and I22 consists of all ports and sites in A2 = (AL,T ∪ AT,L) \ (AT,R ∪ AL,B); see Fig. 18c. We
solve I21 and I22 independently from each other using the dynamic program introduced in Section 3
for each instance. However, we enforce that it only considers xy-monotone curves that exclude
top leaders crossing the horizontal line through bend(λT), left leaders crossing the vertical line
through bend(λL) and right leaders crossing the vertical line through bend(λR). If for at least
one of the two instances there is no solution, the algorithm continues to explore the next choice
of λT. Otherwise, it combines the solutions of I21 and I22 into one solution and returns the result as
the solution of I31 . In case that all choices of λT have been explored without finding a solution, the
algorithm returns that there is no solution for the given three-sided instance. The following lemma
shows that the algorithm is correct.

Lemma 9. Given an instance I of FOUR-SIDED BOUNDARY LABELING, the following two state-
ments are true.

1. If there is no planar solution for I , the algorithm states this.
2. If there is a planar solution for I , the algorithm returns such a solution.

Proof. In case the algorithm returns a solution, it has been constructed from planar solutions of
disjoint instances of TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES. As the union
of these two-sided instances contains all sites and ports of I , the algorithm returns a planar solution
of I , which shows the first statement.

Conversely, assume that I has a planar solution L. By Proposition 2, we may assume that L
is partitioned. In particular, let λT, λL, λB and λR be the extremal leaders in L of the top, left,
bottom and right side ofR, respectively, and let h be a horizontal line that separates the top leaders
from the bottom leaders.

Obviously, λL, λR and h split the instance into two three-sided instances I31 and I32 . As the
algorithm systematically explores all choices of extremal right leaders, extremal left leaders and
horizontal lines partitioning the set of sites, it must find λL, λR and a horizontal line h′ that
separates the same sets of sites as h. Thus, I31 and I32 are considered by the algorithm.

Let I31 be the instance above the curve defined by λL, λR and h′, and let I32 be the instance
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below that curve. We now show that the algorithm finds a planar solution for I31 . Symmetric
arguments hold for I32 . As the algorithm explores all choices of extremal top leaders in I31 , it
also considers λT to be the extremal top leader. This leader partitions the area of I31 into the two
disjoint areas A1 = (AR,T ∪AT,R) \ (AT,L ∪AR,B) and A2 = (AL,T ∪AT,L) \ (AT,R ∪AL,B);
see Fig. 18a. It directly follows from the extremal choice of λR, λT and λL that there is no leader
in L that intersects both A1 to A2. In particular, no left leader intersects A1 and no right leader
intersects A2. Thus, A1 and A2 split L into independent planar solutions L1 and L2 of two two-
sided instances I21 and I22 induced by A1 and A2, respectively. Note that the algorithm considers
the same two-sided instances independently from each other. As I21 has a solution, namely L1, we
know that the dynamic program finds a solution L21 for I21 . In particular, all leaders of L21 lie in
A1.

Applying symmetric arguments for I22 , the algorithm yields a planar solution L22 that stays
in A2. Consequently, combining L21 and L22 into one solution yields a planar solution L31 for I31 .
Analogously, we obtain a planar solution L32 for I32 . Obviously, due to the separation by λL, λR
and h′, the union of L31 and L32 is also planar, which is the overall solution returned by the algo-
rithm. This proves the second statement of the lemma.

Let us analyze the running time of the algorithm. Obviously, there are O(n5) possible com-
binations of left and right extremal leaders and a horizontal line separating the top and bottom-
labeled sites. For each combination, we independently solve two three-sided instances. For such
a three-sided instance, we consider O(n2) choices for the extremal leader λT and independently
solve two independent two-sided instances with Theorem 2 in O(n2) time. This implies that solv-
ing one three-sided instances takes O(n4) time. Thus, the overall running time is O(n9). The
following theorem summarizes this result.

Theorem 7. FOUR-SIDED BOUNDARY LABELING can be solved in O(n9) time using O(n)
space.

Note that, except for the length minimization, our approach for the four-sided case also car-
ries over to the extensions from Section 4, because we only solve subinstances of TWO-SIDED

BOUNDARY LABELING WITH ADJACENT SIDES. In particular with corresponding impact on the
running time we can soften the restriction that the number of labels and sites is equal.

6 Conclusion

In this paper, we have studied the problem of testing whether an instance of TWO-SIDED BOUND-
ARY LABELING WITH ADJACENT SIDES admits a planar solution. We have given the first effi-
cient algorithm for this problem, running in O(n2) time.

Our algorithm can also be used to solve a variety of different extensions of the problem.
We have shown how to generalize to sliding ports instead of fixed ports without increasing the
running time and how to maximize the number of labeled sites such that the solution is planar
in O(n3 log n) time. We further have given an extension to the algorithm that minimizes the total
leader length in O(n8 log n) time.

With some additional work, our approach can also be used to solve THREE-SIDED and FOUR-
SIDED BOUNDARY LABELING in polynomial time. We have introduced an algorithm solving the
three-sided case in O(n4) time and the four-sided case in O(n9) time. Also, except for the length
minimization, all extensions carry over. It remains open whether a minimum length solution of
THREE-SIDED and FOUR-SIDED BOUNDARY LABELING can be computed in polynomial time.
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