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Abstract
We prove logarithmic upper bounds for the diameters of the random-surfer Webgraph model and
the PageRank-based selection Webgraph model, confirming the small-world phenomenon holds
for them. In the special case when the generated graph is a tree, we get close lower and upper
bounds for the diameters of both models.
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1 Introduction

Due to the ever growing interest in social networks, the Webgraph, biological networks, etc.,
in recent years a great deal of research has been built around modelling real world networks
(see, e. g., the monographs [6, 8, 10, 15]). One of the important observations about many
real world networks involves the diameter, which is the maximum shortest-path distance
between any two nodes. The so-called small-world phenomenon is that the diameter of a
network is significantly smaller than its size, typically growing as a polylogarithmic function.

The Webgraph is a directed graph whose vertices are the static web pages, and there is
an edge joining two vertices if there is a hyperlink in the first page pointing to the second
page. Barabási and Albert [1] in 1999 introduced one of the first models for the Webgraph,
widely known as the preferential attachment model. Their model can be informally described
as follows (see [5] for the formal definition). Let d be a positive integer. We start with a
fixed small graph, and in each time-step a new vertex appears and is joined to d old vertices,
where the probability of joining to each old vertex is proportional to its degree. Pandurangan,
Raghavan and Upfal [20] in 2002 introduced the PageRank-based selection model for the
Webgraph. This model is similar to the previous model, except the attachment probabilities
are proportional to the PageRanks of the vertices rather than their degrees (see Section 2 for
the formal definition). Blum, Chan, and Rwebangira [4] in 2006 introduced a random-surfer
model for the Webgraph, in which the d out-neighbours of the new vertex are chosen by
doing d independent random walks that start from random vertices and whose lengths are
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geometric random variables with parameter p (see Section 2 for the formal definition). It was
shown that under certain conditions (see Section 2), the previous two models are equivalent.

The directed models considered here generate directed acyclic graphs (new vertices create
edges to old vertices), so it is natural to define the diameter of a directed graph as the
maximum shortest-path distance between any two vertices in its underlying undirected graph.
The diameter of the preferential attachment model was analysed by Bollobás and Riordan [5].
Previous work on the PageRank-based selection and random-surfer models has focused on
their degree distributions. To the best of our knowledge, the diameters of these models have
not been studied previously, and it is an open question even whether they have logarithmic
diameter. One of the main contributions of this paper is giving logarithmic upper bounds for
their diameters. We also give close lower and upper bounds in the special case d = 1, namely
when the generated graph is (almost) a tree. It turns out that the key parameter in this case
is the height of the generated random tree. We find the asymptotic value of the height for
all p ∈ [0.21, 1], and for p ∈ (0, 0.21) we provide logarithmic lower and upper bounds. Our
results hold asymptotically almost surely (a.a.s.), which means the probability that they are
true approaches 1 as the number of vertices grows. As the two models are equivalent, we will
focus on the random-surfer model, since it is easier to work with.

1.1 Our Approach and Organization of the Paper
In the preferential attachment model and most of its variations (see, e. g., [1, 13, 14, 17])
the probability that the new vertex attaches to an old vertex v, called the attraction of
v, is proportional to a deterministic function of the degree of v. In other variations (see,
e. g., [3, 16]) the attraction also depends on the so-called ‘fitness’ of v, which is a random
variable generated independently for each vertex and does not depend on the structure of
the graph. For analysing such models when they generate trees, a typical technique is to
approximate them with population-dependent branching processes and prove that results on
the corresponding branching processes carry over to the original models. A classical example
is Pittel [22] who estimated the height of random recursive trees. Bhamidi [2] used this
technique to show that the height of a variety of preferential attachment trees is asymptotic
to a constant times the logarithm of the number of vertices, where the constant depends on
the parameters of the model.

In the random-surfer Webgraph model, however, the attraction of a vertex does not
depend only on its degree, but rather on the graph’s general structure, so the branching
processes techniques cannot apply directly, and new ideas are needed.

The crucial novel idea in our proof is to reduce the attachment rule to a simple one, with
the help of introducing (possibly negative) ‘weights’ for the edges. First, consider the general
case, d ≥ 1. Whenever a new vertex appears, it builds d new edges to old vertices; suppose
that we mark the first new edge. Then the marked edges induce a spanning tree whose
diameter we bound, and thus we get an upper bound for the diameter of the random-surfer
Webgraph model.

In the special case d = 1, we obtain a random recursive tree with edge weights, and then
we adapt a powerful technique developed by Broutin and Devroye [7] (that uses branching
processes) to study its weighted height. This technique is based on large deviations. The
main theorem of Broutin and Devroye [7, Theorem 1] is not applicable here for two reasons.
Firstly, the weights of edges on the path from the root to each vertex are not independent,
and secondly, the weights can be negative.

We define the models and state our main results in Section 2. In Section 3 we prove
Theorem 2, giving a logarithmic upper bound for the diameter of the random-surfer Webgraph
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model in the general case d ≥ 1. In Sections 4–6 we focus on the special case d = 1 and
we prove Theorems 3 and 4. Section 4 contains the main technical contribution of this
paper, where we explain how to transform the random-surfer tree model into one that is
easier to analyse. The lower and upper bounds are proved in Sections 5 and 6, respectively.
Concluding remarks appear in Section 7. All proofs omitted from this extended abstract can
be found in the full version.

2 Definitions and Main Results

Given p ∈ (0, 1], let Geo(p) denote a geometric random variable with parameter p; namely
for every nonnegative integer k, P [Geo(p) = k] = (1− p)kp.

I Definition 1 (Random-Surfer Webgraph Model [4]). Let d be a positive integer and let
p ∈ (0, 1]. Generate a random directed rooted n-vertex multigraph, with all vertices having
out-degree d. Start with a single vertex v0, the root, with d self-loops. At each subsequent
step s, where 1 ≤ s ≤ n−1, a new vertex vs appears and d edges are created from it to vertices
in {v0, v1, . . . , vs−1}, by doing the following probabilistic procedure d times, independently:
choose a vertex u uniformly at random from {v0, v1, . . . , vs−1}, and a fresh random variable
X = Geo(p); perform a simple random walk of length X starting from u, and join vs to the
last vertex of the walk. Note that the random walk is performed on the directed graph.

The motivation behind this definition is as follows. Think of the vertex vs as a new web
page that is being set up. Say the owner wants to put d links in her web page. To build each
link, she does the following: she goes to a random page. With probability p she likes the
page and puts a link to that page. Otherwise, she clicks on a random link on that page, and
follows the link to a new page. Again, with probability p she likes the new page and puts a
link to that, otherwise clicks on a random link etc., until she finds a desirable page to link to.
The geometric random variables correspond to this selection process.

Our main result regarding the diameter of the random-surfer Webgraph model is the
following theorem (recall that the diameter of a directed graph is defined as the diameter of
its underlying undirected graph).

I Theorem 2. Let d be a positive integer and let p ∈ (0, 1]. A.a.s. as n→∞ the diameter
of the random-surfer Webgraph model with parameters p and d is at most 8ep(logn)/p.

Notice that the upper bound in Theorem 2 does not depend on d (whereas one would
expect that the diameter must decrease asymptotically as d increases). This independence
is because in our argument we employ only the first edge created by each new vertex to
bound the diameter. Obtaining better bounds as d grows is related to analysing the first
order statistic of several intricate random variables, and seems to be much harder.
I Remark. In considering the undirected version of diameter of directed graphs, we follow [18].
The directed version of diameter, i. e. the largest directed distance between any two vertices,
is much harder to study for the following reason. Let vs be a new vertex, and let u be the
start vertex of a corresponding random walk. The random walk from u could potentially
move to the worst neighbour of u, i. e. a neighbour whose directed depth is much larger than
u, causing a great increase in the directed depth of vs (compared to the case that it attaches
to u). However, in the case of undirected distances, each step of the walk can increase any
undirected distance by at most 1.

A random-surfer tree is an undirected tree obtained from a random-surfer Webgraph
with d = 1 by deleting the self-loops of the root and ignoring the edge directions. The height
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Figure 1 The functions cL and cU in Theorems 3 and 4.

of a tree is defined as the maximum graph distance between a vertex and the root. Our main
result regarding the height of the random-surfer tree model is the following theorem.

I Theorem 3. For p ∈ (0, 1), let s be the unique solution in (0, 1) to

s log
(

(1− p)(2− s)
1− s

)
= 1 . (1)

Let p0 ≈ 0.206 be the unique solution in (0, 1/2) to

log
(

1− p
p

)
= 1− p

1− 2p . (2)

Define the functions cL, cU : (0, 1)→ R as

cL(p) = exp(1/s)s(2− s)p ,

and

cU (p) =

cL(p) if p0 ≤ p < 1(
log
(

1−p
p

))−1
if 0 < p < p0 .

For every fixed ε > 0, a.a.s. as n → ∞ the height of the random-surfer tree model with
parameter p is between (cL(p)− ε) logn and (cU (p) + ε) logn.

It is easy to see that the value p0 and the functions cL and cU (plotted in Figure 1) are
well defined. Also, cL and cU are continuous, and limp→0 cL(p) = limp→0 cU (p) = 0 and
limp→1 cL(p) = e. We suspect that the gap between our bounds when p < p0 is an artefact of
our proof technique, and we do not expect a phase transition in the behaviour of the height
at p = p0.

We also prove lower and upper bounds for the diameter, which are close to being tight.

I Theorem 4. Let cL and cU be defined as in Theorem 3. For every fixed ε > 0, a.a.s. as
n→∞ the diameter of the random-surfer tree model with parameter p ∈ (0, 1) is between
(2cL(p)− ε) logn and (2cU (p) + ε) logn.

Immediately, we have the following corollary.
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I Corollary 5. Let cL and p0 be defined as in Theorem 3. For any p ∈ [p0, 1), the height of
the random-surfer tree model with parameter p is a.a.s. asymptotic to cL(p) logn as n→∞,
and its diameter is a.a.s. asymptotic to 2cL(p) logn.

We remark that Theorem 4 does not imply Theorem 2; in fact it does not even imply the
diameter of the random-surfer Webgraph model (with d > 1) is logarithmic. The reason is
that in the random-surfer tree model, due to the tree structure, the random walk for each
vertex always moves closer to the root, whereas in the random-surfer Webgraph model, this
is not the case, and the random walk could move further from the root.

We now define the PageRank-based selection model introduced in [20, 21].

I Definition 6 (PageRank and the PageRank-based Selection Webgraph Model [20, 21]). Let d
be a positive integer and let p, β ∈ [0, 1]. The PageRank of a directed graph is a probability
distribution over its vertices, which is the stationary distribution of the following random
walk. The random walk starts from a vertex chosen uniformly at random. In each step, with
probability p it jumps to a vertex chosen uniformly at random, and with probability 1− p it
walks to a random out-neighbour of the current vertex.

We generate a random n-vertex directed multigraph with all vertices having out-degree d.
We start with a single vertex with d self-loops. At each subsequent step a new vertex appears,
chooses d old vertices and attaches to them (where a vertex can be chosen multiple times).
These choices are independent and the head of each edge is a uniformly random vertex of
the existing graph with probability β, and is a vertex chosen according to the PageRank
distribution on the existing graph with probability 1− β.

The motivation behind this definition is as follows. Consider the case β = 0. Think of
the vertex vs as a new web page that is being set up. Say the owner wants to put d links in
her web page. She finds the destination pages using d independent Google searches. Since
Google sorts the search results according to their PageRank (see [19]), under some suitable
randomness assumptions, we may imagine that the probability that a given page is linked to
is close to its PageRank.

Chebolu and Melsted [9] showed the PageRank-based selection Webgraph model with
β = 0 is equivalent to the random-surfer Webgraph model. Hence the conclusions of
Theorems 2–4 apply to the former model with β = 0. Moreover, the proof of Theorem 2
easily extends to the PageRank-based selection Webgraph model, giving the same conclusion
for all β ∈ [0, 1]

In Theorems 3 and 4 we have assumed that p < 1, since the situation for p = 1 has been
clarified in previous work. Let p = 1. Then a random-surfer tree has the same distribution
as a so-called random recursive tree, the height of which is a.a.s. asymptotic to e logn as
proved by Pittel [22]. It is not hard to alter the argument in [22] to prove that the diameter
is a.a.s. asymptotic to 2e logn. The diameter of a random-surfer Webgraph thus has also
an asymptotically almost sure upper bound of 2e logn. For the rest of the paper, we fix
p ∈ (0, 1).

We will need two large deviation inequalities. Define the function Υ : (0,∞)→ R as

Υ(x) =
{
x− 1− log(x) if 0 < x ≤ 1
0 if 1 < x .

(3)

The following proposition follows easily from Cramér’s Theorem (see, e. g., [11, Theorem 2.2.3,
p. 27]) and the calculations in [7, p. 279].

APPROX/RANDOM’14
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I Proposition 7. Let E1, E2, . . . , Em be independent exponential random variables with
mean 1. For any fixed x > 0, as m→∞ we have

exp (−Υ(x)m− o(m)) ≤ P [E1 + E2 + · · ·+ Em ≤ xm] ≤ exp(−Υ(x)m) .

We include some definitions here. We define the depth of a vertex as the length of a
shortest path (ignoring edge directions) connecting the vertex to the root, and the height of
a graph G, denoted by ht(G), as the maximum depth of its vertices. Clearly the diameter is
at most twice the height. In a weighted tree (a tree whose edges are weighted), we define the
weight of a vertex to be the sum of the weights of the edges connecting the vertex to the
root, and the weighted height of tree T , written wht(T ), to be the maximum weight of its
vertices. We view an unweighted tree as a weighted tree with unit edge weights, in which
case the weight of a vertex is its depth, and the notion of weighted height is the same as the
usual height.

3 Upper bound for the random-surfer Webgraph model

In this section we prove Theorem 2, giving an upper bound for the diameter of the random-
surfer Webgraph model. Define the function f : (−∞, 1]→ R as

f(x) = (2− x)2−xp(1− p)1−x(1− x)x−1 . (4)

We will need a technical lemma which follows from straightforward calculations.

I Lemma 8. Let η, c be positive numbers satisfying η ≥ 4ep/p and c ≤ pη. Then we have
−cΥ(1/c) + c log f(2− η/c) < η(1− p) log(1− p3)− 1.

Proof of Theorem 2. We define an auxiliary weighted tree whose vertex set equals the
vertex set of the graph generated by the random-surfer Webgraph model, and whose weighted
height dominates the height of this graph. Then we bound the weighted height of this tree.
Initially the tree has just one vertex v0. Recall the growth of the random-surfer Webgraph
model at each subsequent step s ∈ {1, 2, . . . , n−1}: “a new vertex vs appears and d edges are
created from it to vertices in {v0, v1, . . . , vs−1}, by doing the following probabilistic procedure
d times, independently: choose a vertex u uniformly at random from {v0, v1, . . . , vs−1}, and
a fresh random variable X = Geo(p); perform a simple random walk of length X starting
from u, and join vs to the last vertex of the walk.” Consider a step s and the first chosen
u ∈ {v0, . . . , vs−1} and X = Geo(p). In the tree, we join the vertex vs to u and set the
weight of the edge vsu to be X + 1. Note that the edge weights are mutually independent.
Clearly, the weight of vs in the auxiliary tree is greater than or equal to the depth of vs in
the graph. Let η = 4ep/p. Hence, to prove the theorem it suffices to show that a.a.s. the
weighted height of the auxiliary tree is at most η logn. We work with this tree in the rest of
the proof.

We consider an alternative way to grow the tree, used in [12], which results in the same
distribution. Let U1, U2, . . . be i.i.d. uniform random variables in (0, 1). Then for each new
vertex vs, we join it to the vertex vbsUsc, which is indeed a vertex uniformly chosen from
{v0, . . . , vs−1}.

For convenience, we consider the tree when it has n+ 1 vertices v0, v1, . . . , vn. Define

A(`) = nP [D(n) = `]P [W (n) > η logn|D(n) = `] ,
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where D(s) and W (s) denote the depth and the weight of vertex vs, respectively. We have

P [wht(tree) > η logn] ≤
n∑
s=1

P [W (s) > η logn] ≤ nP [W (n) > η logn] =
n∑
`=1
A(`) ,

so to complete the proof it suffices to show
∑n
`=1A(`) = o(1).

Let P (0) = 0 and for s = 1, . . . , n, let P (s) denote the index of the parent of vs. We have

P [D(n) ≥ `] = P [D(P (n)) ≥ `− 1] = · · · = P
[
D(P `−1(n)) ≥ 1

]
= P

[
P `−1(n) ≥ 1

]
.

Since P (m) = bmUmc ≤ mUm for each m and since the Ui are i.i.d., we have

P [D(n) ≥ `] = P
[
P `−1(n) ≥ 1

]
≤ P [nU1U2 . . . U`−1 ≥ 1] ≤ exp

(
−(`− 1)Υ

(
logn
`− 1

))
,

(5)

where we have used Proposition 7 and the fact that log(1/Ui) is an exponential random
variable with mean 1 for each i. The right-hand side is o(1/n) for ` = 1.1e logn. Hence to
complete the proof we need only show that

A(`) = o(1/ logn) ∀` ∈ (0, 1.1e logn) . (6)

Fix an arbitrary positive integer ` ∈ (0, 1.1e logn). The random variableW (n), conditional
on D(n) = `, is a sum of ` i.i.d. 1 + Geo(p) random variables. By using Chernoff’s technique
of bounding the moment generating function of geometric random variables, we get

P [W (n) > η logn|D(n) = `] ≤ f(2− η logn/`)` , (7)

where f is defined in (4). Combining (5) and (7), we get

A(`) ≤ exp
[

logn− (`− 1)Υ
(

logn
`− 1

)
+ ` log f(2− η logn/`)

]
. (8)

Let c = `/ logn and c1 = c − 1/ logn. By Lemma 8 and since the function cΥ(1/c) is
uniformly continuous in c ∈ [0, 2e], we find that for large enough n,

1− c1Υ(1/c1) + c log f(2− η/c) < 1
2 η(1− p) log(1− p3) = −Ω(1) .

Together with (8), this gives A(`) = exp(−Ω(logn)), and (6) follows. J

4 Transformations of the Random-surfer Tree Model

In Sections 4–6 we study the random-surfer tree model and we prove Theorems 3 and 4.
In this section we show how to transform the random-surfer tree model three times to
eventually obtain a new random tree model, which we analyse in subsequent sections. The
first transformation is novel. The second one was used by Broutin and Devroye [7], and the
third one by Pittel [22].

Let us call the random-surfer tree model the first model. First, we will replace the
attachment rule with a simpler one by introducing weights for the edges. In the first model,
the edges are unweighted and in every step s a new vertex vs appears, chooses an old vertex
u, and attaches to a vertex in the path connecting u to the root, according to some rule. We
introduce a second model that is weighted, and such that there is a one to one correspondence

APPROX/RANDOM’14
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between the vertices in the second model and in the first model. For a vertex v in the first
model, we denote its corresponding vertex in the second model by v. In the second model, in
every step s a new vertex vs appears, chooses an old vertex u and attaches to u, and the
weight w(uvs) of the new edge uvs is chosen such that the weight of vs equals the depth of vs
in the first model. Let w (u) denote the weight of vertex u. Then it follows from the definition
of the random-surfer tree model that w(u vs) is distributed as max{1−Geo(p), 1− w (u)}.
The term Geo(p) here precisely corresponds to the length of the random walk corresponding
to vs in Definition 1, and the term 1− w (u) appears here solely because the weight of vs is
at least 1 (in the first model, the depth of vs is at least 1, since it cannot attach to a vertex
higher than the root). Let us emphasize that w(u vs) can be negative. Because the depth of
v in the first model equals the weight of v in the second model, the height of the first model
equals the weighted height of the second model.

We will need to make the degrees of the tree bounded, so we define a third model.
In this model, the new vertex can attach just to the leaves. In step s a new vertex vs
appears, chooses a random leaf u and attaches to u using an edge with weight distributed
as max{1−Geo(p), 1− w (u)}. Simultaneously, a new vertex u′ appears and attaches to u
using an edge with weight 0. Then we have w(u) = w(u′) and henceforth u′ plays the role of
u, i. e. the next vertex wanting to attach to u, but cannot do so because u is no longer a
leaf, may attach to u′ instead. Clearly there exists a coupling between the second and third
models in which the weighted height of the third model, when it has 2n− 1 vertices, equals
the weighted height of the second model with n vertices. In fact the second model may be
obtained from the third one by contracting all zero-weight edges. We can thus study the
weighted height of the first model by studying it in the third model.

All the above models were defined using discrete time steps. We now define a fourth
model using the following continuous time branching process. At time 0 the root is born.
From this moment onwards, whenever a new vertex v is born (say at time κ), it waits for a
random time E, which is distributed exponentially with mean 1, and after time E has passed
(namely, at absolute time κ+ E) gives birth to two children v1 and v2. The weights of the
edges vv1 and vv2 are generated as follows: vertex v chooses i ∈ {1, 2} independently and
uniformly at random. The weight of vvi is distributed as max{1−Geo(p), 1− w (v)} and
the weight of vv3−i is 0. All vertices live forever, and each vertex gives birth to exactly two
children during its lifetime. Given t ≥ 0, we denote by Tt the (almost surely finite) random
tree obtained by taking a snapshot of this process at time t. By the memorylessness of the
exponential distribution, if one starts looking at this process at any deterministic moment,
the next leaf to give birth is chosen uniformly at random. Hence for any stopping time τ , the
distribution of Tτ , conditional on Tτ having 2n− 1 vertices, is the same as the distribution
of the third model when it has 2n− 1 vertices.

The following lemma implies that certain results for Tt carry over to results for the
random-surfer tree model. The proof is by a coupling argument and uses [7, Proposition 2].

I Lemma 9. Assume that there exist constants θL, θU such that for every fixed ε > 0,

P [θL(1− ε)t ≤ wht(Tt) ≤ θU (1 + ε)t]→ 1

as t→∞. Then for every fixed ε > 0, a.a.s. as n→∞ the height of the random-surfer tree
model is between θL(1− ε) logn and θU (1 + ε) logn.

We define Tt in a static way, which is equivalent to the dynamic definition above.

I Definition 10 (T∞, Tt). Let T∞ denote an infinite binary tree. To every edge e is associated
a random pair (Ee,We) and to every vertex v a random variable Wv, where the We’s and
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Wv’s are the weights. The law for {Ee}e∈E(T ) is easy: first with every vertex v we associate
independently an exponential random variable with mean 1, and we let the values of E on the
edges joining v to its two children be equal to this variable. In the dynamic interpretation,
this random variable denotes the age of v when it gives birth. Generation of the weights is
done in a top-down manner, where we think of the root as the top vertex. Let the weight of
the root be zero. Let v be a vertex whose weight has been determined, and let v1, v2 be its
two children. Choose i ∈ {1, 2} independently and uniformly at random, and then choose
Y = 1−Geo(p) independently of previous choices. Then let

Wvvi = max{Y, 1−Wv}, Wvi = Wv +Wvvi , (9)

and Wvvj = 0,Wvj = Wv for j = 3− i.
For a vertex v, let π(v) be the set of edges of the path connecting v to the root. It is

easy to check that the weight of any vertex v equals
∑
e∈π(v) We. Finally, given t ≥ 0 we

define Tt as the subtree of T∞ induced by vertices with birth time at most t. Note that Tt is
connected by definition, and is finite almost surely.

5 Lower Bounds for the Random-surfer Tree Model

Here we prove the lower bounds in Theorems 3 and 4. For this, we consider another infinite
binary tree T ′∞ which is very similar to T∞, except for the generation rules for the weights,
which are as follows. Let the weight of the root be zero. Let v be a vertex whose weight
has been determined, and let v1, v2 be its two children. Choose i ∈ {1, 2} independently and
uniformly at random, and choose Y = 1−Geo(p) independently of previous choices. Then
let

Wvvi
= Y and Wvi

= Wv +Wvvi
(10)

and Wvvj
= 0 and Wvj

= Wv for j = 3− i. Comparing (10) with (9), we find that the weight
of every vertex in T ′∞ is stochastically less than or equal to that of its corresponding vertex
in T∞. The tree T ′t is defined as before. Clearly probabilistic lower bounds for wht(T ′t ) are
also probabilistic lower bounds for wht(Tt).

The proof of the following lemma is similar to that of [7, Lemma 4] except a small twist
is needed at the end to handle the negative weights. Distinct vertices u and v in a tree are
called antipodal if the unique (u, v)-path in the tree passes through the root.

I Lemma 11. Consider the tree T ′∞. Let γL : (0, 1)→ R be such that for every a ∈ (0, 1),
each vertex u and each descendent v of u that is m levels deeper,

P [Wv −Wu ≥ am] ≥ exp(−mγL(a) + o(m)) (11)

as m→∞. Assume that there exist α∗, ρ∗ ∈ (0, 1) with γL(α∗) + Υ(ρ∗) = log 2, where Υ is
defined in (3). Then for every fixed ε > 0, a.a.s. there exist antipodal vertices u, v of T ′t with
weights at least a∗

ρ∗ (1− ε)t.

Proof. Let c = a∗

ρ∗ , and let ε, δ > 0 be arbitrary. We prove that with probability at least
1 − δ for all large enough t there exists a pair (u, v) of antipodal vertices of T ′∞ with
max{Bu, Bv} < t and min{Wu,Wv} > (1− 2ε) ct.

Let L be a constant positive integer that will be determined later, and let α = α∗ and
ρ = α

c(1−ε) > ρ∗. Since γL(α∗) + Υ(ρ∗) = log 2 and ρ∗ < 1 and Υ is strictly decreasing on
(0, 1], we have

γL(α) + Υ(ρ) < log 2 .
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Build a Galton-Watson process from T ′∞ whose particles are a subset of vertices of T ′∞,
as follows. Start with the root as the initial particle of the process. If a given vertex u is a
particle of the process, then its potential offspring are its 2L descendants that are L levels
deeper. Moreover, such a descendent v is an offspring of u if and only if Wv −Wu ≥ αL and
Bv −Bu ≤ ρL. As these two events are independent, the expected number of children of u
is at least

2LP [Wv −Wu ≥ αL]P [Bv −Bu ≤ ρL] ≥ exp [(log 2− γL(α)−Υ(ρ)− o(1))L]

as L → ∞, by (11) and Proposition 7. Since we have log 2 − γL(α) − Υ(ρ) > 0, we may
choose L large enough that this expected value is strictly greater than 1. Therefore, this
Galton-Watson process survives with probability q > 0.

We now boost this probability up to 1 − δ, by starting several independent processes,
giving more chance that at least one of them survives. Specifically, let b be a constant large
enough that

(1− q)2b−1
< δ/3 .

Consider 2b Galton-Watson processes, which have the vertices at depth b of T ′∞ as their
initial particles, and reproduce using the same rule as before. Let a be a constant large
enough that

2b+1(e−a + (1− p)a+2) < δ/3 ,

and let A be the event that all edges e in the top b levels of T ′∞ have Ee ≤ a and We ≥ −a.
Then

1− P [A] ≤ 2b+1(e−a + (1− p)a+2) < δ/3 .

Also, let Q be the event that in each of the two branches of the root, at least one of the 2b−1

Galton-Watson processes survives. Then

1− P [Q] ≤ 2(1− q)2b−1
< 2δ/3 ,

and so with probability at least 1− δ both A and Q occur.
Assume that both A and Q occur. Let

m =
⌊
t(1− ε)
ρL

⌋
and let u and v be particles at generation m of surviving processes in distinct branches of
the root. Then u and v are antipodal,

max{Bu, Bv} ≤ ab+mρL ≤ t(1− ε) +O(1) < t ,

and
min{Wu,Wv} ≥ −ab+mαL ≥ (1− ε)α

ρ
t−O(1) > c(1− 2ε)t

for t large enough, as required. J

Let Y1, Y2, . . . be i.i.d. with Yi = 1−Geo(p). Let f : (−∞, 1]→ R be as defined in (4).
Note that f(1) = p and f

(
2− p−1) = 1. It is easy to verify that f is continuous in (−∞, 1]

and differentiable in (−∞, 1). Moreover, f is increasing on (−∞, 2− p−1] and decreasing on
[2− p−1, 1]. Using standard concentration methods, we can show that as m→∞, uniformly
for all a ∈ [0, 1],

P [Y1 + · · ·+ Ym ≥ am] ≥ [f(a)− o(1)]m , (12)
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and if p ≥ 1/2, then uniformly for all a ∈ [0, 2− 1
p ] we have

P [Y1 + · · ·+ Ym ≥ am] ≥ [1− o(1)]m . (13)

We define a two variable function Φ(a, s) = p(1− p)(2− s)2(s− a)− a(1− s), and we
define a function φ : [0, 1]→ [0, 1] implicitly by the equation

Φ(a, φ(a)) = p(1− p)(2− φ(a))2(φ(a)− a)− a(1− φ(a)) = 0 . (14)

It is not hard to see that φ is well defined, increasing and invertible on [0, 1], and differentiable
on (0, 1). Moreover, if a ∈ {0, 1} then φ(a) = a, and otherwise, 0 < a < φ(a) < 1.

Next let Ŷ1, Ŷ2, . . . be independent and distributed as follows: for every i = 1, 2, . . .
we flip an unbiased coin, if it comes up heads, then Ŷi = Yi, otherwise Ŷi = 0. Define
gL : (0, 1)→ R as

gL(a) =

1/2 if p > 1/2 and 0 < a < 1− 1
2p

φ(a)−a
φ(a)

(
(1−p)(2−φ(a))

1−φ(a)

)a
otherwise.

The inequalities (12) and (13) together with Stirling’s formula imply the following.

I Lemma 12. We have the following large deviation inequality for every fixed a ∈ (0, 1) as
m→∞.

P
[
Ŷ1 + · · ·+ Ŷm ≥ am

]
≥ (2gL(a)− o(1))−m .

The lower bound in Theorem 3 is obtained easily from the following lemma and Lemma 9.

I Lemma 13. Given ε > 0, a.a.s as t → ∞ there exist two antipodal vertices u, v of T ′t
with weights at least cL(p)(1− ε)t. In particular, a.a.s. the weighted height of T ′t is at least
cL(p)(1− ε)t.

Proof. It is easy to see that there is a unique solution s ∈ (0, 1) to (1 − p)(2 − s) =
exp(1/s)(1−s), and if p > 1/2 then s > 2−1/p. By definition, cL = cL(p) = exp(1/s)s(2−s)p.
By Lemma 12, the assumption (11) of Lemma 11 holds for γL(a) = log(2gL(a)). Let
a = φ−1(s) and let ρ = 1− a

s . Since s ∈ (0, 1) we have 0 < a < s < 1 and thus ρ ∈ (0, 1) as well.
Moreover, since Φ(a, s) = 0, we have cL = a/ρ. It is easy to verify that Φ(1− 1

2p , 2−
1
p ) = 0.

If p > 1/2, then we have s > 2− 1
p . Since φ

−1 is increasing, we have a = φ−1(s) ≥ 1− 1
2p .

This implies that gL(a) = s−a
s exp(a/s), hence log(2gL(a)) + ρ − 1 − log(ρ) = log 2, and

Lemma 11 completes the proof. J

Proof of the lower bound in Theorem 4. Fix ε > 0. Let us define the semi-diameter of
a tree as the maximum weighted distance between any two antipodal vertices. Clearly,
semi-diameter is a lower bound for the diameter, so we just need to show a.a.s. as n→∞
the semi-diameter of the random-surfer tree with n vertices is at least (2cL(p)− ε) logn. By
Lemma 13, a.a.s as t→∞ the semi-diameter of T ′t is at least (2cL(p)−ε)t. Using an argument
similar to the proof of Lemma 9 we may conclude that a.a.s. as n→∞ the semi-diameter
of the third model (of Section 4) with 2n− 1 vertices is at least (2cL(p)− ε) logn. Then it
is easy to observe that the same is true for the random-surfer tree with n vertices, and the
proof is complete. J
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6 Upper Bounds for the Random-surfer Tree Model

In this section we prove the upper bounds in Theorems 3 and 4. We start with a lemma
which complements Lemma 11.

I Lemma 14. Let γU : [0, 1] → [0,∞) be a continuous function such that for every fixed
a ∈ [0, 1] and every vertex v of T∞ at depth m,

P

 ∑
e∈π(v)

We > am

 ≤ exp(−mγU (a) + o(m)) (15)

as m→∞. Define

θ = sup
{
a

ρ
: γU (a) + Υ(ρ) = log 2 : a ∈ [0, 1], ρ ∈ (0,∞)

}
.

Then for every fixed ε > 0 we have P [wht(Tt) > θ(1 + ε)t]→ 0 as t→∞.

The proof of Lemma 14 is similar to that of [7, Lemma 3], in which the assumption (15)
is not needed. In fact, in the model studied in [7], the weights {We : e ∈ π(v)} are mutually
independent, and the authors use Cramér’s Theorem to obtain a large deviation inequality
for
∑
e∈π(v) We.

Let Y1, Y2, . . . be i.i.d. with Yi = 1−Geo(p), and define random variables X1, X2, . . . as
follows: X1 = max{Y1, 1}, and for i ≥ 1, Xi+1 = max{Yi+1, 1 − (X1 + · · · + Xi)}. Define
h : [0, 1]→ R as

h(x) =


1 if p ≥ 1

2 and 0 ≤ x ≤ 2− 1
p(

p
1−p

)x
if p < 1

2 and 0 ≤ x ≤ 1−2p
1−p

f(x) otherwise .

A careful but straightforward analysis using exact formulae gives that there exists an absolute
constant C such that for every a ∈ [0, 1] and every positive integer m we have

P [X1 + · · ·+Xm > am] ≤ Cm2h(a)m . (16)

Next define random variables X̂1, X̂2, . . . as follows: for every i = 1, 2, . . . we flip an
independent unbiased coin, if it comes up heads, then X̂i = Xi, otherwise X̂i = 0. Define
gU : [0, 1]→ R as

gU (a) =


1/2 if p ≥ 1/2 and 0 ≤ a ≤ 1− 1/2p
( 1−p
p )a/2 if p < 1/2 and 0 ≤ a ≤ 1−2p

2−2p

1/p if a = 1
φ(a)−a
φ(a)

(
(1−p)(2−φ(a))

1−φ(a)

)a
otherwise ,

where φ is defined by (14). Recall that we have 0 < a < φ(a) < 1 for a ∈ (0, 1), so gU is
well defined. The following lemma can be proved using (16), Stirling’s formula and standard
arguments.

I Lemma 15. We have the following large deviation inequality for every a ∈ [0, 1] and
every positive integer m, where C ′ is an absolute constant: P

[
X̂1 + · · ·+ X̂m > am

]
≤

C ′m3(2gU (a))−m.
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We are ready to prove the upper bound in Theorem 3. The upper bound in Theorem 4
follows immediately as in every tree the diameter is at most twice the height.

Proof of the upper bound in Theorem 3. Let cU = cU (p). By Lemma 9 we just need to
show that given ε > 0, a.a.s as t→∞ the weighted height of Tt is at most (1 + ε)cU t. For
proving this we use Lemma 14. Lemma 15 implies that condition (15) of Lemma 14 holds
with γU (a) = log(2gU (a)), so we need only show that

cU = sup
{
a

ρ
: log(gU (a)) + ρ− 1− log(ρ) = 0 : a ∈ [0, 1], ρ ∈ (0,∞)

}
(17)

Observe that if 0 < gU (a) ≤ 1, there is a unique ρ ∈ (0, 1] satisfying log(gU (a)) + ρ − 1 −
log(ρ) = 0; and if gU (a) > 1, there is no ρ ∈ (0,∞) satisfying this equation. Let amax ∈ [0, 1]
denote the unique solution to gU (x) = 1. Define the function τ : [0, amax]→ (0, 1] as follows.
Let τ(amax) = 1 and for x < amax let τ(x) be the unique number satisfying

log(gU (x)) + τ(x)− 1− log τ(x) = 0 . (18)

Hence to prove (17) it is enough to show that

cU = sup
{

x

τ(x) : x ∈ [0, amax]
}
. (19)

Differentiating (18) and using the implicit function theorem, we find that τ is differentiable
and

τ ′(x) = τ(x)
1− τ(x) ×

g′U (x)
gU (x) .

It can be verified that log(gU (a)) is increasing and convex and that ρ−1− log(ρ) is decreasing
and convex. Using standard convexity arguments it can be proved that the supremum in
(19) occurs at a point x∗ ∈ (0, amax) with τ(x∗) = x∗τ ′(x∗), hence it is enough to find
x∗ ∈ (0, amax) satisfying

cU = x∗

τ(x∗) = 1− τ(x∗)
τ(x∗)

gU (x∗)
g′U (x∗) . (20)

Recall that p0 ≈ 0.206 is the unique solution to (2). If 0 < p ≤ p0, we let x∗ =[
2 log

(
1−p
p

)]−1
. Then it is not hard to see that

gU (x∗) = exp
(

1
2 − log 2

)
, g′U (x∗) = log

(
1− p
p

)
gU (x∗), and τ(x∗) = 1/2 ,

and (20) follows. If p0 < p < 1, we let x∗ = φ−1(s∗), where s∗ ∈ (0, 1) is the unique solution
to (1). Then (20) follows from the following equations, which are not hard to verify:

gU (x∗) =
(

1− x∗

s∗

)
exp (x∗/s∗) , g′U (x∗) = gU (x∗)/s∗, and τ(x∗) = 1− x∗

s∗
. J

7 Concluding Remarks

One natural open problem is to close the gap between the lower and upper bounds in
Theorems 3 and 4 when p < p0. It seems that for solving this problem new ideas are required.
In Theorem 2 we gave logarithmic upper bounds for the diameter of the random-surfer
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Webgraph model for all d ≥ 1, which are close to being tight when d = 1. Another interesting
open problem is to give lower bounds for d > 1. This problem seems to need quite different
techniques. In fact, the diameter for d > 1 might be of a smaller order, e. g. Θ(logn/ log logn),
as is the case for the preferential attachment model (see [5, Theorem 1]).

There is a common generalization of random recursive trees, preferential attachment
trees, and random-surfer trees. Consider i.i.d. random variables X1, X2, . . . ∈ {0, 1, 2, . . . }.
Start with a single vertex v0. At each step s a new vertex vs appears, chooses a random
vertex u in the present graph, and then walks Xs steps from u towards v0, attaching to the
last vertex in the walk (if it reaches v0 before Xs steps, it attaches to v0). Random recursive
trees correspond to Xi = 0, preferential attachment trees correspond to Xi = Bernoulli(1/2)
(see, e. g., [4, Theorem 3.1]), and random-surfer trees correspond to Xi = Geo(p). Using the
ideas of this paper, it is possible to obtain lower and upper bounds for the height and the
diameter of this general model (similar to Theorems 3 and 4), provided one can prove large
deviation inequalities (similar to (12) and (13)) for the sum of Xi’s and also large deviation
inequalities (similar to (16)) for the sum of random variables X ′i defined as X ′1 = 1 and
X ′i+1 = max{1−Xi, 1− (X ′1 + · · ·+X ′i)} for i > 0.
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