
BIROn - Birkbeck Institutional Research Online

Razgon, Igor (2015) On the read-once property of branching programs and
CNFs of bounded treewidth. Algorithmica 75 (2), pp. 277-294. ISSN 0178-
4617.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/15405/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/15405/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

On the read-once property of branching programs and
CNFs of bounded treewidth

Igor Razgon

Department of Computer Science and Information Systems, Birkbeck, University of London
igor@dcs.bbk.ac.uk

Abstract. In this paper we prove a space lower bound of nΩ(k) for non-deterministic
(syntactic) read-once branching programs (NROBPs) on functions expressible as
CNFs with treewidth at most k of their primal graphs. This lower bound rules out
the possibility of fixed-parameter space complexity of NROBPs parameterized by
k.
We use lower bound for NROBPs to obtain a quasi-polynomial separation between
Free Binary Decision Diagrams and Decision Decomposable Negation Normal
Forms, essentially matching the existing upper bound introduced by Beame et al.
and thus proving the tightness of the latter.

1 Introduction

1.1 Statement of results and motivation

Read-once Branching Programs (ROBPs) are a well known representation of Boolean
functions. Oblivious ROBPs, better known as Ordered Binary Decision Diagrams (OBDDs),
are a subclass of ROBPs, very well known because of its applications in the area of ver-
ification [3]. An important procedure in these applications is transformation of a CNF
formula into an equivalent OBDD. The resulting OBDD can be exponentially larger than
the initial CNF formula, however a space efficient transformation is possible for special
classes of functions. For example, it has been shown in [7] that a CNF formula with
treewidth k of its primal graph can be transformed into an OBDD of size O(nk). A nat-
ural question is if the upper bound can be made fixed-parameter i.e. of the form f(k)nc

for some constant c. In [14] we showed that it is impossible by demonstrating that for
each sufficiently large k there is an infinite class of CNF formulas with treewidth at most
k whose smallest OBDD is of size at least nk/5.

In this paper we report a follow up result (Theorem 1) showing that essentially the
same lower bound holds for non-deterministic read-once branching programs (NROBPs).
1 In particular we show that there is a constant 0 < c < 1 such that for each sufficiently
large k there is an infinite class of CNF formulas of treewidth at most k (of their primal
graphs) for which the space complexity of the equivalent NROBPs is at least nck.

This result is a significant enhancement of the result of [14]. Indeed, OBDDs are a
subclass ROBPs and there is exponential separation between the classes (that is, there is

1 Throughout this paper, we assume the read-once property to be syntactic, that is applied to all
root-leaf paths of the considered branching programs. See Section 2 for the exact definitions.

ar
X

iv
:1

41
1.

02
64

v3
 [

cs
.C

C
]

 2
6

Ju
l 2

01
5

2

a family of functions that can be represented by poly-size ROBPs but require exponential
size OBDDs). A ROBP, in turn, is a special case of (NROBP) and there is an exponential
separation between ROBPs and NROBPs ([16], Corollary 10.2.3). Thus the proposed
result shows that read-once branching programs are inherently incapable to efficiently
compute CNF formulas of bounded treewidth.

We also demonstrate that the proposed result can be used in the non-parameterized
context. In particular, using this result, we provide a quasi-polynomial separation be-
tween NROBPs and a subset of decomposable negation normal forms (DNNFs) [4] known
as decision-DNNF. More precisely, we demonstrate a family of CNF formulas that can
be expressed as decision DNNFs of size O(n5) but the space complexity of NROBPs is
nΩ(logn). The motivation for this result is described below.

DNNF is a representation of Boolean functions well known in the areas of knowl-
edge representation and databases. DNNFs are much more succinct than ROBPs. In fact
a ROBP can be seen as a special case of DNNF [6] and there is an exponential sepa-
ration between these two representations. Like in the case of OBDDs, transformation
from a CNF formula to an equivalent DNNF is an important operation in the related ap-
plications. One remarkable property of DNNFs is their FPT space complexity on CNFs
formulas with bounded treewidth. In particular, a CNF formula with treewidth k can be
transformed into a DNNF of sizeO(2kn). In fact this property is preserved for a number
of restricted DNNF subclasses, one of them is known as decision-DNNF [12]. Interest-
ingly, the possibility of exponential separation from ROBP is not preserved for decision-
DNNFs: it has been shown in [1] that a decision-DNNF of size N can be simulated by
a ROBP of size O(N logN). Our result shows that this upper bound is essentially tight.
Indeed, since ROBP is a special case of NROBP, this result implies quasi-polynomial
separation between ROBP and decision-DNNF, essentially matching the upper bound of
[1].

We believe the proposed parameterized lower bound is interesting from the pa-
rameterized complexity theory perspective because it contributes to the understanding
of (concrete) parameterized space complexity of various representations of Boolean
functions. We see at least two reasons why this research direction is worth to explore.
First, the results of of this kind are closely related (through substitution of the param-
eters with appropriate functions of n) to the classical, non-parameterized complexity
of Boolean function. For example, the famous result of Razborov providing the first
non-polynomial lower bound for the space complexity of monotone circuits can be
seen formulated in the parameterized setting as a space n

√
k lower bound for monotone

circuits testing whether the given graph has a clique of size k [10].

The second reason why we believe that the parameterized complexity of Boolean
functions is an interesting research direction is that parameterized upper bounds on the
space complexity of Boolean functions are important in applications related to verifica-
tion, knowledge representation, and databases. In fact, quite a few such upper bounds
are already known (e.g. [4,5,12,11,8]). Therefore, it is interesting to see if advanced pa-
rameterized complexity methodologies can be applied in order to enhance these upper
bounds and to obtain new ones.

3

1.2 Overview of the proofs

To prove the proposed parameterized lower bound, we use monotone 2-CNF formulas
(their clauses are of form (x1 ∨ x2) where x1 and x2 are 2 distinct variables). These
CNF formulas are in one-to-one correspondence with graphs having no isolated vertices:
variables correspond to vertices and 2 variables occur in the same clause if and only if
the corresponding vertices are adjacent. This correspondence allows us to use these CNF
formulas and graphs interchangeably. We introduce the notion of Matching Width (MW)
of a graph G and prove two theorems. One of them (Theorem 2) states that a NROBP
equivalent to a monotone 2-CNF formula with the corresponding graph G having MW
at least t is of size at least 2t/a where a is a constant dependent on the max-degree
of G. The second theorem (Theorem 3) states that for each sufficiently large k there
is an infinite family of graphs of treewidth k and max-degree 5 whose MW is at least
log n∗k/b for some constant b independent of k. The main theorem immediately follows
from replacement of t in the former lower bound by the latter one.

The proof of Theorem 2 uses the following combinatorial statement. Let VC(G)
be the set of all vertex covers of a graph G and let S be a family of subsets of V (G)
of size at least t such that each element of VC(G) is a superset of some element of S.
Then |S| ≥ 2t/a where a is a universal constant as in the previous paragraph.

In order to define the family of graphs for Theorem 3, we introduce graphs Tr(H)
where Tr is a complete binary tree of height r and H is an arbitrary graph. In the graph
Tr(H) each vertex of Tr is replaced by a copy of H . Copies corresponding to adjacent
vertices of Tr are connected by edges so that each vertex of H is connected to the
‘same’ vertex of H of the adjacent copy. For the proof of Theorem 3, we take as H a
path of length about k/2.

The strategy outlined above is similar to that we used in [14]. However, there are two
essential differences. First, due to a much more ‘elusive’ nature of NROBPs compared
to that of OBDD, the counting argument is more sophisticated and more restrictive: it
applies only to CNF formulas whose graphs are of constant degree. Due to this latter
aspect, the family of graphs requires a more delicate construction and reasoning.

The rest of the paper is organized as follows. Section 2 introduces the necessary
background. Section 3,4, and 5 prove the parameterized lower bound (the last two sec-
tions prove auxiliary theorems used for the lower bound proof in section 3). Section
6 establishes the quasipolynomial separation between decisionDNNF and NROBP. Fi-
nally, two sections in the Appendix demonstrate validity of our assumptions regarding
NROBP, see Section 2 for further details.

2 Preliminaries

In this paper when we refer to a set of literals we assume that it does not contain an
occurrence of a variable and its negation. For a set S of literals we denote by V ar(S)
the set of variables whose literals occur in S. If F is a Boolean function or its represen-
tation by a specified structure, we denote by V ar(F) the set of variables of F . A truth
assignment to V ar(F) on which F is true is called a satisfying assignment of F . A set
S of literals represents the truth assignment to V ar(S) where variables occurring posi-
tively in S (i.e. whose literals in S are positive) are assigned with true and the variables

4

occurring negatively are assigned with false. We denote by FS a function whose set of
satisfying assignments consists of all sets S′ of literals such that S ∪ S′ is a satisfying
assignment of F . We call FS a subfunction of F .

Definition 1. A non-deterministic read-once branching program (NROBP) Y imple-
menting (computing) a function F is a directed acyclic graph (DAG) (with possible
multiple edges) with one leaf, one root, and with some edges labelled by literals of the
variables of F in a way that there is no directed path having two edges labelled with
literals of the same variable. We denote by A(P) the set of literals labelling edges of a
directed path P of Y .

The connection between Y and F is defined as follows. Let P be a path from the
root to the leaf of Y . Then any set of literals A ⊇ A(P) such that V ar(A) = V ar(F)
is a satisfying assignment of F . Conversely, let A be a satisfying assignment of F . Then
there is a path P from the root to the leaf of Y such that A(P) ⊆ A.

Remark. A traditional definition of a NROBP is a ROBP with guessing nodes. Defini-
tion 1 in fact introduces acyclic read-once switching and rectifier networks (AROSRNs).
However, these models are equivalent in the sense that an AROSRN can simulate NROBP
without increase of the number of edges and a NROBP can simulate an AROSRN with at
most three times increase of the number of edges. The details are provided in Appendix
B. The equivalence of these models is mentioned in [9].

We say that a NROBP Y is uniform if the following is true. Let a be a node of Y and
let P1 and P2 be 2 paths from the root of Y to a. Then V ar(A(P1)) = V ar((A(P2)).
That is, these paths are labelled by literals of the same set of variables. Also, if P is a
path from the root to the leaf of Y then V ar(A(P)) = V ar(F). Thus there is a one-to-
one correspondence between the sets of literals labelling paths from the root to the leaf
of Y and the satisfying assignments of F .

All the NROBPs considered in Sections 3-6 of this paper are uniform. This as-
sumption does not affect our main result because an arbitrary NROBP can be transformed
into a uniform one at the price of O(n) times increase of the number of edges. For the
sake of completeness, we provide the transformation and its correctness proof in Ap-
pendix A. We use the construction described in the proof sketch of Proposition 2.1 of
[13].

Now we are going to define the Decomposable Negation Normal Form (DNNF) and
its subclass decision-DNNF for which we prove a separation result in Section 6.

Remark. The only thing we need to know for this separation result is that a CNF
formula with a bounded primal graph treewidth can be transformed into an FPT-size
decision-DNNF [12]. That is, the two paragraphs below are not needed for the technical
reasoning. We provide these definitions for the sake of completeness in the sense that
all the representations of Boolean functions occurring in the statements of this paper
are explicitly defined.

Recall that a Boolean circuit over the ∨,∧,¬ is called de Morgan circuit if the nega-
tions are applied only to the input (variable) gates. Next, we define a decomposable
node. Let x be a gate of a Boolean circuit X . We denote by V Reach(x) the set of vari-
ables such that x is reachable from their respective input gates. We say that x is decom-
posable if for any two in-neighbours y1 and y2 of x, V Reach(y1)∩ V Reach(y2) = ∅.
A DNNF is a de-Morgan circuit with all the AND-nodes being decomposable.

5

We say that an OR-node x of a DNNF is a decision node (see Figure 1) if it is binary,
both its in-neighbours y1 and y2 are AND-nodes and there is a variable x such that x is
an input of, say y1 and ¬x is an input of y2. A DNNF is called decision DNNF if all its
OR nodes are decision ones. See Figure 2 showing a DNNF and a decision-DNNF for the
same function. Note that for the latter we use both variable and constant input gates.

V

& &

X
~X

Fig. 1. A decision node

X2
X3 X4 X5 ~X2

~X3
~X4~X5

V

& &

V V V V

V

& &

X2
X3 X4 X5 ~X2~X3

~X1 X1

& &

W W W W

V

& &

X2
~X2

X31

~X4

~X5

Fig. 2. A DNNF and a decision-DNNF for a function (x1 ∨ x2 ∨ x3)(x1 ∨ x4 ∨ x5)(¬x1 ∨¬x2 ∨
¬x3)(¬x1 ∨ ¬x4 ∨ ¬x5). For the sake of compactness, we introduced a ‘macro-node’ W that
expresses a disjunction of two literals in terms of decision-DNNF.

Given a graphG, its tree decomposition is a pair (T,B) where T is a tree and B is a
set of bagsB(t) corresponding to the vertices t of T . EachB(t) is a subset of V (G) and
the bags obey the rules of union (that is,

⋃
t∈V (T)B(t) = V (G)), containment (that is,

for each {u, v} ∈ E(G) there is t ∈ V (t) such that {u, v} ⊆ B(t)), and connectedness
(that is for each u ∈ V (G), the set of all t such that u ∈ B(t) induces a subtree of T).

6

The width of (T,B) is the size of the largest bag minus one. The treewidth of G is the
smallest width of a tree decomposition of G.

Given a CNF formula φ, its primal graph has the set of vertices corresponding to the
variables of φ. Two vertices are adjacent if and only if there is a clause of φ where the
corresponding variables both occur.

3 The parameterized lower bound

A monotone 2-CNF formula has clauses of the form (x ∨ y) where x and y are two
distinct variables. Such CNF formulas can be put in one-to-one correspondence with
graphs that do not have isolated vertices. In particular, let G be such a graph. Then G
corresponds to a 2CNF formula φ(G) whose variables are the vertices of G and the set
of clauses is {(u∨ v)|{u, v} ∈ E(G)}. These notions, together with the corresponding
NROBP, are illustrated on Figure 3. 2 It is not hard to see that G is the primal graph of
φ(G), hence we can refer to the treewidth of G as the primal graph treewidth of φ(G).

V1 ~V1

V4 ~V4

V2 ~V2

V3

V1

V4

V2 V3

~V3

(V1 v V2)(V1 v V3)(V2 v V4)(V3 v V4)

V4

~V4

V3

V2

Fig. 3. A graph, the corresponding CNF formula and a NROBP of the CNF formula. Circles denote
the nodes used in Section 4 for illustration of the definition of a t-node.

The following theorem is the main result of this paper.

Theorem 1. There is a constant c such that for each k ≥ 3 there is an infinite class G
of graphs each of treewidth of at most k such that for each G ∈ G, the smallest NROBP
equivalent to φ(G) is of size at least nk/c, where n is the number of variables of φ(G).

In order to prove Theorem 1, we introduce the notion of matching width (MW) of a
graph and state two theorems proved in the subsequent two sections. One claims that if
the max-degree of G is bounded then the size of a NROBP realizing φ(G) is exponential
in the MW of G. The other theorem claims that for each sufficiently large k there is an

2 Notice that on the NROBP in Figure 3, there is a path where v2 occurs before v3 and a path
where v3 occurs before v2. Thus this NROBP, although uniform, is not oblivious.

7

infinite class of graphs of bounded degree and of treewidth at most k whose MW is at
least log n ∗ k/b for some universal constant b. Theorem 1 will follow as an immediate
corollary of these two theorems.

Definition 2. Matching width.
Let SV be a permutation of V (G) and let S1 be a prefix of SV (i.e. all vertices of
SV \ S1 are ordered after S1). The matching width of S1 is the size of the largest
matching consisting of the edges between S1 and V (G) \ S1. 3 The matching width of
SV is the largest matching width of a prefix of SV . The matching width of G, denoted
by mw(G), is the smallest matching width of a permutation of V (G).

Remark. The above definition of matching width is a special case of the notion of
maximum matching width as defined in [15].

To illustrate the notion of matching width recall that Cn andKn respectively denote
a cycle and a complete graph of n vertices. Then, for a sufficiently large n, mw(Cn) =
2. On the other hand mw(Kn) = bn/2c.

Theorem 2. There is a function f such that for any graphG the size of NROBP realizing
φ(G) is at least 2mw(G)/f(x) where x is the max-degree of G.

Theorem 3. There is a constant b such that for each k ≥ 3 there is an infinite class G
of graphs of degree at most 5 such that the treewidth of all the graphs of G is at most k
and the matching width of each G ∈ G is at least (logn ∗ k)/b where n = |V (G)|.

Now we are ready to prove Theorem 1.
Proof of Theorem 1. Let G be the class whose existence is claimed by Theorem 3.

By Theorem 2, for each G ∈ G the size of a NROBP realizing φ(G) is of size at least
2mw(G)/f(5). Further on, by Theorem 3, mw(G) ≥ (log n ∗ k)/b, for some constant b.
Substituting the inequality for mw(G) into the lower bound 2mw(G)/f(5) supplied by
Theorem 2, we get that the size of a NROBP is at least 2logn∗k/c where c = f(5) ∗ b.
Replacing 2logn by n gives us the desired lower bound. �

From now on, the proof is split into two independent parts: Section 4 proves Theo-
rem 2 and Section 5 proves Theorem 3.

4 Proof of Theorem 2

Recall that we are going to prove that for any graph G, the size of a NROBP computing
φ(G) is at least 2mw(G)/f(x) where f(x) is a universal function depending on the max-
degree x of G only.

Recall that the vertices of graph G serve as variables in φ(G). That is, in the truth
assignments to V ar(φ(G)), the vertices are treated as literals and may occur positively
or negatively. Similarly for a path P of a NROBP Z implementing φ(G), we say that a
vertex v ∈ V (G) occurs on P if either v and ¬v labels an edge of P . In the former case
this is a positive occurrence, in the latter case a negative one.

Recall that a Vertex Cover (VC) of G is V ′ ⊆ V (G) incident to all the edges of
E(G).

3 We sometimes treat sequences as sets, the correct use will be always clear from the context

8

Observation 1 S is a satisfying assignment of φ(G) if and only if the vertices of G
occurring positively in S form a VC of G. Equivalently, V ′ ⊆ V (G) is the set of all
vertices of G occurring positively on a root-leaf path of Z if and only if V ′ is a VC of
G.

In light of Observation 1, we denote the set of all vertices occurring positively on a
root-leaf path P of Z by V C(P).

The proof of Theorem 2 requires two intermediate statements. For the first state-
ment, let a be a node of an NROBP Z. For an integer t > 0, we call a a t-node if there
is a set S(a) of size at least t such that for each root-leaf path P passing through a,
S(a) ⊆ V C(P). To demonstrate the notion of a t-node, consider the two nodes de-
noted by circles in Figure 3. They are 2-nodes for the given NROBP, the witnessing set
for the left-hand node is {v1, v4} and for the right-hand node is {v2, v3}.

Lemma 1. Suppose that the matching width of G is at least t. Then any root-leaf path
of Z contains a t-node or, put it differently, t-nodes of Z form a root-leaf cut.

Proof. We need to show that each root-leaf path P passes through a t-node. Due to
the uniformity of Z, (the vertices of G corresponding to) the labels of P being explored
from the root to the leaf form a permutation SV of V (G). Let SV ′ be a prefix of the
permutation witnessing the matching width at least t. In other words, there is a matching
M = {{u1, v1}, . . . , {ut, vt}} of G such that all of u1, . . . , ut belong to SV ′, while
all of v1, . . . , vt belong to SV \ SV ′. Let u be the last vertex of SV ′ and let a be the
head of the edge of P whose label is a literal of u. We claim that a is a t-node with a
witnessing set S(a) = {x1, . . . , xt} such that xi ∈ {ui, vi} for each xi.

Indeed, observe that for each {ui, vi} there is xi ∈ {ui, vi} such that xi ∈ V C(P)
for each root-leaf path P passing through a. Clearly for any root-leaf pathQ ofZ, either
ui ∈ V C(Q) or vi ∈ V C(Q) for otherwise V C(Q) is not a VC of G in contradiction
to Observation 1. Thus if such xi does not exist then there are two paths Q1 and Q2

meeting a such that V C(Q1) ∩ {ui, vi} = {ui} and V C(Q2) ∩ {ui, vi} = {vi}.
For a root-leaf pathQ passing through a denote byQa the prefix ofQ ending with a

and by ¬Qa the suffix of Q beginning with a. Note that by definition of SV ′, ui occurs
in Pa and vi occurs in ¬Pa. By uniformity of Z, V ar(Pa) = V ar(Q1

a) = V ar(Q2
a)

and hence it follows that ui occurs both in Q1
a and Q2

a. Similarly we establish that
vi occurs in both ¬Q1

a and ¬Q2
a. It remains to observe that, by definition, ui occurs

negatively in Q2
a and vi occurs negatively in ¬Q1

a. Hence Q∗ = Q2
a + ¬Q1

a is a root-
leaf path ofZ such that V C(Q∗) is disjoint with {ui, vi}, a contradiction to Observation
1, confirming the existence of the desired xi.

Suppose that there is a root-leaf path P ′ of Z passing through a such that S(a) *
V C(P ′). This means that there is xi /∈ V C(P ′) contradicting the previous two para-
graphs. Thus being a a t-node has been established and the lemma follows. �

For the second statement, let A and B be two families of subsets of a universe U.
We say that A covers B if for each S ∈ B there is S′ ∈ A such that S′ ⊆ S. If
each element of A is of size at least t then we say that A is a t-cover of B. Denote by
VC(G) the set of all VCs of G.

Theorem 4. There is a function f such that the following is true. LetH be a graph. Let
A be a t-cover of VC(H). The |A| ≥ 2t/f(x) where x is the max-degree of H .

9

The proof of Theorem 4, using a probabilistic argument, is provided in Subsection
4.1. See [2] (Theorem 3 and Corollary 2) for a non-probabilistic proof.

Now we are ready to prove Theorem 2.
Proof of Theorem 2. Let N be the set of all t-nodes of Z. For each a ∈ N , specify

one S(a) of size at least t such that for all paths P of Z passing through a, S(a) ⊆
V C(P). Let S = {S1, . . . , Sq} be the set of all such S(a). Then we can specify distinct
a1, . . . , aq such that Si = S(ai) for all i ∈ {1, . . . , q}.

Observe that S covers VC(G). Indeed, let V ′ ∈ VC(G). By Observation 1, there
is a root-leaf path P with V ′ = V C(P). By Lemma 1, P passes through some a ∈ N
and hence S(a) ⊆ V C(P). By definition, S(a) = Si for i ∈ {1, . . . , q} and hence
Si ⊆ V ′. Thus S is a t-cover of VC(G).

It follows from Theorem 4 that q = |S| ≥ 2t/f(x) where x is a max-degree of G
and f is a universal function independent on G or t. It follows that Z contains at least
2t/f(x) distinct nodes namely a1, . . . , aq . �

4.1 Proof of Theorem 4

Denote E(H) by E. For each e = {u, v}, we toss a fair coin whose outcomes are u or
v and the denote the outcome by Out(e). For E′ ⊆ E, let Out(E′) = {Out(e)|e ∈
E′}. That is, Out(E′) is a random set consisting of ends of edges of E′ each chosen
uniformly at random.

Claim. Let S ⊆ V (G). Then Pr(S ⊆ Out(E)) ≤ (1− 2−x)|S|/(x+1)

Let us see how the claim implies the statement of the lemma. Let A be as in the
statement of the lemma. Then, by the claim above and the union bound, the probability
that at least one element of A is a subset ofOut(E) is at most |A|∗(1−2−x)t/(x+1) =
|A| ∗ 2−t/f(x) where f is a function such that 2−1/f(x) = (1 − 2−x)1/(x+1). Suppose
that |A| < 2t/f(x). Then the above probability is smaller than 1. That is, there is a
set T obtained by choosing one end of each e ∈ E such that T is not a superset of
any element of A. By construction T is a VC of H . Thus we have just observed that
any family of less than 2t/f(x) subsets of V (H) of size at least t cannot cover all of
VC(H), as required.

Proof of the claim. For u ∈ V (H), denote by Eu the set of edges incident to u. For
S ⊆ V (H), let ES =

⋃
u∈S Eu. Then it is easy to notice the following.

u ∈ Out(E)⇔ u ∈ Out(Eu) (1)

Pr(u ∈ Out(E)) = Pr(u ∈ Out(Eu)) (2)

Furthermore, for a set S,

S ⊆ Out(E)⇔ S ⊆ Out(ES) (3)

We will also need the following form of statement that the event u ∈ Out(E) is
independent on the guessed ends of edges outside Eu. In particular, let E′ ⊆ E be such

10

that Eu ∩ E′ = ∅ and let S ⊆ V (H) be such that Pr(S ⊆ Out(E′)) > 0. Then

Pr(u ∈ Out(E)|S ⊆ Out(E′)) = Pr(u ∈ Out(Eu)|S ⊆ Out(E′)) = Pr(u ∈ Out(Eu))
(4)

Let I = {u1, . . . , uq} be an independent set of H . Then the sets Eui
are pairwise

disjoint and, in particular, for each i < q, Ei =
⋃
j≤iEui

is disjoint with Eui+1
. We

prove by induction on q that Pr(I ⊆ Out(E)) =
∏q
i=1 Pr(ui ∈ Out(Eui

)). For
q = 1 the claim immediately follows from (2). Assume that q > 1. Then

Pr(I ⊆ Out(E)) = Pr(I \{uq} ⊆ Out(E))∗Pr(uq ∈ Out(E)|I \{uq} ⊆ Out(E))
(5)

By the induction assumption,

Pr(I \ {uq} ⊆ Out(E)) =

q−1∏
i=1

Pr(ui ∈ Out(Eui)) (6)

Also,

Pr(uq ∈ Out(E)|I \ {uq} ⊆ Out(E)) = Pr(uq ∈ Out(E)|I \ {uq} ⊆ Out(EI\q))
= Pr(uq ∈ Out(Euq

))
(7)

the first equality follows from (3), the second from (4). Replacing the factors of
the right part of (5) with the respective right parts of (6) and (7), we obtain Pr(I ⊆
Out(E)) = [

∏q−1
i=1 Pr(ui ∈ Out(Eui

))] ∗ Pr(uq ∈ Out(Euq
)) as required.

Notice further that Pr(u ∈ Out(Eu)) = 1 − 2−|Eu| ≤ 1 − 2−x. Hence, Pr(I ⊆
Out(E)) ≤ (1 − 2−x)|I|. Now, consider an arbitrary S ⊆ V (H). Then there is an
independent set I ⊆ S of size at least |S|/(x + 1) (recall that x is the max-degree of
H). Hence Pr(S ⊆ Out(E)) ≤ Pr(I ⊆ Out(E)) ≤ (1− 2−x)|S|/(x+1) as required.

5 Proof of Theorem 3

Recall that we are going to prove that for each k ≥ 3 there is an infinite class of graphs
of degree at most 5 having treewidth k and matching width at least (log n ∗ k)/b where
b is a universal constant.

Let us define first a more general class of graphs for which the class of graphs used
for the proof of Theorem 3 will be a subclass. Denote by Tr a complete binary tree of
height (root-leaf distance) r. Let T be a tree andH be an arbitrary graph. Then T (H) is
a graph having disjoint copies of H in one-to-one correspondence with the vertices of
T . For each pair t1, t2 of adjacent vertices of T , the corresponding copies are connected
by making adjacent the pairs of same vertices of these copies. Put differently, we can
consider H as a labelled graph where all vertices are associated with distinct labels.
Then for each edge {t1, t2} of T , edges are introduced between the vertices of the
corresponding copies having the same label. An example of this construction is shown
on Figure 4.

In order to prove Theorem 3 we will consider all graphs Tr(Pq) where r gets ranges
over all natural numbers and q is about k/2, the precise definition is provided below

11

Fig. 4. Graphs from the left to the right: T3, P3, T3(P3). The dotted ovals surround the copies of
P3 in T3(P3).

inside the proof. We also need to prove three structural lemmas about graphs T (H), the
first one being an auxiliary statement for the second one and the second one being an
auxiliary statement for the third one. Note that these structural lemmas do not restrict
the structure of H , besides Lemma 4 requiring H to be connected.

Lemma 2. Suppose the vertices of T (H) are partitioned into two subsets. Let L be a
subset of vertices of H such that |L| = t. Suppose there are two copies H1 and H2

of H such that for each u ∈ L the copies of vertex u in H1 and H2 belong to distinct
partition classes. Then T (H) has a matching of size t with the ends of each edge lying
in different partition classes.

Proof. Let v1 and v2 be the respective vertices of T corresponding toH1 andH2. Let
p be the path between v1 and v2 in T . Then for each u ∈ L there are two consecutive
vertices v′1 and v′2 of this path with respective copies H ′1 and H ′2 such that the copy
u′1 of u in H ′1 belongs to the same partition class as the copy u1 of u in H1 and the
copy u′2 of u in H ′2 belongs to the same partition class as the copy u2 of u in H2.
By construction, T (H) has an edge {u′1, u′2} which we choose to correspond to u. Let
L = {u1, . . . ut} and consider the set of edges as above corresponding to each ui. By
construction, both ends of the edge corresponding to each ui are copies of ui and also
these ends correspond to distinct partition classes. It follows that these edges do not
have joint ends and indeed constitute a desired matching of size t �

Lemma 3. Let T be a tree consisting of at least p vertices. LetH be a connected graph
of at least 2p vertices. Let V1, V2 be a partition of V (T (H)) such that both partition
classes contain at least p2 vertices. Then T (H) has a matching of size p with the ends
of each edge belong to distinct partition classes.

Proof. Assume first that there are at least p copies ofH corresponding to vertices of
T that contain vertices of both partition classes. Since H is a connected graph, for each
copy we can specify an edge with one end in V1 and the other end in V2. These edges
belong to disjoint copies of H , hence none of these edges have a common end. Since
there are p copies of H , we have the desired matching of size p.

If the assumption in the previous paragraph is not true then, since T has at least
p vertices, there is a vertex u of T such that the copy H1 of H corresponding to u
contains vertices of only one partition class; assume w.l.o.g. that this class is V1. We
call u a non-partitioned vertex of T . Then there is a vertex v of T such that the copy

12

H2 of H corresponding to v contains at least p vertices of V2. Indeed, otherwise, the
vertices of the copies of H associated with the non-partitioned vertices of T all belong
to V1. Consequently, vertices of V2 can occur only in the remaining at most p−1 copies
of H . If each of these copies contains at most p− 1 vertices of V2 then the total number
of vertices of V2 is smaller than p2 in contradiction to our assumption. We conclude that
the required vertex v indeed exists.

Let L be the set of vertices of H whose copies in H2 belong to V2. By assumption,
all the copies of L in H1 belong to V1. By Lemma 2, H1 and H2 witness the existence
of a matching of size p with ends of each edge belonging to distinct partition classes. �

Lemma 4. Let p be an arbitrary integer and let H be an arbitrary connected graph of
2p vertices. Then for any r ≥ dlogpe, mw(Tr(H)) ≥ (r + 1− dlogpe)p/2.

Proof. The proof is by induction on r. The first considered value of r is dlogpe. After
that r will increment in 2. In particular, for all values of r of the form dlogpe+ 2x, we
will prove that mw(Tr(H)) ≥ (x + 1)p and, moreover, for each permutation SV of
V (Tr(H)), the required matching can be witnessed by a partition of SV into a suffix
and a prefix of size at least p2 each. Let us verify that the lower bound mw(Tr(H)) ≥
(x + 1)p implies the lemma. Suppose that r = dlogpe + 2x for some non-negative
integer x. Then mw(G) ≥ (x+ 1)p = ((r− dlogpe)/2 + 1)p > (r− dlogpe+ 1)p/2.
Suppose r = dlogpe + 2x + 1. Then mw(G) = mw(Tr(H)) ≥ mw(Tr−1(H)) ≥
(x+ 1)p = ((r − dlogpe − 1)/2 + 1)p = (r − dlogpe+ 1)p/2.

Assume that r = dlogpe and let us show the lower bound of p on the matching
width. Tr contains 2dlogpe+1−1 ≥ 2logp+1−1 = 2p−1 ≥ p vertices. By construction,
H contains at least 2p vertices. Consequently, for each ordering of vertices of Tr we can
specify a prefix and a suffix of size at least p2 (just choose a prefix of size p2). Let V1
be the set of vertices that got to the prefix and let V2 be the set of vertices that got to the
suffix. By Lemma 3 there is a matching of size at least p consisting of edges between
V1 and V2 confirming the lemma for the considered case.

Let us now prove the lemma for r = dlogpe + 2x for x ≥ 1. Specify the cen-
tre of Tr as the root and let T 1, . . . , T 4 be the subtrees of Tr rooted by the grand-
children of the root. Clearly, all of T 1, . . . , T 4 are copies of Tr−2. Let SV be a se-
quence of vertices of V (Tr(H)). Let SV 1, . . . , SV 4 be the respective sequences of
V (T 1(H)), . . . , V (T 4(H)) ‘induced’ by SV (that is their order is as in SV). By the
induction assumption, for each of them we can specify a partition SV i1 , SV

i
2 into a pre-

fix and a suffix of size at least p2 each witnessing the conditions of the lemma for r−2.
Let u1, . . . , u4 be the last respective vertices of SV 1

1 , . . . , SV
4
1 . Assume w.l.o.g. that

these vertices occur in SV in the order they are listed. Let SV ′, SV ′′ be a partition of
SV into a prefix and a suffix such that the last vertex of SV ′ is u2. By the induction
assumption we know that the edges between SV 2

1 ⊆ SV ′ and SV 2
2 ⊆ SV ′′ form a

matching M of size at least xp. In the rest of the proof, we are going to show that the
edges between SV ′ and SV ′′ whose ends do not belong to any of SV 2

1 , SV
2
2 can be

used to form a matching M ′ of size p. The edges of M and M ′ do not have joint ends,
hence this will imply existence of a matching of size xp+ p = (x+ 1)p, as required.

The sets SV ′ \ SV 2
1 and SV ′′ \ SV 2

2 partition V (Tr(H)) \ (SV 2
1 ∪ SV 2

2) =
V (Tr(H)) \ V (T 2(H)) = V ([Tr \ T 2](H)). Clearly, Tr \ T2 is a tree. Furthermore, it

13

contains at least p vertices. Indeed, T 2 (isomorphic to Tr−2) has at least p vertices just
because we are at the induction step and Tr contains at least 4 times more vertices than
T 2. So, in fact, Tr \T 2 contains at least 3p vertices. Furthermore, since u1 precedes u2,
the whole SV 1

1 is in SV ′. By definition, SV 1
1 is disjoint with SV 2

1 and hence it is a sub-
set of SV ′ \SV 2

1 . Furthermore, by definition, |SV 1
1 | ≥ p2 and hence |SV ′ \SV 2

1 | ≥ p2
as well. Symmetrically, since u3 ∈ SV ′′, we conclude that SV 3

2 ⊆ SV ′′ \ SV 2
2 and

due to this |SV ′′ \ SV 2
2 | ≥ p2.

Thus SV ′ \ SV 2
1 and SV ′′ \ SV 2

2 partition V ([Tr \ T 2](H)) into classes of size at
least p2 each and the size of Tr \T 2 is at least 3p. Thus, according to Lemma 3, there is
a matching M ′ of size at least p created by edges between SV ′ \SV 2

1 and SV ′′ \SV 2
2 ,

confirming the lemma, as specified above. �
Proof of Theorem 3. First of all, let us identify the class G. Recall that Px a path

of x vertices. Further on, let 0 ≤ y ≤ 3 be such that k − y + 1 is divided by 4. The
considered class G consists of all G = Tr(P k−y+1

2
) for r ≥ 5dlogke.

Let us show that the treewidth of the graphs of G is bounded by k. Consider the
following tree decomposition of G = Tr(H = P k−y+1

2
). The decomposition tree is Tr.

Consider Tr as the rooted tree with the centre being the root. The bag of each vertex
includes the vertices of the copy of H associated with this vertex plus the copy of the
parent (for a non-root vertex). The properties of tree decomposition can be verified by
a direct inspection. The size of each bag is at most k − y + 1, hence the treewidth is at
most k − y ≤ k.

Observe that max-degree of the graphs of G is 5. Indeed, consider a vertex v of
G ∈ G that belongs to a copy of H associated with a vertex x of some Tr. Inside its
copy of H , v is adjacent to at most 2 vertices. Outside its copy of H , v is adjacent to
vertices in the copies ofH associated with the neighbours of x, precisely one neighbour
per copy. Vertex x is adjacent to at most 3 vertices of Tr. It follows that v has at most 3
neighbours outside its copy of H .

In the rest of the proof we assume that k ≥ 50. Te assumption does not restrict
generality because the constant can be made larger to incorporate smaller values of k.
Let us reformulate the lower bound ofmw(G) in terms of logn and k where n = V (G).
Notice that p used in Lemma 4 can be expressed as (k − y + 1)/4. Hence, the lower
bound on the matching width can be seen as (r − dlog(k−y+1

4)e+ 1) ∗ (k − y + 1)/8.
This lower bound can be immediately simplified by noticing that by the choice of k and
y, (k − y + 1)/8 ≥ k/16 and dlog(k−y+1

4)e ≤ dlogke. Hence, (r − dlogke+ 1)k/16
can serve as a lower bound onmw(G). To draw the connection between n and r, notice
that n = (2r+1 − 1)(k − y + 1)/2. It follows that r + 1 = log(n

(k−y+1)/2 + 1).
In particular, it follows that r + 1 ≥ logn − logk ≥ logn − dlogke. It follows that
r + 1 in the lower bound can be replaced by logn − dlogke and the new lower bound
is (logn − 2dlogke)k/16. Consequently, for logn ≥ 5dlogke the lower bound can be
represented as (logn ∗ k)/32 which is the form needed for the theorem. It remains
to observe that r ≥ 5dlogke implies logn ≥ 5dlogke. By the above reasoning, r ≥
5dlogke implies log(n

(k−y+1)/2 +1) ≥ 5dlogke. By our choice of k ≥ 50, log(n/20+
1) ≥ log(n

(k−y+1)/2 + 1) ≥ 5dlogke. By construction of G and the choice of r, n ≥
2r+1− 1 ≥ k5− 1 ≥ k, the last inequality follows from the choice of k, hence n ≥ 50.

14

In particular, it follows that n ≥ n/20 + 1. Hence logn ≥ log(n/20 + 1) ≥ 5dlogke.
�

6 Separation between ROBP and decision-DNNF

Lemma 5. The space complexity of NROBP on CNF formulas φ(Tr(Pr)) is Ω(nlogn/c)
for some universal constant c.

Proof. The number of variables of Tr(P2r) is n = (2r+1 − 1) ∗ 2r = 2r ∗ 4r− 2r.
That is, r = log n+2r

4r ≥ log n − log r − 2. For a sufficiently large r, r ≥ log r + 2,
hence r ≥ log n− r and hence r ≥ log n/2.

By Lemma 4, mw(Tr(P2r)) ≥ (r + 1 − dlogre)r/2. That is, mw(Tr(P2r)) ≥
(logn2 + 1− log logn

2 − 1) ∗ logn4 It is not hard to see that for a sufficiently large r (and

hence sufficiently large n), mw(Tr(P2r)) ≥ log2 n
16 . The statement of the theorem now

follows immediately from Theorem 2. �

Theorem 5. There is an infinite class of CNF formulas such that the complexity of
decision-DNNF on this class is O(n5) while the complexity ROBP is Ω(nlogn/c) for
some universal constant c.

Proof. Consider the class φ(Tr(Pr)). As a ROBP can be seen as a special case of an
NROBP, the lower bound on the space complexity of ROBP on φ(Tr(Pr)) immediately
follows from Lemma 5.

It follows from Theorem 1 in [12] that the space complexity of decision-DNNF on
a CNF formula with primal graph treewidth t is O(2tn) (the theorem in fact uses a
different parameter of a CNF formula, however it is shown to never exceed the primal
graph treewidth). Arguing as in the proof of Theorem 3, we observe that the treewidth
of Tr(P2r) is at most 4r. We know from the proof of Lemma 5 that r = log n+2r

4r . That
is r ≤ log(n + 2r) and, for a sufficiently large r, r ≤ log(2n) = log n + 1. That is,
for a sufficiently large r, the treewidth of Tr(P2r) is at most 4 log n + 4. Substituting
4 log n+4 instead t in O(2tn) results in O(n5), completing the required separation. �

Thus, Theorem 5 shows that the quasi-polynomial upper bound on the size of ROBP
simulating the given decision-DNNF as described in [1] is essentially tight.

References

1. Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Lower bounds for exact model counting
and applications in probabilistic databases. In Proceedings of the Twenty-Ninth Conference
on Uncertainty in Artificial Intelligence, Bellevue, WA, USA, August 11-15, 2013, 2013.

2. Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. Expander cnfs have
exponential DNNF size. CoRR, abs/1411.1995, 2014.

3. Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv., 24(3):293–318, 1992.

4. Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4):608–647, 2001.
5. Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases.

In 22nd International Joint Conference on Artificial Intelligence (IJCAI), pages 819–826,
2011.

15

6. Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res.
(JAIR), 17:229–264, 2002.

7. Andrea Ferrara, Guoqiang Pan, and Moshe Y. Vardi. Treewidth in verification: Local vs.
global. In Logic for Programming, Artificial Intelligence, and Reasoning, 12th International
Conference (LPAR), pages 489–503, 2005.

8. Abhay Kumar Jha and Dan Suciu. On the tractability of query compilation and bounded
treewidth. In 15th International Conference on Database Theory (ICDT), pages 249–261,
2012.

9. Stasys Jukna. A note on read-k times branching programs. Electronic Colloquium on Com-
putational Complexity (ECCC), 1(27), 1994.

10. Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer-Verlag,
2012.

11. Kenneth L. McMillan. Hierarchical representations of discrete functions, with application to
model checking. In Computer Aided Verification, 6th International Conference,(CAV), pages
41–54, 1994.

12. Umut Oztok and Adnan Darwiche. On compiling CNF into decision-dnnf. In Principles and
Practice of Constraint Programming - 20th International Conference, (CP), pages 42–57,
2014.

13. Alexander A. Razborov, Avi Wigderson, and Andrew Chi-Chih Yao. Read-once branching
programs, rectangular proofs of the pigeonhole principle and the transversal calculus. In
Symposium on the Theory of Computing (STOC), pages 739–748, 1997.

14. Igor Razgon. On obdds for cnfs of bounded treewidth. In Principles of Knowledge Repre-
sentation and Reasoning(KR), 2014.

15. Martin Vatschelle. New width parameters of graphs. PhD thesis, Department of Informatics,
University of Bergen, 2012.

16. Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM Monographs on
Discrete Mathematics and applications, 2000.

A Transformation of an NROBP into a uniform one

Let Z be a NROBP. The in-degree d+(v) of a node v is a number of in-neighbours (this
is essential point because of the possibility of multiple edges). We assume that all the in-
coming edges of nodes v with d+(v) > 1 are unlabelled. We call such a NROBP clean.
This assumption does not restrict generality because a NROBP can be transformed into
a clean one having at most twice more edges than the original NROBP. Indeed, let v be
a node with in-degree greater than 1 and let (u, v) be an edge labelled with a literal x.
Subdivide (u, v) and let u,w, v be the path that replaced (u, v). Then label (u,w) with
x. Clearly, as a result we get a NROBP implementing the same function as the original
one. Notice that w has in-degree 1, that is the number of edges violating the assumption
has decreased by 1. Thus, one can inductively argue that in case of q ‘violating’ edges,
there is a transformation to a NROBP satisfying the above assumption that creates at
most q additional edges.

For a node v of Z, denote by IV arZ(v) the set of variables x such that a literal of x
occurs on path from the root to v (the subscript can be omitted if clear from the context).
We call the edges (u, v) of Z such that d+(v) > 1 relevant. A relevant edge (u, v)
irregular if IV ar(u) ⊂ IV ar(v) and regular otherwise. Let IV ar(v) \ IV ar(u) =
{x1, . . . , xq}. Transform Z as follows.

16

1. Remove the edge (u, v).
2. Introduce new vertices u1, . . . , uq; we will refer to u as u0 for the sake of conve-

nience.
3. For each 1 ≤ i ≤ q, introduce two edges (ui−1, ui) and label them them xi and
¬xi, respectively.

4. Introduce an unlabelled edge (uq, v).

Let Z ′ be the graph obtained as a result of the above transformation.

Observation 2 1. IV arZ(v) = IV arZ′(v).
2. The edge (uq, v) is regular in Z ′.
3. Z ′ is clean.

Proof. Immediate by construction. �

Lemma 6. Z ′ is a NROBP that computes the same function as Z.

Proof. To establish the read-once property of Z ′, it is sufficient to prove that any
root-leaf path P of Z ′ that is not a path of Z is read-once. By construction, such a path
P includes u and v and the subpath Pu,v starting at u and ending at v goes through
u1, . . . , uq as defined above. Let Pu be the prefix of P ending at u, and Pv be the
suffix of P beginning at v. Notice that Pu ∪ Pv is a subgraph of a path of Z and hence
cannot have repetitions of variable occurrences. By construction, Pu,v does not have
repeated variable occurrences either. A variable of Pu,v does not occur on Pu because,
by construction, the variables occurring on Pu,v do not belong to IV arZ(u). Finally
all the variables occurring on Pu,v , by construction, belong to IvarZ(v) and hence
cannot belong to Pv . Indeed, otherwise if such a variable x is found then there is a path
P ′ of Z from the root to v on which x occurs and hence x occurs twice on P ′ + Pv
in contradiction to the read-once property of Z. Thus we conclude that Z ′ is indeed
read-once.

Let S be a satisfying assignment of the function computed by Z and let P be a
root-leaf path of Z with A(P) ⊆ S. If P does not include (u, v) then P is a root-
leaf path of Z ′. Otherwise, let Pu and Pv be as in the previous paragraph and let P ′

be a u − v path with u1, . . . , uq being the intermediate vertices and the in-edge for
each ui is the one labelled with the literal of xi that belongs to S (by construction,
such a selection is possible) and, as a result A(P ′) ⊆ S. Taking into account that
A(Pu)∪A(Pv) ⊆ A(P) ⊆ S, we conclude that A(Pu+P ′+Pv) ⊆ S. That is, in any
case there is a root-leaf path of Z whose set of literals is a subset of S and hence S is a
satisfying assignment of the function computed by Z ′.

Conversely, let S be a satisfying assignment of the function computed by Z ′. Let
P be a root-leaf path of Z ′ such that A(P) ⊆ S. If P is not a path of Z then, by
construction, P includes both u and v and a path of Z can be obtained by replacement
of the subpath of P between u and v by an edge (u, v). Clearly, the set of literals of this
resulting path is a subset of A(P), hence S is a satisfying assignment of the function
computed by Z. �

Lemma 7. The number of irregular edges of Z ′ is smaller than the number of irregular
edges of Z ′.

17

Proof. Denote by RelZ , RgZ , RelZ′ , RgZ′ the sets of relevant edges of Z, regular
edges of Z, relevant edges of Z ′, and regular edges of Z ′, respectively. It is not hard
to see that by construction, RelZ′ = (RelZ \ {(u, v)}) ∪ {(uq, v)}. That is, |RelZ′ | =
|RelZ |. By assumption, (u, v) /∈ RgZ . Hence RgZ ⊆ RelZ′ . In fact RgZ ⊆ RgZ′ . To
show this, we need the following claim.

Claim. For each node w ∈ V (Z) ∪ V (Z ′), IV arZ(w) = IV arZ′(w).

Proof. Let x ∈ IV arZ(w) and let P be a path from the root of Z tow containing an
occurrence of x. Note that by construction P is either a path of Z ′ or it can be replaced
by a path P ′ with A(P) ⊆ A(P ′). Hence x ∈ IV arZ′(w).

Conversely, let x ∈ IV arZ′(w) and let P be a path from the root of Z ′ to w
containing an occurrence of x. If P does not contain v then P is path of Z and hence
x ∈ IV arZ(w). If P contains v but x occurs on the suffix Pv of P starting at v then,
since Pv is a path in Z, appending Pv to an arbitrary path from the root to v will give us
a path of Z on which x occurs. Finally if x occurs on the prefix of P ending at v then
x ∈ IV arZ′(v). By the first statement of Observation 2, IV arZ(v) = IV arZ′(v).
That is, there is a path P ′ of Z from the root to w that contains an occurrence of x.
Consequently P ′ + Pv is a a path of Z containing an occurrence of x. �

Now, let (u′, v′) ∈ RgZ , that is IV arZ(u) = IV arZ(v). By the above claim,
IV arZ′(u) = IV arZ(u) = IV arZ(v) = IV arZ′(v). That is, (u′, v′) ∈ RgZ′ . Thus
RgZ′ includes all the elements of RgZ and, in addition (vq, u), by the second statement
of Observation 2. It follows that |RgZ′ | > |RgZ |. Now, the number of irregular edges
of Z and Z ′ are, respectively, |RelZ |− |RgZ | and |RelZ′ |− |RgZ′ |. It follows from the
proved above that the latter is smaller than the former. �

Theorem 6. Let Z be a clean NROBP with q irregular edges. Then there is a uniform
NROBP Z∗ computing the same function as Z and having at most 2qn edges more than
Z.

Proof. By induction on q. If q = 0 then all the relevant edges of Z are regular. It
is easy to observe that in this case Z is uniform and hence no further transformation is
needed.

Suppose q > 1. Pick an irregular edge (u, v) and transform Z to Z ′ as specified
above. By Lemma 6,Z ′ is a NROBP. By the third statement of Observation 2,Z ′ is clean.
By Lemma 7, Z ′ has at most q−1 irregular edges. Hence, by the induction assumption,
there is a uniform NROBP Z∗ computing the same function as Z ′ and having at most
2(q − 1)n more edges than Z ′. As Z ′ computes the same function as Z, by Lemma 6
and, by construction, has at most 2n edges more than Z∗, we conclude that Z computes
the same function as Z and has at most 2qn more edges. �

B Equivalence of the AROSRN and the traditional definition of the
NROBP

A (NROBP) is traditionally defined as a DAG Z with one root and two leaves. Some of
non-leaf nodes are labelled with variables so that no variable occurs as a label twice

18

on a directed path of Z. A node labelled with a variable has two outgoing edges one
labelled with true the other with false. Finally, the leaves are labelled with true and
false.

It is convenient to see each edge e labelled with true or false being in fact respec-
tively labelled with the positive or negative literal of the variable labelling the tail of
e. With such a labelling an assignment A(P) associated with each directed path of Z
is simply the set of literals labelling the edges of P . The satisfying assignments of the
function computed by Z are precisely those that are extensions of A(P) for paths P
from the root to the true leaf.

It is not hard to see that for any function that is not constant false, NROBP can be
thought as a special case of AROSRN. Indeed, with edges labelled by literals as specified
in the previous paragraph, remove the labels from the vertices, remove the false leaf
as well as all nodes of Z from which th true leaf is not reached and the obtained graph
is an AROSRN computing exactly the same function as Z.

Conversely, an AROSRN can be transformed into a NROBP as follows. Denote the
only leaf of the AROSRN as the true leaf and introduce a new node to be the false leaf.
Then for each edge (u, v) labelled with a literal x, apply the following transformation.

– Subdivide (u, v) by introducing a new node w and edges (u,w) and (w, v) instead
(u, v).

– Introduce a new edge e from w to the false leaf.
– Label w by V ar(x), the variable of x.
– If x is the positive literal then label (w, v) with true and e with false. Otherwise,

label (w, v) with false and e with true.

The transformation of labeled edges is illustrated in Figure 5.

u

v

u

v

w

x

x

x

~x

true

false
true

false

u

v

u

v

w

false
false

Fig. 5. Transformation of a labelled edge of an AROSRN.

It is not hard to see that there is a bijection between root-leaf paths of the AROSRN
and root-true leaf paths of the resulting NROBP preserving the associated sets of literals.
Therefore, we conclude that this transformation is valid.

	On the read-once property of branching programs and CNFs of bounded treewidth

