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Combinatorial Auctions without Money

Dimitris Fotakis∗ Piotr Krysta† Carmine Ventre‡

Abstract

Algorithmic Mechanism Design attempts to marry computation and incentives, mainly by leveraging
monetary transfers between designer and selfish agents involved. This is principally because in absence
of money, very little can be done to enforce truthfulness. However, in certain applications, money is
unavailable, morally unacceptable or might simply be at odds with the objective of the mechanism. For
example, in Combinatorial Auctions (CAs), the paradigmatic problem of the area, we aim at solutions
of maximum social welfare but still charge the society to ensure truthfulness. Additionally, truthfulness
of CAs is poorly understood already in the case in which bidders happen to be interested in only two
different sets of goods.

We focus on the design of incentive-compatible CAs without money in the general setting ofk-
minded bidders. We trade monetary transfers with the observation that the mechanism can detect certain
lies of the bidders: i.e., we study truthful CAs with verification and without money. We prove a charac-
terization of truthful mechanisms, which makes an interesting parallel with the well-understood case of
CAs with money for single-minded bidders. We then give a hostof upper bounds on the approximation
ratio obtained by either deterministic or randomized truthful mechanisms when the sets and valuations
are private knowledge of the bidders. (Most of these mechanisms run in polynomial time and return
solutions with (nearly) best possible approximation guarantees.) We complement these positive results
with a number of lower bounds (some of which are essentially tight) that hold in the easier case of public
sets. We thus provide an almost complete picture of truthfully approximating CAs in this general setting
with multi-dimensional bidders.

1 Introduction

Algorithmic Mechanism Design has as main scope the realignment of the objective of the designer with the
selfish interests of the agents involved in the computation.Since the Internet, as the principal computing
platform nowadays, is perhaps the main motivation to study problems in which these objectives are different,
one would expect truthful mechanisms to have concrete and widespread practical applications. However,
one of the principal obstacles to this is the assumption thatthe mechanisms use monetary transfers. On
one hand, money may provoke (unreasonably) large payments [9]; on the other hand, while money might
be reasonable in some applications, such as sponsored search auctions, little justification can be found for
either the presence of a digital currency or the use of money at all. There are contexts in which money is
morally unacceptable (such as, to support certain political decisions) or even illegal (as for example, in organ
donations). Additionally, there are applications in whichthe objective of the computation collides with the
presence of money.

∗National Technical University of Athens, Greece,fotakis@cs.ntua.gr.
†University of Liverpool, UK,pkrysta@liverpool.ac.uk. This author is supported by EPSRC grant EP/K01000X/1.
‡Teesside University, UK,c.ventre@tees.ac.uk.

1

http://arxiv.org/abs/1310.0177v1


Consider Combinatorial Auctions (CAs, for short), the paradigmatic problem in Algorithmic Mechanism
Design. In a combinatorial auction we have a setU of m goods andn bidders. Each bidderi has aprivate
valuation functionvi that maps subsets of goods to nonnegative real numbers (vi(∅) is normalized to be
0). Agents’ valuations are monotone, i.e., forS ⊇ T we havevi(S) ≥ vi(T ). The goal is to find a
partitionS1, . . . , Sn of U such that

∑n
i=1 vi(Si) – thesocial welfare– is maximized. For this problem, we

are in a paradoxical situation: whilst, on one hand, we pursuit the noble goal of maximizing the happiness
of the society (i.e., the bidders), on the other, we considerit acceptable to charge the society itself (and
then “reduce” its total happiness) to ensure truthfulness.CAs without money would avoid this paradox,
automatically guarantee budget-balanceness (property which cannot, in general, be achieved together with
social welfare maximization), and deal with budgeted bidders (a case which is generally hard to handle in
presence of money).

In this paper, we focus onk-minded bidders, i.e., bidders are interested in obtainingone out of a col-
lection of k subsets ofU. In this general setting, we want to study the feasibility ofdesigning truthful
CAs without money, returning (ideally, in polynomial time)reasonable approximations of the optimal so-
cial welfare. This is, however, an impossible task in general: it is indeed pretty easy to show that there
is no better thann-approximate mechanisms without money, even in the case of single-item auctions and
truthful-in-expectation mechanisms [8]. We therefore focus on the model of CAs with verification, intro-
duced in [17]. In this model, which is motivated by a number ofreal-life applications and has also been
considered by economists [6], bidders do not overbid their valuations on the set that they are awarded. The
hope is that money can be traded with the verification assumption so to be able to design “good” (possibly,
polynomial-time) mechanisms, which are truthful without money in a well-motivated – still challenging –
model.

1.1 Our contribution

The model of CAs with verification is perhaps best illustrated by means of the following motivating scenario,
discussed first in [17]. Consider a government (auctioneer)auctioning business licenses for a setU of cities
under its administration. A business company (bidder) wants to get a license for some subset of cities (subset
of U) to sell her product stock to the market. Consider the bidder’s profit for a subset of citiesS to be equal
to a unitarypublicly knownproduct price (e.g., for some products, such as drugs, the government could
fix a social price) times the number of product items available in the stocks that the company possesses
in the cities comprisingS.1 In this scenario, the bidder is strategic on her stock availability. As noted in
literature in Economics [6], a simple inspection on the stock consistency implies that bidders cannot overbid
their profits: the concealment of existing product items in stock is costless but disclosure of unavailable
ones is prohibitively costly. The assumption is verification a posteriori2: the inspection is carried on for
the solutions actually implemented and then each bidder cannot overstate her valuation for the set she gets
allocated, if any. It is important to notice that bidders canmisreport sets and valuations for unassigned sets
in anunrestrictedway. A formal definition of the model of CAs with verification and without money can be
found in Section 2.

In this model, we firstly give a complete characterization ofalgorithms that are incentive-compatible

1Note that bidders will sell products already in stock (i.e.,no production costs are involved as they have been sustainedbefore
the auction is run). This is conceivable when a government runs an auction for urgent needs (e.g., salt provision for icy roads or
vaccines for pandemic diseases).

2A stronger model of verification would require bidders to be unable to overbid at all and not just on the awarded set. However,
there appears to be weaker motivations for this model: the investment required on inspections would be considerable andrather
unrealistic.
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in both the cases in which the collections ofk sets, each bidder is interested in, are public (also referred
to, as known bidders) and private (also known as, unknown bidders); valuations are always assumed to be
private. We prove that truthfulness is characterized in this context in terms ofk-monotone algorithms: in
the case of known bidders, if a bidder is awarded a setS and augments her declaration forS then ak-
monotone algorithm must, in this new instance, grant her a set in her collection which is not worse than
S (i.e., a set with a valuation not smaller than her valuation for S). (This generalizes neatly to the case of
unknown bidders.) There are two important facts we wish to emphasize about our characterizations. First,
their significance stems from the fact that the corresponding problem of characterizing truthfulness for CAs
with money andk-minded bidders is poorly understood: this is a long-standing open problem already for
k = 2, see, e.g., [25, Chapter 12]. Second, it is pretty easy to seethat these notions generalize the properties
of monotonicity shown to characterize truthfulness with money for single-minded bidders in [22, 19] for
known and unknown bidders, respectively. More generally, these properties of monotonicity are also proved
to be sufficient to get truthful mechanisms for so-called generalized single-minded bidders [3]. This is an
interesting development as, to the best of our knowledge, itis the first case in which a truthful mechanism
with money can be “translated” into a truthful mechanism without money. The price to pay is “only” to
perform verification to prevent certain lies of the bidders,while algorithms (and then their approximation
guarantees) remain unchanged. Thus, in light of our results, previously known algorithms presented in,
e.g., [19, 3, 11] assume a double relevance: they are truthful not only when money can be used, but also in
absence of money when verification can be implemented. This equivalence gives also a strong motivation
for our model. Naturally, the picture for the multi-dimensional case ofk > 1 is more blurry since, as we
mention above, truthfulness with money is not well understood yet in these cases.

Armed with the characterization of truthfulness, we provide a number of upper and lower bounds on the
approximation guarantee to the optimal social welfare of truthful CAs without money and with verification.
The upper bounds hold for the harder case of unknown bidders.We give an upper bound ofO(b b

√
m)

in the case in which each good inU has a supplyb. This algorithm is deterministic, runs in polynomial
time and adapts an idea of multiplicative update of good prices by [18]. Following similar ideas, we also
obtain randomized universally truthful mechanisms with approximation ratios ofO(d1/b · log(bm)) and
O(m1/(b+1) · log(bm)), whered is the maximum size of sets in the bidders’ collections. Our most significant
deterministic polynomial-time upper bound is obtained, inthe case ofb = 1, by a simple greedy mechanism
that exploits the characteristics of the model without money. This algorithm returns amin{m,d + 1}-
approximate solution. These upper bounds are complementedby two simple randomized universally truthful
CAs without money: the first achieves ak-approximation in exponential time; the second runs instead in
polynomial-time and has aO(

√
m)-approximation guarantee. We note here that all our polynomial-time

upper bounds are computationally (nearly) best possible even when the algorithm has full knowledge of
the bidders’ data. We also would like to note that all, but thek-approximate, upper bounds given can be
obtained in the setting in which bidders’ declare so-calleddemand oracles, see, e.g., [25, Chapter 11]. We
complete this study by proving a host of lower bounds on the approximation guarantee of truthful CAs
without money for known bidders, without any computationalassumption. (Note that the class of incentive-
compatible algorithms for known bidders is larger than the class for unknown bidders.) We prove the
following lower bounds:2 for deterministic mechanisms;5/4 for universally truthful mechanisms; and,
finally, 1.09 for truthful-in-expectation mechanisms. This implies that the optimal mechanisms are not
truthful in our model. Additionally, stronger lower boundsare proved for deterministic truthful mechanisms
that use priority algorithms [1]. These algorithms process(and take decisions) oneelementary itemat the
time, from a list of ordered items. The ordering can also change adaptively after each item is considered.
(Note that our greedy mechanism falls in the category of non-adaptive priority algorithms since it process
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bids as items, which are ordered at the beginning.) We give a lower bound ofd for priority algorithms that
process bids as elementary items (thus, essentially matching the upper bound of the greedy algorithm) and
a lower bound ofm/2 in the case in which the algorithm processes bidders as items.

Our bounds give a rather surprising picture of the relative power of verification versus money, thus sug-
gesting that the two models are somehow incomparable. For example, we have aO(

√
m)-approximate uni-

versally truthful mechanism, which matches the guarantee of the universally truthful mechanism with money
given by [7]. (However, it is worth mentioning that the latter mechanism does not guarantee the approxima-
tion ratio since there is an error probability ofO(logm/

√
m) which cannot be reduced by, e.g., repeating

the auction or otherwise truthfulness would be lost.) On theother hand, because of our lower bounds, we
know that it is not possible to implement the optimal outcomewithout money; while, if we have exponential
computational time, we can truthfully implement the optimal solution using VCG payments. However, if we
restrict to polynomial-time mechanisms, then we have a deterministic truthfulmin{m,d+1}-approximation
mechanism without money, based on the aforementioned greedy algorithm; with money, instead, it is not
known how to obtain any polynomial-time deterministic truthful mechanism with an approximation ratio
better than theO(m/

√
logm)-approximation given in [14]. Moreover, [1, Theorem 2] proved a lower

bound ofΩ(m) on the approximation ratio of any truthful greedy mechanismwith money for instances
with demanded sets of cardinality at most2. Our greedy mechanism achieves an approximation ratio of3
for such instances, which implies that this lower bound doesnot hold in our model without money. Addi-
tionally, we show that the greedy mechanism cannot be made truthful with money, which suggests that the
model without money couples better with greedy selection rules. A general lower bound in terms ofm for
CAs without money would shed further light on this debate of power of verification versus power of money.
In this regard, we offer an interesting conjecture in Section 5.2.

1.2 Related work

CAs as an optimization problem (without strategic consideration) is known to be NP-hard to solve optimally
or even to approximate: neither an approximation ratio ofm1/2−ǫ, for any constantǫ > 0, nor ofO(d/ log d)
can be obtained in polynomial time [23, 19, 13]. As a consequence, a large body of literature has focused on
the design of polynomial-time truthful CAs that return as good an approximate solution as possible, under
assumptions (i.e., restrictions) on bidders’ valuation domains. For single-minded domains, a host of truthful
CAs have been designed (see, e.g., [19, 22, 3]). A more complete picture of what is known for truthful CAs
under different restrictions of bidders’ domains can be found in Figure 11.2 of [25].

The authors of [17], instead of restricting the domains of the bidders, proposed to restrict the way
bidders lie. We are adopting here their model, adapting it tothe case without money. The definition of
CAs with verification is inspired by the literature on mechanisms with verification (see, e.g., [24, 27, 28]
and references therein). Mechanism design problems where players have restrictions on the way of lying
are also considered in theoretical economics. We next discuss some of the work more relevant to this
paper. Green and Laffont [12] define and motivate a model of partial verification wherein bidders can only
report bids from a type-dependent set of allowed messages; they characterize bidding domains for which
the Revelation Principle holds in presence of this notion ofrestricted bidding. This model has been further
studied by Singh and Wittman [31] and later extended in [4] toallow probabilistic verification of bids outside
the set of allowed messages. The economic model that is closest to ours is the one studied in [6]; therein
verification is supposed to take place for every outcome and not just for the implemented solution and is
therefore stronger and less realistic than ours. Another related line of work tries to establish when a subset of
incentive-compatibility constraints is sufficient to obtain full incentive-compatibility. [21] considers a single
good, single buyer optimal auction design and studies conditions under which no-overbidding constraints

4



would also imply the full incentive compatibility of the underlying auction. Other papers studying this kind
of questions are [30, 5]. In particular, the results in [5] (and to some extent in [4]) seem to suggest that one
has to focus only on “one-sided” verification, for otherwisea mechanism is truthful if and only if it satisfies
a subset of incentive-compatibility constraints.

Our work fits in the framework of approximate mechanism design without money, initiated by [29]. The
idea is that for optimization problems where the optimal solution cannot be truthfully implemented without
money, one may resort to the notion of approximation, and seek for the best approximation ratio achievable
by truthful algorithms. Approximate mechanisms without money have been obtained for various problems,
among them, for locating one or two facilities in metric spaces (see e.g., [29, 20]). Due to the apparent
difficulty of truthfully locating three or more facilities with a reasonable approximation guarantee, notions
conceptually similar to our notion of verification have beenproposed [26, 10]. [15] considers truthful mech-
anisms without money, for scheduling selfish machines whoseexecution times can be (strongly) verified.
The authors of [8] consider the design of mechanisms withoutmoney for, what they call, the Generalized
Assignment problem:n selfish jobs compete to be processed bym unrelated machines; the only private data
of each job is the set of machines by which it can be actually processed. This problem can be modeled via
maximum weight bipartite matching and the latter can be castas a special case of CAs with demanded sets
of cardinality1; then [8, Algorithm 1] can be regarded as a special case of ourgreedy algorithm.

2 Model and preliminaries

In a combinatorial auction we have a setU of m goods andn agents, a.k.a. bidders. Eachk-minded XOR-
bidderi has aprivatevaluation functionvi and is interested in obtaining only one set in aprivatecollection
Si of subsets ofU, k being the size ofSi. The valuation function maps subsets of goods to nonnegative real
numbers (vi(∅) is normalized to be0). Agents’ valuations are monotone: forS ⊇ T we havevi(S) ≥ vi(T ).

The goal is to find a partitionS1, . . . , Sn of U such that
∑n

i=1 vi(Si) –thesocial welfare– is maximized.
As an example considerU = {1, 2, 3} and the first bidder to be interested inS1 = {{1}, {2}, {1, 2}}. The
valuation function of bidderi for S 6∈ Si is

vi(S) =

{

maxS′∈Si:S⊇S′{vi(S′)} if ∃S′ ∈ Si ∧ S ⊇ S′,
0 otherwise.

(1)

Accordingly, we say thatvi(S) 6= 0 (for S 6∈ Si) is definedby an inclusion-maximal setS′ ∈ Si such that
S′ ⊆ S andvi(S′) = vi(S). If vi(S) = 0 then we say that∅ defines it. So in the example abovev1({1, 2, 3})
is defined by{1, 2}.

Throughout the paper we assume that bidders are interested in sets of cardinality at mostd ∈ N, i.e.,
d = max{|S| : ∃ i s.t. S ∈ Si ∧ vi(S) > 0}.

Assume that the setsS ∈ Si and the valuesvi(S) are private knowledge of the bidders. Then, we want
to design anallocation algorithm(auction) that for a given input of bids from the bidders, outputs a feasible
assignment (i.e., at most one of the requested sets is allocated to each bidder, and allocated sets are pair-
wise disjoint). The auction should guarantee that no bidderhas an incentive to misreport her preferences
and maximize the social welfare (i.e., the sum of the valuations of the winning bidders).

More formally, we letTi be a set ofk non-empty subsets ofU and letzi be the corresponding valuation
function of agenti, i.e., zi : Ti → R

+. We call bi = (zi,Ti) a declaration(or bid) of bidder i. We let
ti = (vi,Si) be thetrue typeof agenti. We also letDi denote the set of all the possible declarations of
agenti and callDi thedeclaration domainof bidderi. Fix the declarationsb−i of all the agents buti. For
any declarationbi = (zi,Ti) in Di, we letAi(bi,b−i) be the set that an auctionA on inputb = (bi,b−i)
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allocates to bidderi. If no set is allocated toi then we naturally setAi(bi,b−i) = ∅. Observe that, according
to (1),vi(∅) = 0. We say thatA is a truthful auction without money if the following holds for anyi, bi ∈ Di

andb−i:
vi(Ai(ti,b−i)) ≥ vi(Ai(b)). (2)

We also define notions of truthfulness in the case of randomization: we either have universally truthful
CAs, in which case the mechanism is a probability distribution over deterministic truthful mechanisms, or
truthful-in-expectation CAs, where in (2) we use the expected values, over the random coin tosses of the
algorithm, of the valuations. We also say that a mechanismA is anα-approximation for CAs withk-minded
bidders if for all t = (vi,Si)

n
i=1,

∑n
i=1 vi(Ai(t)) ≥ OPT/α, OPT being the value of a solution with

maximum social welfare for the instancet.
Recall thatAi(ti,b−i) may not belong to the set of demanded setsSi. In particular, there can be

several sets inSi (or none) that are subsets ofAi(ti,b−i). However, as observed above (cf. (1)), the
valuation is defined by a set inSi ∪ {∅} which is an inclusion-maximal subset of setAi(ti,b−i) that
maximizes the valuation of agenti. We denote such a set asσ(Ai(ti,b−i)|ti), i.e., vi(Ai(ti,b−i)) =
vi(σ(Ai(ti,b−i)|ti)). In our running example above, it can be for some algorithmA and someb−1, that
A1(t1,b−1) = {1, 2, 3} 6∈ S1 whose valuation is defined as observed above by{1, 2}; the set{1, 2} is
denoted asσ(A1(t1,b−1)|t1). (Similarly, we defineσ(Ai(bi,b−i)|bi)) ∈ Ti ∪ {∅} w.r.t. Ai(bi,b−i) and
declarationbi.) Following the same reasoning, we letσ(Ai(bi,b−i)|ti) denote the set inSi ∪ {∅} such that
vi(Ai(bi,b−i)) = vi(σ(Ai(bi,b−i)|ti)).

We focus onexactalgorithms3 in the sense of [19]. This means thatAi(bi,b−i) ∈ Ti ∪ {∅}. This
implies, by monotonicity of the valuations, thatAi(bi,b−i) = σ(Ai(bi,b−i)|bi) and then the definition of
σ(·|·) yields the following for anyti, bi ∈ Di:

σ(Ai(bi,b−i)|ti) ⊆ Ai(bi,b−i) = σ(Ai(bi,b−i)|bi). (3)

In the verification model each bidder can only declare lower valuations for the set she is awarded. More
formally, bidderi whose type isti = (vi,Si) can declare a typebi = (zi,Ti) if and only if whenever
σ(Ai(bi,b−i)|bi) 6= ∅:

zi(σ(Ai(bi,b−i)|bi)) ≤ vi(σ(Ai(bi,b−i)|ti)). (4)

In particular, bidderi evaluates the assigned setσ(Ai(bi,b−i)|bi) ∈ Ti asσ(Ai(bi,b−i)|ti) ∈ Si ∪ {∅},
i.e., vi(σ(Ai(bi,b−i)|ti)) = vi(σ(Ai(bi,b−i)|bi)). Thus the setσ(Ai(bi,b−i)|bi) can be used to ver-
ify a posteriori that bidderi has overbid declaringzi(σ(Ai(bi,b−i)|bi)) > vi(σ(Ai(bi,b−i)| bi)) =
vi(σ(Ai(bi,b−i)|ti)). To be more concrete, consider the motivating scenario for CAs with verification
above. The set of citiesσi(A(bi,b−i)|bi) for which the government assigns licenses to bidderi when
declaringbi, can be used a posteriori to verify overbidding by simply counting the product items available
in the stock of the cities for which licenses were granted to bidder i.

When (4) is not satisfied then the bidder is caught lying by theverification step. We assume that this
behavior is very undesirable for the bidder (e.g., for simplicity we can assume that in such a case the bidder
loses prestige and the possibility to participate in the future auctions). This way (2) is satisfied directly
when (4) does not hold (as in such a case a lying bidder would have an infinitely bad utility because of the
assumption above). Thus in our model, truthfulness with verification and without money of an auction is
fully captured by (2) holding only for anyi, b−i andbi = (zi,Ti) ∈ Di such that (4) is fulfilled. Since our
main focus is on this class of truthful mechanisms with verification and no money, we sometimes avoid to
mention that and simply refer to truthful mechanisms/algorithms.

3An algorithm is exact if, to each bidder, either only one of the declared sets is awarded or none.
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A graph-theoretic approach The technique we will use to derive truthful auctions for multi-minded XOR
bidders is a straightforward variation of the so-called cycle monotonicity technique. Consider an algorithm
A. We will set up a weighted graph for each bidderi depending onA, bidder domainDi and the declaration
b−i of all the bidders buti in which the non-existence of negative-weight edges guarantees the truthfulness
of the algorithm. This is a well known technique. More formally, fix algorithmA, bidderi and declarations
b−i. The declaration graphassociated to algorithmA has a vertex for each possible declaration in the
domainDi. We add an arc betweena = (z,T ) and b = (w,U) in Di whenever a bidder of typea
can declare to be of typeb obeying (4). Following the definition of the verification setting, edge(a, b)
belongs to the graph if and only ifz(σ(b|a)) ≥ w(σ(b|b)). 45 The weight of the edge(a, b) is defined
asz(σ(a|a)) − z(σ(b|a)) and thus encodes the loss that a bidder whose type is(z,T ) incurs by declaring
(w,U). The following result (whose proof is straightforward) relates the weight of edges of the declaration
graph to the truthfulness of the algorithm.

Proposition 1 A is a truthful auction with verification without money for CAswith k-minded bidders if and
only if each declaration graph associated to algorithmA does not have negative-weight edges.

In the case of mechanisms without verification, the graph above is complete. Such a graph can be used
to check whether algorithms can be augmented with payments so to ensure truthfulness, both in the scenario
with verification and without. Incentive-compatibility ofalgorithms is known to coincide with the case in
which each graph has not negative-weight cycles [32]. We will use this fact to show that certain algorithms
cannot be made truthful with money.

Known vs Unknown k-minded bidders In the discussion above, we consider the case in which the col-
lection ofk sets, each bidder is interested in, is private knowledge. Inthis case, we refer to the problem of
designing truthful auctions that maximize the social welfare as CAs withunknownk-minded bidders(or,
simply, unknown bidders). An easier scenario is the settingin which the sets are public knowledge and bid-
ders are only strategic about their valuations. In this case, we instead talk about CAs withknownk-minded
bidders(or, simply, known bidders). Our upper bounds hold for the more general case of unknown bidders,
while the lower bounds apply to the larger class of mechanisms truthful for known bidders.

3 Characterization of truthful mechanisms

In this section we characterize the algorithms that are truthful in our setting, in both the scenarios of known
and unknown bidders. Interestingly, the characterizing property is algorithmic only and turns out to be
a generalization of the properties used for the design of truthful CAs with money and no verification for
single-minded bidders.

3.1 Characterization for known bidders

In this case, for eachk-minded bidderi we knowSi. The following property generalizes monotonicity of
[22] and characterizes truthful auctions without money andwith verification.

4To ease our notation we letσ(b|a) be a shorthand forσ(Ai(b,b−i)|a) when the algorithm, the bidderi and declarationsb−i

are clear from the context as in this case.
5Strictly speaking for an edge(a, b) in the graph, we should require thatz(σ(b|a)) ≥ w(σ(b|b)) only wheneverσ(b|b) 6= ∅ as

this set would be needed to verify. However, because of the monotonicity and normalization of valuations,z(σ(b|a)) ≥ w(σ(b|b))
holds also wheneverσ(b|b) = ∅, sinceσ(b|a) = ∅ andz(∅) = w(∅) = 0.
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Definition 1 An algorithmA is k-monotoneif the following holds for anyi, anyb−i, any a ∈ Di: if
Ai(a,b−i) = S then for allb ∈ Di such thatb(S) ≥ a(S) it holdsb(Ai(b,b−i)) ≥ b(S).

Theorem 1 An algorithmA is truthful without money and with verification for knownk-minded bidders if
and only ifA is k-monotone.

Proof. Fix i, b−i and consider the declaration graph associated to algorithmA. Take any edge of the graph
(b, a) and letS denoteAi(a,b−i). By definition, the edge exists if and only ifb(S) ≥ a(S).

Now if the algorithm isk-monotone then we also have thatb(Ai(b,b−i)) ≥ b(S) and then the weight
b(Ai(b,b−i)) − b(S) of edge(b, a) is non-negative. Vice versa, assume that the weight of(b, a) is non-
negative: this means that wheneverb(S) ≥ a(S) then it must beb(Ai(b,b−i)) ≥ b(S) and thereforeA is
k-monotone. The theorem follows from Proposition 1. �

Similarly to [22], k-monotonicity implies the existence of thresholds (critical values/prices). Towards
this end, it is important to consider the sets inSi in decreasing order of (true) valuations. Accordingly, we
denoteSi = {S1

i , . . . , S
k
i }, with vi(S

j
i ) > vi(S

l
i) if and only if j < l.

Lemma 1 An algorithmA is k-monotone if and only if for anyi, anyb−i, any ti there existk threshold
valuesΘ1

i (b−i), . . . ,Θ
k
i (b−i) such that: ifbi(S

j
i ) > Θj

i (b−i) and bi(S
ℓ
i ) < Θℓ

i(b−i), for all ℓ < j then
σ(Ai(bi,b−i)|ti) = Sj

i . Moreover, ifbi(Sℓ
i ) < Θℓ

i(b−i), for all ℓ ∈ [k] thenσ(Ai(bi,b−i)|ti) = ∅.

The lemma above assumes that bidders havek different valuations for each of their minds. This is a rather
nonrestrictive way to model CAs fork-minded bidders. In the more general case in which bidders are
allowed to have ties in their valuations, one can prove that monotonicity implies the existence of thresholds,
while the other direction is not true in general but only under some assumption onAi(bi,b−i).

3.2 Characterization for unknown bidders

The following property generalizes the property of monotonicity of algorithms defined by [19] and charac-
terizes truthful auctions without money and with verification.

Definition 2 An algorithmA is k-set monotoneif the following holds for anyi, anyb−i and anya =
(z,T ) ∈ Di: if Ai(a,b−i) = T then for all b = (w,U) such thatσ(T |b) = U , w(U) ≥ z(T ) we have
Ai(b,b−i) = S withw(S) ≥ w(U).

To see how this notion generalizes [19], it is important to understand what isU . In detail,σ(T |b) = U ,
in the above definition, should be read as to indicate that bidder i going from declarationa to declaration
b, substitutedT ∈ T with U ∈ U andU ⊆ T . This is becauseσ(T |b) denotes the set in the collection
of sets demanded by a bidder of typeb which defines the valuation ofT . Specifically,U ∈ U is such that
w(U) = w(T ). (Note that ifT belonged toU thenU would beT itself.)

Theorem 2 An algorithmA is truthful without money and with verification fork-minded bidders if and only
if A is k-set monotone.

Proof. Fix i, b−i and consider the declaration graph associated to algorithmA. Take any edge of the
graph(b = (w,U), a = (z,T )) and letT denoteAi(a,b−i). By definition, the edge exists if and only if
w(U) ≥ z(T ), with U = σ(T |b).
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Now if the algorithm isk-set monotone then we also have thatw(Ai(b,b−i)) ≥ w(U) and then the
weightw(Ai(b,b−i))−w(U) of edge(b, a) is non-negative. Vice versa, assume that the weight of(b, a) is
non-negative: this means that wheneverw(U) ≥ z(T ) then it must bew(Ai(b,b−i)) ≥ w(U) and therefore
A is k-set monotone. The theorem follows from Proposition 1. �

Observe, that our characterization of Theorem 2 for unknownsingle-minded bidders implies the exis-
tence of a threshold for any set. Namely, letA be a given1-set monotone algorithm, and leti be a fixed
bidder with declaration(z,T ) ∈ Di. Then for the setT ∈ T (here,|T | = 1), algorithmA is monotone with
respect toz(T ) and thus there exists a critical threshold. It is not hard to see that thresholds exist also for
unknownk-minded bidders, withk > 1.

The result in Theorem 2 also relates to the characterizationof truthful CAs with money and no veri-
fication (see, e.g., Proposition 9.27 in [25]). While the twocharacterizations look pretty similar, there is
an important difference: in the setting with money and no verification, each bidder optimizes her valuation
minus the critical price over all her demanded sets; in the setting without money and with verification, each
bidder optimizes only her valuation over all her demanded sets among those that are bounded from below
by the threshold.

3.3 Implications of our characterizations

We discuss here two conceptually relevant consequences of our results above. In a nutshell, a reasonably
large class of truthful mechanisms with money can be turned into truthful mechanisms without money, by
using the verification paradigm.

3.3.1 Single-minded versus multi-minded bidders

Observe that our characterization of truthful mechanisms without money for CAs with1-minded bidders
with known and unknown bidders is exactly the same as the characterization of truthful mechanisms with
money in this setting, see, e.g., pages 274–275 in [25]. Thismeans that the two classes of truthful mecha-
nisms in fact coincide. More formally, we have:

Proposition 2 Any (deterministic) truthfulα-approximation mechanism with money for single-minded CAs
can be turned into a (deterministic) truthfulα-approximation mechanism without money with verification
for the same problem, and vice versa. This holds for single-minded CAs with either known or unknown
bidders.

3.3.2 Beyond CAs

It is known that a slight generalization of monotonicity of [19] is a sufficient property to obtain truthful
mechanisms with money also for problems involvinggeneralized single-minded bidders[3]. Intuitively,
generalized single-minded bidders havek private numbers associated to their type: their valuation for a
solution is equal to the first of these values or minus infinity, depending on whether the solution asks the
agent to “over-perform” on one of the otherk − 1 parameters, see [3] for details. By Theorem 2, all the
truthful mechanisms with money designed for this quite general type of bidders can be turned into truthful
mechanisms without money, when the verification paradigm isjustifiable. As a direct corollary of our
characterization, we then have a host of truthful mechanisms without money and with verification for the
(multi-objective optimization) problems studied in [3, 11].
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4 Upper bounds for unknown bidders

In this section we present our upper bounds for CAs with unknown k-minded bidders.

4.1 CAs with arbitrary supply of goods

In this section, we consider the more general case in which elements inU are available inb copies each.
Note that the characterizations above hold also in this multi-unit case. We present three polynomial-time
algorithms, which are truthful for CAs with unknown bidders: the first is deterministic, the remaining are
randomized and give rise to universally truthful CAs.

4.1.1 Deterministic truthful CAs

We adapt here the overselling multiplicative price update algorithm and its analysis from [18] to our setting
without money. The algorithm considers bidders in an arbitrary given order. We assume that the algorithm
is given a parameterµ ≥ 1 such thatµ/2 ≤ vmax < µ. We will assume that suchµ is known to the
mechanism, and afterwards we will modify our mechanism and show how to truthfully guessvmax.

Algorithm 1 processes the bidders in an arbitrary given order, i = 1, 2, . . . , n. The algorithm starts with
some relatively small, uniform pricep0 =

µ
4bm of each item. When considering bidderi, the algorithm uses

the current prices as defining thresholds and allocates to bidderi a setSi in her demand setSi that has the
maximum valuationvi(Si) among all her sets with valuations above the thresholds. Then the prices of the
elements in the setSi are increased by a factorr and the next bidder is considered.

Let ℓie be the number of copies of goode ∈ U allocated to all bidders preceding bidderi andℓ∗e = ℓn+1
e

denote the total allocation of goode to all bidders. Let, moreover,p∗e = p0 · rℓ
∗
e be goode’s price at the end

of the algorithm.
We claim now that ifp0 andr are chosen so thatp0rb = µ, then the allocationS = (S1, . . . , Sn) output

by Algorithm 1 is feasible, that is, it assigns at mostb copies of each good to the bidders. The argument is
as follows. Consider any goode ∈ U. Notice that when theb-th copy of goode is sold to any bidder then its
price is updated top0rb = µ > vmax. Thus, goode alone has a price which is above the maximum valuation
of any bidder, and so no further copy will be sold.

Next we prove two lower bounds on the social welfarev(S) =
∑n

i=1 vi(Si) of the setsS1, . . . , Sn

chosen by Algorithm 1. LetOPT denote the optimal social welfare, and recall thatp∗e denotes the final
price of goode ∈ U.

Lemma 2 It holdsv(S) ≥ 1
r−1

(
∑

e∈U p∗e −mp0
)

andv(S) ≥ OPT− b
∑

e∈U p∗e.

Combining the above bounds yields the following result for the algorithm.

Algorithm 1: Multiplicative price update algorithm

1 For each goode ∈ U dop1e := p0.
2 For each bidderi = 1, 2, . . . , n do
3 SetSi := argmax{vi(S) : S ∈ Si such thatvi(S) ≥

∑

e∈S p
i
e}.

4 Update for each goode ∈ Si: pi+1
e := pie · r.

5 ReturnS = (S1, S2, . . . , Sn).
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Algorithm 2: Modified multiplicative price update algorithm

1 For each bidderi ∈ {1, 2, . . . , n}, let vimax be the valuation ofi’s most valuable set.

2 Let j ∈ {1, 2, . . . , n} be the bidder with highest valuevjmax (smallest index in case of ties).

3 Let p0 =
µ

4bm , whereµ = (1 + ǫ)vjmax, for a fixed0 < ǫ ≪ 1.

4 For each goode ∈ U dopje := p0.
5 Let for anyi = j, 1, 2, 3, 4, . . . , j − 1, j + 1, . . . , n, next(i) be the next number in this order, e.g.,

next(j) = 1,next(1) = 2, . . . ,next(j − 1) = j + 1, . . . ,next(n − 1) = n,next(n) = n+ 1.
6 For each bidderi = j, 1, 2, . . . , j − 1, j + 1, . . . , n do
7 SetSi := argmax{vi(S) : S ∈ Si such thatvi(S) ≥

∑

e∈S p
i
e}.

8 Update for each goode ∈ Si: p
next(i)
e := pie · r.

9 ReturnS = (S1, S2, . . . , Sj−1, Sj , Sj+1, . . . , Sn).

Theorem 3 Algorithm 1 withp0 = µ
4bm and r = (4bm)1/b produces a feasible allocationS such that

v(S) ≥ OPT
2(b(r−1)+1) ≥ OPT

O(b·(m)1/b)
.

Proof. Feasibility follows from the fact thatp0rb = µ. The first bound of Lemma 2 givesb(r − 1)v(S) ≥
b
∑

e∈U p∗e − bmp0, which by the second bound isb(r − 1)v(S) ≥ b
∑

e∈U p∗e − bmp0 ≥ OPT − v(S) −
bmp0 ≥ OPT/2 − v(S), where the last inequality follows byvmax ≤ OPT. This finally gives usv(S) ≥

OPT
2(b(r−1)+1) . �

Theorem 4 Algorithm 1 is a truthful mechanism without money and with verification for CAs with unknown
k-minded bidders.

Proof. Fix i andb−i. As in Definition 2, take two declarations of bidderi, a = (z,T ) andb = (w,U) with
w(U) ≥ z(T ), whereT = Ai(a,b−i) andU = σ(T |b). (In this proof,A denotes Algorithm 1.) Recall that
U ⊆ T andU ∈ U .

Note that the ordering is independent of the bids and then when i is considered the pricespie for the
elementse of U are the same in bothA(a,b−i) andA(b,b−i). SinceT = Ai(a,b−i), we note thatz(T ) ≥
∑

e∈T pie. This yields,w(U) ≥ z(T ) ≥ ∑

e∈T pie ≥ ∑

e∈U pie. This implies that whenA(b,b−i) executes
line 3, the setU is taken into consideration and we can therefore conclude thatw(Ai(b,b−i)) ≥ w(U). This
shows thatA is k-set monotone and then, by Theorem 2, our claim. �

We now modify Algorithm 1 in order to remove the assumption onthe knowledge ofµ. The modified
algorithm is presented as Algorithm 2. We have the followingresult.

Theorem 5 Algorithm 2 is a truthful mechanism without money and with verification for CAs with unknown
k-minded bidders. Its approximation ratio isO(b · (m)1/b).

Proof. Approximation ratio and feasibility of the produced solution follow from the choice ofp0 and from
settingµ = (1 + ǫ)vjmax, for 0 < ǫ ≪ 1. Indeed, we can use the previous analysis of Algorithm 1 thatdid
not make any assumption on the order in which bidders are processed and only requiredµ/2 ≤ vmax < µ.

We will argue now about truthfulness of the modified algorithm. Let us call bidderj in Algorithm
2, themax bidder. We first observe that bidderj is allocated the set in her (reported) demand with highest
(reported) valuation. This is because her declaration ofvjmax for her best set, sayQ, is larger than

∑

e∈Q pje =
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|Q| · p0 = |Q| · (1+ǫ)vjmax

4bm since|Q| ≤ m. Now, fix i andb−i. As in Definition 2, take two declarations of
bidderi, a = (z,T ) andb = (w,U) with w(U) ≥ z(T ), whereT = Ai(a,b−i) andU = σ(T |b). (In this
proof,A denotes Algorithm 2.) Recall thatU ⊆ T andU ∈ U . Let ja (resp.,jb) be the max bidder for the
bid vector(a,b−i) (resp.,(b,b−i)). We distinguish three cases.
Case 1:i = ja. In this case,z(T ) is larger than all the valuations inb−i. Sincew(U) ≥ z(T ) and since
b−i is unchanged thenw(U) is also larger than all the valuations inb−i, which yields i = jb. But
then, as observed above, sincei is the max bidder in(b,b−i) she will get her best set inU and therefore
w(Ai(b,b−i)) ≥ w(U).
Case 2:i = jb. Sincei is the max bidder in(b,b−i) then we can argue, as above, that she will get her best
set and so we havew(Ai(b,b−i)) ≥ w(U).
Case 3:i 6= ja, jb. Since the other bids are unchanged, in this case, we haveja = jb. This implies that the
ordering in which bidders are considered is the same in bothA(a,b−i) andA(b,b−i) which in turns implies
that the pricespie considered by the algorithm in line 7 are the same in both instances. We can then use the
same arguments used in the proof of Theorem 4 to conclude thatw(Ai(b,b−i)) ≥ w(U).

In all the three cases we have shown that the algorithm isk-set monotone and then the claim follows
from Theorem 2. �

4.1.2 Randomized truthful CAs

We show here how to use Algorithm 2 to obtain randomized universally truthful mechanisms with expected
approximation ratios ofO(d1/b log(bm)) andO(m1/(b+1) log(bm)), respectively.

Observe first that if we execute Algorithm 1 with a smaller update factorr = 21/b, then the output
solution allocates at mostsb copies of each good to the bidders, wheres = log(4bm) [18, Lemma 1]. This
simply follows from the fact that ifsb copies of goode ∈ U were sold, then its price isp02log(4bm) =
µ > vmax. But this infeasible solution is anO(1)-approximation to the optimal feasible solution: plugging
r = 21/b in the approximation ratio of2(b(r− 1)+ 1) in Theorem 3 indeed implies anO(1)-approximation
(see also [18, Theorem 1]). This idea leads to the following randomized algorithm in [18]: user = 21/b,
explicitly maintain feasibility of the produced solution,and defineq = 1/(2ed1/b log(4bm)) (wheree ≈
2.718) as the probability of allocating the best set to a bidder. (See Algorithm 3 for a precise description.)
We now introduce the same randomization idea into our Algorithm 2. The resulting algorithm is Algorithm
4, where we assumer = 21/b.

Theorem 6 Algorithm 4 is a universally truthful mechanism without money and with verification for CAs
with unknownk-minded bidders. Its expected approximation ratio isO(d1/b · log(bm)).

Algorithm 3: Multiplicative price update algorithm with oblivious randomized rounding.

1 For each goode ∈ U dop1e := p0, b1e := b.
2 For each bidderi = 1, 2, . . . , n do
3 LetUi = {e ∈ U | bie > 0}.
4 SetSi := argmax{vi(S) : S ∈ Si such thatS ⊆ Ui andvi(S) ≥

∑

e∈S pie}.
5 Update for each goode ∈ Si: pi+1

e := pie · r.
6 With probabilityq setRi := Si elseRi := ∅.
7 Update for each goode ∈ Ri: bi+1

e := bie − 1.
8 ReturnR = (R1, R2, . . . , Rn).

12



Algorithm 4: Modified multiplicative price update algorithm with randomized rounding.

1 For each bidderi ∈ {1, 2, . . . , n}, let vimax be the valuation ofi’s most valuable set.

2 Let j ∈ {1, 2, . . . , n} be the bidder with highest valuevjmax (smallest index in case of ties).

3 Let p0 =
µ

4bm , whereµ = (1 + ǫ)vjmax, for a fixed0 < ǫ ≪ 1.

4 For each goode ∈ U dopje := p0, b1e := b.
5 Let for anyi = j, 1, 2, 3, 4, . . . , j − 1, j + 1, . . . , n, next(i) be the next number in this order, e.g.,

next(j) = 1,next(1) = 2, . . . ,next(j − 1) = j + 1, . . . ,next(n − 1) = n,next(n) = n+ 1.
6 For each bidderi = j, 1, 2, . . . , j − 1, j + 1, . . . , n do
7 LetUi = {e ∈ U | bie > 0}.
8 SetSi := argmax{vi(S) : S ∈ Si such thatS ⊆ Ui andvi(S) ≥

∑

e∈S pie}.

9 Update for each goode ∈ Si: p
next(i)
e := pie · r.

10 If i = j then setRi := Si else (with probabilityq setRi := Si elseRi := ∅).

11 Update for each goode ∈ Ri: b
next(i)
e := bie − 1.

12 ReturnR = (R1, R2, . . . , Rj−1, Rj , Rj+1, . . . , Rn).

Proof. Approximation guarantee and feasibility of the output solution R follows from essentially the same
arguments used in [18]. (For completeness we give this proofin appendix.) We will argue now about
universal truthfulness of Algorithm 4. This algorithm can be viewed as a probability distribution over
deterministic algorithms. Each such algorithm, call itA, is defined by a0/1-vectora ∈ {0, 1}n−1 and first
selects and serves the max bidderj and then serves the remainingn−1 bidders1, 2, . . . , j−1, j+1, . . . , n.
When serving bidderi 6= j, algorithmA deterministically allocates setSi to bidderi < j if and only if
ai = 1 and to bidderi > j if and only ifai−1 = 1. Thus, algorithmA is Algorithm 2, witha = (1, 1, . . . , 1).
So, to show thatA is (deterministically) truthful we use the same argument ofthe proof of Theorem 5 and
the additional observation that bidders whose corresponding bit in the vectora is 0 have no incentive to lie,
since they are not served anyway. �

Finally we can also obtain a universally truthful mechanismin case demanded sets have unbounded
sizes.

Theorem 7 There exist a universally truthful mechanism without moneyand with verification for CAs with
unknownk-minded bidders with an expected approximation ratio ofO(m1/(b+1) · log(bm)).

4.2 CAs with single supply

We now go back to the case in which the goods inU are provided with single supply. We present three
incentive-compatible CAs: the first is deterministic, the remaining two are randomized. Among these three
mechanisms, only two run in polynomial time.

4.2.1 Greedy algorithm

We now present a simple greedy algorithm for CAs where the supply b = 1, see Algorithm 5. (Note that for
goods with arbitrary supplyb, the greedy algorithm cannot do better than Algorithm 2 because of the lower
bound of

√
m in [16].) Recall that each bidderi = 1, 2, . . . , n declares(vi,Si), whereSi is a collection of

k sets bidderi demands andvi(S) is the valuation of setS ∈ Si. Observe that setsS1, . . . , Sl are all the sets
demanded by all bidders (with non-zero bids), i.e.,{S1, . . . , Sl} = S1 ∪ . . . ∪ Sn.
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Algorithm 5: The greedy algorithm.

1 Let l denote the number of different bids,l = nk.
2 Let b1, b2, . . . , bl be the non-zero bids andS1, . . . , Sl be the corresponding sets, ordered such that
b1 ≥ . . . ≥ bl. In case of ties between declarations of different bidders consider first the smaller index
bidder.

3 For eachj = 1, . . . , l let β(j) ∈ {1, . . . , n} be the bidder biddingbj for the setSj .
4 P := ∅, B := ∅.
5 For i = 1, . . . , l do
6 If β(i) 6∈ B ∧ Si ∩ S = ∅ for all S in P then (a)P := P ∪ {Si}, (b)B := B ∪ β(i).
7 ReturnP.

We will use the linear programming duality theory to prove the approximation guarantees of our algo-
rithm. Let us denote the set familyS = ∪n

i=1Si, where bidderi demands setsSi. For a given setS ∈ Si

we denote bybi(S) the bid of bidderi for that set. Let[n] be the set{1, . . . , n}. The LP relaxation of our
problem is:

max
∑n

i=1

∑

S∈Si
bi(S)xi(S) (5)

s.t.
∑n

i=1

∑

S:S∈Si,e∈S
xi(S) ≤ 1 ∀e ∈ U (6)

∑

S∈Si
xi(S) ≤ 1 ∀i ∈ [n] (7)

xi(S) ≥ 0 ∀i ∈ [n]∀S ∈ Si, (8)

The corresponding dual linear program is then the following:

min
∑

e∈U ye +
∑n

i=1 zi (9)

s.t. zi +
∑

e∈S ye ≥ bi(S) ∀i ∈ [n] ∀S ∈ Si (10)

zi, ye ≥ 0 ∀i ∈ [n] ∀e ∈ U. (11)

In this dual linear program dual variablezi corresponds to the constraint (7).

Theorem 8 Algorithm 5 is amin{m,d+ 1}-approximation algorithm for CAs withk-minded bidders.

Proof. Suppose that Algorithm 5 has terminated and output solutionP. Let SATP = ∪S∈PS. Notice that
for each setS ∈ S that was not chosen to the final solutionP, there either is an elemente ∈ SATP ∩ S
which was thewitnessof that event during the execution of the algorithm, or thereexists a bidderi and set
S′ ∈ P such thatS′, S ∈ Si. For each setS ∈ S \ P we keep inSATP one witness forS. In case if there
is more than one witness inSATP ∩ S, we keep inSATP the (arbitrary) witness forS that belongs to the
set among sets{T ∈ P : SATP ∩ S ∩ T 6= ∅} that was considered first by the greedy order. We discard the
remaining elements fromSATP .

Let us also denoteP(S) = S ∩ SATP if S ∩ SATP 6= ∅ andP(S) = S if S ∩ SATP = ∅.
Observe first that ifm = 1, then any feasible solution just has a single set assigned toa single bidder

and thus the algorithm outputs an optimal solution, as required.
We then assume thatm ≥ 2. We now define a dual solution during the execution of Algorithm 5.

We need to know the output solutionP for the definition of this dual solution, which is needed onlyfor
analysis. In line 4 of Algorithm 5 we initialize these variables: ye := 0 for all e ∈ U andzi := 0 for all
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i ∈ [n]. We add the following in line 6(a) of Algorithm 5:ye := ∆Si
e , for all e ∈ P(Si), where∆Si

e =
bβ(i)(Si)

|P(Si)|
, for e ∈ P(Si). Note, that fore ∈ Si \ SATP the value ofye is not updated and remains zero. We

also add the following instruction in line 6(a) of Algorithm5: zβ(i) := bβ(i)(Si).
It is obvious that the dual solution provide a lower bound on the cost of the output solution:

∑

e∈U

ye ≤
∑

Si∈P

bβ(i)(Si). (12)

We will show now that the scaled solution(d′ · y, z) is feasible for the dual linear program, where
d′ = min{d,m − 1}. We need to show that constraints (10) are fulfilled for all setsS ∈ S. Thus, we have
to prove that, for each setS ∈ S ∩ Si,

zi + d′
∑

e∈S

ye ≥ bi(S). (13)

Suppose first thatS = Sr ∈ S \ P, and letβ(r) = i. There are two possible reasons that setS has not
been included in the solutionP: (i) Case (a): there must be an elemente ∈ SATP such thate ∈ S, or (ii)
Case (b): there is another setS′ ∈ P with S, S′ ∈ Si.

Let us first consider Case (a). In that case adding setS to solutionP would violate constraint (6). Let
S′′ = Sj ∈ P be the set in the solution that contains elemente and leth = β(j).

Recall thate ∈ S ∩ S′′, thus
∑

e′∈S ye′ ≥ ye = ∆S′′

e = bh(S
′′)

|P(S′′)| ≥ bh(S
′′)

d ≥ bi(S)
d , where the last

inequality follows from the greedy selection rule and definition of the witnesses. In the case if|S| = m,
that is,S = U, we obtain that

∑

e′∈S ye′ ≥
∑

e′′∈S′′ ye′′ =
∑

e′′∈S′′ ∆S′′

e′′ = bh(S
′′) ≥ bi(S), where the last

inequality is by the greedy selection rule. Becausem ≥ 2, this proves (13) in Case (a).
We consider now Case (b). Suppose thatS = Sr ∈ S \ P and there is another setS′ = Sj ∈ P with

S, S′ ∈ Si. In this case we havei = β(j) = β(r). Observe that when setS′ was chosen by Algorithm 5 the
dual variablezi was updated in line 6(a) as follows:zi = bi(S

′). Now, because setS′ was considered by the
algorithm before setS we havezi = bi(S

′) ≥ bi(S) by the greedy selection rule, which implies (13) in this
case.

Notice that claim (13) follows immediately from the definition of zi if set S ∈ Si has been chosen by
our algorithm, that is,S ∈ P. This concludes the proof of (13).

Finally, we put all the pieces together. We have shown that the dual solution(d′ · y, z) is feasible for
the dual linear program and so by weak duality

∑n
i=1 zi + d′

∑

e∈U ye is an upper bound on the value of the
optimal integral solution to our problem. We have also shownin (12), that

∑

e∈U ye ≤ ∑

Si∈P
bβ(i)(Si).

Therefore, by lettingOPT denote the optimal social welfare, we obtain that

OPT ≤
n
∑

i=1

zi + d′
∑

e∈U

ye =
∑

Si∈P

zβ(i) + d′
∑

e∈U

ye

≤
∑

Si∈P

bβ(i)(Si) + d′
∑

Si∈P

bβ(i)(Si) = (d′ + 1)
∑

Si∈P

bβ(i)(Si).

�

We now prove the truthfulness of Algorithm 5.

Theorem 9 Algorithm 5 is a truthful mechanism without money and with verification for CAs with unknown
k-minded bidders.
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Proof. Fix i andb−i. As in Definition 2, take two declarations of bidderi, a = (z,T ) andb = (w,U) with
w(U) ≥ z(T ), whereT = Ai(a,b−i) andU = σ(T |b). (In this proof,A denotes Algorithm 5.) Recall that
U ∈ U andU ⊆ T .

Let Sa (respectively,Sb) be the set comprised of the sets in declarations ofb−i processed byA(a,b−i)
(respectively,A(b,b−i)) whenz(T ) (respectively,w(U)) is considered. SinceA grantsT to bidderi in the
instance(a,b−i) then it must be the case thatT ∩ S = ∅ for all S ∈ Sa granted byA. Sincew(U) ≥ z(T ),
then we have thatSb ⊆ Sa. Thus, sinceU ⊆ T then we have thatU ∩ S = ∅ for all S ∈ Sb granted by the
algorithm. Therefore, the only reason for whichU might not be granted toi is thatA had already granted
a set inU to i, which implies thatw(Ai(b,b−i)) ≥ w(U). Then the algorithm isk-set monotone and the
claim follows from Theorem 2. �

[1, Theorem 2] proved a lower bound ofΩ(m) on the approximation ratio of any truthful greedy priority
mechanism with money for instances with demanded sets of cardinality at most2. Nevertheless, we have
shown that Algorithm 5 is truthful and achieves an approximation ratio of at most3 for such instances. We
here investigate the reasons behind this sharp contrast.

Proposition 3 There are no payments that augment Algorithm 5 so to make a truthful mechanism for CAs
with k-minded bidders, even in the case of known bidders.

4.2.2 Randomized Exponential-Time Mechanism

We describe the exponential-time mechanism, orRandExp in brief. LetI be an instance of CAs with un-
knownk-minded bidders, and letIℓ, 1 ≤ ℓ ≤ k, be the subinstance ofI that consists of the elementary bids
(i, Sℓ

i , vi(S
ℓ
i )), i ∈ N , whereSℓ

i denotes theℓ-th most valuable set demanded by bidderi. Then,RandExp
computes the maximum social welfareOPTℓ for each subinstanceIℓ by breaking ties among optimal solu-
tions in a bid-independent way, and outputs the allocation corresponding toOPTℓ with probability1/k, for
eachℓ ∈ [k].

Theorem 10 RandExp is a universally truthful mechanism without money and with verification for CAs
with unknownk-minded bidders. It achieves an approximation ratio ofk.

4.2.3 Randomized Polynomial-Time Mechanism

We describe the polynomial-time mechanism, orRandPoly in brief. Let I be an instance of CAs with
unknownk-minded bidders, letvmax be the maximum valuation of some bidder, and letSmax a set with
valuationvmax. Moreover, letIs be the subinstance ofI that consists of the elementary bids(i, S, vi(S)),
i ∈ N , where for each setS, |S| ≤ √

m. Then,RandPoly either only allocatesSmax to the corresponding
bidder breaking ties in a bid-independent way with probability 1/2, or with probability1/2, outputs the
allocation computed by the Algorithm 5 on the subinstanceIs. Next, we show the following fact.

Theorem 11 RandPoly is a universally truthful mechanism without money and with verification for CAs
with unknownk-minded bidders. It achieves an approximation ratio ofO(

√
m).

5 Lower bounds for known bidders

We first adapt the proof of [8, Theorem 3.3] and show a lower bound of2 on the approximation ratio of any
deterministic truthful mechanism. We highlight that this lower bound does not make any assumptions on
the computational power of the mechanism, and holds even forexponential-time mechanisms.
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Theorem 12 There are no deterministic truthful mechanisms with approximation ratio better than2 for
CAs with known2-minded bidders. This holds even for simple instances withn = 2 bidders, andm = 2
goods.

We note here, that our Algorithm 5 is a truthful2-approximate mechanism on instances used in the proof
of Theorem 12. This theorem indicates that our assumption that the bidders do not overbid on their winning
sets is less powerful than the use of payments, when we do not take computational issues into consideration.
Furthermore, it shows that, unlike the case of single-minded bidders, already with double-minded bidders
the class of algorithms that can be implemented with money isa strict superset of the class of2-monotone
algorithms.

Next, we apply Yao’s principle and show that no randomized mechanism that is universally truthful can
achieve an approximation ratio better than5/4.

Theorem 13 There are no randomized mechanisms that are universally truthful and have approximation
ratio better than5/4 for CAs with known2-minded bidders. This holds even for simple instances with
n = 2 bidders, andm = 2 goods.

Proof. We present a probability distribution over instances of CAswith n = 2 known2-minded bidders,
andm = 2 goods, for which the best deterministic truthful mechanismhas expected approximation ratio
greater than5/4 − δ, for any δ > 0. We consider two instancesI and I ′ whereU = {a, b}, the first
bidder is interested inS1 = {{a, b}, {b}}, and the second bidder is interested inS2 = {{a}}. In both, the
valuation of bidder2 is v2({a}) = 1. The valuation of bidder1 is v1({a, b}) = 2 andv1({b}) = 0 in I,
andv′1({a, b}) = 2 andv′1({b}) = 2− δ in I ′. Each instance occurs with probability1/2, and the expected
maximum social welfare is(5 − δ)/2. Let A, applied to instanceI, allocate{a, b} to bidder1 and∅ to
bidder2. Then, by Theorem 1, sinceA is a deterministic truthful mechanism, when applied to instanceI ′,
it must allocate{a, b} to bidder1 and∅ to bidder2. Therefore, the expected social welfare ofA is 2, and
its expected approximation ratio is(5 − δ)/4 > 5/4 − δ. If A, applied to instanceI, does not allocate
{a, b} to bidder1, its expected social welfare is at most(4 − δ)/2, and its expected approximation ratio is
(5− δ)/(4 − δ) > 5/4− δ, a contradiction. �

Finally, we show a weaker lower bound of1.09 on the approximation ratio achievable by the larger class
of randomized mechanisms that are truthful in expectation.

Theorem 14 There are no randomized mechanisms that are truthful in expectation and have approximation
ratio less or equal than1.09 for CAs with known2-minded bidders. This holds even for simple instances
with n = 2 bidders, andm = 2 goods.

5.1 Priority Mechanisms

Our lower bounds in this section apply to truthful mechanisms that use algorithms that operate according to
the priority framework introduced in [2].

We now briefly introduce this framework. The input of a priority mechanism is a finite subsetI of the
classI of all permissible input items. For CAs, we consider two classes of input items. The first class
consists of elementary bids, i.e., each item is a triple(i, S, vi(S)), wherei is the bidder,S is one ofi’s
demanded sets, andvi(S) is i’s valuation forS. The second class of input items consists of bidders, i.e.,
each item is a pair(i, vi), wherei is the bidder andvi is i’s valuation function. The output of a priority
mechanism consists of a decision for each input item processed. If elementary bids are the input items, the
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output consists of an accept or reject decision for each bid.If a bid (i, S, vi(S)) is accepted,S is allocated
to i, and the algorithm obtains a welfare ofvi(S). If bidders(i, vi) are the input items, the output consists
of a (possibly empty) setS allocated to bidderi, and the algorithm collects a welfare ofvi(S).

A (possibly adaptive) priority mechanismA receives as input a finite set of itemsI ⊆ I, and proceeds
in rounds, processing a single item in each round. While there are unprocessed items inI, A selects a total
orderT on I without looking at the set of unprocessed items. It is important thatT can be any total order
on I, and that for adaptive priority algorithms, the order may bedifferent in each round. In each round,A
receives the first (according toT ) unprocessed itemx ∈ I and makes an irrevocable decision for it (e.g.,
if x is an elementary bid,A accepts or rejects it, ifx is a bidder,A decides about the set allocated to her).
Then,x is removed fromI.

We first show that any truthful priority mechanismA that processes elementary bids has an approxi-
mation ratio of at leastd for CAs with known bidders. The proof of the next result adapts the proof of [1,
Theorem 3].

Theorem 15 Let A be a truthful priority mechanism with verification and no money for CAs with known
k-minded bidders. IfA processes elementary bids then the approximation ratio ofA is greater than(1−δ)d,
for anyδ > 0.

We note that with a minor change in the proof, the lower bound of Theorem 15 applies to the special
case of2-minded bidders. Thus, taking into account instances withd = m, we obtain the following result.

Corollary 1 LetA be a truthful priority mechanism with verification and no money for CAs with known2-
minded bidders. IfA processes elementary bids then the approximation ratio ofA is greater than(1− δ)m,
for anyδ > 0.

We next show that any truthful priority mechanismA that processes bidders has an approximation ratio
of at leastm/2 for CAs with knownk-minded bidders. We note that such priority mechanismA is potentially
more powerful than a priority mechanism that processes elementary bids, since whenA decides about the
set allocated to each bidderi, it has full information abouti’s valuation function. The proof of the following
result adapts the proof of [1, Theorem 4] to our setting.

Theorem 16 Let A be a truthful priority mechanism with verification and no money for CAs with known
2-minded bidders. IfA processes bidders then the approximation ratio ofA is greater than(1− δ)m/2, for
anyδ > 0.

5.2 Discussion

A step that seems necessary for an approximation ratio ofO(
√
m) for CAs is that the algorithm somehow

compares the social welfare and chooses the best of the following two extreme solutions: a solution that only
consists of the most valuable set demanded by some bidder, and a solution consisting of many small sets
with a large total valuation. Otherwise, the algorithm cannot achieve an approximation ratio ofo(m) even
for the simple case where bidder1 is double-minded forU = {a1, . . . , am} with valuationx ∈ {1 + ε,m2}
and for the gooda1 with valuation1, and each bidderi, 2 ≤ i ≤ m, is single-minded for the goodai with
valuation1. In fact, this is one of the restrictions of priority algorithms exploited in the proofs of the lower
bounds ofΩ(m) above.

On the other hand, comparing the social welfare of these two extreme solutions seems also sufficient for
anO(

√
m)-approximation, in the sense that taking the best of (i) the most valuable set demanded by some
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bidder, and (ii) the solution of Algorithm 5, if we only allocate sets of cardinality at most
√
m, gives an

O(
√
m)-approximation (see Theorem 11 for the analysis, see also e.g., [3, Section 6] for another example

of anO(
√
m)-approximation algorithm based on a similar comparison).

For CAs without money, it seems virtually impossible to let adeterministic mechanism truthfully imple-
ment a comparison between the social welfare of those extreme solutions. This is because the only way for
a deterministic mechanism to make sure that the bidder with the maximum valuation does not lie about it is
to allocate her most valuable set to her, so that verificationapplies to this particular bid (see also how Algo-
rithm 2 learns aboutvmax). But this leads to an approximation ratio ofΩ(m). In fact, this seems the main
obstacle towards a deterministic truthfulO(

√
m)-approximate mechanism for CAs withk-minded bidders.

So, we conjecture that there is a strong lower bound ofΩ(m) on the approximation ratio of deterministic
truthful mechanisms.
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[3] P. Briest, P. Krysta, and B. Vöcking. Approximation techniques for utilitarian mechanism design. In
Proc. of STOC, pages 39–48, 2005.

[4] I. Caragiannis, E. Elkind, M. Szegedy, and L. Yu. Mechanism design: from partial to probabilistic
verification. InACM Conference on Electronic Commerce, pages 266–283, 2012.

[5] G. Carroll. When are local incentive constraints sufficient? Econometrica, 80(2):661–686, 2012.

[6] G. Celik. Mechanism design with weaker incentive compatibility constraints. Games and Economic
Behavior, 56(1):37–44, 2006.

[7] S. Dobzinski. Two randomized mechanisms for combinatorial auctions. InAPPROX, pages 89–103,
2007.

[8] S. Dughmi and A. Ghosh. Truthful assignment without money. In EC, pages 325–334, 2010.

[9] Edith Elkind, Amit Sahai, and Kenneth Steiglitz. Frugality in path auctions. InSODA, pages 701–709,
2004.

[10] D. Fotakis and C. Tzamos. Winner-imposing strategyproof mechanisms for multiple Facility Location
games.Theoretical Computer Science, 472:90–103, 2013.

[11] F. Grandoni, P. Krysta, S. Leonardi, and C. Ventre. Utilitarian mechanism design for multi-objective
optimization. InSODA, pages 573–584, 2010.

[12] J. R. Green and J. Laffont. Partially Verifiable Information and Mechanism Design.The Review of
Economic Studies, 53:447–456, 1986.

[13] E. Hazan, S. Safra, and O. Schwartz. On the complexity ofapproximating -set packing.Computational
Complexity, 15(1):20–39, 2006.

19



[14] R. Holzman, N. Kfir-Dahav, D. Monderer, and M. Tennenholtz. Bundling equilibrium in combinatorial
auctions.Games and Economic Behavior, 47:104–123, 2004.

[15] E. Koutsoupias. Scheduling without payments. InProc. of SAGT, volume 6982 ofLNCS, pages 143–
153, 2011.

[16] P. Krysta. Greedy approximation via duality for packing, combinatorial auctions and routing. In
MFCS, pages 615–627, 2005.

[17] Piotr Krysta and Carmine Ventre. Combinatorial auctions with verification are tractable. Inthe Proc.
of ESA, pages 39–50, 2010.
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A Postponed proofs

A.1 Proof of Lemma 1

Proof. Let us first show that the existence of the thresholds for an algorithmA implies thatA is k-monotone.
Fix i, b−i andti; let a be a declaration inDi such thata(Sj

i ) > Θj
i (b−i) for somej ∈ [k] anda(Sℓ

i ) <

Θℓ
i(b−i) for ℓ < j. ThenAi(a,b−i) = Sj

i . Now takeb ∈ Di such thatb(Sj
i ) ≥ a(Sj

i ). No matter what the
declarationb(Sh

i ) is, for h 6= j, by definition of thresholds we have thatAi(b,b−i) = Sl
i, l ≤ j.

For the opposite direction, fixi, b−i andti; let a be a declaration inDi such thatAi(a,b−i) = Sj
i . We

prove by induction onj that there exists a thresholdΘj
i (b−i) as in the statement. For the base case consider

j = 1. It is straightforward to see that the thresholdΘ1
i (b−i) exists [19]. Now assume that there are

thresholdsΘ1
i (b−i), . . . ,Θ

j−1
i (b−i) and takeb ∈ Di to be such thatb(Sj

i ) ≥ a(Sj
i ) andb(Sh

i ) < Θh
i (b−i)

for h < j. By definition ofΘ1
i (b−i), . . . ,Θ

j−1
i (b−i) and that ofk-monotonicity,σ(Ai(b,b−i)|ti) = Sj

i .
We can then conclude that there exists a thresholdΘj

i (b−i) as well. �

A.2 Proof of Lemma 2

Proof. We first prove the first bound. Because the algorithm sells only sets above their thresholds,vi(Si) ≥
∑

e∈Si
pie. Hence,

v(S) ≥
n
∑

i=1

∑

e∈Si

pie =

n
∑

i=1

∑

e∈Si

p0r
ℓie = p0

∑

e∈U

ℓ∗e−1
∑

k=0

rk = p0
∑

e∈U

rℓ
∗
e − 1

r − 1
,

which gives the bound.
For the second bound of the lemma, consider an optimal feasible allocationT = (T1, . . . , Tn). The set

choice in line 3 in the algorithm of [18] is done by asking the demand oracle.6 We observe here that the set
choice in this line in Algorithm 1 is sufficient for showing this claim. Namely, ifvi(Ti) ≥

∑

e∈Ti
pie, then

by the choice of the algorithmvi(Si) ≥ vi(Ti), and so we havevi(Si) ≥ vi(Ti)−
∑

e∈Ti
pie. If on the other

handvi(Ti) <
∑

e∈Ti
pie, thenvi(Si) ≥ vi(Ti)−

∑

e∈Ti
pie also holds.

Becausep∗e ≥ pie, for everyi ande, this impliesvi(Si) ≥ vi(Ti)−
∑

e∈Ti
p∗e. Summing over all bidders

givesv(S) =
∑n

i=1 vi(Si) ≥
∑n

i=1 vi(Ti)−
∑n

i=1

∑

e∈Ti
p∗e ≥ v(T )−b

∑

e∈U p∗e, where the latter equation
uses the fact thatT is feasible so that each good is given to at mostb sets. �

A.3 Proof of Theorem 6

Proof. The produced solutionR is feasible, because we ask bidders in line 8 only for sets containing
available goods.

For proving the approximation ratio we observe that the onlydifference between the randomized round-
ing algorithm from [18] and Algorithm 4 is that our algorithmserves first the max bidder and allocates her
best set with probability1 rather than with probabilityq ≤ 1, the remaining bidders are served as in the
former algorithm. We restate Lemma 5 and 4 from [18] here. Thefirst of these lemmas is used to prove the
second and the second implies our approximation guarantee.

6Given goods’ prices, the demand oracle of a given bidder withvaluation functionvi outputs the setS maximizing the differ-
ence between the set’s valuationvi(S) and the sum of the prices of its goods.
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Lemma 3 Let us consider CAs with demanded sets of size at mostd ≥ 1 and letq−1 = 2ed1/b log(4bm).
For any1 ≤ i ≤ n and any setT ⊆ U with |T | ≤ d, we haveE [vi(T ∩ Ui)] ≥ 1

2vi(T ).

Lemma 4 Suppose the probabilityq−1 = 2ed1/b log(4bm) is used in Algorithm 4. ThenE [v(S)] ≥ 1
8OPT

andE [v(R)] ≥ q
8OPT .

The proof of the former lemma in [18] remains unchanged in ourcase. The only change that is needed
in the proof from [18] of the latter lemma is firstly to observethat the way of handling the max bidder
actually helps the approximation ratio. Secondly, as shownin the proof of the second bound of Lemma 2,
Algorithm 4 chooses in line 8 setSi := argmax{vi(S) : S ∈ Si such thatS ⊆ Ui andvi(S) ≥

∑

e∈S pie},
which implies thatvi(Si) ≥ vi(Ti)−

∑

e∈Ti
pie, and this is what is needed in the proof.

The universal truthfulness of Algorithm 4 is proved in the main body of the paper. �

A.4 Proof of Theorem 7

Proof. We only give a sketch here. We use Algorithm 4 as a subroutine and use a standard randomization on
the top of this algorithm. Namely, the mechanism flips a fair coin to choose one out of two algorithms. If the
coin shows head, then Algorithm 4 is executed with parameterq set analogously to the case of sets of size

at mostd = ⌊m b
b+1 ⌋, that is, withq−1 = 2ed1/b log(4bm). If the coin shows tail, then the mechanism only

considers sets of full cardinalitym. This setting corresponds to an auction where each bidder wants to buy
only a single super item (corresponding toU) which is available inb copies. Theb copies of the super item
are sold by calling Algorithm 4 withm = 1 (single item) andd = 1 (sets of cardinality 1). This mechanism
can easily be shown to be universally truthful and a simple analysis shows the claimed approximation ratio,
see, e.g., [18]. �

A.5 Proof of Proposition 3

Proof. We consider3 instancesI, I ′, I ′′, with known bidders andU = {a, b}. In all of them, bidder1 is
interested inS1 = {{a}, {b}}, and bidder2 is interested inS2 = {{a}} and hasv2({a}) = 1. Let δ > 0 be
some small constant less than1/2. In I, bidder1 hasv1({a}) = 1− δ andv1({b}) = 0. In I ′, bidder1 has
v′1({a}) = 1 + δ andv′1({b}) = 1. In I ′′, bidder1 hasv′′1 ({a}) = 1− δ andv′′1 ({b}) = 1− 2δ. Therefore,
the allocation of Algorithm 5 is{b} to bidder1 and{a} to bidder2 for instanceI, {a} to bidder1 and∅
to bidder2 for instanceI ′, and{b} to bidder1 and{a} to bidder2 for instanceI ′′. Now we consider the
vertices corresponding tov1, v′1, andv′′1 of the declaration graph for Algorithm 5 and find an edge(v1, v

′
1) of

weight−(1− δ), an edge(v′1, v
′′
1 ) of weightδ, and an edge(v′′1 , v1) of weight0. Therefore, the declaration

graph contains a negative cyclev1 → v′1 → v′′1 → v1, which implies that the valuation-greedy mechanism
cannot be truthfully implemented with money. �

A.6 Proof of Theorem 10

Proof. Since all bidders are single-minded in each subinstanceIℓ, the allocation corresponding to the
maximum social welfareOPTℓ using a fixed tie-breaking rule is, by Theorem 2, truthful, for eachℓ ∈ [k].
Therefore,RandExp is universally truthful. As for the approximation ratio, the expected social welfare of
RandExp is

∑k
ℓ=1OPTℓ/k. Since the maximum social welfare ofI is at most

∑k
ℓ=1 OPTℓ, RandExp

has an approximation ratio ofk. �
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A.7 Proof of Theorem 11

Proof. As for the truthfulness ofRandPoly, the deterministic allocation of the set of maximum valuation
with a fixed tie-breaking rule is, by Theorem 2, truthful. Furthermore, the formation of the subinstanceIs
and the application of Algorithm 5 to it can be regarded as a run of the algorithm onI where any elementary
bid (i, S, vi(S)) with |S| > √

m is considered unfeasible and immediately rejected. By using the arguments
used in Theorem 9, we can prove that this

√
m-cardinality-sensitive variant of Algorithm 5 toI is truthful.

Therefore,RandPoly is universally truthful.
As for the approximation ratio, we letOPT denote the optimal social welfare ofI, OPTs denote the

optimal social welfare of the subinstanceIs, andOPTl denote the optimal social welfare of the subinstance
Il = I \ Is. We observe thatOPT ≤ OPTs + OPTl. SinceIl contains only elementary bids(i, S, vi(S))
with |S| > √

m andvi(S) ≤ vmax, OPTl ≤
√
mvmax. Moreover, by Theorem 8, the allocation computed

by the application of valuation-greedy toIs is a (
√
m + 1)-approximation ofOPTs. Hence, the expected

social welfare ofRandPoly is at least:

1

2

(

vmax +
OPTs√
m+ 1

)

≥ OPTs +OPTl

2(
√
m+ 1)

Therefore, the approximation ratio ofRandPoly is 2(
√
m+ 1). �

A.8 Proof of Theorem 12

Proof. For sake of contradiction, let us assume that there is a deterministic truthful mechanismA with an
approximation ratio of2−δ, for someδ > 0. We consider two instances whereU = {a, b}, and both bidders
are inS1 = S2 = {{a}, {b}}. In the first instance,v1({a}) = 1 + δ andv1({b}) = 1, andv2({a}) = 1 + δ
andv2({b}) = 1. SinceA is a(2− δ)-approximation algorithm,A(v1, v2) must allocate both sets{a} and
{b}. Without loss of generality, we assume thatA(v1, v2) allocates{a} to bidder1 and{b} to bidder2.
Moreover, by Theorem 1, ifv′2({a}) = 1 + δ andv′2({b}) = 0, thenA(v1, v′2) must allocate{a} to bidder
1 and{b} to bidder2. Therefore,A has an approximation ratio of at least(2 + δ)/(1 + δ), which is larger
than2− δ, for all δ > 0. �

A.9 Proof of Theorem 14

Proof. For sake of contradiction, we assume that there is a randomized truthful-in-expectation mechanism
A with approximation ratio at mostρ = 1.09.

As in the proofs of Theorems 12 and 13, we consider instances whereU = {a, b}, the first bidder is
interested inS1 = {{a, b}, {b}}, and the second bidder is interested inS2 = {{a}}. We consider two
instancesI andI ′. In both of them, the valuation of bidder2 is v2({a}) = 1. The valuation of bidder1 is
v1({a, b}) = ϕ, whereϕ = (1 +

√
5)/2 is the golden ratio, andv1({b}) = 0 in I, andv′1({a, b}) = ϕ and

v′1({b}) = 1 in I ′.
We assume thatA can have only two different solutions for instancesI andI ′. More specifically, either

A allocates{a, b} to bidder1 and∅ to bidder2, which happens with probabilityp for instanceI andq for
instanceI ′, or A allocates{b} to bidder1 and{a} to bidder2, which happens with probability1 − p for
instanceI and1 − q for instanceI ′. Note that this assumption is without loss of generality, since all the
other feasible solutions have worst social welfare than thetwo considered.
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Using that the approximation ratio ofA is at mostρ, we obtain that:

ϕ

pϕ+ 1− p
≤ ρ ⇒ p ≥ ϕ− ρ

ρ(ϕ− 1)
(14)

2

qϕ+ 2(1 − q)
≤ ρ ⇒ 1− q ≥ 2− ρϕ

ρ(2− ϕ)
(15)

where (14) follows from the approximation ratio ofA for instanceI, and (15) follows from the approxima-
tion ratio ofA for instanceI ′.

Moreover, sinceA is truthful in expectation, the expected welfare of bidder1 from A’s allocation for
instanceI, which ispϕ, does not exceed her expected welfare fromA’s allocation for instanceI ′, which is
qϕ + (1 − q). Otherwise, bidder1 could underbid on{b} by declaringv1, and get an expected welfare of
pϕ. Therefore, we obtain that:

pϕ ≤ qϕ+ 1− q ⇒ q ≥ pϕ− 1

ϕ− 1
(16)

Combining (14), (15), and (16), we conclude thatρ satisfies that:

2− ρϕ

ρ(2− ϕ)
+

ϕ ϕ−ρ
ρ(ϕ−1) − 1

ϕ− 1
≤ 1

This is a contradiction, because the inequality above does not hold if ρ ∈ [1, 1.09]. Thus, we conclude that
any randomized mechanismA for CAs that is truthful-in-expectation, has an approximation ratio worse than
1.09. �

A.10 Proof of Theorem 15

Proof. For sake of contradiction, let us assume that for some givend, 2 ≤ d ≤ m, there is a truthful priority
mechanismA for CAs with knownk-minded bidders that achieves an approximation ratio of(1 − δ)d, for
some constantδ > 0.

Let L be any subset ofU of cardinalityd. As an input toA, we consider an instanceI1 that for each
bidderi, contains elementary bids(i, L, 1 + δ) and(i, S, 1), for all ∅ 6= S ⊂ L. As a priority mechanism,
A selects a bid fromI1 and considers it first. In the following, we distinguish between the case where the
first bid is(i, L, 1 + δ), for some bidderi, and the case where the first bid is(i, S, 1), for some bidderi and
some setS, and show how to arrive at contradiction in both.
Case 1.Let us assume that the first bid is(i, L, 1 + δ), for some bidderi. Then, ifA accepts(i, L, 1 + δ), it
obtains a social welfare of1+ δ, while the optimal social welfare isd, which contradicts the hypothesis that
the approximation ratio ofA is (1− δ)d. If A rejects(i, L, 1 + δ), we considerA’s approximation ratio for
an instanceI2 ⊆ I1 that includes only the elementary bid(i, L, 1 + δ). SinceA cannot distinguish between
I1 andI2, it rejects(i, L, 1 + δ) when consideringI2, which leads to an unbounded approximation ratio for
I2.
Case 2.Let us assume that the first bid is(i, S, 1), for some bidderi and some set∅ 6= S ⊂ L. Then, ifA
accepts(i, S, 1), we considerA’s approximation ratio for an instanceI3 ⊆ I1 that includes the elementary
bids (i, S, 1) and(i, L, 1 + δ). SinceA cannot distinguish betweenI1 andI3, it again selects bid(i, S, 1)
first and accepts it, when it considersI3. But then consider the instanceI ′3 in which i changes(i, S, 1)
into (i, S, 1/d). SinceA has an approximation ratio of(1 − δ)d, it must allocateL to bidderi in I ′3. But

24



this contradicts the hypothesis thatA is truthful since the two bids of bidderi in I3 andI ′3 do not satisfy
k-monotonicity (cf. Definition 1).

If A rejects(i, S, 1), we considerA’s approximation ratio for an instanceI4 ⊆ I1 that includes only the
elementary bid(i, S, 1). SinceA cannot distinguish betweenI1 andI4, it rejects(i, S, 1) when considering
I4, which leads to an unbounded approximation ratio forI4. �

A.11 Proof of Theorem 16

Proof. For sake of contradiction, let us assume that there is a truthful priority mechanismA for CAs with
known 2-minded bidders that processes bidders and achieves an approximation ratio of(1 − δ)m/2, for
some constantδ > 0.

We consider a universeU = {a1, . . . , am} andm bidders. For eachi, 1 ≤ i ≤ m, we let gi be
a single-minded valuation where the demanded set is{ai} with valuation1. More specifically, for each
S ⊆ U, gi(S) = 1, if ai ∈ S, andgi(S) = 0, otherwise. Moreover, for eachi, 1 ≤ i ≤ m, we letfi be a
double-minded valuation where the demanded set is either{ai} with valuationm2 + δ, orU with valuation
m2 + 2δ. More specifically,fi(U) = m2 + 2δ, and for eachS ⊂ U, fi(S) = m2 + δ, if ai ∈ S, and
fi(S) = 0, otherwise. In the following, we only considerrestricted instancesof CAs where every bidder
has a valuation of type eitherg or f .

We first show that for any bidderi and for all instances where all biddersj 6= i have single-minded
valuations of typeg andi has a valuation of typef , A allocatesU to i and∅ to any bidderj 6= i (this claim
is the equivalent of [1, Lemma 5] in our setting). We letfk, for some1 ≤ k ≤ m, be the valuation of bidder
i. Since the optimal social welfare is at leastm2 + 2δ, A allocates eitherU or a setS ⊇ {ak} to bidder
i. Otherwise, the social welfare ofA would be at mostm − 1, which contradicts the hypothesis that the
approximation ratio ofA is (1− δ)m/2. However, the fact thatA is truthful, implies, by Theorem 1, thatA
must assignU to i on inputg valuations from bidders other thani andfk valuation fromi. Indeed, assume
that it is not the case and consider a new instance in which bidderi declares a single-minded valuation where
the demanded set isU with valuationm2 + 2δ. Because of the approximation guarantee ofA, on this new
instance,A must grantU to i. The two declarations would then contradictk-monotonicity (cf. Definition
1). Therefore,A allocatesU to bidderi and∅ to any bidderj 6= i.

Using this claim, we can prove the following proposition which is identical to [1, Lemma 6]. The proof
is by induction oni, and is omitted because it is essentially identical to the proof in [1]. In fact, that proof
uses only standard properties of priority algorithms, the assumption that the approximation ratio ofA is
(1− δ)m/2, and [1, Lemma 5], which, in our case, is replaced by the claimabove.

Proposition 4 Let A be any truthful priority mechanism which for restricted instances withm goods,
achieves an approximation ratio of(1 − δ)m/2, for some constantδ > 0. Then, there exists a labeling
of the bidders and the goods such that the following holds forall i ∈ {0, 1, . . . ,m/2 − 1}. Let instance
Ii = {(j, gj) : 1 ≤ j ≤ i}. Then, for any restricted instanceI ⊇ Ii, A considers all the bidders inIi before
all other bidders inI, and allocates∅ to each bidder inIi.

Using Proposition 4, we can now complete the proof of the lemma. LetI ′ = {(j, gj) : 1 ≤ j ≤ m/2−1}
be the instanceIi defined in Proposition 4 fori = m/2 − 1, and letI = I ′ ∪ {(j, gm) : m/2 ≤ j ≤ m}.
We note that the optimal social welfare forI is m/2, and thatI is a restricted instance such thatI ′ ⊆ I, as
required by Proposition 4. Therefore, mechanismA considers bidders1, . . . ,m/2 − 1 first and allocates∅
to each of them. Since biddersm/2, . . . ,m are all single-minded for goodam, the social welfare ofA for
instanceI is at most1, which contradicts the hypothesis that the approximation ratio ofA is (1− δ)m/2. �
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