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Abstract

We investigate the design of dynamic programming algorithms in unreliable memories,
i.e., in the presence of errors that lead the logical state of some bits to be read differently
from how they were last written. Assuming that a limited number of memory faults can
be inserted at run-time by an adversary with unbounded computational power, we obtain
the first resilient algorithms for a broad range of dynamic programming problems, devising
a general framework that can be applied to both iterative and recursive implementations.
Besides all local dependency problems, where updates to table entries are determined by
the contents of neighboring cells, we also settle challenging non-local problems, such as all-
pairs shortest paths and matrix multiplication. All our algorithms are correct with high
probability and match the running time of their standard non-resilient counterparts while
tolerating a polynomial number of faults. The recursive algorithms are also cache-efficient
and can tolerate faults at any level of the memory hierarchy. To obtain our results, we
introduce some novel techniques which might be of independent interest in the design of
resilient algorithms for different problems.

∗The last author was supported by the University of Padova under Projects STPD08JA32 and CPDA121378.



1 Introduction

Transient electronic noises and permanent hardware failures make dynamic random access
memories susceptible to errors where the logical state of a bit is read differently from how
it was last written. A large-scale study on Google’s server fleet over a period of nearly 2.5
years observed error rates orders of magnitude higher than previously reported in laboratory
conditions, with average FIT rates (failures in time per billion device hours) of 50,000 per
Mbit [41]: this implies that a cluster of 1000 computers with 4 Gigabytes per node, for
example, can experience one bit error every three seconds, with each node experiencing an
error every 40 minutes. Fault-tolerant memory chips available on the market – based on
parity checks and error-correcting codes – have limited fault coverage, typically correcting
single bit errors and detecting two bits errors. Furthermore, they have large manufacturing
and power costs, can cause significant delays, and can even determine interruptions of service
upon detection of uncorrectable errors. Due to low supply voltage and low critical charge
per cell, caches are also rather prone to bit flips [33], while sophisticated error-correction
algorithms are prohibitive for on-chip memories due to tight constraints on die size.

If memory errors are not corrected, they can lead to applications using corrupted data and
eventually to machine crashes. Silent data corruptions are a major concern in the reliability
of modern systems: even a few of them may be harmful to both the correctness and the
performance of software. Coping with memory faults appears to be of particular importance
for all those applications handling massive data sets, for long-living processes, and for safety-
critical avionics applications. A few works have also shown that bit flips can cause serious
security vulnerabilities [7, 31].

A recent trend to cope with silent data corruptions is to design applications that are more
tolerant to faults [43]: this “robustification” of software involves re-writing it so that dealing
with faults simply causes the execution to take longer. Unfortunately, most algorithms and
data structures are far from being robust: since the contents of memory locations are supposed
not to change throughout the execution unless explicitly written by the program, wrong steps
may be taken upon reading corrupted values, yielding unpredictable results: as an example,
if only one single key in a sorted array of size n is corrupted, there can be as many as Θ(n)
uncorrupted keys that could not be correctly found by the standard binary search algorithm.

Related work. Algorithmic research related to memory errors spans more than thirty
years. Starting from the “twenty questions game” posed by Rényi and Ulam in the late 70’s,
many results have been obtained in the liar model: see, e.g., [3, 9, 25, 38] and the extensive
survey in [39]. More recently, sorting and selection have been studied in the “just noticeable
difference model”, where the outcome of comparisons is unpredictable if the compared values
are within a fixed threshold [2]. These works assume transient comparator failures, but no
corruption of data. Destructive faults have been first investigated in the context of fault-
tolerant sorting networks [4, 37], and many subsequent works have focused on the design
of resilient data structures in a variety of (hardly comparable) models: e.g., pointer-based
data structures are the subject of [5], and error-correcting data structures for membership
problems, based on locally decodable error-correcting codes, are presented in [16, 24]. The
more restrictive problem of checking (but not recovering) the behavior of large data structures
that reside in an unreliable memory has also received considerable attention [8, 23]: checkers
are typically correct with high probability and use an amount of reliable memory that is much
smaller than the memory required by the data structure being checked.
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A variety of resilient algorithms have been designed in the faulty-memory random access
machine (faulty RAM), where an adaptive adversary can corrupt at most δ memory cells of a
large unreliable memory during the execution of an algorithm [28]. Resiliency is achieved if a
problem is solved correctly (at least) on the set of uncorrupted values. This relaxed definition
of correctness fits naturally many problems addressed so far in this model, which include
sorting [26, 28], dictionaries [11, 27], priority queues [34], selection [6, 36], counting [13], K-
d trees [30], interval trees and suffix trees [22]. A two-level faulty external memory model
has been introduced in [12] to investigate the connection between fault tolerance and I/O-
efficiency [1, 42]. To the best of our knowledge, no algorithms that are both resilient and cache-
efficient across the entire memory hierarchy, in the spirit of cache-oblivious algorithms [29],
are known in the literature.

Our results. In spite of the wealth of results summarized above, it remains an open ques-
tion whether powerful algorithmic techniques, such as those based on dynamic programming
(DP), can be made to work in the presence of faults: even checking DP computations has
been regarded as an elusive goal for many years, especially for problems with non-local de-
pendencies such as all-pairs shortest paths. In this paper we provide the first positive answers
to this question, focusing on the faulty RAM model: not only our approach yields the first
resilient algorithms for dynamic programming, but our algorithms can also tolerate, with high
probability, destructive faults at any level of the memory hierarchy, while still incurring a low
(additive) overhead on the running time and a small number of cache misses.

Throughout the paper we denote by α ≤ δ the actual number of faults occurring during
a computation. Furthermore, we assume that the input is stored reliably, i.e., that it is
replicated 2δ + 1 times so that its correct value can be recovered at any time by majority
techniques. Our bounds, which cover a broad range of dynamic programming problems, are
summarized in Table 1.

To illustrate our results, let us first consider the problem of computing a longest common
subsequence (LCS) between two reliable n-length sequences. A simple-minded resilient imple-
mentation of the standard dynamic programming algorithm could be based on replicating all
DP table values 2δ+1 times: this would result in a multiplicative Θ(δ) overhead on both space
usage and running time, yielding a Θ(δn2)-time algorithm. Hence, only a constant number of
faults could be tolerated while matching the standard Θ(n2) time bound of the non-resilient
approach. In contrast, our algorithm IterLCS (Section 3) runs in O(n2 + nδ+αδ1+ε) time,
for any arbitrarily small constant ε ∈ (0, 1]: it can therefore tolerate an almost linear number
of faults (i.e., up to δ = O(n1−γ) faults, for any arbitrarily small constant γ > 0) while
maintaining the same asymptotic running time of its non-resilient counterpart.

The techniques used in Section 3 are independent of the specific recurrence relation that
defines the table entries and can be applied to all local dependency dynamic programming
problems, where updates to entries in the DP table are determined by the contents of O(1)
neighboring cells: this class includes, e.g., edit distance and certain kinds of sequence align-
ment [32], but excludes many practically relevant problems such as Floyd-Warshall all-pairs
shortest paths. Moreover, algorithm IterLCS has poor temporal locality and is not cache-
efficient. In the remainder of the paper we overcome these limitations as follows:

• In Section 4 we prove that, if we can afford to use O(log n) private memory words
(incorruptible and hidden from the adversary), then LCS can be solved resiliently and

cache-obliviously via a recursive approach in O(n2 +δn log n) time and O( n2

MB + δn logn
B )
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Algorithm Running time Cache misses Private memory Section

IterLCS O(n2 + δn+ αδ1+ε) Ω
(
n2

B

)
O(1) §3

RecLCS O(n2 + δn log n) O
(
n2

MB + δn logn
B

)
O(log n) §4

RecGEP O(n3 + δn2 log n) O
(

n3

B
√
M

+ δn2 logn
B

)
O(log n) §5

ShallowLCS O(n2 + δn1+c/PP ) O
(
n2

MB + δn1+c/PP
B

)
P §6

ShallowGEP O(n3 + δn2+c/PP ) O
(

n3

B
√
M

+ δn2+c/PP
B

)
P §6

Table 1: Summary of our bounds for longest common subsequence (LCS) and Gaussian
Elimination Paradigm (GEP).

cache misses, where M is the (unreliable) cache size and B is the number of words in a
cache line. As long as δ = O( n

logn), algorithm RecLCS runs in O(n2) time and is either
cache-optimal, if δ is also bounded by O( n

M logn), or at most a factor of log n away from

optimal. Any non-resilient algorithm must indeed perform Ω( n2

MB ) cache misses [18].

Ω( δnB ) additional misses are required to write the output sequence reliably.

• In Section 5 we settle challenging non-local problems that fit in the Gaussian Elimination
Paradigm (GEP), by exploiting a recursive framework introduced in [17, 18]. The GEP
class includes problems solvable by triply-nested for loops of the type that occur in
the standard Gaussian elimination algorithm, most notably matrix multiplication and
Floyd-Warshall all-pairs shortest paths. Both the run-time overhead and the number
of cache misses of algorithm RecGEP are close to optimal: any non-resilient algorithm
must indeed perform Ω( n3

B
√
M

) cache misses [18] and the reliable output matrix takes

Ω(δn2) space.

• In Section 6 we remove the logarithmic private memory assumption of Section 4 and
Section 5, obtaining parametric algorithms that can adapt to private memories of dif-
ferent sizes. For instance, algorithm ShallowLCS solves LCS resiliently and cache-

obliviously in O(n2 + δn1+c/PP ) time and O( n2

MB + δn1+c/PP
B ) cache misses, where P is

the private memory size (bounded by O (log n)) and c < P is a small constant. Notice
that nc/P = Θ(1) when P = Θ(log n). This algorithm matches the Θ(n2) time of its

non-resilient counterpart as long as δ = O(n
1−c/P

P ), offering a full spectrum of tradeoffs
between private memory size and number of faults. Similar tradeoffs can be achieved
also for GEP problems.

To obtain our results we introduce some novel techniques which might be of independent inter-
est in the design of resilient algorithms for different problems, as sketched below. Preliminary
versions of this paper appeared in [14, 15].

Techniques. Similarly to previous works in the field, we exploit knowledge of δ and a small
(at most logarithmic) number of private memory words, but do not rely on any cryptographic
assumptions. Since the faulty RAM model does not provide fault detection capabilities, we
use read-and-write Karp-Rabin fingerprints to guarantee that values read throughout the
computation were not tampered since they were last written. Such fingerprints have been
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effectively used for checking the correctness of a computation, but they alone are not powerful
enough in the faulty RAM model, where we also need to recover the computation upon fault
detection without restarting it from scratch. We overcome this issue by carefully combining
fingerprinting with data replication and majority techniques.

Since working at resiliency δ throughout the entire computation would asymptotically
increase the running time, we sometimes store data semi-resiliently, by replicating variables
less than 2δ+1 times: semi-resilient data could be corrupted by the adversary, but at the cost
of a large number of faults, allowing us to amortize the cost of a subproblem recomputation.

In the iterative algorithm, fingerprints and semi-resilient variables are associated to an
asymmetric, hierarchical decomposition of the dynamic programming table into rectangular
slices of height δ and decreasing width. In the recursive algorithms, fingerprints are associated
to the input and output data of each recursive call and the resiliency level is tied with the
depth of the call: calls that are deeper in the recursion tree correspond to smaller subproblems
and have a lower level of resiliency. Fingerprints, prime numbers used for their generation,
and information about recursive calls are all stored in the private memory. Since Ω(1) data
are necessary per recursion level, in the parametric algorithms of Section 6 we limit the depth
of the recursion tree by recursively solving a non-constant number of subproblems, using
a lazy fault detection strategy. This might force the algorithm to perform entire subtree
computations on wrong data, but we can prove that the wasted computation time can be
appropriately amortized.

Combining read-and-write fingerprint computations with techniques aimed at achieving
cache-efficiency also poses some unique challenges: read and write data access patterns may
be different from each other and data may be discarded to improve spatial locality as soon as
they are no longer needed, obtaining the discarded parts, when necessary, by appropriately
repeating computations. To cope with these issues, we devise opportunely crafted amplified
fingerprints, coupled with the complex data access patterns induced by multiple, out-of-order
read and write operations.

2 Preliminaries

In this section we introduce preliminary definitions and concepts that will be useful throughout
the paper, describing our hierarchical faulty memory model and presenting tools for resiliency
that we will use as building blocks in our algorithms.

2.1 Model of computation

The faulty-RAM model assumes a unit cost RAM with wordsize w, distinguishing between an
unreliable and a private memory. Up to δ unreliable memory words may be silently corrupted
during the execution of an algorithm by an adaptive adversary with unlimited computational
power, whereas the private memory consists of P memory words that are incorruptible and
hidden from the adversary: no reliable computation would be possible without at least a
constant number of incorruptible memory words [28], and a small amount of hidden memory
is necessary in the case of randomized algorithms to store random values and their derivatives.

To analyze cache-efficiency, we extend the faulty-RAM and the faulty external memory [12]
models assuming the existence of a multilevel unreliable memory: each of the α ≤ δ faults can
take place at any level of the hierarchy. Following [29], we focus on cache-oblivious algorithms
and analyze the cache complexity in a two-level ideal-cache model, where both levels may be
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faulty: a fully associative cache of size M is partitioned into lines, each consisting of B
consecutive words which are always moved together to/from main memory according to an
optimal off-line replacement strategy (these choices are justified in [29]). We also assume the
existence of a multilevel private memory whose largest level has size P : at each hierarchy
level, private and unreliable memory have the same cache line size. If P = Θ(1), we regard
the private memory as implemented by a constant number of dedicated registers that can be
accessed without incurring cache misses.

2.2 Tools for resiliency

Resilient variables. An r-resilient variable x consists of 2r+1 copies of a standard variable,
stored contiguously in the unreliable memory [27]. A reliable write operation on x means
assigning the same value to each copy. Similarly, a reliable read means calculating the majority
value: using the algorithm in [10], this can be done in O(1) private memory words, Θ(r) time,
and Θ(r/B + 1) cache misses, where B is the number of words in a cache line. The majority
value is guaranteed to be correct if r ≥ δ, since at most δ copies can be corrupted. An
r-resilient variable with r < δ can be corrupted by the adversary, but at the cost of at least
r + 1 faults. Hence, we will say that such variables are semi-resilient.

Generation of random primes. Primes can be generated in the faulty-RAM model using
a variant of a well-known algorithm based on iterated Miller-Rabin tests [40]. The following
lemma is proved in the appendix:

Lemma 1. For any constants γ, c > 0, it is possible to independently select k (not necessarily
distinct) prime numbers in I = [nc−1, nc], uniformly at random, with error probability bounded
by k/nγ. Each prime selection requires time polylogarithmic in n using a constant number of
memory words.

Read and write Karp-Rabin fingerprints. Given a vector A = 〈a0, . . . , ak〉 and a prime
number p, a Karp-Rabin fingerprint [35] can be defined as

∑k
i=0 ai2

w(k−i) mod p, where w
is the memory word size and each ai fits into a memory word. All fingerprints and prime
numbers will be stored in private memory. If A is revealed sequentially, its fingerprint can
be incrementally computed in O(k) time and O(1) private memory: when a new value ai is
given, the fingerprint can be updated in O(1) time using Horner’s rule and simple modular
arithmetics [35]. To perform error detection, we associate any vector A with a write fingerprint
ϕA and a read fingerprint ϕA: ϕA and ϕA are based on values written to and read from A,
respectively. The correctness of data stored in A can be checked by reading A, computing ϕA,
and comparing its value against the write fingerprint ϕA produced when A was previously
written: if ϕA 6= ϕA, a fault occurred.

Amplified fingerprints. When read and write data access patterns to vector A are not
sequential (and possibly different from each other), updating fingerprints ϕA and ϕA could
require logarithmic time per access, due to exponentiation. Moreover, if values of A are
accessed ω(1) times, they should appear in fingerprints tied with different exponents. We
define an amplified write fingerprint as

ϕA =
k∑
i=0

ai µi∑
j=1

2wfi,j

 mod pd
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where µi is the amplifying factor for element ai (i.e., the multiplicity of read operations on
ai), and values fi,j are distinct positive integers tailored to the read and write patterns. The
correctness of read data can be verified by updating an amplified read fingerprint ϕA adding
ai2

wfi,j during the j-th reading of ai. In our algorithms, we will exploit regularities in data
access patterns to compute factors 2wfi,j in O(1) amortized time: since these computations
depend on the specific pattern, they will be discussed later.

3 Iterative local-dependency dynamic programming

In a local-dependency dynamic programming problem, the value of each cell of the DP table
only depends on constantly many neighboring cells and input symbols, according to a fixed
access pattern. In this section we show how to make iterative algorithms for local-dependency
DP problems resilient to memory faults.

We consider the computation of a longest common subsequence (LCS) as a canonical
example of a problem with local dependencies. Given two input sequences X and Y , the LCS
problem requires to find a subsequence that is common to both X and Y and has maximum
length. The classic dynamic programming solution is based on the following recurrence:

`i,j =


0 if i = 0 or j = 0
`i−1,j−1 + 1 if i, j > 0 and xi = yj
max{`i,j−1, `i−1,j} if i, j > 0 and xi 6= yj

(1)

where `i,j is the length of a longest common subsequence of prefixes 〈x1, . . . , xi〉 and 〈y1, . . . , yj〉.
The length of an LCS of X and Y is thus given by `n,m, where n and m are the lengths of X
and Y , respectively (w.l.o.g., let m ≥ n). In the classic non-resilient dynamic programming
algorithm, values ` are stored in a DP table C of size n×m whose entries can be computed,
e.g., in row-major order, in Θ(mn) time. An LCS of X and Y can be obtained by computing
a traceback path starting from entry C[n,m] [32].

In the rest of this section we first describe a basic algorithm to compute `n,m resiliently
with O(αδ2) error-recovery time (Section 3.1). In Section 3.2 we show how to decrease this
overhead to O(αδ1+ε), for any arbitrarily small constant ε ∈ (0, 1]. The resilient computation
of a traceback path in C is addressed in Section 3.3.

3.1 A simple algorithm with O(αδ2) error-recovery time

Algorithm IterLCS mimics the behavior of the standard non-resilient dynamic programming
approach, performing additional work to cope with memory faults. During the computation
of table C, we compute fingerprints that allow us to determine whether some memory fault
occurred in a given set of memory words. Since detected faults should not force us to re-
compute the entire table, we divide it into square blocks of side length δ, writing the block
boundaries as δ-resilient variables (see Figure 1a). Blocks are smaller (and not necessarily
square) on the boundaries, whenever n or m are not divisible by δ: in this case the last row
and/or column may not be written reliably. Blocks are computed in column-major order.
Upon detection of a failure, we recompute only the current block.

Let Bi,j be an internal block (boundary blocks can be treated similarly). Entries of Bi,j
are processed in column-major order. Column 1 of Bi,j , together with a Karp-Rabin write
fingerprint ϕ1, is computed reliably from the δ-resilient variables of neighboring blocks. In
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(a) (b) (c)

Figure 1: a) Table decomposition and resilient block boundaries (gray color) when m ≥ n ≥ δ;
b) block computation with unreliable input; c) semi-resilient columns in the hierarchical table
decomposition for k = 3.

general, when computing a column k, for k > 1, we already have a write fingerprint ϕk−1
obtained during the calculation of column k − 1. While scanning k top-down, we compute
a write fingerprint ϕk and a read fingerprint ϕk−1, which is then compared to ϕk−1. If the
fingerprint test succeeds, ϕk−1 and ϕk−1 are discarded and the computation of column k + 1
begins. Otherwise, the computation of the block is restarted. The prime numbers used for
fingerprint computation are chosen uniformly at random at the beginning of the execution of
the algorithm and after each fault detection.

Computing table C in O(mn) time requires each comparison of the input symbols in
Equation 1 to be performed in constant (amortized) time. As shown in Figure 1b, the input
values required to compute block Bi,j are xiδ+1, . . . , x(i+1)δ and yjδ+1, . . . , y(j+1)δ. The only
character of string Y needed in the computation of column k is yjδ+k: we can thus afford to
read each yjδ+k reliably. Conversely, computing each column of Bi,j requires all characters
xiδ+1, . . . , x(i+1)δ. These characters are thus read reliably once, producing a write fingerprint
ϕx. Successive read operations are performed unreliably (i.e., considering only one copy) and,
similarly to block values, produce a read fingerprint that is compared against ϕx to detect
faults in X. If an input fingerprint test fails, all δ-resilient variables xiδ+1, . . . , x(i+1)δ are
refreshed using their majority values before restarting the computation of Bi,j .

We now prove that algorithm IterLCS is correct with high probability and analyze its
running time.

Lemma 2. For any constant β > 0, algorithm IterLCS is correct with probability larger
than 1− 1/mβ, when δ is polynomial in m.

Proof. The algorithm fails whenever a fingerprint test does not detect a memory fault. Con-
sider a block that gets corrupted during its computation and assume for the time being that
the boundaries of its neighboring blocks are correct. The reliable read operations guarantee
that column 1 is also written correctly. Consider now the concatenation of values written to
and read from a column k, and let τ be the difference between those values. Assuming that
random numbers used in fingerprint computations are prime, a fingerprint test on column k+1
fails to detect a fault in column k if and only if ϕk = ϕk even if τ 6= 0. This happens when
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τ ≡ 0 mod p. Since the length of a block column is bounded by d = min{δ,m} and the word
size w = O(logm), then τ ≤ 2wd = O(md). This implies that, for any constant c > 0, τ has
O(m) prime divisors of value Θ(mc). By the prime number theorem, there are Θ(mc/ logm)
prime numbers of value Θ(mc). Hence, a randomly chosen prime p ∈ I = [mc−1,mc] divides τ
with probability at most (logm)/(σmc−1) < 1/(σmc−2), for some constant σ > 0. The same
argument holds for the fingerprint computed on the input symbols.

Now consider a game with two players. The game is divided into rounds. At each round
player 1 (the algorithm) chooses uniformly at random a prime p ∈ I and player 2 (the
adversary) chooses a number τ ≤ 2wd. If p divides τ , then player 2 wins, otherwise the next
round begins. Player 1 wins if player 2 does not win in α rounds. This game models the
behavior of algorithm IterLCS, provided that no composite number is generated instead of
a prime. Namely, the probability for algorithm IterLCS of being correct is lower bounded
by the probability for player 1 of winning the game. Let pi and τi be the numbers chosen
by the two players at round i. Let Di be the event “player 2 does not win at round i”. If
player 2 did not win in rounds 1, . . . , i−1, the probability of Di equals the probability that pi

does not divide τi. From the discussion above, we have Pr
{
Di|
⋂i−1
j=1Dj

}
≥ 1− 1/(σmc−2).

The probability that player 1 wins is equal to Pr {
⋂α
i=1Di}. By the chain rule of conditional

probability, we have:

Pr

{
α⋂
i=1

Di

}
=

α∏
i=1

Pr

Di |
i−1⋂
j=1

Dj

 ≥
(

1− 1

σmc−2

)α
≥ 1− α

σmc−2

We conclude by taking into account the probability for algorithm IterLCS of generating at
some round a composite number instead of a prime. By Lemma 1, the probability that all the
α numbers are prime is at least 1−α/mγ , for any constant γ > 0. Hence, algorithm IterLCS
is correct with probability larger than or equal to (1 − α/(σmc−2))(1 − α/mγ). Since α ≤ δ
is polynomial in m, by appropriately choosing values c and γ the correctness probability can
be made larger than 1− 1/mβ, for any constant β > 0.

Lemma 3. The length of a longest common subsequence between two sequences of length n
and m (with m ≥ n) can be correctly computed, with high probability, in O

(
mn+mδ + αδ2

)
worst-case time, when δ is polynomial in m and α ≤ δ is the actual number of faults occurring
during the computation.

Proof. Let us distinguish between successful and unsuccessful block computations. Unsuccess-
ful block computations account for the time spent by the algorithm computing blocks that are
then discarded due to the detection of a memory fault. This time also includes the generation
of random primes, except for the first one. Successful block computations account for the
remaining time, including the calculation of fingerprints.

Successful computations. Computing the first and last columns of a block requires constantly-
many reliable reads or writes for each entry, i.e., O(δ2) time. Computing any internal column
requires instead O(δ) time, since fingerprints can be updated in O(1) amortized time (see
Section 2.2). The total time spent in a block is thus O(δ2) and the overall time for successful
block computations is O(mn+mδ), because the number of blocks is dn/δe × dm/δe and the
entire input strings are read reliably.

Unsuccessful computations. Each block recomputation is due to a fingerprint mismatch, that
can only be caused by a memory fault (either in the table cells or in some input symbol from
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string X). Since all block cells are recomputed and input symbols are refreshed upon fault
detection, each block recomputation can be charged to a distinct fault. It follows that at most
α block computations can be discarded during the entire execution of algorithm IterLCS.
Refreshing δ input values and computing a block take time O(δ2), yielding overall O(αδ2)
time for unsuccessful computations. The generation of (at most α) prime numbers does not
affect this asymptotic running time (see Lemma 1).

3.2 Faster error recovery via long distance fingerprints

Our improved algorithm uses an asymmetric decomposition of table C (see Figure 1c) and
k = d1/εe different resiliency levels, where ε is an arbitrarily small constant in (0, 1]. Let
δi = dδi/ke. At each level i ∈ [1, k], we use δi-resilient variables. Consider a given δ × δ block
Q. Every δi columns, we write a δi-resilient column (and all δj-resilient versions of this column
for j < i). In particular, the last column of each internal block is written at all resiliency
levels. The non-resilient columns of table C are regarded as having resiliency level 0. During
the computation of block Q, for each resiliency level i we keep (in the private memory) the
fingerprint of the last δi-resilient column. These long distance write fingerprints, similarly to
those described in Section 3.1, are computed while writing column values. For each resiliency
level, we independently select a prime number for computing the fingerprints.

Upon detection of a fault, error recovery is done starting from the last δ1-resilient column:
its values are read by majority computing a read fingerprint at level 1 which is then compared
with the corresponding write fingerprint. If the test fails, the recovery starts again from
resiliency level 2, i.e., from the last δ2-resilient column. In general, a level i fingerprint
mismatch induces a recovery starting from the last δi+1-resilient column. When a fingerprint
mismatch arises at resiliency level i, we generate a new random prime for level i, we read
by majority all values of the last δi+1-resilient column, and we use these values to refresh
all δj-resilient versions of this column, for j ≤ i, recomputing their write fingerprints. Input
symbols can be read efficiently by storing δi-resilient copies of symbols in X at all resiliency
levels and combining long distance fingerprints with the technique described in Section 3.1.

Theorem 1. Algorithm IterLCS requires O(mn + mδ + αδ1+ε) time in the worst case,
where m and n (with m ≥ n) are the lengths of the input sequences, ε is an arbitrarily small
constant in (0, 1], the upper bound δ on the number of faults is polynomial in m, and α ≤ δ
is the actual number of faults occurring during the execution.

Proof. The two-players game used to prove correctness in Lemma 2 can be easily adapted
to the improved version of algorithm IterLCS. To analyze the running time, similarly to
Lemma 3 we distinguish between successful and unsuccessful computations. The running time
of successful computations is not asymptotically affected by the additional O(1/ε) fingerprints
and by the δi-resilient columns. Now consider the unsuccessful computations. Recovery at
resiliency level i discards at most δ × δi entries of table C and requires computing O(δ)
majority values. Each δi-resilient read takes time O(δi/k), thus yielding total O(δ1+i/k) time.
A recovery at resiliency level i is due to at least δi−1 + 1 errors, either on the input symbols
or in table C: a fingerprint mismatch at resiliency level i − 1 may indeed arise only if the
majority value of some δi−1-resilient variable has been corrupted by the adversary. This gives
O(δ1+1/k) amortized time per fault, which proves the theorem since k = d1/εe.
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3.3 Tracing back

We now describe how the traceback process can be made resilient. The computation of the
LCS proceeds backward block by block starting from cell C[n,m], which we already proved
to be with high probability the length of a longest common subsequence. Within each block
traversed by the traceback path, we compute the corresponding segment S of the LCS. To
bound the traceback cost by O(αδ1+ε), we proceed incrementally by increasing the resiliency
level of S from 1 up to k = d1/εe, exploiting the δi-resilient columns written by the forward
computation. Notice that column fingerprints cannot be exploited, since they are no longer
available at this time.

In more details, we regard each segment S as being divided into (at most) δ1/k subseg-
ments, computed at resiliency level k − 1. This subdivision proceeds hierarchically, down to
resiliency level 1. As a base step, subsegments at resiliency level 0, corresponding to single
arcs of the traceback path, are computed from the cells of table C. Except for boundary
cases, a subsegment Si at resiliency level i spans two δi-resilient columns and is computed
by combining all the δ1/k subsegments at resiliency level i − 1 in which Si is logically di-
vided. Subsegments are read, proceeding right to left, δi−1-resiliently, and their soundness is
verified against the corresponding input symbols, which are read δi-resiliently: we call this a
consistency check. During this process, Si is also written δi-resiliently.

If a consistency check fails at a given cell c, the input symbols corresponding to the row and
column of c are refreshed and, if either endpoint of S lies on a resilient row, the corresponding
cell is also refreshed. The recovery then starts from the closest δi-resilient column to the left
of c: all δj-resilient versions of this column, for j < i, are refreshed from the δi-resilient values
(read by majority) and the block slice is recomputed by applying the improved version of
algorithm IterLCS. At the end of the slice computation, we check if the new values stored
on the closest δi-resilient column to the right of c match the old ones: if this is not the case,
recovery restarts at resiliency level i+ 1. At the end of the recovery phase, the computation
of Si restarts from subsegments at resiliency level 1.

When the computation of a subsegment Si is completed, the algorithm checks if the length
of the subsegment matches the difference between the cell values in table C corresponding
to its endpoints. These cells lie on δi-resilient columns (or on resilient rows on the block
boundaries) and their values are read δi-resiliently. Apart from refreshing the input values,
upon detection of a mismatch recovery is performed as described above.

We remark that, if the forward computation failed, the traceback algorithm may find
inconsistencies in δ-resilient variables: in this case the algorithm terminates without recon-
structing the LCS.

Theorem 2. Let C be the table computed by algorithm IterLCS. A common subsequence
of length C[n,m], if any, can be reconstructed from C with high probability in time O(mδ +
αδ1+ε).

Proof. The correctness of each symbol included in the common subsequence is verified at all
resiliency levels by consistency checks. The length of each segment is also verified against the
values reliably stored in the block boundaries of table C. Since during error recovery no δi+j-
resilient value is modified starting from δi-resilient reads, for any j ≥ 0, memory faults are
never propagated to higher levels of resiliency. This implies that a subsegment at resiliency
level i may be wrong only if at least δi/k + 1 memory faults occurred. Since the adversary
can insert at most δ faults, the δ-resilient common subsequence, if returned, is correct and
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has length C[n,m]. This subsequence may not be optimal or the algorithm may not be able
to reconstruct it only if a fingerprint test failed to detect a memory fault, which is a low
probability event (see Lemma 2). We now analyze the running time.

Successful computations. The time spent to combine all δk−1-resilient subsegments is asymp-
totically higher than the time spent at all lower resiliency levels. This time is O(mδ), because
the traceback path traverses O((n+m)/δ) blocks and each block costs time O(δ2).

Unsuccessful computations. Consider a consistency check failure arising while computing
a subsegment at resiliency level i + 1. Such a failure is due to at least δi + 1 faults and
costs O(δ1+(i+1)/k) time for recomputing δ × δi+1 table cells. If the δi+1-resilient column
used for recovery was correct, detected errors are removed from the table with an amortized
O(δ1+1/k) cost per memory fault. If the δi+1-resilient column used for recovery was corrupted,
the adversary must have inserted at least δi+1 +1 faults and the recomputed cells of the table
may still contain incorrect values after recovery. Two cases may happen: either the forward
recomputation of the table slice finds an inconsistency with the following δi+1-resilient column,
or no inconsistency is detected and a possibly wrong δi+1-resilient subsegment is computed. In
both cases, the number of memory faults inserted by the adversary is large enough to obtain
an amortized O(δ1+1/k) cost per fault, with recovery done at a higher resiliency level.

4 Recursive local-dependency dynamic programming

Algorithm IterLCS presented in Section 3 can be applied to all problems with local de-
pendencies, but incurs in a large number of cache misses. In this section we show that,
if we can afford a private memory of logarithmic size, we can achieve both resiliency and
cache-efficiency. Our approach hinges upon a recursive framework for dynamic programming,
introduced in [17, 18], that we briefly describe in Section 4.1 focusing on the LCS problem.
We assume that both input sequences have length n and, without loss of generality, that n
and δ are powers of two (we will then show how to remove the former assumption).

4.1 Cache-efficient dynamic programming

As shown in Figure 2a, for any subtable Q of the DP table C we can naturally identify its
left, right, top, and bottom boundaries (denoted by L, R, T , and D) and two projections of the
input sequences X and Y on Q. The algorithm presented in [17, 18] is implemented by two
recursive functions, Boundary and Traceback-Path, that use a divide-and-conquer strategy,
logically splitting table C into four quadrants:

• Boundary performs a forward computation by recursively solving four subproblems: it
returns the output boundaries R and D of a quadrant, starting from the projections of
X and Y on the quadrant and the input boundaries L and T .

• Traceback-Path finds the traceback path through table C by recursively finding its
fragments through the traversed quadrants. Given the input boundaries of a quadrant
Q and the path entry point on the output boundaries of Q, it first computes the input
boundaries of at most three subquadrants of Q (by invoking function Boundary), and
then calls itself recursively on each of the at most three traversed subquadrants.
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Figure 2: (a) Boundaries of a subtable and input projections; (b) subquadrants and auxiliary
vectors used by function Boundary.

A longest common subsequence of X and Y can be computed by initializing the left and
top boundaries of table C with all zeroes and invoking function Traceback-Path with entry
point C[n, n]. We refer to [17, 18] for a detailed description and analysis. In [19], the authors
also provide a multicore version of the algorithm: this extension exploits a tiling sequence,
depending on the recursion depth, that determines a subdivision of the DP table into a (not
necessarily constant) number of quadrants.

4.2 A resilient cache-efficient algorithm

We now describe how functions Boundary and Traceback-Path can be made resilient. Sim-
ilarly to the iterative approach of Section 3, we combine data replication and read/write
fingerprints to bound the cost of error recovery and to enable fault detection, respectively.
Input and output of the recursive calls are first stored at resiliency level δ, i.e., through δ-
resilient variables. However, since maintaining full resiliency throughout the recursion would
increase the running time by a factor of δ, we halve the resiliency level at each recursive call
exploiting semi-resilient variables associated with fingerprints. For each recursion level d, we
use a distinct prime number pd. Notice that both primes and the call stack can be stored in
private memory since the recursion depth is O(log n).

We start by describing two auxiliary functions that extract and merge vector segments,
changing their resiliency level and updating their fingerprints:

• Function insert combines two vectors: given as input a vector A stored at resiliency
level r, a vector A′ stored at resiliency level r′ ≤ r, two write fingerprints ϕA and ϕA′ ,
it reads by majority values in A′ and appends them to A, increasing their resiliency
from r′ to r (we assume that enough memory has been already allocated in A). At the
same time, insert updates the write fingerprint ϕA with the new values and computes
a read fingerprint ϕA′ to check correctness of the read data: if ϕA′ 6= ϕA′ , the function
fails.

• Function extract takes a small vector out of a larger one. Given as input a vector A
of length k stored at resiliency level r, a read fingerprint ϕA computed on a prefix of
A of length s ≤ k, and three integer values s, k′ ≤ k − s, and r′ ≤ r, it extracts from
A a segment A′ of length k′, starting from position s + 1. Values from A are read by
majority on the 2r + 1 available copies and are written in A′ at resiliency level r′. At
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the same time, ϕA is updated and a write fingerprint ϕA′ is computed from scratch
according to the majority values read from A.

Resilient boundary. When called on a quadrant Q at recursion depth d, function Bound-

ary receives, together with L, T , and the input projections, the write fingerprints corre-
sponding to these vectors. Accordingly, it returns the output boundaries associated with two
write fingerprints. All the input and output vectors have the same length nd = n/2d and
are stored at resiliency level δd = max{δ/2d, 1}. As in [18], Boundary logically splits Q into
four subquadrants (Q0,0, Q0,1, Q1,0, and Q1,1 in row-major order) and recursively solves the
subproblems. The recursive calls operate at resiliency level δd+1 = max{δ/2d+1, 1} on input
vectors L′, T ′, X ′, and Y ′, all of length nd+1, and produce D′ and R′ as output. The call on
quadrant Q makes use of two auxiliary (horizontal and vertical) vectors H and V of length
nd, resiliency δd, associated with their write and read fingerprints (see Figure 2b).

During the recursive call on quadrant Q, function Boundary computes subquadrants in
row-major order according to the following pattern: 1) input extraction; 2) fingerprint tests;
3) recursive call and output insertion; 4) error recovery, if needed. Steps 1, 2, and 3 slightly
differ depending on the subquadrant on which the recursive call is performed. Namely,

L′ and T ′ are extracted from:


L and T on quadrant Q0,0

V and T on quadrant Q0,1

L and H on quadrant Q1,0

V and H on quadrant Q1,1

The extract (step 1) also produces write fingerprints ϕL′ and ϕT ′ , which are passed to the
recursive call, and updates - depending on the quadrant - read fingerprints ϕL, ϕT , ϕH , and
ϕV , which are then used in the fingerprint tests described below. X ′ and Y ′ are always
extracted from the projections of X and Y on Q, respectively. Moreover, X ′ is extracted only
on Q0,0 and Q1,0, since subquadrants are processed in row-major order. Fingerprint tests
(step 2) are as follows:

no test on quadrant Q0,0

ϕY = ϕY and ϕT = ϕT on quadrant Q0,1

ϕX = ϕX and ϕL = ϕL on quadrant Q1,0

ϕY = ϕY , ϕH = ϕH , and ϕV = ϕV on quadrant Q1,1

A mismatch on any of the above tests implies failure of the recursive call at depth d and
will be handled by higher calls (see step 4 discussed below). Notice that fingerprint tests
are performed lazily once vectors at resiliency level δd have been read entirely. With this
approach, it may happen that a recursive call operates on corrupted input data, since no check
establishes the correctness of the extracted subsequences L′, T ′, X ′, and Y ′ until computation
of quadrant Q1,1. While in this algorithm lazy and eager fingerprint tests would be equivalent,
the lazy approach described here turns out to be more efficient in the extension described in
Section 6.

Upon success of a recursive call, its output vectors are appropriately merged, increasing
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their resiliency level (step 3). Namely,

D′ and R′ are inserted into:


H and V on quadrant Q0,0

H and R on quadrant Q0,1

D and V on quadrant Q1,0

D and R on quadrant Q1,1

Error recovery (step 4) is performed whenever in step 3 the recursive call fails or a fingerprint
mismatch (on δd+1-resilient data) arises during an insert: in such cases, all data at resiliency
level δd+1 are discarded, the prime number pd+1 is renewed, and the subquadrant computation
restarts from step 1. A backup copy of each read and write fingerprint is needed to restore
the computation state. Since each of the two projections of X is extracted only once (on
subquadrants Q0,0 and Q1,0, respectively), input extraction upon failure of a recursive call on
Q0,1 or Q1,1 must be handled appropriately: an additional fingerprint of X ′ based on prime
number pd is sufficient to check that a repeated extraction from X, needed to recompute
the input for quadrants Q0,1 or Q1,1, is consistent with the original extraction. A fingerprint
mismatch during this check implies corruption of δd-resilient variables, thus causing the failure
of the recursive call at depth d.

Resilient traceback path. The resilient implementation of Traceback-Path computes
the traceback path segment π traversing a quadrant Q, along with its write fingerprint ϕπ.
For calls at recursion depth d, both π and the input vectors (of length nd) are stored at
resiliency level δd, while the entry point of π in Q is stored in private memory. Traceback-

Path performs a forward computation by calling resilient Boundary to obtain vectors H and
V , stored at resiliency level δd. Then, it computes π backward from H and V by calling itself
on (at most three) subquadrants intersected by π. Segments of π (at resiliency level δd+1)
obtained by the recursive calls are stitched and increased in resiliency using function insert.
Fingerprint mismatches at resiliency level δd cause the current call of Traceback-Path to
fail. Fingerprint mismatches at resiliency level δd+1 and failed calls cause data at resiliency
level δd+1 to be discarded and to repeat the subproblem computation.

Since the backward access pattern to H, V , L, and T is inverted with respect to the order
in which data are written in the forward computation, we exploit amplified fingerprints as
described in Section 2.2: we choose fi,j = nd − i − 1 and read vector segments backwards
(in this access pattern, parameter j is not relevant since each entry is accessed only once).
Consider, e.g., the computation of the amplified read fingerprint ϕH of vector H. We read
values H[i], for i = nd − 1 downto 0, and maintain in private memory a running value
vi = 2w(nd−i−1) mod pd, which is multiplied by 2w at each step: when reading H[i], ϕH
can be updated in constant time by adding viH[i]. We also force the algorithm to read
vector segments corresponding to quadrants not intersected by the traceback path in order
to correctly update the amplified read fingerprints.

Extension to sequences of different length. Input sequences of different lengths m and
n, with m ≥ n, are handled by splitting the longer sequence Y into dm/ne segments, each
(but the last one) of length n. A forward computation is first performed by applying function
Boundary dm/ne times, storing all the output boundaries R in δ-resilient variables. Function
Traceback-Path is then invoked dm/ne times, starting from C[n,m]. In general, the entry
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point of a subproblem is obtained from the already computed suffix of the traceback path.
We call the entire algorithm RecLCS.

4.3 Analysis

Before analyzing running time and cache complexity of algorithm RecLCS, we prove its
correctness on any two sequences X and Y of length n and m, with m ≥ n.

Lemma 4. For any constant ε > 0, algorithm RecLCS is correct with probability larger than
1− 1/mε , when δ is polynomial in m.

Proof. If no memory fault is introduced by the adversary, the correctness of the algorithm
follows from [17]. We now prove that all faults inserted by the adversary are detected and
corrected by algorithm RecLCS with high probability. The initial calls of function Trace-

back-Path have resiliency δ0 = δ: this implies that majority values cannot be corrupted and
computation is never aborted. The algorithm independently selects a prime number for each
level of recursion and performs a new selection every time some computation is repeated due
to a fingerprint mismatch. Hence, at most dlog ne+α selections can be performed during the
execution and, by Lemma 1, all selected numbers in [mk−1,mk] are prime with probability at
least 1− (log n+α)/mγ , for any constants k and γ. Similarly to the proof of Lemma 2, each
fingerprint test fails to identify a corrupted variable with probability at most 1/(σmk−2), for
some positive constant σ, provided that all selected numbers are primes. Since no more than
α variables can be corrupted by the adversary during the execution, the overall probability of
detecting all faults is at least (1−α/(σmk−2))(1−(log n+α)/mγ). By appropriately choosing
k and γ, this probability can be made larger than 1− 1/mε, for any ε > 0.

Theorem 3. Algorithm RecLCS solves the longest common subsequence correctly with high
probability. It requires O(mn+ δm log n) time and incurs O(mn/(BM) + δm log n/B) cache
misses in the worst case, where m and n (with m ≥ n) are the lengths of the input sequences,
M and B are the cache and the cache line sizes, and the upper bound δ on the number of
faults is polynomial in m.

Proof. Correctness is proved in Lemma 4. Since algorithm RecLCS consists of dm/ne calls
of Traceback-Path with input size n, it is sufficient to analyze its running time on strings of
equal length n, multiplying all bounds by dm/ne. Provided that no computation is repeated,
the running time of Boundary is given by the following recurrence:

TB(n, δ) =

{
Θ(δ + 1) if n ≤ 1
4TB(n/2, δ/2) + Θ(n(δ + 1)) otherwise

which results in a worst-case Θ(n2 + δn log n) time.
Inducing a recomputation at level 1 ≤ i ≤ k, with k = log(min{n, δ}), requires at least

δ/2i faults (there cannot be recomputations at level i = 0 since boundaries are δ-resilient).
Hence, at most α2i/δ recomputations can be induced. Since there are 4i subproblems at level
i, the following summation bounds from above the time spent in unsuccessful computations:

k∑
i=1

α2i

δ

TB (n, δ)

4i
≤ TB (n, δ)

k∑
i=1

1

2i
≤ TB (n, δ)
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If δ < n, recursive calls done at levels deeper than k are all done at resiliency level 1. The
adversary can induce up to α recomputations at these levels, each of which has cost bounded
by TB (n, δ) /4k. Hence, the time spent in unsuccessful computations at levels j ∈ [k+1, log n]
is upper bounded by: αTB (n, δ) /δ2 < TB (n, δ) . In all cases, the time spent in unsuccessful
computations does not exceed the time spent in successful computations.

Similarly, unsuccessful computations of function Traceback-Path do not exceed the run-
ning time of the successful ones. This time is given by the following recurrence:

TP (n, δ) =

{
Θ(δ + 1) if n ≤ 1
3TP (n/2, δ/2) + 4TB(n/2, δ/2) + Θ(n(δ + 1)) otherwise

which solves to Θ(n2 + δn log n).
Analogous considerations apply to the number of cache misses. Provided that no com-

putation is repeated, the cache complexities QB(n, δ) of function Boundary and QP (n, δ) of
function Traceback-Path are given by:

QB(n, δ) =

{
O(n(δ + 1)/B + 1) if n(δ + 1) ≤M or n ≤ 1
4QB(n/2, δ/2) +O(n(δ + 1)/B) otherwise

and

QP (n, δ) =

{
O(n(δ + 1)/B) if n(δ + 1) ≤M or n ≤ 1
3QP (n/2, δ/2) + 4QB(n/2, δ/2) + Θ(n(δ + 1)/B) otherwise

Both recurrences solve to Θ(n2/(BM) + δn log n/B) and unsuccessful computations do not
affect this bound.

5 Non-local dynamic programming

The techniques described in Section 4 can be used to extend significantly the class of prob-
lems that are efficiently solvable in the presence of memory faults. In this section we present
resilient (and cache-efficient) algorithms for non-local problems that fit in the Gaussian Elim-
ination Paradigm [20] and for the Fast Fourier Transform.

5.1 Gaussian Elimination Paradigm

Let A be an n×n matrix with entries from an arbitrary domain S, and let f : S4 → S be an
arbitrary function. The computation in Figure 3 is known as Gaussian Elimination Paradigm
(GEP) [20]: the algorithm modifies A by applying a given set of updates, denoted by 〈i, j, k〉
for i, j, k ∈ [0, n). We let Σf denote the set of updates performed by the algorithm. Many
problems can be solved by GEP, including Floyd-Warshall’s all-pairs shortest path, Gaussian
Elimination, LU decomposition without pivoting, and matrix multiplication. I-GEP [20] is a
subclass of GEP including all the aforementioned problems, where the updates to matrix A
can be appropriately reordered without compromising correctness of the final result, even if
intermediate states are different.

The cache-oblivious algorithm for I-GEP provided in [20] incurs O(n3/B
√
M) cache misses

and extends to parallel and multicore machines [19, 21]. The algorithm consists of four
recursive functions A, B, C, and D that take as input four matrices X = A[I, J ], U = A[I,K],
V = A[K,J ] and W = A[K,K], where I, J,K denote suitable intervals in [0, n). These
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Input: n× n matrix A, function f : S4 → S, set Σf of triplets 〈i, j, k〉, with i, j, k ∈ [0, n).
Output: transformation of A defined by f and Σf .

1. for k ← 0 to n− 1 do
2. for i← 0 to n− 1 do
3. for j ← 0 to n− 1 do
4. if 〈i, j, k〉 ∈ Σf then A[i, j]← f(A[i, j], A[i, k], A[k, j], A[k, k]);

Figure 3: Gaussian Elimination Paradigm (GEP).

functions differ according to the amount of overlap among X, U , V , and W : function A
assumes completely overlapping matrices (i.e., X = V = U = W ), B (resp., C) assumes that
X = V and U = W (resp., X = U and V = W ), and D assumes completely non-overlapping
matrices. Other types of overlapping are not possible. Each function modifies matrix X
by means of eight mutually recursive calls (using suitable quadrants of X, U , V , and W as
inputs) performing updates 〈i, j, k〉 in Σf such that A[i, j] ∈ X, A[i, k] ∈ U , A[k, j] ∈ V , and
A[k, k] ∈W . The initial call is A(A,A,A,A) and base cases arise on input matrices of size 1.
We refer to [20] for a detailed description.

A resilient cache-efficient algorithm for GEP. The resilient algorithm RecGEP in-
herits the recursive organization of the aforementioned I-GEP algorithm, pairing it with data
replication and read/write fingerprints. For each of the log n recursion levels, we use a dis-
tinct prime number to compute fingerprints (assuming a private memory of logarithmic size).
We define the fingerprint of a matrix as the fingerprint of the vector of its bit-interleaved
representation (our results can be easily adapted to a standard row-major representation).
For the sake of simplicity, we assume n and δ to be powers of two.

As in Section 4.2, let δd = max{δ/2d, 1} and nd = n/2d, for 0 ≤ d ≤ log n. At recursion
depth d, RecGEP receives the nd × nd matrices X, U , V , and W stored δd-resiliently and
their write fingerprints computed using prime pd. It then updates X together with its write
fingerprint, explicitly checking that each recursive call receives correct input quadrants. (We
remark that fault detection could be made lazy by exploiting amplified fingerprints: this
allows reducing the private memory size and can be done using techniques similar to those
in Section 4.) In more details, the algorithm first reads δd-resiliently all the input matrices,
producing for each matrix a read fingerprint and four write fingerprints, one per quadrant.
All these fingerprints are based on prime pd and the correctness of read data is verified via
fingerprint tests against the input write fingerprints. Then, RecGEP recursively solves eight
subproblems in two rounds, as specified in I-GEP [20]. For each call:

1. it extracts the δd+1-resilient quadrants, computing their write fingerprints based on
prime pd+1 and their read fingerprints based on prime pd;

2. it tests whether the latter fingerprints match the write fingerprints computed at the
beginning. If a fingerprint test fails (i.e., a δd-resilient variable has been corrupted), the
call at level d aborts;

3. it performs a recursive call to solve the subproblem;

4. it replaces the suitable quadrant of X (together with its write fingerprint) with the
updated quadrant returned by the call at step 3, increasing its resiliency level to δd;
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5. it performs error recovery whenever the call of step 3 fails or a fault is recognized in step
4: in this case, prime pd+1 is renewed and the subproblem computation is restarted.

Theorem 4. Algorithm RecGEP solves n×n I-GEP problems correctly with high probability.
It requires O(n3 + δn2 log n) time and incurs O(n3/(B

√
M) + δn2 log n/B) cache misses in

the worst case, where M is the cache size, B is the cache line size, and the upper bound δ on
the number of faults is polynomial in n.

Proof. If there are no faults, RecGEP is equivalent to the non-resilient algorithm. Otherwise,
memory faults are fixed by exploiting data replication. Correctness follows from the fact that
faults are detected with high probability via fingerprints (this can be proved as in Lemma 4).

If there is no recomputation, the algorithm performs a constant number of scans of
the input matrices to prepare subproblem inputs and fingerprints. Hence, its running time
TRecGEP(n, δ) is upper bounded by the following recurrence:

TRecGEP(n, δ) =

{
Θ(δ + 1) if n ≤ 1
8TRecGEP(n/2, δ/2) + Θ(n2δ + n2) otherwise

which solves to Θ(n3 + δn2 log n). Inducing a recomputation at level 1 ≤ i ≤ k, with
k = log(min{n, δ}), requires at least δ/2i faults and costs at most TRecGEP (n, δ) /8i+Θ(n2δ/4i),
where the second term is the cost of input extraction at level i− 1. At most α2i/δ recompu-
tations can be therefore induced at level i. The following summation bounds from above the
time spent in unsuccessful computations:

k∑
i=1

α2i

δ

(
TRecGEP (n, δ)

8i
+ Θ

(
n2δ

4i

))
≤

k∑
i=1

α

δ

(
TRecGEP (n, δ)

4i
+ Θ

(
n2δ

2i

))
< Θ(TRecGEP (n, δ))

If δ < n, recursive calls done at levels deeper than k are all done at resiliency level 1.
The adversary can induce up to α recomputations at these levels, each of which has cost
bounded by TRecGEP (n, δ) /8k. Hence, the time spent in unsuccessful computations at levels
j ∈ [k+1, log n] is upper bounded by: αTRecGEP (n, δ) /8k ≤ αTRecGEP (n, δ) /δ3 < TRecGEP (n, δ) .
In all cases, the time spent in unsuccessful computations does not exceed the time spent in
the successful ones.

Similarly, the cache complexity of RecGEP without recomputation is upper bounded by
the following recurrence:

QRecGEP(n, δ) =

{
Θ(n2δ/B + 1) if n2 max{δ, 1} ≤M
8QRecGEP(n/2, δ/2) + Θ(n2δ/B + n2/B) otherwise

which solves to O(n3/(B
√
M) + δn2 log n/B + 1). Unsuccessful computations do not affect

this bound.

5.2 Fast Fourier Transform

The techniques to add resiliency to recursive algorithms described above also apply to the
Fast Fourier Transform. Building on the cache-oblivious FFT algorithm in [29], we derive a
resilient (cache-oblivious) algorithm, named RecFFT, which returns the correct result with
high probability, using a private memory of size Θ(log log n). The cache-oblivious algorithm
computes recursively the FFT of an input vector A of size n by performing two rounds of
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recursive calls: in each round, vector A is permuted (according to a matrix transposition)
and then split into

√
n segments of size

√
n. The FFT of each segment is then computed

recursively. The recursion depth is therefore Θ(log log n).
In the description of the resilient implementation, for the sake of simplicity we assume

log n and log δ to be powers of two (RecFFT can be easily generalized to arbitrary values

of n and δ). Input vectors at recursion level d, with 0 ≤ d ≤ log log n, have size nd = n1/2
d
,

are stored at resiliency level δd = max{δ1/2d , 1}, and are associated with a write fingerprint
computed with prime pd. When subproblems are extracted from the input vector, their
resiliency level is decreased to δd+1 and their correctness is checked lazily at the end of each
round. If a subproblem fails, the prime pd+1 is renewed, the extraction of the subproblem
input is repeated (together with the computation of its write fingerprint), and the subproblem
computation is restarted. Matrix transposition can be performed using the cache-oblivious
algorithm in [29], which can be easily extended in order to return the write fingerprint of the
new vector and to update the read fingerprint of the input vector (these two fingerprints are
computed on different permutations of the same values).

Theorem 5. Algorithm RecFFT correctly computes the FFT of a vector of size n with high
probability. It requires O(n log n + δn) time and incurs O((n logM n)/B + δn/B + 1) cache
misses in the worst case, where M is the cache size, B is the cache line size, and δ ≤ n is an
upper bound on the number of faults.

Proof. Correctness follows from the same arguments used in the previous sections. If there is
no recomputation, the running time of RecFFT is upper bounded by

TRecFFT(n, δ) =

{
Θ(δ + 1) if n ≤ 4

2
√
nTRecGEP(

√
n,
√
δ) + Θ(δn+ n) otherwise

which solves to Θ(n log n+δn). Let k = log log δ. Inducing a recomputation at level 1 ≤ i ≤ k
requires at least δ1/2

i
faults. Hence, at most α/δ1/2

i
recomputations can be induced at

level i. Since the cost of recomputing a subproblem is at most TRecFFT (n, δ) /(2in1−1/2
i
) +

Θ(n1/2
i
δ1/2

i−1
), where the second term is due to input extraction at the (i − 1)-st recursive

level, we have

k∑
i=1

α

δ1/2i

(
TRecFFT (n, δ)

2in1−1/2i
+ Θ(n1/2

i
δ1/2

i−1
)

)
= O

(
k∑
i=1

αn

δ

log n

2i
+ α(nδ)1/2

i

)
.

This is in O(TRecFFT(n, δ)), because
∑k

i=1 α(nδ)1/2
i ≤

∑k−1
i=0 α(n)1/2

i
= O(αn). Recursive

calls at levels deeper than k are all done at resiliency level 1, since δ ≤ n. The adversary can
induce up to α recomputations at these levels, each having cost in O(TRecFFT(n

1/ log δ, 1)).
Hence, the time spent in unsuccessful computations at levels j ∈ [k + 1, log log n] is in
O(αTRecFFT(n

1/ log δ, 1)). This solves to O(αn1/ log δ logδ n), which is in O(n log n). In all cases,
successful computations dominate the running time.

Similar arguments apply to the cache complexity, where the number of cache misses due
to successful computations is given by:

QRecFFT(n, δ) =

{
Θ(nδ/B + 1) if nmax{δ, 1} ≤M
2
√
nQRecGEP(

√
n,
√
δ) + Θ(nδ/B + n/B) otherwise

which solves to O((n logM n)/B + δn/B + 1).
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Figure 4: Quadrants, boundaries, and auxiliary vectors in the λ× λ table decomposition.

6 Bounding the private memory

In this section we show how to remove the logarithmic private memory assumption of Sec-
tion 4, obtaining an algorithm that is parametric in the private memory size P (similar
techniques can be also adapted to the algorithms of Section 5). Using rather standard tech-
niques, we reduce the recursion depth so that stack, primes, and fingerprints fit in P memory
words (Section 6.1). The most challenging problem with a small private memory, however,
is to maintain cache-efficiency: we address temporal and spatial locality issues in Section 6.2
and Section 6.3, respectively. A full analysis is given in Section 6.4. We assume both input
sequences X and Y to be of length n: this assumption can be removed as in Section 4.2.

6.1 Shallow recursion tree with lazy fault detection

Let v be the number of local variables used by algorithm RecLCS and let ρ be the largest
integer such that vρ ≤ P . Notice that ρ = Θ (P ). We modify RecLCS by splitting a
quadrant, at each call, into λ × λ subquadrants, where λ = dn1/ρe: this guarantees that
private data fits into P memory words since the recursion depth is ρ = Θ(logλ n) = Θ(P ).
We index quadrants by pairs 〈i, j〉 ∈ [1, λ] × [1, λ] and we say that quadrant 〈i, j〉 has row i
and column j. A quadrant is internal if and only if 1 < i, j < λ. Besides the subdivision into
λ2 quadrants, the resilient implementation of function Boundary is modified as follows:

• Input and output vectors used in a call at recursion depth d have length nd = dn/λde
and are stored in the unreliable memory at resiliency level δd = dδ/λde. Auxiliary
vectors H and V also have resiliency δd: they are obtained by juxtaposing the bottom
boundaries H〈i,j〉 of quadrants 〈i, j〉, with i ≤ λ, and the right boundaries of quadrants
〈i, j〉, with j ≤ λ, respectively. Hence, their length is λnd. Notice that the last row of
H and the last column of V correspond to vectors D and R, respectively (see Figure 4).
Each vector has its own (private) read and write fingerprints.

• The λ2 subproblems are recursively solved in row-major order. Each subquadrant is
processed according to the same pattern described in Section 4.2. Input extraction
(from L/V and T/H) and output insertion (into R/V and D/H) can be appropriately
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modified depending on the row and column indexes of the subquadrant. The projection
of X is extracted once per row: similarly to Section 4.2, this requires an additional
backup fingerprint based on prime number pd to verify the correctness of repeated
extractions needed for error recovery.

• With non-constant λ and O(1) fingerprints per recursion level, checking the input cor-
rectness for all the recursive calls would result in non-negligible time overhead: hence,
detecting faults lazily (i.e., performing fingerprint tests related to each vector only when
the vector has been completely scanned by the algorithm) becomes mandatory with the
λ×λ subdivision. The following fingerprint tests are thus (lazily) performed, depending
on the quadrant:

– ϕV = ϕV and ϕH = ϕH must hold if 〈i, j〉 = 〈λ, λ〉;
– ϕL = ϕL and ϕT = ϕT must hold if 〈i, j〉 = 〈λ, 1〉 or 〈1, λ〉, respectively;

– ϕY = ϕY must hold for each i ∈ [1, λ] and j = λ;

– ϕX = ϕX must hold if 〈i, j〉 = 〈λ, 1〉.

Error recovery works as in Section 4.2, either repeating a subquadrant computation (in case
of a fingerprint mismatch on data at resiliency level δd+1) or making the recursive call at
depth d fail (in case of a fingerprint mismatch on data at resiliency level δd).

Function Traceback-Path calls Boundary on at most λ2 − 1 quadrants, and recursively
calls itself on the (at most 2λ − 1) subquadrants intersected by the traceback path π. Fin-
gerprint computations during the forward and backward phases can be made consistent by
reversing the access pattern and using amplified fingerprints, as in Section 4.2. Vector seg-
ments corresponding to quadrants not intersected by π still need to be scanned in order to
correctly update their read fingerprints.

We will use two main ingredients to reduce the number of cache misses: (1) to improve
temporal locality, instead of row-major order we access data in Z-order (a.k.a. bit inter-
leaved [29]); and (2) to improve spatial locality, we shrink the size of data structures in the
unreliable memory by recycling space as soon as written data are no longer needed. While this
is quite standard in the design of cache-oblivious algorithms, it has non-trivial consequences
on fingerprint computation.

6.2 Z-order fingerprints

Computation of quadrant 〈i, j〉 requires input from the output boundaries of neighboring
quadrants 〈i, j − 1〉, 〈i − 1, j〉, and 〈i − 1, j − 1〉. However, when using the Z-order, read
operations on vectors H and V do not follow the write Z-order in which these vectors have
been written: the output boundaries of the neighboring quadrants must be therefore retrieved
from appropriate positions. Let r〈i,j〉 be the (write) rank of a quadrant 〈i, j〉 in Z-order. The
write ranks of 〈i, j − 1〉, 〈i− 1, j〉, and 〈i− 1, j − 1〉 can be obtained from r〈i,j〉 as follows:

r〈i,j−1〉 = r〈i,j〉 − left(exp(j))

r〈i−1,j〉 = r〈i,j〉 − up(exp(i))

r〈i−1,j−1〉 = r〈i,j〉 − up(exp(i))− left(exp(j))
(2)
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where exp(k) is the exponent of 2 in the factorization of k, and up and left are defined as:

left(k) =

{
1 if k = 0
22k−1 + left(k − 1) otherwise

up(k) =

{
2 if k = 0
22k + up(k − 1) otherwise

During the Z-order forward computation, output boundaries of the computed quadrants
are inserted into H and V , producing write fingerprints as described below. Let us consider
the write and read operations on vector H at recursion depth d. We regard H as being divided
into λ2 segments, each of length nd+1, and we associate it with a bottom write fingerprint
ϕH and a diagonal write fingerprint ϕH,1. The bottom fingerprint ϕH is computed from all
the elements in the segments, which are accessed in Z-order. The diagonal fingerprint ϕH,1 is
computed only from the last element in each segment. Formally:

ϕH =

λ2nd+1∑
x=0

H[x]2wx mod pd and ϕH,1 =

nd+1∑
x=0

H[nd+1x]2wx mod pd

Segments of H corresponding to vector D will never be written: leaving these values to all
zeroes allows us to skip corresponding updates to the fingerprints.

We now consider input extraction from H, needed for initializing a recursive call on
quadrant 〈i, j〉. To produce vector T ′ (see Figure 4), data is extracted from H starting from
position nd+1r〈i−1,j〉. While reading from H the element corresponding to position x in T ′,
with 0 ≤ x < nd+1, the read fingerprint ϕH is updated as follows:

ϕH = ϕH +H[nd+1r〈i−1,j〉 + x]2w(nd+1r〈i−1,j〉+x) mod pd

While reading from H the last element of the output boundary of quadrant 〈i− 1, j − 1〉, at
position r〈i−1,j−1〉nd+1 + nd+1 − 1, the read fingerprint ϕH,1 is updated as follows:

ϕH,1 = ϕH,1 +H[r〈i−1,j−1〉nd+1 + nd+1 − 1]2w r〈i−1,j−1〉 mod pd

Vector V can be handled similarly, using a right write fingerprint ϕV , and updating the
corresponding read fingerprint ϕV as follows:

ϕV = ϕV + V [nd+1r〈i,j−1〉 + x]2w(nd+1r〈i,j−1〉+x) mod pd

while reading from V the element corresponding to position x in L′, with 0 ≤ x < nd+1.
To make these computations efficient, we precompute the inverse 2−w of 2w in ring Zpd , for

all selected primes pd. We also maintain throughout the quadrant computation two running
values, 2wnd+1 r〈i,j〉 and 2wnd+1 r〈i,j〉 , and exploit Equations (2).

We regard the projections of the input sequences X and Y as matrices of size nd × λ,
where each row (respectively column) contains λ copies of the same value. This allows us
to update read fingerprints ϕX and ϕY just by using the rank of the current cell. However,
the write fingerprints ϕX and ϕY have to be produced, at recursion depth d − 1, according
to the access pattern induced by the Z-order, as detailed below. Consider the computation
of ϕY for an nd-length segment of sequence Y : this segment is accessed at recursion depth d
in λ blocks of length nd+1. Within each block, elements are accessed sequentially, and each
block is extracted from the nd-length segment λ times. Hence, we produce an amplified write
fingerprint as follows:

ϕY =

λ−1∑
j=0

nd+1−1∑
x=0

Y [nd+1j + x]

λ−1∑
i=0

2w(nd+1(r〈i,j〉−1)+x) mod pd
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The computation of ϕX is similar. Both fingerprint computations can be done efficiently by
exploiting functions up and left defined above.

6.3 Virtual recursion with amplified fingerprints

To improve spatial locality, we reduce the length of the auxiliary vectors, at recursion depth
d, from λnd to Θ(nd). We extend a technique proposed in [18, 19]: at any time, only ap-
propriate subvectors are stored, obtaining the missing parts, when necessary, by repeating
forward computations. The main issue that needs to be settled in our setting is that repeated
computations imply multiple extractions of the same data, and the correctness of each data
read must be appropriately checked: to this aim, we devise opportunely crafted amplified
fingerprints, coupled with the data access pattern induced by multiple extractions.

Virtual quadrants. We superimpose over the λ× λ subdivision of an nd × nd quadrant a
log2 λ-depth hierarchical decomposition into virtual quadrants (for simplicity we assume that
λ is a power of 2). The i-th level of the decomposition, for 1 ≤ i ≤ log2 λ, consists of 4i

virtual quadrants of size nd/2
i × nd/2i. At the first level, virtual quadrants correspond to

Q0,0, Q0,1, Q1,0, and Q1,1, and each of them is recursively split into four parts.
The auxiliary vectors H and V used with virtual recursion are logically split into log2 λ

segments of decreasing length, all stored at resiliency level δd. The i-th segment Hi of vector
H, for 1 ≤ i ≤ log2 λ, has length nd/2

i−1 and contains the output boundaries of two upper
virtual quadrants at the i-th level of the hierarchical decomposition. V has a similar structure
and both vectors have length Θ(nd). Since the i-th virtual level contains 4i quadrants, the
space allocated for segments Hi and Vi will be reused throughout the computation as described
below (see also Figure 5).

Virtual recursion. We mimic the behavior of algorithm RecLCS described in Section 4
by exploiting segments Hi and Vi to store the output boundaries of virtual quadrants at level
i in the hierarchical decomposition. Function Boundary still works in Z-order on the λ × λ
subdivision, except for recycling space in vectors H and V by overwriting boundaries that are
no longer needed to complete the forward computation. Function Traceback-Path works
recursively on virtual quadrants. However, recursion on the nd/2

i × nd/2i virtual quadrants
cannot be explicit, since the recursion depth would exceed the amount of private memory
when P = o (log n). Hence, recursive calls of Traceback-Path on virtual quadrants inside
an nd × nd quadrant are simulated iteratively: this can be done using only O(1) indexes and
variables, since intermediate data of non-constant size is stored in Hi and Vi. Real recursive
calls are performed when nd/2

i becomes equal to nd+1 (i.e., when i = log2 λ). The resiliency
is kept at level δd = dδ/λde during virtual recursion, and drops to δd+1 = dδ/λd+1e on real
recursive calls.

Since vectors H and V no longer maintain boundaries of all nd+1 × nd+1 quadrants,
each virtual recursive call of Traceback-Path requires recomputing the nd/2

i×nd/2i virtual
quadrant boundaries by invoking function Boundary. Hence, with respect to the algorithm
of Section 6.1, at recursion level d the forward computation of a quadrant can be performed
up to log2 λ times due to virtual recursive calls of Traceback-Path. As shown in [18, 19], in
the absence of faults the additional forward computations do not asymptotically increase the
running time. However, reading ω(1) times the same memory location requires more powerful
fingerprints.
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Figure 5: Traceback path computation with virtual recursion on an (nd × nd)-size quadrant.

In the example of Figure 5, the entry point p of the traceback path π is contained in the
nd/2 × nd/2 virtual quadrant Q1,1. Boundary is invoked on Q0,0, Q0,1, and Q1,0, and the
(first-level) simulated recursive calls of Traceback-Path are performed on Q1,1, Q1,0, and
Q0,0. In this example, nd/8 = nd+1 and q is the entry point in a real recursive call. The
forward computation of the nd+1 × nd+1 quadrant containing q is repeated three times, once
per virtual recursion level. Dark grey indicates subvectors currently stored in H and V . Light
grey indicates subvectors whose values have been already overwritten to save space. The data
layout of vectors H and V is shown on the right hand side of the picture.

Amplified fingerprints. We now show how to devise amplified fingerprints suitable for
the data access pattern induced by virtual recursion of function Traceback-Path: in our
approach, if a memory location is read k times, the value written to that location contributes
to a write fingerprint with k different exponents (values fi,j in Section 2.2).

Let us focus on vector H. At the i-th virtual recursion level, read accesses to H follow an
inverted Z-order on 4i data segments of length nd/2

i. To describe the write fingerprint ϕH , we
regard H as projected on a longer vector H, divided into log2 λ layers: layer i contains the 4i

virtual boundaries of length nd/2
i. Elements in each virtual boundary are consecutive, while

boundaries are arranged in Z-order. Layer i has thus length 2ind and starts from position∑i−1
t=1 2tnd = nd(2

i − 2). Algorithmically, let l be the current depth of virtual recursion and
let D′ be the (nd/2

l)-length output received from a call to function Boundary. Consider a
generic element h ∈ D′ that is written into vector H: h would belong to layers [l, log2 λ] of
vector H. We denote by rj the rank in Z-order of the (nd/2

j)-length boundary of layer j to
which h belongs, and by sj the number of elements preceding h in this boundary. Then the
write fingerprint ϕH is updated as follows:

ϕH = ϕH + h

log2 λ∑
j=l

2
w(nd(2

j−2)+rj
nd
2j

+sj) mod pd

Figure 6 shows an example where h is the 6-th element of an nd+1-length boundary and
appears in all layers of H, detailing values rj and sj for all j ∈ [1, log2 λ].

Read fingerprints during calls to Traceback-Path at level l are updated similarly:

ϕH = ϕH + h2
w(nd(2

l−2)+rl
nd
2l

+sl) mod pd
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j = 1, r1 = 1, and s1 = 29 j = 2, r2 = 7, and s2 = 13 j = 3, r3 = 31, and s3 = 5

Figure 6: Amplified fingerprint computation. In this example nd = 64, λ = 8 (from which
nd+1 = 8), and h is in row 31 and column 61 of the nd × nd quadrant.

Virtual quadrants of level l not intersected by π imply updating the read fingerprint for all
levels [l, log2 λ] at once by exploiting the same formula used for the write fingerprint. Both
vector V and the input sequences can be handled similarly.

6.4 Analysis

Theorem 6. Algorithm ShallowLCS computes the longest common subsequence correctly
with high probability. It requires O(mn+δmnc/PP ) time and incurs O(mn/(BM)+δmnc/PP/B)
cache misses in the worst case, where m and n (with m ≥ n) are the lengths of the input
sequences, P is the available private memory, c is a small constant, M and B are the cache
and the cache line sizes, and the upper bound δ on the number of faults is polynomial in m.

Proof. Since the recursion depth ρ = Θ(logλ n) = O(log n), the same arguments used in
Lemma 4 prove that all faults are detected with high probability. The analysis of running
time and cache misses exploits arguments similar to the proof of Theorem 3. The main
differences are due to the λ×λ subdivision and to virtual recursion (fingerprint computations
can be amortized as described in Section 6.2).

Recall that λ = dn1/ρe. The running time TB(n, δ) of successful computations of function
Boundary is given by the following recurrence:

TB(n̂, δ̂) =

{
O(n̂2(δ̂ + 1)) if n̂ ≤ λ
λ2TB(n̂/λ, δ̂/λ) +O(n̂(δ̂ + 1)λ) if n̂ > λ

Indeed, in the base case n̂× n̂ table entries are computed at resiliency level δ̂. Otherwise, λ2

recursive calls are performed and each call requires O(n̂(δ̂ + 1)/λ) time for preparing input
vectors and fingerprints. Standard arguments show that TB(n, δ) = O(n2 + δnλ logλ n). We
remark that virtual recursion only affects the order in which actual recursive calls on the λ2

subquadrants are performed (changing it from row-major to Z-order). The running time of
unsuccessful computations is not affected by this order and does not exceed TB(n, δ): this
can be shown by mimicking the proof of Theorem 3, replacing constant 2 with λ.
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Similarly to previous analyses, the cost of function Traceback-Path is dominated by
successful computations, whose running time TP (n, δ) is given by the following recurrence:

TP (n̂, δ̂) =

{
O(n̂2(δ̂ + 1)) if n̂ ≤ λ
(2λ− 1)TP (n̂/λ, δ̂/λ) +O(n̂2 + n̂(δ̂ + 1)λlog2 3 logλ n̂) if n̂ > λ

The additive term for the case n̂ > λ is due to calls to function Boundary: indeed, besides
the 2λ − 1 recursive calls, Traceback-Path invokes at most 3j times Boundary with input
size n̂/2j and resiliency δ̂ + 1, for each 1 ≤ j ≤ log2 λ. It follows that TP (n, δ) = O(n2 +
δnλlog2 3 logλ n).

By definition of ρ, we have that v/P ≥ 1/2ρ, where v is the number of local variables
used by the algorithm (see Section 6.1). Hence, function Traceback-Path requires O(n2 +
δn1+c/PP ) time, for any constant c ≥ 2v log2 3.

We now analyze cache complexity. We neglect cache misses due to fingerprint compu-
tations since they are irrelevant as long as P = Θ(1) or the private cache size is Ω(logM).
We first bound the number of cache misses due to successful computations (similarly to the
running time, it can be proved that unsuccessful computations are dominated by this bound).
The cache complexity QB(n, δ) of function Boundary is described by the following recurrence:

QB(n̂, δ̂) =


O(n̂2δ̂/B) if n̂ ≤ λ and δ̂ > M

O(n̂2(δ̂ + 1)2/(BM) + n̂(δ̂ + 1)/B + 1)
if n̂ ≤ λ and δ̂ ≤M , or

n̂ > λ and n̂(δ̂ + 1) ≤ λM
λ2QB(n̂/λ, δ̂/λ) +O(n̂(δ̂ + 1)λ/B) if n̂ > λ and n̂(δ̂ + 1) > λM

(3)

Besides the problem size, the different cases also depend on the relationship between the
resiliency level δ̂ and the cache size M . We reach a base case either when we are at the last
recursion level (i.e., n̂ ≤ λ) or when a subproblem fits in cache (i.e., n̂(δ̂ + 1)/λ ≤ M). In
the first case, the cache is too small to exploit temporal locality and Θ(δ̂/B) cache misses
are required for each table access. The second and third base cases take instead advantage
of the temporal locality: thanks to the Z-order, subproblems are partitioned into O(n̂δ̂/M)2

groups, and processing each group costs O(M/B) cache misses. In the last case Boundary

performs λ2 recursive calls, each requiring nd(δd+ 1)/(λB) misses for preparing input vectors
and fingerprints. It can be proved that QB(n, δ) = O(n2/(BM) + (nδλ/B) logλ(nδ/M)).

The recurrence for the cache complexity QP (n, δ) of function Traceback-Path can be
derived similarly:

QP (n̂, δ̂) =


O(n̂2δ̂/B) if n̂ ≤ λ and δ̂ > M

O(n̂2(δ̂ + 1)2/(BM) + n̂(δ̂ + 1)λlog2(3/2)/B + 1)
if n̂ ≤ λ and δ̂ ≤M , or

n̂ > λ and n̂(δ̂ + 1) ≤ λM
(2λ− 1)QP (n̂/λ, δ̂/λ)+ if n̂ > λ and n̂(δ̂ + 1) > λM

+O(n̂2/(BM) + (n̂δ̂λlog2 3 logλ n̂)/B)

In the first case, forward computations performed by function Boundary dominate the num-
ber of cache misses: at the i-th virtual recursion level, at most 3i subquadrants of size n̂2/4i

are recomputed. The second and third cases are obtained by summing up, for 1 ≤ j ≤ log2 λ,
the cache misses of 3j calls to function Boundary (which are given by the corresponding cases
in Equation 3). In the fourth case, besides 3j calls to Boundary with input size nd/2

j and
resiliency (δ + 1), for each virtual recursion level j, Traceback-Path also performs 2λ − 1
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recursive calls with input size n̂/λ and resiliency δ̂/λ. It can be proved that the recurrence
solves toQP (n, δ) = O(n2/(BM)+(nδλlog2 3 logλ n)/B) = O(n2/(BM)+δn1+c/PP/B), where
constant c was defined in the running time analysis.

The theorem follows by multiplying the running time and cache complexity of function
Traceback-Path by dm/ne, in order to deal with sequences of different lengths.

Similar techniques and analyses can be adapted to I-GEP problems, extending the bounds
given in Section 5 accordingly.

7 Concluding remarks

In this paper we have devised the first resilient algorithms for dynamic programming problems.
This has been regarded as an elusive goal for many years in a variety of faulty-memory models,
especially for problems with non-local dependencies such as all-pairs shortest paths. Under
plausible assumptions, we can correctly solve, with high probability, both local dependency
DP problems and more challenging problems that fit in the Gaussian Elimination Paradigm.
The asymptotic time and space bounds of our resilient algorithms match those of the standard
non-resilient counterparts up to a polynomial number of faults. Our recursive algorithms can
also tolerate destructive faults at any level of the memory hierarchy, while still incurring a
small number of cache misses. These results can be cast into a general framework based on a
careful combination of fingerprinting with data replication and majority computations, which
might be of independent interest in the design of resilient algorithms for different problems.

Computing in the presence of memory faults still poses many challenging questions. This
paper, as well as previous works in the faulty RAM model, crucially rely on the knowledge
of the maximum number δ of memory faults: we regard the design of δ-oblivious algorithms
as an interesting research direction. Moreover, many real-world applications deal with huge
graphs that can easily consist of billions of nodes and are thus particularly vulnerable to
soft memory errors. Unfortunately, most fundamental graphs problems, including graph
traversals, are completely unsolved in faulty memories.

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Commun. ACM, 31(9):1116–1127, 1988.

[2] M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson. Sorting and selection with imprecise compar-
isons. In Proc. 36th ICALP, pages 37–48, 2009.

[3] J. A. Aslam and A. Dhagat. Searching in the presence of linearly bounded errors (extended
abstract). In Proc. 23rd STOC, pages 486–493, 1991.

[4] S. Assaf and E. Upfal. Fault tolerant sorting networks. SIAM J. Discrete Math., 4(4):472–480,
1991.

[5] Y. Aumann and M. A. Bender. Fault tolerant data structures. In Proc. 37th FOCS, pages
580–589, 1996.

[6] M. A. Babenko and I. Pouzyrevsky. Resilient quicksort and selection. In Proc. 7th Comp. Sci.
Symp. in Russia, volume 7353 of LNCS, pages 6–17, 2012.
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Appendix

Primes can be generated in the faulty-RAM model using a variant of a well-known algorithm,
which we call Random-Prime. The algorithm generates a random prime p in a given interval
I = [nc−1, nc], where c is a constant and p can be represented in O(1) memory words of size
w, as follows:

1. select uniformly at random an odd number p ∈ I;

2. test p for primality by applying t times the Miller-Rabin test [40];

3. if p is composite then repeat step 1, else return p.

Differently from the usual implementation, which has expected running time, after at most r
iterations of steps 1–3 we return p, even if the primality test fails. The choice of parameters
t and r is discussed below.

The Miller-Rabin test has one-sided error: when it determines a number composite then
the result is always true, but when it asserts that a number is prime there is a provably small
probability of error. Although the probability of failure in our case does not uniquely depend
on the Miller-Rabin test, it is not difficult to prove that this probability remains small and
that the algorithm can be executed in our model:

Claim 1. For any integers r, t > 0 and any constant c ≥ 1, algorithm Random-Prime selects
uniformly at random a prime number p in I = [nc−1, nc] with error probability upper bounded
by (1− 1/(ϑ log n))r + r4−t, for some positive constant ϑ. The algorithm requires O(rt log n)
time and O(1) private memory words.

Proof. It is well known that t iterations of the Miller-Rabin primality test require O(t log n)
mod-n multiplications (using modular exponentiation). Thus, in the faulty-memory RAM
model we can check in O(t log n) time whether a number p in Θ(nc) is prime, for any constant
c. The test can be implemented using a constant number of memory words, which can be
all stored in the private memory. The probability of failure of the Miller-Rabin test, i.e., the
probability for a composite number to be mistakenly recognized as a prime, is bounded by
4−t [40]. We now analyze the error probability of algorithm Random-Prime.

By the prime number theorem, there are Θ(nc/ log n) prime numbers in interval I. Since
|I| = Θ(nc), the probability of picking a prime when selecting an odd number uniformly at
random in I is 1/(ϑ log n), for some positive constant ϑ. Let us now define the following
events, for each i such that 1 ≤ i ≤ r:

• Li is the event “the i-th generated number is composite and the primality test mistakenly
identifies it as a prime”;

• Di is the event “the i-th generated number is composite and the primality test correctly
identifies it as composite”.

The probability of each event Li is at most (1−1/(ϑ log n))4−t. The probability of each event
Di is upper bounded by (1−1/(ϑ log n)). The overall probability that a run of subroutine Ran-
dom-Prime returns a composite number is given by Pr{L1}+ Pr{D1 ∩ L2}+ . . .+ Pr{D1 ∩
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. . . ∩Dr−1 ∩ Lr}+ Pr{D1 ∩ . . . ∩Dr}, which is upper bounded by(
1− 1

ϑ log n

)r
+

r−1∑
i=0

(
1− 1

ϑ log n

)i(
1− 1

ϑ log n

)
4−t <

(
1− 1

ϑ log n

)r
+ 4−t

r−1∑
i=0

1i+1 =

(
1− 1

ϑ log n

)r
+ r4−t

Since any prime in I has the same probability of being selected, the claim follows.

By choosing r = Θ(log2 n) and t = Θ(log n), the error probability given in Claim 1 can
be made smaller than 1/nγ for any constant γ. This yields Lemma 1.
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