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Abstract

It is shown that every simple polygon in general position with n walls can be illuminated
from a single point light source s after at most b(n− 2)/4c diffuse reflections, and this bound
is the best possible. A point s with this property can be computed in O(n log n) time. It is also
shown that the minimum number of diffuse reflections needed to illuminate a given simple
polygon from a single point can be approximated up to an additive constant in polynomial
time.

1 Introduction
When light diffusely reflects off of a surface, it scatters in all directions. This is in contrast to
specular reflection, where the angle of incidence equals the angle of reflection. We are interested
in the minimum number of diffuse reflections needed to illuminate all points in the interior of
a simple polygon P with n vertices from a single light source s in the interior of P . A diffuse
reflection path is a polygonal path γ contained in P such that every interior vertex of γ lies in the
relative interior of some edge of P , and the relative interior of every edge of γ lies in the interior
of P (see Fig. 1 for an example). Our main result is the following.

Theorem 1. For every simple polygon P with n ≥ 3 vertices in general position (i.e., no three
collinear vertices), there is a point s ∈ int(P ) such that for all t ∈ int(P ), there is a diffuse
reflection path from s to t with at most b(n− 2)/4c internal vertices. This lower bound is the best
possible. A point s ∈ int(P ) with this property can be computed in O(n log n) time.

This result is, in fact, a tight bound on the worst-case diffuse reflection radius (defined below)
for simple polygons. Denote by Vk(s) ⊆ P the part of the polygon illuminated by a light source
s after at most k diffuse reflections. Formally, Vk(s) is the set of points t ∈ P such that there is
a diffuse reflection path from s to t with at most k interior vertices. Hence, V0(s) is the visibility
polygon of point s within the polygon P if s ∈ int(P ). The diffuse reflection depth of a point
s ∈ int(P ) is the smallest integer r ≥ 0 such that int(P ) ⊆ Vr(s). The diffuse reflection radius
R(P ) of a simple polygon P is the minimum diffuse reflection depth over all points s ∈ int(P ),
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Figure 1: (a) A diffuse reflection path between s to t in a simple polygon P . (b)–(d) The regions of
a polygon illuminated by a light source s after 0, 1, and 2 diffuse reflections. The diffuse reflection
radius of a zig-zag polygon with n vertices is b(n− 2)/4c.

and diffuse reflection center of P is the set of points s ∈ int(P ) that attain this minimum. With
this terminology, Theorem 1 implies that R(P ) ≤ b(n− 2)/4c for every simple polygon P with
n ≥ 3 vertices in general position. A family of zig-zag polygons (e.g. the polygon in Fig. 1) shows
that this bound is the best possible for all n ≥ 3. We note here that the diffuse reflection diameter
D(P ) of P is the maximum diffuse reflection depth over all s ∈ int(P ).

No polynomial-time algorithm is known for computing R(P ) for a given polygon P with n
vertices. We show, however, that R(P ) can be approximated up to a constant additive error in
polynomial time.

Theorem 2. Given a simple polygon P with n vertices in general position, one can compute in
time polynomial in n:

1. an integer k ∈ N0 such that k − 1 ≤ R(P ) ≤ k + 1, and

2. a point s ∈ int(P ) such that int(P ) ⊆ Vk+1(s).

Motivation and Related Work. Diffuse reflection paths are special cases of link paths, which
have been studied extensively due to applications in motion planning, robotics, and curve compres-
sion [17, 28]. The link distance between two points, s and t, in a simple polygon P is the minimum
number of edges in a polygonal path between s and t that lies entirely in P . In a polygon P with n
vertices, the link distance between two points can be computed in O(n) time [32]. The link depth
of a point s is the smallest integer d ≥ 0 such that all other points in P are within link distance d
of s. The link radius is the minimum link depth over all points in P , and the link center is the set
of points with minimum link depth. It is known that the link center is a convex region and can be
computed in O(n log n) time [16]. The link diameter of P , the maximum link depth over all points
in P , can also be computed in O(n log n) time [33].

The geodesic center of a simple polygon is a point inside the polygon which minimizes the
maximum shortest-path distance (also known as geodesic distance) to any point in the polygon.
Asano and Toussaint [5] proved that the geodesic center is unique. Pollack et al. [30] show how
to compute the geodesic center of a simple polygon with n vertices in O(n log n) time; this was
recentpy improved to O(n) time by Ahn et al. [2]. Hershberger and Suri [22] give an O(n) time
algorithm for computing the geodesic diameter. Schuirer [31] gives O(n) time algorithms for the
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geodesic center and diameter under the L1 metric in rectilinear polygons. Bae et al. [6] show that
the L1-geodesic diameter and center can be computed in O(n) time in every simple polygon with
n vertices.

Diffuse reflection paths have received increasing attention since the mid-1990s when Tokarsky [34]
answered a question of Klee [24, 25], proving that a light source may not cover the interior of the
simple polygon using specular reflection (where the angle of incidence equals the angle of reflec-
tion in the reflection path). He constructed a simple polygon P and two points s, t ∈ int(P ) such
that there is no specular reflection path from s to t. It is not difficult to see that all points t ∈ int(P )
can be reached from any s ∈ int(P ) on a diffuse reflection path. However, the maximum number
of reflections, in terms of the number of vertices, have been determined only recently. Barequet
et al. [7] proved, confirming a conjecture by Aanjaneya et al. [1], that D(P ) ≤ bn/2c − 1 for all
simple polygons with n vertices, and this bound is the best possible.

The link distance, geodesic distance and the L1-geodesic distance are all metrics; but the mini-
mum number of edges on a diffuse reflection path between two points is not a metric. Specifically,
the triangle inequality need not hold (note that for a, b, c ∈ int(P ), the concatenation of an two
diffuse reflection paths, a-to-b and b-to-c, need not be a diffuse reflection path since it may have an
interior vertex at b ∈ int(P )). This explains, in part, the difficulty of handling diffuse reflections.
Brahma et al. [10] constructed examples where V2(s) (the set of points reachable from s after at
most two diffuse reflections) is not simply connected, and where V3(s) has Ω(n) holes. In general,
the maximum complexity of Vk(s) is known to be Ω(n2) and O(n9) [3]. In contrast to link paths,
the best known algorithm for computing a minimum diffuse reflection path (one with the mini-
mum number of reflections) between two points in a simple polygon with n vertices takes O(n9)
time [3, 17]. Ghosh et al. [18] give a 3-approximation for this problem that runs in O(n2) time.
Bishnu et al. [8] define a constrained version of diffuse reflection paths that can be computed in
O(n3) time.

Khan et al. [23] study two weaker models of diffuse reflections, in which some edges of a
diffuse reflection path may overlap with the boundary of the polygon P . They establish upper and
lower bounds for the diffuse reflection radius under these weaker models for simple polygons that
can be decomposed into convex quadrilaterals. No previous bound has been known for the diffuse
reflection radius under the standard model that we use in this paper.

Proof Technique. The regions Vk(s) are notoriously difficult to handle. Instead of Vk(s), we
rely on the simply connected regions Rk(s) ⊆ Vk(s) defined by Barequet et al. [7] and show that
int(P ) ⊆ Rb(n−2)/4c(s) for some point s ∈ int(P ). In Section 2, we establish a simple sufficient
condition (Lemma 1) for int(P ) ⊆ Rb(n−2)/4c(s) in terms of the visibility polygon V0(s) that can
be verified in O(n) time. Except for two extremal cases that are resolved directly (Section 2.4), we
prove that there exists a point satisfying these conditions in Section 3.

The two main geometric tools we use are a generalization of a kernel of a simple polygon
(Section 3.1) and the weak visibility polygon for a line segment (Section 3.2). Finally, the exis-
tential proof can be turned into an efficient algorithm: the generalized kernel can be computed in
O(n log n) time, and the visibility polygon for a point moving along a line segment can be main-
tained with a persistent data structure. The combination of these methods helps finding a witness
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point s ∈ int(P ) with int(P ) ⊆ Vb(n−2)/4c(s) in O(n log n) time.

2 Preliminaries
For a set U ⊂ R2 in the plane, let int(U) denote the interior, ∂U the boundary, and cl(U) the
closure of U . Let P be a simply connected closed polygonal domain (for short, simple polygon)
with n vertices. A chord of P is a closed line segment ab such that a, b ∈ ∂P and the relative
interior of ab is in int(P ).

We assume that the vertices of P are in general position (that is, no three collinear vertices),
and we only consider light sources s ∈ int(P ) that do not lie on any line spanned by two vertices
of P . Recall that V0(s) is the visibility polygon of the point s ∈ int(P ) with respect to P . The
pockets of V0(s) are the connected components of P \ cl(V0(s)). See Fig. 2(a) for examples. The
common boundary of V0(s) and a pocket is a chord ab of P (called a window) such that a is a reflex
vertex of P that lies in the relative interior of segment sb. We say that a pocket with a window
ab is induced by the reflex vertex a. Note that every reflex vertex induces at most one pocket of
V0(s). We define the size of a pocket as the number of vertices of P on the boundary of the pocket.
Since the pockets of V0(s) are pairwise disjoint, the sum of the sizes of the pockets is at most n,
the number of vertices of P .

s
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b2

b1 b3

a3

U1

U2

U3

⇒

P

V0(s) = R0

s
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b1

a3

P

R1

(a) (b)

b3

b2

W1
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Figure 2: (a) A polygon P where V0(s) has three pockets U1, U2 and U3, of size 4, 4, and 5,
respectively. The left pockets are U1 and U2, the only right pocket is U3. Pocket U1 is independent
of both U2 and U3; but U2 and U3 are dependent. (b) The construction of region R1 from R0 =
V0(s) in [7]. Pocket U1 is saturated, and pockets U2 and U3 are unsaturated.

A pocket is a left (resp., right) pocket if it lies on the left (resp., right) side of the directed line−→
ab. Two pockets of V0(s) are dependent if some chord of P crosses the window of both pockets;
otherwise they are independent. One pocket is called independent if it is independent of all other
pockets.
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Proposition 1. All left (resp., right) pockets of V0(s) are pairwise independent.

Proof. Consider two left pockets of V0(s), lying on the left side of the windows
−−→
a1b1 and

−−→
a2b2,

respectively (see Fig. 2(a)). Suppose, for contradiction, that some chord ` of P intersects both
windows. Let `′ ⊂ ` be the segment of ` between a1b1 and a2b2. Segment `′ lies in the right
halfplane of both

−−→
a1b1 and

−−→
a2b2. The intersection of these two halfplanes is a wedge with the apex

at s, and either a1b1 or a2b2 is not incident to this wedge. This contradiction implies that no chord
` can cross both windows a1b1 and a2b2.

The main result of Section 2 is a sufficient condition (Lemma 1) for a point s ∈ int(P ) to fully
illuminate int(P ) within b(n− 2)/4c diffuse reflections. The proof of the lemma is postponed to
the end of Section 2. It relies on the techniques developed by Barequet et al. [7] and the bound
D(P ) ≤ bn/2c − 1 on the diffuse reflection diameter.

Lemma 1. We have int(P ) ⊆ Vb(n−2)/4c(s) for a point s ∈ int(P ) if the pockets of V0(s) satisfy
these conditions:

C1 every pocket has size at most bn/2c − 1; and
C2 the sum of the sizes of any two dependent pockets is at most bn/2c − 1.

2.1 Review of regions Rk.
We briefly review the necessary tools developed by Barequet et al. [7]. Let s ∈ int(P ) be a point
in general position with respect to the vertices of P . Recall that Vk(s), the set of points reachable
from s with at most k diffuse reflections, is not necessarily simply connected when k ≥ 1 [10].
Instead of tackling Vk(s) directly, Barequet et al. [7] recursively define simply connected regions
Rk = Rk(s), where Rk(s) ⊆ Vk(s), for all k ∈ N0. For k = 0, we have R0 = V0(s). We now
review howRk+1 is constructed fromRk. Each regionRk is bounded by chords of P and segments
along the boundary ∂P . The connected components of P \ cl(Rk) are the pockets of Rk. Each
pocket Uab of Rk is bounded by a chord ab such that a is a reflex vertex of P , b is an interior point
of an edge of P , and the two edges of P incident to a are on the same side of the line ab (these
properties are maintained recursively for Rk).

A pocket Uab of Rk is saturated if every chord of P that crosses ab has one endpoint in Rk and
the other endpoint in Uab. Otherwise, Uab is unsaturated. Recall that for a point s′ ∈ P , V0(s′) is
the set of points in P visible from s′. We also introduce an analogous notation for a line segment
pq ⊆ P : let V0(pq) denote the set of points in P visible from any point in pq.

For a given point s ∈ int(P ), the regions Rk are defined as follows (refer to Fig. 2(b)). Let
R0 = V0(s). If int(P ) ⊆ Rk, then let Rk+1 = cl(Rk) = P . If int(P ) 6⊆ Rk, then Rk has at
least one pocket. For each pocket Uab, we define a set Wab ⊆ Uab: If Uab is saturated, then let
Wab = V0(ab) ∩ Uab. If Uab is unsaturated, then let pab ∈ Rk ∩ ∂P be a point close to b such that
no line determined by two vertices of P separates b and pab; and then let Wab = V0(pab)∩Uab. Let
Rk+1 be the union of cl(Rk) and the sets Wab for all pockets Uab of Rk. Barequet et al. [7] prove
that Rk ⊆ Vk(s) for all k ∈ N0.
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Remark 1. Note that when a pocket Uab is unsaturated, then pab is an interior point of some edge
e of P . Since light does not propagate along the edge e, the regions Wab and Rk+1 do not contain
e∩Uab. Consequently, there is a fine difference between independent and saturated pockets. Every
saturated pocket of Rk is independent from all other pockets (by definition), but an independent
pocket of Rk is not necessarily saturated. In Fig. 3 (a), U1 and U2 are dependent pockets of R0;
region R1 covers the interior of U2, but not its boundary, and it has a pocket U5 ⊂ U1. Even though
U5 is independent of all other pockets of R1(s), it is unsaturated: a chord between U5 and the
uncovered part of U2 crosses a5b5. Since s is in general position, this phenomenon does not occur
for k = 0, and every independent pocket of V0(s) is saturated.

s a1

a2

b2b4 b3

a3

U1

U2
U3

⇒

P

R0

(a) (b)

a4

U4U4

b1

a1 s

U6

P

R1

U7

U5

a5a5

b5

Figure 3: (a) A polygon P where R0 = V0(s) has four unsaturated pockets: U1, . . . , U4. (b) The
white lines on the boundary ofR1 are not part ofR1. Consequently, pocket U5 ofR1 is unsaturated,
although it is independent of all other pockets. Pockets U6 and U7 of R1 are independent and
saturated.

We say that a region Rk weakly covers an edge of P if the boundary ∂Rk intersects the relative
interior of that edge. On the boundary of every pocket Uab of Rk, there is an edge of P that Rk

does not weakly cover, namely, the edge of P incident to a. We call this edge the lead edge of Uab.
The following observation follows from the way the regions Rk are constructed in [7].

Proposition 2 ([7]). For every pocket U of regionRk, k ∈ N0, the lead edge of U is weakly covered
by region Rk+1 and is not weakly covered by Rk.

Proposition 3. If a pocket Uab of V0(s) has size m, then Rk weakly covers at least min(k + 1,m)
edges of P on the boundary of U .

Proof. For every k ∈ N0, let µk denote the number of edges of P on the boundary of Uab that
are weakly covered by Rk. Uab is bounded by a chord and m edges of P . One of these edges
(the edge that contains b) is weakly covered by V0(s), hence µ0 ≥ 1. Since Rk ⊆ Rk+1 for all
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k ∈ N0, µk is monotonically increasing, and every pocket of Rk that intersects U is contained in
Uab. In each pocket of Rk, by Proposition 2, region Rk+1 weakly covers at least one new edge of
P . Consequently, we have µk+1 ≥ min(µk + 1,m) for all k ∈ N0. Induction on k ∈ N0 yields
µk ≥ min(k + 1,m).

2.2 Incrementally covering the pockets of V0(s)
In this subsection, we present three technical lemmas that yield upper bounds on the minimum k
for which Vk(s) contains the interior of a given pocket of V0(s). The following lemma is a direct
consequence of Proposition 3. It will be used for unsaturated pockets of V0(s).

Lemma 2. If U is a size-m pocket of V0(s), then int(U) ⊆ Rm−1.

Proof. By Proposition 3, Rm−1 weakly covers all edges of P on the boundary of U . Consequently,
U cannot contain any pocket of Rm−1 (otherwise U ∩Rm would weakly cover at least m+ 1 edges
by Proposition 2). Thus int(U) ⊆ Rm−1, as claimed.

For saturated pockets, the diameter bound [7] allows a better result.

Lemma 3. If U is a size-m saturated pocket of Rk, then int(U) ⊆ Rk+bm/2c.

Proof. Let ab be the window of U . Since a is a reflex vertex of P , it is a convex vertex of the
pocket U . Refer to Fig. 4. Since Uab is saturated, every chord that crosses ab is part of a diffuse
reflection path that starts at s and enters the interior of Uab after at most k reflections.

s

a

b Uab

U2

U3

⇒

P

V0(s) = R0

(a) (b)

a

Uab

s′

P ′

x

y

b

Figure 4: (a) A polygon P from Fig. 2 with saturated pocket Uab. (b) Polygon P ′ for the pocket
U1.

We construct a polygon P ′ with m+ 2 vertices and a point s′ ∈ int(P ′) such that U is a pocket
of V0(s′) in P ′, and every chord of P ′ that crosses ab is part of a diffuse reflection path that starts at
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s and enters the interior of U after one reflection in P ′. The polygon P ′ is bounded by the common
boundary ∂P ∩ U and a polygonal path (a, x, y, b), where x is in a small neighborhood of a such
that x and U lie on the same side of line ab, and y lies on the edge of P that contains b in the
exterior of U . Place s′ ∈ int(P ′) on the line ab such that a is in the relative interior of s′b.

Polygon P ′ hasm+2 vertices (since b lies in the interior of an edge of P ). The diffuse reflection
diameter of a polygon with m + 2 vertices is b(m+ 2)/2c − 1 = bm/2c from [7]. Consequently,
every point t ∈ int(U) can be reached from s′ after at most bm/2c diffuse reflections in P ′. Since
a reflection path from s′ to any point t ∈ int(U) in P ′ corresponds to an s-to-t reflection path in
the original polygon P with at most k more reflections, every t ∈ int(U) can be reached from s
after at most k + bm/2c diffuse reflections in P .

Lemmas 2 and 3 yield the following for dependent pockets of V0(s).

Lemma 4. Let U be a pocket of V0(s) of size m. If each pocket dependent on U has size at most
m′ < m, then int(U) ⊆ Rb(m+m′)/2c.

Proof. For every k ∈ N0, let µk denote the number of edges of P on the boundary of U that are
weakly covered by Rk. We have µ0 = 1, and if µk = m, then int(U) ⊆ Rk. By Proposition 3,
µm′ ≥ m′ + 1 (i.e., at most m−m′ − 1 more edges have to be weakly covered).

By Lemma 2, Rm′−1 contains the interior of all pockets of V0(s) that depend on U . Con-
sequently, if Rm′−1 has only one pocket inside U , it must be independent (but not necessarily
saturated, cf. Remark 1). By definition, cl(Rm′−1) ⊆ Rm′ , and so Rm′ also contains the bound-
aries of all pockets of V0(s) that depend on U . Consequently, if Rm′ has exactly one pocket inside
U , it must be saturated.

We distinguish between two possibilities. First assume µm′+k ≥ min(m′ + 2k + 1,m) for all
k ≥ 1 (that is, at least two more edges in U get weakly covered until all edges in U are exhausted).
Then int(U) ⊆ Rm′+d(m−m′−1)/2e = Rb(m+m′)/2c.

Otherwise, let k ≥ 1 be the first index such that µm′+k = m′ + 2k < m. Since µm′+k−1 ≥
m′+2(k−1)+1 = m′+2k−1 by assumption and µm′+k ≥ µm′+k−1+1 by Proposition 2, we have
µm′+k = µm′+k−1 + 1. This means that Rm′+k−1 has exactly one pocket in U , say Uab ⊂ U , and
Rm′+k+1 weakly covers only one new edge of Uab (e.g., pocket U5 ⊂ U1 in Fig. 3). This is possible
only if Uab is unsaturated. Then the region Rm′+k is extended by Wab = V0(pab) for a point pab
close to b. Since Wab weakly covers only one new edge, the lead edge of Uab, which incident to a.
Therefore, Wab is a triangle bounded by ab, the lead edge of Uab, and the edge the contains b. It
follows that Rm′+k also has exactly one pocket in U , say Ua′b′ , where the window a′b′ is collinear
with the edge of P that contains b. Hence the pocket Ua′b′ is saturated: of every chord that crosses
a′b′, one endpoint is either in Wab ⊂ Rm′+k+1 or in cl(Rm′+k) ⊂ Rm′+k+1. By Lemma 3, the
interior of this pocket is contained in Rm′+k+d(m−m′−2k−1)/2e = Rb(m+m′)/2c, as claimed.

2.3 Proof of Lemma 1
We prove a slightly more general statement than Lemma 1.

Lemma 5. We have int(P ) ⊆ Vk(s) if the pockets of V0(s) satisfy these conditions:
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1. every pocket has size at most 2k + 1; and
2. the sum of the sizes of any two dependent pockets is at most 2k + 1.

Proof. Consider the pockets of V0(s). By Lemma 2, the interior of every pocket of size at most
k + 1 is contained in Rk. It remains to consider the pockets U of size m for k + 2 ≤ m ≤ 2k + 1.
We distinguish between two cases.
Case 1: a pocket U of size m is independent of all other pockets of V0(s). Then U is saturated
(cf. Remark 1). By Lemma 3, the interior of U is contained in Rbm/2c ⊆ Rk ⊆ Vk(s).
Case 2: a pocket U of size m is dependent on some other pockets of V0(s). Any other pocket
dependent on U has size at most m′ = 2k + 1 −m ≤ k − 1 < m by our assumption. Lemma 4
implies that the interior of U is contained in Rb(m+(2k+1−m))/2c = Rk ⊆ Vk(s).

of Lemma 1. Invoke Lemma 5 with k = b(n− 2)/4c, and note that 2k+ 1 = 2b(n− 2)/4c+ 1 ≥
bn/2c − 1.

2.4 Double Violators
Recall that the sum of sizes of the pockets of V0(s) is at most n, the number of vertices of P .
It is, therefore, possible that several pockets or dependent pairs of pockets violate conditions C1

or C2 in Lemma 1. We say that a point s ∈ int(P ) is a double violator if V0(s) has either (i)
two disjoint pairs of dependent pockets, each pair with total size at least bn/2c, or (ii) a pair of
dependent pockets of total size at least bn/2c and an independent pocket of size at least bn/2c.
(We do not worry about the possibility of two independent pockets, each of size at least bn/2c.) In
this section, we show that if there is a double violator s ∈ int(P ), then there is a point s′ ∈ int(P )
(possibly s′ = s) for which int(P ) ⊆ Vb(n−2)/4c(s′), and such an s′ can be found in O(n) time.

The key technical tool is the following variant of Lemma 4 for a pair of dependent pockets that
are adjacent to a common edge (that is, share an edge).

Lemma 6. Let Uab and Ua′b′ be two dependent pockets of V0(s) such that neither is dependent on
any other pocket, and points b and b′ lie in the same edge of P . Let the size of Uab be m and Ua′b′
be m′. Then Rb(m+m′−1)/2c contains the interior of both Uab and Ua′b′ .

Proof. For every k ∈ N0, let µk (resp., µ′k) denote the number of edges of P on the boundary of
Uab (resp., Ua′b′) that are weakly covered by Rk. We have µ0 = 1 and µ′0 = 1 (the edge containing
b and b′ is weakly covered by V0(s)). Proposition 2 guarantees µ1 + µ′1 ≥ 4. If µ1 + µ′1 ≥ 5, then
the proof of Lemma 4 readily implies thatRb(m+m′−1)/2c contains the interior of both Uab and Ua′b′ .

Assume now that µ1 + µ′1 = 4. This means that R1 weakly covers precisely one new edge
from each of Uab and Ua′b′ . Recall that Uab and Ua′b′ are unsaturated, and R1 covers the part of Uab
(resp., Ua′b′) visible from a point near b (resp., b′). See Fig. 5(a). It follows that R1 has exactly one
pocket in each of Uab and Ua′b′ , and both pockets are on the same side of the line bb′. Hence these
pockets are saturated. They have size m−1 and m′−1, respectively. By Lemma 3, the interiors of
both Uab and Ua′b′ are covered by R1+bmax(m−1,m′−1)/2c = Rb(max(m,m′)+1)/2c ⊆ Rb(m+m′−1)/2c.
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Figure 5: A polygon P with n = 13 vertices where V0(s) has four pockets: two pairs of dependent
pockets, the sum of sizes of each pair is bn/2c = 6. (a) One extra vertex lies on ∂P between two
independent pockets. (b) One extra vertex lies on ∂P between two dependent pockets.

Lemma 7. Suppose that V0(s) has two disjoint pairs of dependent pockets, each pair of total size
at least bn/2c. Then there is a point s′ ∈ int(P ) such that int(P ) ⊆ Vb(n−2)/4c(s′), and such a
point s′ can be computed in O(n) time.

Proof. The sum of the sizes of these four pockets is at least 2bn/2c. If n is even, then the two
dependent pairs each have size n/2, they use all n vertices of P , and both dependent pairs share an
edge. If n is odd, then either (i) the two dependent pairs have sizes bn/2c and dn/2e, resp., using
all n vertices of P , and both dependent pairs share an edge; or (ii) the two dependent pairs each
have size bn/2c, leaving one extra vertex, which may lie on the boundary between two independent
pockets (Fig. 5(a)), or between two dependent pockets (Fig. 5(b)). In all cases, there is at least one
dependent pair with joint size bn/2c that share an edge.

If the two dependent pairs each have size bn/2c and each share an edge (Fig. 5(a)), then their
interiors are covered byRk for k = b(bn/2c − 1)/2c = b(n− 2)/4c by Lemma 6. This completely
resolves that case that n is even.

Assume now that n is odd. Denote the four pockets by U1, . . . , U4, induced by the reflex
vertices a1, . . . , a4 in counterclockwise order along ∂P , such that U1 and U2 are dependent with
joint size bn/2c and share an edge; and U3 and U4 are dependent but either has joint size dn/2e
or do not share any edge. Refer to Fig. 5(b). Note that a2a3 and a4a1 are edges of P . Let W
be the wedge bounded by the rays −→a1s and −→a2s (and disjoint from both a1 and a2). For every
point s′ ∈ int(P ) ∩W in this wedge, a1 and a2 induce pockets U ′1 and U ′2, respectively, such that
U1 ⊆ U ′1 and U2 ⊆ U ′2, and they also share an edge. Compute the intersection of region int(P )∩W
with the two lines containing the lead edges of U3 and U4. Let w be a closest point to s on these
segments, and let s′ ∈ int(P ) ∩W be a point close to w in general position such that it can see
all of the lead edge for U3 or U4. By construction, vertex a3 or a4 is not incident to any pocket of
V0(s

′). Consequently, the total size of all pockets of V0(s′) in U3 and U4 is at most bn/2c − 1. By
Lemmas 1 and 6, Vb(n−2)/4c(s′) contains the interiors of all pockets of V0(s′), as claimed.

10



(a)

s

a2

b3

a3

U1

U2

U3

b1a1

P

V0(s)

v3

(b)

s

a2

b2

b3

a3

U1

U2

U3
V0(s)

b1
a1

P

s′
V0(s)

v3

b2

s′

Figure 6: A polygon P with n = 13 vertices where V0(s) has three pockets: two dependent
pockets of total size bn/2c = 6 and an independent pocket of size bn/2c = 6. (a) One extra
vertex lies on ∂P between two independent pockets. (b) One extra vertex lies on ∂P between two
dependent pockets

Lemma 8. Suppose that V0(s) has a pair of dependent pockets of total size at least bn/2c and
an independent pocket of size at least bn/2c. Then there is a point s′ ∈ int(P ) with int(P ) ⊆
Vb(n−2)/4c(s′), and s′ can be computed in O(n) time.

Proof. The sum of the sizes of these three pockets is at least 2bn/2c. This implies that V0(s) has
no other pocket, and so the independent pocket is saturated (cf. Remark 1). If n is even, then the
two dependent pockets have total size n/2 and share an edge, and the independent pocket has size
n/2. If n is odd, then either (i) the three pockets use all n vertices of P , and the dependent pockets
share an edge (Fig. 6(a)); or (ii) the dependent pair and the independent pocket each have size
bn/2c, leaving one extra vertex, which may lie on the boundary between two independent pockets,
or between two dependent pockets (Fig. 6(b)). Denote the three pockets by U1, U2, and U3, induced
by the reflex vertices a1, a2, and a3 in counterclockwise order along ∂P , such that U1 and U2 are
dependent; and U3 is independent. By Proposition 1, U1 and U2 have opposite orientation, so we
may assume without loss of generality that U2 and U3 have opposite orientation (say, left and right).

First suppose that U3 has size dn/2e. Refer to Fig. 6(a). Then U1 and U2 have joint size bn/2c
and share an edge, and by Lemma 6, Rb(n−2)/4c contains the interior of both U1 and U2. Since all
n vertices are incident to pockets, a2a3 is an edge of P , and a1b3 is contained in an edge of P ,
say a1b2 ⊂ a1v3. Since a3b3 is a window of V0(s), the supporting line of a2a3 intersects segment
a1b3. Let s′ ∈ int(p) be a point close to the intersection of line a2a3 and segment a1b3. Then a1
and a2 induce pockets U ′1 and U ′2, respectively, such that U1 ⊆ U ′1, U2 ⊆ U ′2, and they share an
edge. Both vertex v3 and the lead edge of U3 are directly visible from s′, they are not part of any
pocket of V0(s′). Consequently, the total size of pockets of V0(s′) inside U3 is at most dn/2e − 2.
By Lemma 1, Vb(n−2)/4c(s′) contains the interiors of all pocket of V0(s′).

Now suppose that n is odd and U3 has size bn/2c. Refer to Fig. 6(b). Denote the edge of
P that contains b3 by u3v3 such that v3 ∈ ∂U3 (and possibly u3 = a1). Let s′ ∈ int(P ) be a
point in a small neighborhood of u3. Then s′ directly sees v3, and similarly to the previous case,
Vb(n−2)/4c(s′) contains the interior of all pockets of V0(s′) inside U3. If U1 and U2 jointly have size
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dn/2e = bn/2c + 1, then they share an edge and u3 = a1. In this case s′ can see the lead edge of
U1, the total size of all pockets of V0(s′) inside U1 and U2 is at most bn/2c, and if it equals bn/2c,
then two of those pockets are dependent and share an edge. If U1 and U2 jointly have size bn/2c,
then P has one “unaffiliated” vertex that does not belong to any pocket of V0(s′) (Fig. 6(b)). If
u3 = a1, then s′ can see the lead edge of U1, and thus the total size of all pockets of V0(s′) inside
U1 and U2 is at most bn/2c−1. If u3 6= a1, then the unaffiliated vertex is u3, hence U1 and U2 share
an edge. Consequently, the total size of all pockets of V0(s′) inside U1 and U2 is at most bn/2c,
and if it equals bn/2c, then two of those pockets are dependent and share an edge. By Lemmas 1
and 6, int(P ) ⊆ Vb(n−2)/4c(s′).

3 Finding a Witness Point
In Section 3.1, we show that in every simple polygon P in general position, there is a point
s ∈ int(P ) that satisfies condition C1. In Section 3.2, we pick a point s ∈ int(P ) that satis-
fies condition C1, and move it continuously until either (i) it satisfies both conditions C1 and C2,
or (ii) it becomes a double violator. In both cases, we find a witness point for Theorem 1 (by
Lemmas 1, 7, and 8).

3.1 Generalized Kernel
Let P be a simple polygon with n vertices. Recall that the set of points from which the entire
polygon P is visible is the kernel of P , denoted K(P ), which is the intersection of all halfplanes
bounded by a supporting line of an edge of P and facing towards the interior of P . Lee and
Preparata [26] designed an optimal O(n) time algorithm for computing the kernel of simple poly-
gon with n vertices. We now define a generalization of the kernel. For an integer q ∈ N0, letKq(P )
denote the set of points s ∈ int(P ) such that every pocket of V0(s) has size at most q. Clearly,
K(P ) = K0(P ) = K1(P ), and Kq(P ) ⊆ Kq+1(P ) for all q ∈ N0. The set of points that satisfy
condition C1 is Kbn/2c−1(P ).

P

vivi−4

L4(vi)

P

K4(P )

vi

M4(vi)

(a) (b) (c)

vi+4

ai `i

bi

riri
vi−1 vi−1

vi+1vi+1

Figure 7: (a) Polygon L4(vi). (b) Polygon M4(vi). (c) Polygon K4(P ).

For every reflex vertex v, we define two polygons Lq(v) ⊂ P and Mq(v) ⊂ P : let Lq(v) (resp.
Mq(v)) be the set of points s ∈ P such that v does not induce a left (resp., right) pocket of size
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more than q in V0(s). We have

Kq(P ) =
⋂
v reflex

(Lq(v) ∩Mq(v)) .

We show how to compute the polygons Lq(v) and Mq(v). Refer to Fig. 7. Denote the vertices
of P by (v0, v1, . . . , vn−1), and use arithmetic modulo n on the indices. For a reflex vertex vi, let
viai be the first edge of the shortest (geodesic) path from vi to vi−q in P . If the chord viai and
vivi+1 meet at a reflex angle, then viai is on the boundary of the smallest left pocket of size at least
q induced by vi (for any source s ∈ P ). In this case, the ray −→aivi enters the interior of P , and
we denote by `i the first point hit on ∂P . The polygon Lq(vi) is the part of P lying on the left of
the chord

−→
vi`i. However, if the chord viai and vivi+1 meet at convex angle, then every left pocket

induced by vi has size less than q, and we have Lq(vi) = P . Similarly, let vibi be the first edge of
the shortest path from vi to vi+q. Vertex vi can induce a right pocket of size more than q only if bivi
and vivi−1 make a reflex angle. In this case, vibi is the boundary of the largest right pocket of size
at most q induced by vi, the ray

−→
bivi enters the interior of P , and hits ∂P at a point mi, and Mq(vi)

is the part of P lying on the right of the chord −−→vimi. if bivi and vivi−1 meet at a convex angle, then
Mq(vi) = P .

Note that every set Lq(vi) (resp., Mq(vi)) is P -convex (a.k.a. geodesic convex), that is, Li(vi)
contains the shortest path between any two points in Lq(vi) with respect to P [6, 15, 35]. Since
the intersection of P -convex polygons is P -convex, Kq(P ) is also P -convex for every q ∈ N0.
There exists a point s ∈ int(P ) satisfying condition C1 if and only if Kbn/2c−1(P ) is nonempty.
We prove Kbn/2c−1(P ) 6= ∅ using a Helly-type result by Breen [11] (cf. [12, 29]).

Theorem 3 ([11]). Let P be a family of simple polygons in the plane. If every three (not neces-
sarily distinct) members of P have a simply connected union and every two members of P have a
nonempty intersection, then

⋂
P∈P P 6= ∅.

K6(P )

(a) (b)

bn
2
c

bn
2
c

bn
2
c

P

hole

vi
vj
vk

bn
2
c

vi−q
vj+q

vk−q

Lq(vi)

Lq(vk)

Mq(vj)

Figure 8: (a) A simple polygon P with n = 14 vertices, and the generalized kernelKbn/2c−1(P ) =
K6(P ). (b) A schematic picture of a triangular hole in the union of three polygons in P .
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Lemma 9. For every simple polygon P with n ≥ 3 vertices, Kbn/2c−1(P ) has nonempty interior.

Proof. When n = 3, we have Kbn/2c−1(P ) = K0(P ) = P . Now assume n > 3.
We apply Theorem 3 for the polygons Lbn/2c−1(vi) and Mbn/2c−1(vi) for all reflex vertices vi

of P . By definition, Lbn/2c−1(vi) is incident to vi−bn/2c+1, . . . , vi on or left of −→viai, and similarly
Mbn/2c−1(vi)) is incident to vi, . . . , vi+bn/2c−1 or or right or

−→
vibi. Furthermore, Lbn/2c−1 (resp.,

Mbn/2c−1) is incident to at least one additional vertex right of −→viai (resp., left of
−→
vibi). Thus, each

of these sets is incident to at least bn/2c + 1 vertices of P . Since 2(bn/2c + 1) > n, any two of
these sets are incident to a common vertex of P by the pigeonhole principle.

Recall that Li and Mi are each bounded by part of the boundary of P and possibly a chord
incident to vi. Consequently, if two of these sets are incident to two or more common vertices of
P then their interiors intersect. If they are incident to precisely one common vertex of P , then the
common vertex, say vi, is incident to both boundary chords, hence the two sets are Li and Mi. In
this case, however, vi is a reflex vertex of both Li and Mi, and so their interiors intersect.

It remains to show that the union of any three of them is simply connected. Suppose, to the con-
trary, that there are three sets whose union has a hole. Since each set is bounded by a chord of P ,
the hole must be a triangle bounded by the three chords on the boundary of the three polygons. Re-
fer to Fig. 8(b). Each of these chords is incident to a reflex vertex of P and is collinear with another
chord of P that weakly separates the vertices {vi, vi+1, . . . , vi+bn/2c−1} or {vi, vi−1, . . . , vi−bn/2c+1}
from the hole. Figure 8(b) shows a schematic image. The latter three chords together weakly sep-
arate disjoint sets of vertices of total size at least 3bn/2c > n from the hole, contradicting the fact
that P has n vertices altogether.

By Lemma 9,Kbn/2c−1(P ) has nonempty interior, so there is a light source s ∈ int(Kbn/2c−1(P ))
that satisfies condition C1.

Lemma 10. For every q ∈ N0, Kq(P ) can be computed in O(n log n) time.

Proof. With a shortest path data structure [20] in a simple polygon P , the first edge of the shortest
path between any two query points can be computed in O(log n) time after O(n) preprocessing
time. A ray shooting data structure [21] can answer ray shooting queries in O(log n) time after
O(n) preprocessing time. Therefore, any chord

−→
vi`i or −−→vimi can be computed in O(log n) time.

The generalized kernel Kq(P ) =
⋂

(Lq(vi) ∩Mq(vi)), can be constructed by incrementally
maintaining the intersection K of some sets from {Lq(vi),Mq(vi) : vi is reflex}. In each step, we
compute the intersection of K with Lq(vi) or Mq(vi). Recall that all these sets are P -convex (the
intersection of P -convex sets is P -convex). A chord of P intersects the boundary of a P -convex
polygon K in at most two points, and the intersection points can be computed in O(log n) time
using a ray-shooting query in P (shoot a ray along the chord, and find the intersection points with
binary search along the boundary of K). Thus K can be updated in O(log n) time. Altogether, we
can compute Kq(P ) in O(n log n) time.

3.2 Finding a Witness
In this section, we present an algorithm that, given a simple polygon P with n vertices in general
position, finds a witness s ∈ int(P ) such that int(P ) ⊆ Vb(n−2)/4c(s).
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Let s0 be an arbitrary point in int(Kbn/2c−1(P )). Such a point exists by Lemma 9, and can be
computed in O(n log n) time by Lemma 10. We can compute the visibility polygon V0(s0) and its
pockets in O(n) time [19]. The definition of Kbn/2c−1(P ) ensures that s0 satisfies condition C1 of
Lemma 1. If it also satisfies C2, then s = s0 is a desired witness.

Assume that s0 does not satisfy C2, that is, V0(s0) has two dependent pockets of total size at
least bn/2c, say a left pocket Uab and (by Proposition 1) a right pocket Ua′b′ . We may assume that
Uab is at least as large as Ua′b′ , by applying a reflection if necessary, and so the size of Uab is at
least bn/4c. Refer to Fig. 9(a). Let c ∈ ∂P be a point sufficiently close to b such that segment bc
is disjoint from all lines spanned by the vertices of P , segment s0c is disjoint from the intersection
of any two lines spanned by the vertices of P , and s0c ⊂ P . In Lemma 11 (below), we find a
point on segment s0c that is a witness, or double violator, or improves a parameter (spread) that we
introduce now.

For a pair of dependent pockets, a left pocket Uab and (by Proposition 1) a right pocket Ua′b′ , let
spread(a, a′) be the part of ∂P clockwise from a to a′ (inclusive), and let the size of spread(a, a′)
be the number of vertices of P along spread(a, a′). Note that |spread(a, a′)| is at least the sum of
the sizes of the two dependent pockets, as all vertices incident to the two pockets are counted. For
a pair of pockets of total size at least bn/2c, we have bn/2c ≤ |spread(a, a′)| ≤ n.

We introduce some terminology to trace effects of moving a point s continuously in the interior
of P . The visibility polygons of two points are combinatorially equivalent if there is a bijection
between their pockets such that corresponding pockets are incident to the same sets of vertices of
P . The combinatorial changes incurred by a moving point s have been thoroughly analysed in
[4, 9, 14]. The set of points s ∈ P that induces combinatorially equivalent visibility polygons
V0(s) forms a cell in the visibility decomposition V D(P ) of polygon P . It is known that each cell
is convex and there are O(n3) cells, but a line segment in P intersects only O(n) cells [9, 13].
A combinatorial change in V0(s) occurs if s crosses a critical line spanned by two vertices of P ,
and the circular order of the rays from s to the two vertices is reversed. The possible changes
are: (1) a pocket of size 2 appears or disappears; (2) the size of a pocket increases or decreases
by one; (3) two pockets merge into one pocket or a pocket splits into two pockets. Importantly,
the combinatorics of V0(s) does not contain enough information to decide whether two pockets
are dependent or independent. Proposition 4 (below) will be crucial for checking whether two
dependent pockets become independent when a point s moves along a straight-line trajectory from
s = s1 to s = s2.

Proposition 4. Let s1s2 be a line segment in int(P ). Then

(i) Every left (resp., right) pocket of V0(s2) induced by a vertex on the left (right) of −−→s1s2 is
contained in a left (right) pocket of V0(s1).

(ii) Let Uleft and Uright be independent pockets of V0(s1). Then every two pockets of V0(s2) con-
tained in Uleft and Uright, respectively, are also independent.

Proof. (i) Let Uab be a left pocket of V0(s2) induced by vertex a on the left of −−→s1s2. If a is directly
visible from s (i.e., s1a ⊂ P ), thenUab is clearly contained in the left pocket of V0(s1) induced by a.
Otherwise, consider the geodesic path from s1 to a in P . It is homotopic to the path (s1, s2, a) ⊆ P ,
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Figure 9: (a) A polygon with n = 21 vertices where s0 violates C2 a pair of dependent pockets
Uab and Ua′b′ . (b) Point s2 ∈ s0c satisfies both C1 and C2. (c) A polygon with n = 21 vertices
where s0 violates C2 with a pair of pockets Uab and Ua′b′ of |spread(a, a′)| = 19. (d) Point s2 also
violates C2 with a pair of pockets of |spread(a′′, a′)| = 13.
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and so it contained in the triangle ∆(s1, s2, a). The first internal vertex of this geodesic induces a
left pocket of V0(s1) that contains Uab.

(ii) Since Uleft and Uright are independent, no chord of P crosses the window of both pockets.
Therefore no chord of P can cross the windows of two pockets lying inUleft andUright, respectively.

Lemma 11. Let s0 be an arbitrary point in int(Kbn/2c−1(P )) and c ∈ ∂P as defined above. Then
there is a point s ∈ s0c such that one of the following statements holds:

• s satisfies both C1 and C2;

• s is a double violator;

• s satisfies C1 but violates C2 due to two pockets of whose spread is contained in spread(a, a′)
and has size at most |spread(a, a′)| − bn/4c.

Proof. We move a point s ∈ s0c from s0 to c and trace the combinatorial changes of the pockets
of V0(s), and their dependencies. Initially, when s = s0, all pockets have size at most bn/2c − 1;
and there are two dependent pockets, a left pocket Uab on the left of −→s0c and, by Proposition 1, a
right pocket Ua′b′ on the right of −→s0c, of total size at least bn/2c. When s = c, every left pocket of
V0(s) on the left of −→s0c is independent of any right pocket on the right of −→s0c.

Consequently, when s moves from s0 to c, there is a critical change from s = s1 to s = s2 such
that V0(s1) still has two dependent pockets of size at least bn/2c where the left (resp., right) pocket
is on the left (right) of−→s0c; but V0(s2) has no two such pockets. (See Fig. 9 for examples.) Let Uleft

and Uright denote the two violator pockets of V0(s1). The critical point is either a combinatorial
change (i.e., the size of one of these pockets drops), or the two pockets become independent. By
Proposition 4, we have Uleft ⊆ Uab and Uright ⊂ P \ Uab, and the spread of Uleft and Uright is
contained in spread(a, a′). We show that one of the statements in Lemma 11 holds for s1 or s2.

If s2 satisfies both C1 and C2, then our proof is complete (Fig. 9(a-b)). If s2 violates C1, i.e.,
V0(s2) has a pocket of size ≥ bn/2c, then V0(s1) also has a combinatorially equivalent pocket
(which is independent of Uleft and Uright), and so s1 is a double violator. Finally, if s2 violates
C2, i.e., V0(s2) has two dependent pockets of total size bn/2c, then the left pocket of this pair is
not contained in Uab by the choice of point c ∈ ∂P . We have two subcases to consider: (i) If the
right pocket of this new pair is contained in Uright (or it is Uright), then we know that their spread
is contained in spread(b, a) which has size at most |spread(a, a′)| − bn/4c (Fig. 9(c-d)). (ii) If the
right pocket of the new pair is disjoint fromUright, then V0(s1) also has a combinatorially equivalent
pair of pockets, which is different from Uleft and Uright, and so s1 is a double violator.

Lemma 12. A point s ∈ s0c described in Lemma 11 can be found in O(n log n) time.

Proof. It is enough to show that the critical positions, s1 and s2, in the proof of Lemma 11 can
be computed in O(n log n) time. We use the persistent data structure developed by Chen and
Daescu [13] for maintaining the combinatorial structure of V0(s) as smoves along the line segment
s0c. The pockets (and pocket sizes) change only at O(n) points along s0c, and each update can be
computed in O(log n) time.
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However, the data structure in [13] does not track whether two pockets on opposite sides of s0c
are dependent or not. The main technical difficulty is that Ω(n2) dependent pairs might become
independent as s moves along s0s (even if we consider only pairs of total size at least bn/2c), in
contrast to onlyO(n) combinatorial changes. We reduce the number of relevant events by focusing
on only the “large” pockets (pockets of size at least bn/4c), and maintaining at most one pair that
violates C2 for each large pocket. (In a dependent pair of size ≥ bn/2c, one of the pockets has
size ≥ bn/4c.)

We augment the persistent data structure in [13] as follows. We maintain the list of all left
(resp., right) pockets of V0(s) lying on the left (right) of −→s0c, sorted in counterclockwise order
along ∂P . We also maintain the set of large pockets of size at least bn/4c from these two lists.
There are at most 4 large pockets for any s ∈ s0c. For a large pocket Uαβ of s ∈ s0c, we maintain
one possible other pocket Uα′β′ of V0(s) such that they together violate C2. If there are several
such pockets Uα′β′ , we maintain only the one where α′ (the reflex vertex that induces Uα′β′) is
farthest from c along ∂P . Thus, we maintain a set U(s) of at most 4 pairs (Uαβ, Uα′β′). Finally, for
each of pair (Uαβ, Uα′β′) ∈ U , we maintain the positions s′ = sc∩ αα′ where the pair (Uαβ, Uα′β′)
becomes independent assuming that neither Uαβ nor Uα′β′ goes through combinatorial changes
before s reaches s′. We use [13] together with these supplemental structures, to find critical points
s1, s2 ∈ s0c such that U(s1) 6= ∅ but U(s2) = ∅.

We still need to show that U(s) can be maintained in O(n log n) time as s moves from s0 to c.
A pair (Uαβ, Uα′β′) has to be updated if Uαβ or Uα′β′ undergoes a combinatorial change, or if they
become independent (i.e., s ∈ αα′). Each large pocket undergoes O(n) combinatorial changes by
Proposition 4. Note also that there are O(n) reflex vertices along the boundary ∂P between a and
a′ (these vertices are candidates to become α′). No update is necessary when β or β′ changes but
Uαβ remains large and the total size of the pair is at least bn/2c. If the size of Uαβ drops below
bn/4c, we can permanently eliminate the pair from U . In all other cases, we search for a new vertex
α′, by testing the reflex vertices that induce pockets from the current α′ towards c along ∂P until
we either find a new pocket Uα′β′ or determine that Uαβ is not dependent of any other pocket with
joint size ≥ bn/2c. We can test dependence between Uαβ and a candidate for Uα′β′ in O(log n)
time (test αα′ ⊂ P by a ray shooting query). Each update of (Uαβ, Uα′β′) decreases the size of the
large pocket Uαβ or moves the vertex α′ closer to c. Therefore, we need to test dependence between
only O(n) candidate pairs of pockets. Overall, the updates to U(s) take O(n log n) time.

We are now ready to prove Theorem 1.

of Theorem 1. Let P be a simple polygon with n ≥ 3 vertices. Compute the generalized kernel
Kbn/2c−1(P ), and pick an arbitrary point s0 ∈ int(Kbn/2c−1(P )), which satisfies C1. If s0 satisfies
C2, too, then int(P ) ⊆ Vb(n−2)/4c(s0) by Lemma 1. Otherwise, there is a pair of dependent pockets,
Uab and Ua′b′ , of total size at least bn/2c and bn/2c ≤ spread(a, a′) ≤ n. Invoke Lemma 11 up to
three times to find a point s ∈ int(P ) that either satisfies both C1 and C2, or is a double violator. If
s satisfies C1 and C2 then Lemma 1 completes the proof. If s is a double violator, apply Lemma 7
or Lemma 8 as appropriate to complete the proof. The overall running time of the algorithm is
O(n log n) from the combination of Lemmas 7, 8, 10, and 12.

For every k ≥ 1, the diffuse reflection diameter of the zig-zag polygon (cf. Fig. 1) with
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n = 4k + 2 vertices is k = b(n− 2)/4c. By introducing up to 3 dummy vertices on the boundary
of a zig-zag polygon, we obtain n-vertex polygons Pn with R(Pn) = b(n− 2)/4c for all n ≥ 6.
Finally, every simple polygon with n = 3, 4, or 5 vertices is star-shaped, and so its diffuse reflection
radius is 0 = b(n− 2)/4c.

4 Approximate Diffuse Reflection Radius
In this section, we prove Theorem 2 and show how to approximate the diffuse reflection radius
R(P ) of a given polygon P up to an additive error of at most 1 in polynomial time (a similar
strategy works for approximating the diffuse reflection diameter D(P ), as well).

of Theorem 2. Let P be a simple polygon with vertex set V in general position, where |V | = n.
We wish to compute an integer k ∈ N such that k − 1 ≤ R(P ) ≤ k + 1, and a point s ∈ int(P )
such that int(P ) ⊆ Vk+1(s) in polynomial time. We prove the claim by analyzing the following
algorithm:

ApproxDiffuseRadius(P )

1. For each vertex v of P , find two points v− and v+ in the relative interior of the two edges of
P incident to v such that no line through a pair of vertices in V \ {v} separates them from v.
Let Q = {v−, v+ : v ∈ V }.

2. Find the minimum integer k ≥ 0 such that Ck =
⋂
q∈Q Vk(q)∩ int(P ) is nonempty by binary

search over k ∈ {0, . . . , b(n− 2)/4c}.
3. Return k and an arbitrary point s ∈ Ck.

We first show that ApproxDiffuseRadius(P ) runs in polynomial time in n. We can find
a suitable set Q = {v−, v+ : v ∈ V } in O(n3) time by computing, for each v ∈ V , the intersection
points between the O(n2) lines through a pair of vertices in V \ {v} and the two edges of P
incident to v. Then, v− and v+ can be picked as points on the relative interiors of the two edges
incident to v between v and the closest intersection point. The combinatorial complexity of a region
Vk(q) is at most O(n9), but the set of the boundary points Vk(q) ∩ ∂P consists of only O(n4) line
segments [3]. Given Vk−1(q)∩∂P , we can compute Vk(q)∩∂P by taking the union of the visibility
regions for O(n4) line segments in O(n5) time [9, 14]. Instead of computing the regions Vk(q), we
iteratively maintain Vk(q) ∩ ∂P for all k = 0, . . . , b(n− 2)/4c and q ∈ Q, in O(n2 · n5) = O(n7)
time.

For each k, we find Ck =
⋂
q∈Q Vk(q) ∩ int(P ) as follows. First compute the intersection of

the boundary segments Bk−1 =
⋂
q∈Q(Vk−1(q) ∩ ∂P ), which consists of O(n5) line segments, in

O(n5) time. Then compute Ck as the set of points in P visible from any point in Bk−1 in O(n11)
time [3]. The binary search tries O(log n) values of k, and so the total running time is O(n11 lg n).

Next we show that the minimum integer k for which Ck 6= ∅ approximates R(P ). First, we
prove that there is no t ∈ int(P ) for which int(P ) ⊆ Vk−2(t). By the choice of k, there is
no t ∈ int(P ) for which Q ⊆ Vk−1(t) or ∂P ⊆ Vk−1(t) (since Q ⊂ ∂P ). Then by [7] and
Proposition 1, int(P ) ⊆ Vk−2(t) implies ∂P ⊆ Vk−1(t) for any t ∈ int(P ).
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Let s be an arbitrary point in Ck. By the choice of k, we have Q ⊆ Vk(s). We now show that
int(P ) ⊆ Vk+1(s). Let t ∈ int(P ) be an arbitrary point in the interior of P . In any triangulation
of P , point t lies in some triangle ∆(v1v2v3), and so t is directly visible from v−j or v+j for j ∈
{1, 2, 3}. SinceQ ⊆ Vk(s), there is a diffuse reflection path from s to these boundary points with at
most k interior vertices. By appending one new segment to this path, we obtain a diffuse reflection
path from s to t with at most k + 1 interior vertices.

5 Conclusions
Theorem 1 establishes the upper bound of b(n − 2)/4c for the diffuse refection radius R(P ) of
a simple polygon P with n vertices. This bound is the best possible. For a given instance P ,
we can approximate R(P ) up to an additive error of 2 (Theorem 2). However, no polynomial-
time algorithm is known for computing R(P ) for a given polygon P , or for computing the diffuse
reflection center of P . Similarly, we know that the diffuse reflection diameter D(P ) of a simple
polygon with n vertices is at most b(n − 2)/2c, and this bound is the best possible [7], but no
polynomial-time algorithm is known for computing D(P ) or a diametric pair of points for a given
polygon P .

We believe the general position assumptions about P and choice of light sources can be avoided
at the cost of more complicated analysis taking caution to properly handle collinear chords.

In the remainder of this section, we show that the diffuse reflection center of a polygon P
may not be connected or P -convex, and that in general there is no containment relation between
the geodesic center and the diffuse reflection center. These constructions explain, in part, why it
remains elusive to efficiently compute the diffuse reflection center and radius.

(a) (b)

Figure 10: (a) A polygon whose diffuse reflection center is disconnected. (b) A polygon whose
diffuse reflection center is not geodesic convex.

Shape of the diffuse reflection center. While the link center is geodesic convex and connected [27],
it turns out that we have no such guarantees on the shape of the diffuse reflection center. There are
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polygons with disconnected diffuse reflection centers (Fig. 10(a)), and there are polygons whose
diffuse reflection centers are connected but not geodesic convex (Fig. 10(b)).

(a) (b)

(c) (d)

Figure 11: Examples of four inclusion relationships between the diffuse reflection and link cen-
ters. The diffuse center, link centers, and their intersection are colored yellow, blue, and green,
respectively. The diffuse and link radii for the polygons in clockwise order from the upper left are
2, 2, 4, 4 and 2, 1, 3, 3, respectively.

Furthermore, there is no clear relationship between the two centers; Fig. 11 illustrates that there
exists simple polygons with each of the following properties:

(a) the diffuse reflection center is strictly contained in the link center;

(b) the diffuse reflection center strictly includes the link center;

(c) neither center contains the other but they are not disjoint;
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(d) the diffuse reflection center and the link center are disjoint.
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