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Abstract

Algorithmic Mechanism Design attempts to marry computaiad incentives, mainly by leveraging
monetary transfers between designer and selfish agentsedvd his is principally because in absence
of money, very little can be done to enforce truthfulnessweleer, in certain applications, money is
unavailable, morally unacceptable or might simply be atsodith the objective of the mechanism. For
example, in Combinatorial Auctions (CAs), the paradigmatioblem of the area, we aim at solutions
of maximum social welfare but still charge the society towragruthfulness. Additionally, truthfulness
of CAs is poorly understood already in the case in which higldeppen to be interested in only two
different sets of goods.

We focus on the design of incentive-compatible CAs withowiney in the general setting @f
minded bidders. We trade monetary transfers with the obsiervthat the mechanism can detect certain
lies of the bidders: i.e., we study truthful CAs with verifiica and without money. We prove a charac-
terization of truthful mechanisms, which makes an inténggparallel with the well-understood case of
CAs with money for single-minded bidders. We then give a lbsipper bounds on the approximation
ratio obtained by either deterministic or randomized tiwitmechanisms when the sets and valuations
are private knowledge of the bidders. (Most of these medhasirun in polynomial time and return
solutions with (nearly) best possible approximation goteas.) We complement these positive results
with a number of lower bounds (some of which are essentiglhtkthat hold in the easier case of public
sets. We thus provide an almost complete picture of truhdproximating CAs in this general setting
with multi-dimensional bidders.

1 Introduction

Algorithmic Mechanism Design has as main scope the reakantrof the objective of the designer with the
selfish interests of the agents involved in the computat®imce the Internet, as the principal computing
platform nowadays, is perhaps the main motivation to studiplpms in which these objectives are different,
one would expect truthful mechanisms to have concrete addspread practical applications. However,
one of the principal obstacles to this is the assumption tti@imechanisms use monetary transfers. On
one hand, money may provoke (unreasonably) large payni@htsr the other hand, while money might
be reasonable in some applications, such as sponsoredh semtons, little justification can be found for
either the presence of a digital currency or the use of mohajl.aThere are contexts in which money is
morally unacceptable (such as, to support certain pdliieeisions) or even illegal (as for example, in organ
donations). Additionally, there are applications in whihlk objective of the computation collides with the
presence of money.
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Consider Combinatorial Auctions (CAs, for short), the pligienatic problem in Algorithmic Mechanism
Design. In a combinatorial auction we have adeif m goods and: bidders. Each bidderhas aprivate
valuation functionu; that maps subsets of goods to nonnegative real numbgfl s normalized to be
0). Agents’ valuations are monotone, i.e., f68r2> T we havev;(S) > v;(T). The goal is to find a
partition Sy, ..., S, of U such thaty""" ; v;(S;) — thesocial welfare- is maximized. For this problem, we
are in a paradoxical situation: whilst, on one hand, we putka noble goal of maximizing the happiness
of the society (i.e., the bidders), on the other, we considacceptable to charge the society itself (and
then “reduce” its total happiness) to ensure truthfulngSas without money would avoid this paradox,
automatically guarantee budget-balanceness (propetishvelannot, in general, be achieved together with
social welfare maximization), and deal with budgeted bidda case which is generally hard to handle in
presence of money).

In this paper, we focus oh-minded bidders, i.e., bidders are interested in obtaioimg out of a col-
lection of k subsets olU. In this general setting, we want to study the feasibilitydesigning truthful
CAs without money, returning (ideally, in polynomial timedasonable approximations of the optimal so-
cial welfare. This is, however, an impossible task in geneatas indeed pretty easy to show that there
is no better tham-approximate mechanisms without money, even in the casmgiesitem auctions and
truthful-in-expectation mechanisnis [8]. We thereforeufoon the model of CAs with verification, intro-
duced in[17]. In this model, which is motivated by a numberedl-life applications and has also been
considered by economists [6], bidders do not overbid thadinations on the set that they are awarded. The
hope is that money can be traded with the verification assompb to be able to design “good” (possibly,
polynomial-time) mechanisms, which are truthful withoubmay in a well-motivated — still challenging —
model.

1.1 Our contribution

The model of CAs with verification is perhaps best illusttddy means of the following motivating scenario,
discussed first i [17]. Consider a government (auctionaeacjioning business licenses for a Betf cities
under its administration. A business company (bidder) siemget a license for some subset of cities (subset
of U) to sell her product stock to the market. Consider the bidgweofit for a subset of citie$ to be equal
to a unitarypublicly knownproduct price (e.g., for some products, such as drugs, thergment could
fix a social price) times the number of product items avadlahlthe stocks that the company possesses
in the cities comprisingﬁﬂ In this scenario, the bidder is strategic on her stock avéiila As noted in
literature in Economics [6], a simple inspection on the ktmansistency implies that bidders cannot overbid
their profits: the concealment of existing product itemstotk is costless but disclosure of unavailable
ones is prohibitively costly. The assumption is verificate posterior@: the inspection is carried on for
the solutions actually implemented and then each bidderataoverstate her valuation for the set she gets
allocated, if any. It is important to notice that bidders caisreport sets and valuations for unassigned sets
in anunrestrictedway. A formal definition of the model of CAs with verificatiome without money can be
found in Sectiol .

In this model, we firstly give a complete characterizatioralgforithms that are incentive-compatible

INote that bidders will sell products already in stock (ire production costs are involved as they have been susthéfece
the auction is run). This is conceivable when a governmemsé an auction for urgent needs (e.qg., salt provision for d@ads or
vaccines for pandemic diseases).

2A stronger model of verification would require bidders to balle to overbid at all and not just on the awarded set. Howeve
there appears to be weaker motivations for this model: thesiment required on inspections would be considerableaher
unrealistic.



in both the cases in which the collections/okets, each bidder is interested in, are public (also referre
to, as known bidders) and private (also known as, unknowdebg); valuations are always assumed to be
private. We prove that truthfulness is characterized is tointext in terms ok-monotone algorithmsin

the case of known bidders, if a bidder is awarded aSsand augments her declaration fSrthen ak-
monotone algorithm must, in this new instance, grant hert énskeer collection which is not worse than
S (i.e., a set with a valuation not smaller than her valuatans). (This generalizes neatly to the case of
unknown bidders.) There are two important facts we wish tplemsize about our characterizations. First,
their significance stems from the fact that the correspandioblem of characterizing truthfulness for CAs
with money andk-minded bidders is poorly understood: this is a long-stagdipen problem already for
k = 2, see, e.g.[[25, Chapter 12]. Second, it is pretty easy tthe¢¢hese notions generalize the properties
of monotonicity shown to characterize truthfulness withn@ for single-minded bidders ih [22,]19] for
known and unknown bidders, respectively. More generdilgsé properties of monotonicity are also proved
to be sufficient to get truthful mechanisms for so-calledegalized single-minded bidders| [3]. This is an
interesting development as, to the best of our knowledgs tite first case in which a truthful mechanism
with money can be “translated” into a truthful mechanismhwitt money. The price to pay is “only” to
perform verification to prevent certain lies of the biddewhjle algorithms (and then their approximation
guarantees) remain unchanged. Thus, in light of our respiteviously known algorithms presented in,
e.g., [19/ 3/ 111] assume a double relevance: they are ttutbfionly when money can be used, but also in
absence of money when verification can be implemented. Thivaence gives also a strong motivation
for our model. Naturally, the picture for the multi-dimemsal case of > 1 is more blurry since, as we
mention above, truthfulness with money is not well underdtpet in these cases.

Armed with the characterization of truthfulness, we previdnumber of upper and lower bounds on the
approximation guarantee to the optimal social welfare wthful CAs without money and with verification.
The upper bounds hold for the harder case of unknown biddéfs.give an upper bound ad(by/m)
in the case in which each good hhas a supply. This algorithm is deterministic, runs in polynomial
time and adapts an idea of multiplicative update of goodegrioy [18]. Following similar ideas, we also
obtain randomized universally truthful mechanisms witlpragimation ratios of0(d'/* - log(bm)) and
O(m!(+1) Jog(bm)), whered is the maximum size of sets in the bidders’ collections. Oastsignificant
deterministic polynomial-time upper bound is obtainedhmcase ob = 1, by a simple greedy mechanism
that exploits the characteristics of the model without nyon€his algorithm returns anin{m,d + 1}-
approximate solution. These upper bounds are complembnytgeb simple randomized universally truthful
CAs without money: the first achieveskaapproximation in exponential time; the second runs irtsiea
polynomial-time and has &(,/m)-approximation guarantee. We note here that all our polyabtime
upper bounds are computationally (nearly) best possilkée evhen the algorithm has full knowledge of
the bidders’ data. We also would like to note that all, but Ak@pproximate, upper bounds given can be
obtained in the setting in which bidders’ declare so-catlechand oracles, see, e.q.,/[25, Chapter 11]. We
complete this study by proving a host of lower bounds on the@pmation guarantee of truthful CAs
without money for known bidders, without any computatioassumption. (Note that the class of incentive-
compatible algorithms for known bidders is larger than thless for unknown bidders.) We prove the
following lower bounds:2 for deterministic mechanisms;/4 for universally truthful mechanisms; and,
finally, 1.09 for truthful-in-expectation mechanisms. This impliesttii@de optimal mechanisms are not
truthful in our model. Additionally, stronger lower bounaise proved for deterministic truthful mechanisms
that use priority algorithms [1]. These algorithms procgsw take decisions) orelementary itenat the
time, from a list of ordered items. The ordering can also geaadaptively after each item is considered.
(Note that our greedy mechanism falls in the category of aaptive priority algorithms since it process



bids as items, which are ordered at the beginning.) We giesvarl bound ofd for priority algorithms that
process bids as elementary items (thus, essentially nmagtthé upper bound of the greedy algorithm) and
a lower bound ofn /2 in the case in which the algorithm processes bidders as.items

Our bounds give a rather surprising picture of the relatmegr of verification versus money, thus sug-
gesting that the two models are somehow incomparable. Feongte, we have &(,/m)-approximate uni-
versally truthful mechanism, which matches the guarantdeeainiversally truthful mechanism with money
given by [7]. (However, it is worth mentioning that the latteechanism does not guarantee the approxima-
tion ratio since there is an error probability ©f log m//m) which cannot be reduced by, e.g., repeating
the auction or otherwise truthfulness would be lost.) Ondtier hand, because of our lower bounds, we
know that it is not possible to implement the optimal outcomithout money; while, if we have exponential
computational time, we can truthfully implement the optis@ution using VCG payments. However, if we
restrict to polynomial-time mechanisms, then we have ardetéstic truthfulmin{m, d+1}-approximation
mechanism without money, based on the aforementioned yadgdrithm; with money, instead, it is not
known how to obtain any polynomial-time deterministic biui mechanism with an approximation ratio
better than theD(m/+/log m)-approximation given in[[14]. Moreover,][1, Theorem 2] pedva lower
bound of2(m) on the approximation ratio of any truthful greedy mechanisith money for instances
with demanded sets of cardinality at ma@stOur greedy mechanism achieves an approximation rati of
for such instances, which implies that this lower bound du@shold in our model without money. Addi-
tionally, we show that the greedy mechanism cannot be mattgut with money, which suggests that the
model without money couples better with greedy selectidastuA general lower bound in terms of for
CAs without money would shed further light on this debatemfgr of verification versus power of money.
In this regard, we offer an interesting conjecture in Sedid.

1.2 Related work

CAs as an optimization problem (without strategic consitlen) is known to be NP-hard to solve optimally
or even to approximate: neither an approximation ratimdf2—<, for any constan¢ > 0, nor ofO(d/ log d)

can be obtained in polynomial time [23,/19] 13]. As a consegega large body of literature has focused on
the design of polynomial-time truthful CAs that return a®d@n approximate solution as possible, under
assumptions (i.e., restrictions) on bidders’ valuatiomdms. For single-minded domains, a host of truthful
CAs have been designed (see, elg., [19] 22, 3]). A more coenpieture of what is known for truthful CAs
under different restrictions of bidders’ domains can benfbin Figure 11.2 of [25].

The authors of[[17], instead of restricting the domains & Kiidders, proposed to restrict the way
bidders lie. We are adopting here their model, adapting théocase without money. The definition of
CAs with verification is inspired by the literature on mecisams with verification (see, e.gl, [24,127,]28]
and references therein). Mechanism design problems wlayerp have restrictions on the way of lying
are also considered in theoretical economics. We next siissome of the work more relevant to this
paper. Green and Lafforit [12] define and motivate a model digbaerification wherein bidders can only
report bids from a type-dependent set of allowed messabjeg;characterize bidding domains for which
the Revelation Principle holds in presence of this notioresfricted bidding. This model has been further
studied by Singh and Wittmah [81] and later extendedJin [4llkmw probabilistic verification of bids outside
the set of allowed messages. The economic model that isstlaseurs is the one studied inl [6]; therein
verification is supposed to take place for every outcome amdust for the implemented solution and is
therefore stronger and less realistic than ours. Anothatealine of work tries to establish when a subset of
incentive-compatibility constraints is sufficient to alotéull incentive-compatibility. [[21] considers a single
good, single buyer optimal auction design and studies tiondi under which no-overbidding constraints
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would also imply the full incentive compatibility of the uedying auction. Other papers studying this kind
of questions are [30) 5]. In particular, the results’in [5]ddo some extent i [4]) seem to suggest that one
has to focus only on “one-sided” verification, for otherwgsmechanism is truthful if and only if it satisfies
a subset of incentive-compatibility constraints.

Our work fits in the framework of approximate mechanism desighout money, initiated by [29]. The
idea is that for optimization problems where the optimalisoh cannot be truthfully implemented without
money, one may resort to the notion of approximation, ankl B@e¢he best approximation ratio achievable
by truthful algorithms. Approximate mechanisms withoutrmap have been obtained for various problems,
among them, for locating one or two facilities in metric spa¢see e.g.[ [29, 20]). Due to the apparent
difficulty of truthfully locating three or more facilities ith a reasonable approximation guarantee, notions
conceptually similar to our notion of verification have bgeaposed([26, 10]/[15] considers truthful mech-
anisms without money, for scheduling selfish machines wigaseution times can be (strongly) verified.
The authors of([8] consider the design of mechanisms withoortey for, what they call, the Generalized
Assignment problems selfish jobs compete to be processedibynrelated machines; the only private data
of each job is the set of machines by which it can be actuathggssed. This problem can be modeled via
maximum weight bipartite matching and the latter can be aast special case of CAs with demanded sets
of cardinality 1; then [8, Algorithm 1] can be regarded as a special case ofi@ady algorithm.

2 Model and preliminaries

In a combinatorial auction we have a $£bf m goods andh agents, a.k.a. bidders. Eaktminded XOR-
bidderi has gprivate valuation functiorw; and is interested in obtaining only one set iprevate collection
S; of subsets otJ, k being the size of;. The valuation function maps subsets of goods to nhonnegediad
numbers ¢;(()) is normalized to b@). Agents’ valuations are monotone: f8r> 7" we havev; (S) > v;(T).

The goal is to find a partitios, . . ., S,, of U such thad """ , v;(.S;) —thesocial welfare- is maximized.
As an example considéf = {1,2, 3} and the first bidder to be interestedSn = {{1}, {2}, {1,2}}. The
valuation function of biddei for S ¢ S; is

wi(S) = maxges,;.sos{vi(S)} if3IeSASDS,
10 otherwise.

(1)

Accordingly, we say that;(S) # 0 (for S ¢ S;) is definedby an inclusion-maximal s&t’ € S; such that
S C Sandv;(S") = v;(S). If v;(S) = 0then we say thdt defines it. So in the example abowvg {1, 2, 3})
is defined by{1, 2}.

Throughout the paper we assume that bidders are interestgets of cardinality at most € N, i.e.,
d=max{|S| : Fist.SeS Nvi(S)>0}.

Assume that the set$ € S; and the values;(S) are private knowledge of the bidders. Then, we want
to design arallocation algorithm(auction) that for a given input of bids from the bidders, outputs siiele
assignment (i.e., at most one of the requested sets is t@tbta each bidder, and allocated sets are pair-
wise disjoint). The auction should guarantee that no bid@eran incentive to misreport her preferences
and maximize the social welfare (i.e., the sum of the vatunatiof the winning bidders).

More formally, we let7; be a set ok non-empty subsets &f and letz; be the corresponding valuation
function of agent, i.e.,z; : 7; — R*. We callb; = (z;,7;) adeclaration(or bid) of bidderi. We let
t; = (v;,S;) be thetrue typeof agenti. We also letD; denote the set of all the possible declarations of
agent; and call D; the declaration domairof bidderi. Fix the declaration® _; of all the agents but For
any declaratiorb; = (z;, 7;) in D;, we let A;(b;, b_;) be the set that an auctiofi on inputb = (b;,b_;)
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allocates to biddet. If no set is allocated tothen we naturally sed; (b;, b_;) = (). Observe that, according
to (T),v;(0) = 0. We say thatd is a truthful auction without money if the following holdsrfanyi, b; € D;
andb_;:

vi(Ai(ti, b-i)) > vi(4i(b)). 2

We also define notions of truthfulness in the case of randaiiz. we either have universally truthful
CAs, in which case the mechanism is a probability distrioutbver deterministic truthful mechanisms, or
truthful-in-expectation CAs, where ifi(2) we use the expdatalues, over the random coin tosses of the
algorithm, of the valuations. We also say that a mechamsmana-approximation for CAs wittk-minded
bidders if for allt = (v;,S;)" 4, i, vi(Ai(t)) > OPT/a, OPT being the value of a solution with
maximum social welfare for the instante

Recall that4;(¢;, b_;) may not belong to the set of demanded s&ts In particular, there can be
several sets ir5; (or none) that are subsets df (¢;,b_;). However, as observed above (cf] (1)), the
valuation is defined by a set if; U {0} which is an inclusion-maximal subset of séf(¢;,b_;) that
maximizes the valuation of agemt We denote such a set agA;(t;,b_;)|t;), i.e., v;(A;(t;,b_;)) =
vi(o(A;i(ti, b_;)[t;)). In our running example above, it can be for some algorithrand soméb_;, that
Aq(t1,b_1) = {1,2,3} ¢ S; whose valuation is defined as observed abovd by}; the set{1,2} is
denoted ag (A;(t1,b_1)|t1). (Similarly, we defines(4;(b;, b_;)|b;)) € T; U {0} w.r.t. 4;(b;,b_;) and
declaratiorb;.) Following the same reasoning, we tgtA; (b;, b_;)|t;) denote the set is; U {(}} such that
’UZ(AZ(b“b_Z)) = ’UZ'(O'(AZ‘(bi,b_' ‘tz))

We focus onexactalgorithms] in the sense of [19]. This means thai(b;,b_;) € 7; U {0}. This
implies, by monotonicity of the valuations, that(b;,b_;) = o(A;(b;, b_;)|b;) and then the definition of
o(+]-) yields the following for any;, b; € D;:

o(Ai(bi;, b_g)|t;) € Ai(bi,b_;) = a(Ai(bi,b_i)|b;). 3)

In the verification model each bidder can only declare loveduations for the set she is awarded. More
formally, bidderi whose type ig; = (v;,S;) can declare a typé; = (z;,7;) if and only if whenever
zi(0(Ai(bi, b—;)[b;)) < vi(o(Ai(bi, b-i)[ts)). 4)

In particular, bidder evaluates the assigned s&td;(b;, b_;)|b;) € T; aso(Ai(bi,b_;)[t;) € S; U {0},
ie., ’L)Z(O'(Al(bl,b_l)ﬁl)) = UZ(O'(AZ(bZ,b_Z)|b2)) Thus the SEU(AZ(bZ,b_Z)“)Z) can be used to ver-
ify a posteriori that bidderi has overbid declaring;(o(A;(b;,b_;)|b;)) > wvi(a(A;(bi,b_y)| b)) =
v;(0(A;(bi, b_;)|t;)). To be more concrete, consider the motivating scenario fas @ith verification
above. The set of cities;(A(b;,b_;)|b;) for which the government assigns licenses to biddemen
declaringb;, can be used a posteriori to verify overbidding by simplyrdmg the product items available
in the stock of the cities for which licenses were grantedidiolér .

When [3) is not satisfied then the bidder is caught lying byvfication step. We assume that this
behavior is very undesirable for the bidder (e.qg., for sinifyl we can assume that in such a case the bidder
loses prestige and the possibility to participate in theriitauctions). This way 12) is satisfied directly
when [4) does not hold (as in such a case a lying bidder wowld &a infinitely bad utility because of the
assumption above). Thus in our model, truthfulness witlifiecation and without money of an auction is
fully captured by[(R) holding only for any b_; andb; = (2;, 7;) € D; such that[(4) is fulfilled. Since our
main focus is on this class of truthful mechanisms with veaifion and no money, we sometimes avoid to
mention that and simply refer to truthful mechanisms/atgors.

3An algorithm is exact if, to each bidder, either only one @ treclared sets is awarded or none.



A graph-theoretic approach The technique we will use to derive truthful auctions for tholinded XOR
bidders is a straightforward variation of the so-calledieynonotonicity technique. Consider an algorithm
A. We will set up a weighted graph for each biddelepending o, bidder domainD; and the declaration
b_; of all the bidders but in which the non-existence of negative-weight edges gteearthe truthfulness
of the algorithm. This is a well known technique. More foripdlix algorithm A, bidder: and declarations
b_;. Thedeclaration graphassociated to algorithmd has a vertex for each possible declaration in the
domain D;. We add an arc between = (z,7) andb = (w,U) in D; whenever a bidder of type
can declare to be of typk obeying [4). Following the definition of the verification teg, edge(a,b)
belongs to the graph if and only (o (bla)) > w(o(b]b)). A8 The weight of the edgéa, b) is defined
asz(o(ala)) — z(o(bla)) and thus encodes the loss that a bidder whose type ) incurs by declaring
(w,U). The following result (whose proof is straightforward)atels the weight of edges of the declaration

graph to the truthfulness of the algorithm.

Proposition 1 A is a truthful auction with verification without money for Cih k-minded bidders if and
only if each declaration graph associated to algoritbthdoes not have negative-weight edges.

In the case of mechanisms without verification, the graplvali®mcomplete. Such a graph can be used
to check whether algorithms can be augmented with paymeritsensure truthfulness, both in the scenario
with verification and without. Incentive-compatibility efgorithms is known to coincide with the case in
which each graph has not negative-weight cydles [32]. Weus# this fact to show that certain algorithms
cannot be made truthful with money.

Known vs Unknown k-minded bidders In the discussion above, we consider the case in which the col
lection of k sets, each bidder is interested in, is private knowledgé¢hitncase, we refer to the problem of
designing truthful auctions that maximize the social welfas CAs withunknownk-minded biddergor,
simply, unknown bidders). An easier scenario is the settinghich the sets are public knowledge and bid-
ders are only strategic about their valuations. In this cagsdnstead talk about CAs witkthownk-minded
bidders(or, simply, known bidders). Our upper bounds hold for theergeneral case of unknown bidders,
while the lower bounds apply to the larger class of mechamisathful for known bidders.

3 Characterization of truthful mechanisms

In this section we characterize the algorithms that aréfiuitn our setting, in both the scenarios of known
and unknown bidders. Interestingly, the characterizingperty is algorithmic only and turns out to be
a generalization of the properties used for the design dhfitlCAs with money and no verification for
single-minded bidders.

3.1 Characterization for known bidders

In this case, for each-minded bidder; we knowsS;. The following property generalizes monotonicity of
[22] and characterizes truthful auctions without money waitt verification.

“To ease our notation we letb|a) be a shorthand far (A;(b, b_;)|a) when the algorithm, the biddérand declarationb_;
are clear from the context as in this case.

®Strictly speaking for an edge:, b) in the graph, we should require thalo (b|a)) > w(o(b|b)) only whenevew (b|b) # 0 as
this set would be needed to verify. However, because of thetoaicity and normalization of valuations(o (b|a)) > w(o(b|b))
holds also whenever(b|b) = 0, sinces(bla) = @ andz()) = w(() = 0.
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Definition 1 An algorithm A is k-monotoneif the following holds for anyi, anyb_;, anya € D;: if
A;i(a,b_;) = Sthen for allb € D, such thath(S) > a(S) it holdsb(A4;(b,b_;)) > b(S).

Theorem 1 An algorithm A is truthful without money and with verification for knowrminded bidders if
and only ifA is k-monotone.

Proof. Fix i, b_; and consider the declaration graph associated to algotithirake any edge of the graph
(b, a) and letS denote4; (a, b_;). By definition, the edge exists if and onlytfS) > a(S).

Now if the algorithm isk-monotone then we also have th@t; (b, b_;)) > b(S) and then the weight
b(A;(b,b_;)) — b(S) of edge(b, a) is non-negative. Vice versa, assume that the weigttbaf) is non-
negative: this means that whenewef) > a(S) then it must bé(A;(b,b_;)) > b(S) and therefored is
k-monotone. The theorem follows from Propositidn 1. O

Similarly to [22], k-monotonicity implies the existence of thresholds (caticalues/prices). Towards
this end, it is important to consider the setsSinin decreasing order of (true) valuations. Accordingly, we
denoteS; = {S?,..., S}, with v;(S7) > v;(SY) if and only if j < 1.

Lemma 1 An algorithm A is k-monotone if and only if for any, anyb_;, anyt; there existk threshold
values®}(b_;),...,0%(b_;) such that: ifb;(S?) > ©J(b_;) andb;(S!) < ©f(b_;), for all £ < j then
O'(Al(bl,b_l)ﬂl) = SZJ Moreover, Ibe(Sf) < Qf(b—z)’ forall ¢ € [k‘] thena(AZ-(bi,b_Z-)|ti) = @

The lemma above assumes that bidders kadli#ferent valuations for each of their minds. This is a rathe
nonrestrictive way to model CAs fde-minded bidders. In the more general case in which biddess ar
allowed to have ties in their valuations, one can prove thatatonicity implies the existence of thresholds,
while the other direction is not true in general but only unsteme assumption ad;(b;, b_;).

3.2 Characterization for unknown bidders

The following property generalizes the property of monatity of algorithms defined by [19] and charac-
terizes truthful auctions without money and with verifioati

Definition 2 An algorithm A is k-set monotonéf the following holds for anyi, anyb_; and anya =
(2,T) € D;: if Aj(a,b_;) = T then for allb = (w,U) such thato(T'|b) = U, w(U) > z(T) we have

To see how this notion generalizés[19], it is important tdenstand what i$/. In detail,o(T'|b) = U,

in the above definition, should be read as to indicate thatdridlgoing from declaratior to declaration
b, substitutedl” € 7 with U € ¢/ andU C T. This is because (7'|b) denotes the set in the collection
of sets demanded by a bidder of typghich defines the valuation af. Specifically,U € U is such that
w(U) = w(T). (Note that ifT" belonged td/ thenU would beT itself.)

Theorem 2 An algorithmA is truthful without money and with verification fbrminded bidders if and only
if Ais k-set monotone.

Proof. Fix i, b_; and consider the declaration graph associated to algorithnTake any edge of the
graph(b = (w,U),a = (z,7)) and letT denote4;(a,b_;). By definition, the edge exists if and only if
w(U) > 2(T), withU = o(T|b).



Now if the algorithm isk-set monotone then we also have thdt4;(b,b_;)) > w(U) and then the
weightw(A;(b,b_;)) — w(U) of edge(b, a) is non-negative. Vice versa, assume that the weigka,af) is
non-negative: this means that whenew¢t/) > z(T') then it must bev(A;(b,b_;)) > w(U) and therefore
A is k-set monotone. The theorem follows from Proposifibn 1. O

Observe, that our characterization of Theotdm 2 for unknsingle-minded bidders implies the exis-
tence of a threshold for any set. Namely, Xebe a givenl-set monotone algorithm, and lebe a fixed
bidder with declaratioriz, 7) € D;. Then for the sef” € T (here,|T| = 1), algorithmA is monotone with
respect toz(7") and thus there exists a critical threshold. It is not hardew that thresholds exist also for
unknownk-minded bidders, withk > 1.

The result in Theorerl 2 also relates to the characterizatfdruthful CAs with money and no veri-
fication (see, e.g., Proposition 9.27 in][25]). While the telmracterizations look pretty similar, there is
an important difference: in the setting with money and nafieation, each bidder optimizes her valuation
minus the critical price over all her demanded sets; in thingewithout money and with verification, each
bidder optimizes only her valuation over all her demandes among those that are bounded from below
by the threshold.

3.3 Implications of our characterizations

We discuss here two conceptually relevant consequencesr oésults above. In a nutshell, a reasonably
large class of truthful mechanisms with money can be turnemtruthful mechanisms without money, by
using the verification paradigm.

3.3.1 Single-minded versus multi-minded bidders

Observe that our characterization of truthful mechanisntsout money for CAs withl-minded bidders
with known and unknown bidders is exactly the same as theactexization of truthful mechanisms with
money in this setting, see, e.g., pages 274-275 in [25]. fieians that the two classes of truthful mecha-
nisms in fact coincide. More formally, we have:

Proposition 2 Any (deterministic) truthfuk-approximation mechanism with money for single-minded CAs
can be turned into a (deterministic) truthfulapproximation mechanism without money with verification
for the same problem, and vice versa. This holds for singleled CAs with either known or unknown
bidders.

3.3.2 Beyond CAs

It is known that a slight generalization of monotonicity GRB] is a sufficient property to obtain truthful
mechanisms with money also for problems involvigeneralized single-minded bidd€ef@]. Intuitively,
generalized single-minded bidders hav@rivate numbers associated to their type: their valuatamaf
solution is equal to the first of these values or minus infjrdigpending on whether the solution asks the
agent to “over-perform” on one of the othker— 1 parameters, seel[3] for details. By Theorem 2, all the
truthful mechanisms with money designed for this quite galngpe of bidders can be turned into truthful
mechanisms without money, when the verification paradigijussfiable. As a direct corollary of our
characterization, we then have a host of truthful mechasistithout money and with verification for the
(multi-objective optimization) problems studied in [3,]11



4 Upper bounds for unknown bidders

In this section we present our upper bounds for CAs with unknb-minded bidders.

4.1 CAs with arbitrary supply of goods

In this section, we consider the more general case in whiemets inU are available irb copies each.
Note that the characterizations above hold also in thisiroalt case. We present three polynomial-time
algorithms, which are truthful for CAs with unknown biddetke first is deterministic, the remaining are
randomized and give rise to universally truthful CAs.

4.1.1 Deterministic truthful CAs

We adapt here the overselling multiplicative price updégerithm and its analysis froni [18] to our setting
without money. The algorithm considers bidders in an abjtgiven order. We assume that the algorithm
is given a paramete. > 1 such thatu/2 < vyae < p. We will assume that such is known to the
mechanism, and afterwards we will modify our mechanism &asvshow to truthfully guess,,ax.

Algorithm[1l processes the bidders in an arbitrary givenmride 1,2, ..., n. The algorithm starts with
some relatively small, uniform prige) = 4/ of each item. When considering biddgthe algorithm uses
the current prices as defining thresholds and allocatesdtiebi a setS; in her demand sef; that has the
maximum valuatiorv;(.S;) among all her sets with valuations above the thresholdsn e prices of the
elements in the sef; are increased by a factorand the next bidder is considered.

Let ¢ be the number of copies of goed= U allocated to all bidders preceding biddeand /¢ = ¢7+1
denote the total allocation of goedo all bidders. Let, moreovep; = po - r‘c be goode’s price at the end
of the algorithm.

We claim now that ifpy andr are chosen so thatr? = , then the allocatior = (S, ..., S,,) output
by Algorithm[1 is feasible, that is, it assigns at mbsiopies of each good to the bidders. The argument is
as follows. Consider any goade U. Notice that when thé-th copy of goock is sold to any bidder then its
price is updated tpor® = 11 > vax. Thus, good alone has a price which is above the maximum valuation
of any bidder, and so no further copy will be sold.

Next we prove two lower bounds on the social welfa(®) = > | v;(S;) of the setsS,..., S,
chosen by Algorithni]l. LeOPT denote the optimal social welfare, and recall thaidenotes the final
price of goode € U.

Lemma 2 It holdsv(S) > -1 (3o pi — mpo) andv(S) > OPT — b3y, b

Combining the above bounds yields the following result Fer algorithm.

Algorithm 1: Multiplicative price update algorithm

1 For each good € U dop! := po.

2 For each bidder =1,2,...,ndo

3 SetS; := argmax{v;(S) : S € S; such thaw;(S) > > qpL}-
4 Update for each good € S;: pitt :=pi - 7.

5

ReturnS = (54, S2,...,S).

10



Algorithm 2: Modified multiplicative price update algorithm
1 For each biddei € {1,2,...,n}, letv? .. be the valuation of's most valuable set.

max

2 Letj € {1,2,...,n} be the bidder with highest valug,.x (smallest index in case of ties).
3 Letpg = g, wherep = (1 + €)vhax, for a fixed0 < e < 1.
4 For each good € U dop? := py.
5 Letforanyi =j4,1,2,3,4,...,5— 1,7+ 1,...,n, nexti) be the next number in this order, e.g.,
next(j) = 1,next(1) =2,....nextj —1) =j+1,...,nextn — 1) = n,nextn) = n + 1.
For each biddei = 5,1,2,...,j— 1,7+ 1,...,ndo

SetS; := argmax{v;(S) : S € S; such thaw;(S) > > cqpL}-

Update for each good € S;: pgexm) =L
ReturnS = (Sl, 59, ..., Sj—la Sj, Sj+1, ceey Sn)

)

© o

Theorem 3 Algorithm[ withpy = & andr = (4bm)'/® produces a feasible allocatiof such that

v(8) 2 st 2 o<b35§w>-

Proof. Feasibility follows from the fact thatyr® = . The first bound of Lemmi 2 givégr — 1)v(S)

b> ey s — bmpo, which by the second bound bgr — 1)v(S) > b .y pi — bmpg > OPT — v(S)

bmpoy > OPT/2 — v(S), where the last inequality follows by,.x < OPT. This finally gives us(.5)
OPT

2((r=1)+1)

o v

Theorem 4 Algorithm([1 is a truthful mechanism without money and wittifieation for CAs with unknown
k-minded bidders.

Proof. Fix i andb_;. As in Definition[2, take two declarations of bidder = (z, 7) andb = (w,U) with
w(U) > z(T), whereT = A;(a,b_;) andU = o(T'|b). (In this proof,A denotes Algorithrll.) Recall that
UCTandU € U.

Note that the ordering is independent of the bids and themwtie considered the pricgs for the
elements: of U are the same in botA(a, b_;) andA(b,b_;). SinceT = A;(a,b_;), we note that(T") >
> eer pi. Thisyields,w(U) > z(T) > > cpph > Y.y pL- This implies that whemi (b, b_;) executes
line[3, the set’ is taken into consideration and we can therefore concluateth4; (b, b_;)) > w(U). This
shows that4 is k-set monotone and then, by Theorem 2, our claim. O

We now modify Algorithm(lL in order to remove the assumptiontlee knowledge of:. The modified
algorithm is presented as AlgoritHm 2. We have the followiegult.

Theorem 5 Algorithm[2 is a truthful mechanism without money and wittifieation for CAs with unknown
k-minded bidders. Its approximation ratio @(b - (m)'/?).

Proof. Approximation ratio and feasibility of the produced sabutifollow from the choice of, and from
settingu = (1 + €)vinax, for 0 < € < 1. Indeed, we can use the previous analysis of Algorifhm 1dfeht
not make any assumption on the order in which bidders areepsed and only requirgd/2 < vyax < p.

We will argue now about truthfulness of the modified alganthLet us call bidderj in Algorithm
[2, themax bidder We first observe that biddgris allocated the set in her (reported) demand with highest
(reported) valuation. This is because her declaratiar,@f for her best set, say, is larger tharﬁeeQ Pl =

11



Q|- po = Q| - % since|@| < m. Now, fixi andb_;. As in Definition[2, take two declarations of
bidderi, a = (z,7) andb = (w,U) with w(U) > z(T'), whereT = A;(a,b_;) andU = o(T'|b). (In this
proof, A denotes Algorithmi2.) Recall that C T andU € U. Let j, (resp.,j,) be the max bidder for the
bid vector(a,b_;) (resp.,(b,b_;)). We distinguish three cases.
Case 1i = j,. In this casez(T) is larger than all the valuations in_;. Sincew(U) > z(T") and since
b_; is unchanged them(U) is also larger than all the valuations b ;, which yieldsi = j,. But
then, as observed above, sincis the max bidder in(b, b_;) she will get her best set i1 and therefore
Case 2:i = j;. Sincei is the max bidder ir{b, b_;) then we can argue, as above, that she will get her best
set and so we hawe(4;(b,b_;)) > w(U).
Case 3i # ja, j»- Since the other bids are unchanged, in this case, we havej,. This implies that the
ordering in which bidders are considered is the same in A¢thb_;) and A(b, b_;) which in turns implies
that the priceg’ considered by the algorithm in lifé 7 are the same in botitss. We can then use the
same arguments used in the proof of Theadrém 4 to concludesthst(d, b_;)) > w(U).

In all the three cases we have shown that the algorithirsst monotone and then the claim follows
from Theoreni P. O

4.1.2 Randomized truthful CAs

We show here how to use Algorithith 2 to obtain randomized usally truthful mechanisms with expected
approximation ratios of)(d'/? log(bm)) andO(m!/*+1) log(bm)), respectively.

Observe first that if we execute Algorithih 1 with a smaller aedfactorr = 2!/, then the output
solution allocates at mosb copies of each good to the bidders, where log(4bm) [18, Lemma 1]. This
simply follows from the fact that ifsb copies of goock € U were sold, then its price ig2'°8(4m) —

1 > vmax. But this infeasible solution is af(1)-approximation to the optimal feasible solution: plugging
r = 2/% in the approximation ratio df(b(r — 1) + 1) in TheoreniB indeed implies ai(1)-approximation
(see also[[18, Theorem 1]). This idea leads to the followampbmized algorithm iri [18]: use = 2%/%,
explicitly maintain feasibility of the produced soluticand defineg = 1/(2ed!/? log(4bm)) (wheree ~
2.718) as the probability of allocating the best set to a biddeee(8Igorithm[3 for a precise description.)
We now introduce the same randomization idea into our Algori2. The resulting algorithm is Algorithm
@, where we assume= 21/%,

Theorem 6 Algorithm[4 is a universally truthful mechanism without ragrand with verification for CAs
with unknowrk-minded bidders. Its expected approximation rati®igl'/® - log(bm)).

Algorithm 3: Multiplicative price update algorithm with oblivious ramahized rounding.

1 For each good € U dop! := pg, b} :=b.
2 Foreach bidder=1,2,...,ndo

3 LetU; = {e € U|b. > 0}.

4 SetS; := argmax{v;(S) : S € §; such thatS C U; andv;(S) > >~ g pL}.
5 Update for each good € S;: pit! :=pi - r.
6
7
8

With probability g setR; := S, elseR; := ().
Update for each good € R;: bi™! == b — 1.
ReturnR = (Ry, Rz, ..., Ry).

12



Algorithm 4: Modified multiplicative price update algorithm with rand@ed rounding.

1 For each bidder € {1,2,...,n}, letv? . be the valuation of's most valuable set.

2 Letj €{1,2,...,n} be the bidder with highest valug,.. (smallest index in case of ties).

3 Letpg = g, wherep = (1 + €)vhax, for a fixed0 < e < 1.

4 For each good € U dop! := po, b} := b.

5 Letforanyi =4,1,2,3,4,...,7— 1,7+ 1,...,n, nexti) be the next number in this order, e.g.,
nextj) = 1,next(1) =2,....nextj —1) =j+1,...,nextn — 1) = n,nextn) =n + 1.

6 Foreachbiddeir=3,1,2,...,7—1,7+1,...,ndo

7 LetU; = {e € U|b. > 0}.

8 SetS; := argmax{v;(S) : S € S, such thatS C U; andv;(S) > >~ .o pL}.

nexti) i

9 Update for each good € S;: pe =p.-r.

10 If i = j then setR; := S; else (with pI’Obabllltyq setR; := S; elseR; := ().

11 Update for each good € R;: et bl —
12 ReturnRk = (Rl,RQ,...,Rj_l,RJ,RJ+1,...,Rn).

Proof. Approximation guarantee and feasibility of the output Solu R follows from essentially the same
arguments used in_[18]. (For completeness we give this proappendix.) We will argue now about
universal truthfulness of Algorithal 4. This algorithm caa biewed as a probability distribution over
deterministic algorithms. Each such algorithm, callijtis defined by @& /1-vectora € {0,1}"~! and first
selects and serves the max biddend then serves the remaining- 1 bidders1,2,...,j—1,j4+1,....,n
When serving biddef # j, algorithm A deterministically allocates sé&; to bidderi < j if and only if
a; = 1 and to biddei > j ifand only ifa;_y = 1. Thus, algorithmA is Algorithm[2, witha = (1,1,...,1).
So, to show thatd is (deterministically) truthful we use the same argumerthefproof of Theorerh]5 and
the additional observation that bidders whose correspagnilit in the vector is 0 have no incentive to lie,
since they are not served anyway. O

Finally we can also obtain a universally truthful mechanisntase demanded sets have unbounded
sizes.

Theorem 7 There exist a universally truthful mechanism without maay with verification for CAs with
unknownk-minded bidders with an expected approximation rati®ofn /1) - log(bm)).

4.2 CAs with single supply

We now go back to the case in which the gooddJimre provided with single supply. We present three
incentive-compatible CAs: the first is deterministic, teeaining two are randomized. Among these three
mechanisms, only two run in polynomial time.

4.2.1 Greedy algorithm

We now present a simple greedy algorithm for CAs where thelgup= 1, see Algorithnib. (Note that for
goods with arbitrary supply, the greedy algorithm cannot do better than Algorifim 2 beeaf the lower

bound ofy/m in [16].) Recall that each biddeér= 1,2, ..., n declareqv;, S;), wheresS; is a collection of

k sets biddei demands and; (S) is the valuation of sef € S;. Observe that set$, . . ., 5; are all the sets
demanded by all bidders (with non-zero bids), {&;,...,S;} =S U...US,.

13



Algorithm 5: The greedy algorithm.

1 Let! denote the number of different bids= nk.

2 Letby,be, ..., b be the non-zero bids art, . . . , S; be the corresponding sets, ordered such that
by > ... > b;. In case of ties between declarations of different biddersider first the smaller index
bidder.

3 Foreachj =1,...,llet3(j) € {1,...,n} be the bidder bidding; for the setS;.

4 P:=0,8B:=0.

5 Fori=1,...,ldo

6 Ifp()g€BAS;NS=0forall SinPthen (@P :=PU{S;}, (b)B:=BUPLS>).

7 ReturnP.

We will use the linear programming duality theory to prove #pproximation guarantees of our algo-
rithm. Let us denote the set famiy = U’ ,S;, where bidderi demands sets;. For a given sef € S;
we denote by;(.5) the bid of bidder: for that set. Le{n| be the se{1,...,n}. The LP relaxation of our
problem is:

max Y D ges, bi(S)mi(S) 5)
St D ii1 Dsisesees i) <1 Vee U (6)
D ses, wi(S) <1 Vi € [n] (7

wl(S) >0 Vi € [’I’L]\V/S € S, (8)

The corresponding dual linear program is then the following

min 3 cy Ye + D5 F ©)
St zi+> .cq¥e > 0i(S) Vie[n] VS €S (10)
ZiyYe > 0 Vi € [n] Ve € U. (11)

In this dual linear program dual variabte corresponds to the constraiht (7).
Theorem 8 Algorithm[B is amin{m, d + 1}-approximation algorithm for CAs with-minded bidders.

Proof. Suppose that Algorithml 5 has terminated and output sold@ohet SATpr = UgepS. Notice that
for each setS € S that was not chosen to the final solutih) there either is an elemeate SATp N S
which was thewitnessof that event during the execution of the algorithm, or thexists a biddei and set
S’ € P such thats’, S € S;. For each sef € S\ P we keep inSATp one witness fofS. In case if there
is more than one witness AT, N S, we keep inSATp the (arbitrary) witness fof that belongs to the
setamong setsT" € P : SATp N SNT # ()} that was considered first by the greedy order. We discard the
remaining elements frotAAT’p.

Let us also denot®(S) = SN SATp if SNSATp # D andP(S) = Sif SNSATp = 0.

Observe first that itn = 1, then any feasible solution just has a single set assignadsiiogle bidder
and thus the algorithm outputs an optimal solution, as requi

We then assume that > 2. We now define a dual solution during the execution of Aldomi{3.
We need to know the output solutidn for the definition of this dual solution, which is needed ofdy
analysis. In linéd ¥ of Algorithn]5 we initialize these variesr 1. := 0 for all e € U andz; := 0 for all
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i € [n]. We add the following in lin€l6(a) of Algorithrial 5. := A%, forall e € P(S;), whereAS: =
bﬁgi()éij), for e € P(S;). Note, that fore € S; \ SATp the value ofy, is not updated and remains zero. We
also add the following instruction in lirig 6(a) of Algoritt&h z(;) := g (S:)-

It is obvious that the dual solution provide a lower boundlmnaost of the output solution:

D ye <> b (Sh). (12)

ecU S;€P

We will show now that the scaled solutiqa’ - v, 2) is feasible for the dual linear program, where
d" = min{d, m — 1}. We need to show that constraints](10) are fulfilled for ai$ $ec S. Thus, we have
to prove that, for each séte SN S;,

Zi+d Y ye = bi(9). (13)

eeS

Suppose first that = S, € S\ P, and let3(r) = i. There are two possible reasons that$éias not
been included in the solutigR: (i) Case (a) there must be an elementc SATp such that € S, or (ii)
Case (b) there is another s’ € P with S, 5" € S,.

Let us first consider Case (a). In that case addingdgetsolution’” would violate constrain{{6). Let
S" = S; € P be the set in the solution that contains elemeand leth = 5(j).

Recall thate € § 1 5", thus S, egyer > ye = AF" = (e > 2 > M) where the last
inequality follows from the greedy selection rule and dé&fm of the witnesses. In the case|ff| = m,
thatis,S = U, we obtain thal ", g yer > 3 regn Yer = Sounegn A = by (S”) > b;(S), where the last
inequality is by the greedy selection rule. Because 2, this proves[(113) in Case (a).

We consider now Case (b). Suppose that S, € S\ P and there is another st = S; € P with
S, 8" € ;. In this case we have= 3(j) = §(r). Observe that when sét was chosen by Algorithin 5 the
dual variablez; was updated in lingl6(a) as follows; = b;(S’). Now, because s&t’ was considered by the
algorithm before sef we havez; = b;(S’) > b;(S) by the greedy selection rule, which impliés](13) in this
case.

Notice that claim[(1B) follows immediately from the defioiti of z; if set S € S; has been chosen by
our algorithm, that isS € P. This concludes the proof df (I.3).

Finally, we put all the pieces together. We have shown thadtial solution(d’ - y, z) is feasible for
the dual linear program and so by weak duality’ , z; +d’ .., v. is an upper bound on the value of the
optimal integral solution to our problem. We have also shaw(32), that}" ., y. < Zsiep bai) (Si)-
Therefore, by lettingdPT denote the optimal social welfare, we obtain that

OPT <) zi+d Y ye= > 20 +d ) e
1=1

ecU S;eP ecU
<D b (S +d D by (8i) = (d +1) Y beiiy(Sh).
S, €P S;€P S;€P

We now prove the truthfulness of Algorithinh 5.

Theorem 9 Algorithm[3 is a truthful mechanism without money and wittifieation for CAs with unknown
k-minded bidders.

15



Proof. Fix i andb_;. As in Definition[2, take two declarations of bidder = (z, 7) andb = (w,U) with
w(U) > 2(T), whereT = A;(a,b_;) andU = o(T'|b). (In this proof,A denotes Algorithrl5.) Recall that
UelUandU CT.

LetS, (respectivelyS;) be the set comprised of the sets in declarations_qgfprocessed byl(a, b_;)
(respectively,A(b, b_;)) whenz(T") (respectivelyw(U)) is considered. Sincd grantsT to bidder: in the
instance(a, b_;) then it must be the case thHAtN S = () for all S € S, granted byA. Sincew(U) > z(T),
then we have tha, C S,. Thus, sincd/ C T then we have thal’ N S = () for all S € S;, granted by the
algorithm. Therefore, the only reason for whithmight not be granted tois that A had already granted
a set in/ to 4, which implies thatw(A;(b,b_;)) > w(U). Then the algorithm ig-set monotone and the
claim follows from Theorerhl2. O

[1, Theorem 2] proved a lower bound Gfm) on the approximation ratio of any truthful greedy priority
mechanism with money for instances with demanded sets dinzdity at most2. Nevertheless, we have
shown that Algorithni 5 is truthful and achieves an approgiomaratio of at mos8 for such instances. We
here investigate the reasons behind this sharp contrast.

Proposition 3 There are no payments that augment Algorifim 5 so to maketawfumechanism for CAs
with k-minded bidders, even in the case of known bidders.

4.2.2 Randomized Exponential-Time Mechanism

We describe the exponential-time mechanismRaendExp in brief. Let I be an instance of CAs with un-
known k-minded bidders, and l€, 1 < ¢ < k, be the subinstance éfthat consists of the elementary bids
(1,5, v;(S%)), i € N, whereS! denotes thé-th most valuable set demanded by bidileFhen,RandExp
computes the maximum social welfe®d T, for each subinstanck by breaking ties among optimal solu-
tions in a bid-independent way, and outputs the allocat@responding t@®PT, with probability 1 /%, for
each? € [k].

Theorem 10 RandExp is a universally truthful mechanism without money and wehfication for CAs
with unknownk-minded bidders. It achieves an approximation ratid:of

4.2.3 Randomized Polynomial-Time Mechanism

We describe the polynomial-time mechanism,RamdPoly in brief. Let I be an instance of CAs with
unknownk-minded bidders, let,..x be the maximum valuation of some bidder, anddg}.. a set with

valuationvy,.x. Moreover, letl; be the subinstance dfthat consists of the elementary bidssS, v;(S)),

i € N, where for each sef, | S| < y/m. Then,RandPoly either only allocates,,.x to the corresponding
bidder breaking ties in a bid-independent way with proligbil /2, or with probability 1/2, outputs the
allocation computed by the Algorithih 5 on the subinstahceNext, we show the following fact.

Theorem 11 RandPoly is a universally truthful mechanism without money and wékification for CAs
with unknownk-minded bidders. It achieves an approximation rati@xgh,/m).

5 Lower bounds for known bidders

We first adapt the proof of [8, Theorem 3.3] and show a loweniaaf 2 on the approximation ratio of any
deterministic truthful mechanism. We highlight that thisver bound does not make any assumptions on
the computational power of the mechanism, and holds evesxfwonential-time mechanisms.
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Theorem 12 There are no deterministic truthful mechanisms with apjpnation ratio better thar2 for
CAs with knowr2-minded bidders. This holds even for simple instances with 2 bidders, andn = 2
goods.

We note here, that our Algorithii 5 is a truthflshpproximate mechanism on instances used in the proof
of TheoremIP. This theorem indicates that our assumptiainthie bidders do not overbid on their winning
sets is less powerful than the use of payments, when we daketbmputational issues into consideration.
Furthermore, it shows that, unlike the case of single-mdridielders, already with double-minded bidders
the class of algorithms that can be implemented with moneysisict superset of the class monotone
algorithms.

Next, we apply Yao’s principle and show that no randomizedtmaaism that is universally truthful can
achieve an approximation ratio better thigi.

Theorem 13 There are no randomized mechanisms that are universalthftruand have approximation
ratio better than5/4 for CAs with knowr2-minded bidders. This holds even for simple instances with
n = 2 bidders, andn = 2 goods.

Proof. We present a probability distribution over instances of @Ath n = 2 known 2-minded bidders,
andm = 2 goods, for which the best deterministic truthful mechanisms expected approximation ratio
greater tharb/4 — 4, for anyd > 0. We consider two instancesand I’ whereU = {a, b}, the first
bidder is interested i, = {{a, b}, {b}}, and the second bidder is interestedSin= {{a}}. In both, the
valuation of bidder is va({a}) = 1. The valuation of biddet is v;({a,b}) = 2 andwv;({b}) = 0in I,
andv]({a,b}) = 2 andv}({b}) = 2 — ¢ in I'. Each instance occurs with probability2, and the expected
maximum social welfare i$5 — §)/2. Let A, applied to instancd, allocate{a, b} to bidder1 and( to
bidder2. Then, by Theorerl1, sincé is a deterministic truthful mechanism, when applied toanse!’,

it must allocate{a, b} to bidder1 and{ to bidder2. Therefore, the expected social welfarefs 2, and
its expected approximation ratio {§ — 9)/4 > 5/4 — 4. If A, applied to instancd, does not allocate
{a, b} to bidderl, its expected social welfare is at m@gt— ¢)/2, and its expected approximation ratio is
(5—9)/(4—9) >5/4 -4, acontradiction. O

Finally, we show a weaker lower bound ©H9 on the approximation ratio achievable by the larger class
of randomized mechanisms that are truthful in expectation.

Theorem 14 There are no randomized mechanisms that are truthful inaggien and have approximation
ratio less or equal thari.09 for CAs with knowr2-minded bidders. This holds even for simple instances
with n = 2 bidders, andn = 2 goods.

5.1 Priority Mechanisms

Our lower bounds in this section apply to truthful mechamighat use algorithms that operate according to
the priority framework introduced inJ2].

We now briefly introduce this framework. The input of a prignmechanism is a finite subséwf the
classZ of all permissible input items. For CAs, we consider two séssof input items. The first class
consists of elementary bids, i.e., each item is a tr{pleS, v;(S)), wheres is the bidder,S is one ofi’s
demanded sets, and(S) is i's valuation forS. The second class of input items consists of bidders, i.e.,
each item is a paifi, v;), wherei is the bidder and; is ’s valuation function. The output of a priority
mechanism consists of a decision for each input item preded$ elementary bids are the input items, the
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output consists of an accept or reject decision for eachlbaibid (i, S, v;(5)) is accepteds is allocated
to 7, and the algorithm obtains a welfare@fS). If bidders(i, v;) are the input items, the output consists
of a (possibly empty) sef allocated to biddef, and the algorithm collects a welfare @f.S).

A (possibly adaptive) priority mechanisrah receives as input a finite set of itemhsC Z, and proceeds
in rounds, processing a single item in each round. Whilecthee unprocessed itemsiinA selects a total
order7 onZ without looking at the set of unprocessed items. It is imguarthat7 can be any total order
onZ, and that for adaptive priority algorithms, the order maydifferent in each round. In each round,
receives the first (according t0) unprocessed item € [ and makes an irrevocable decision for it (e.g.,
if = is an elementary bid4 accepts or rejects it, if is a bidder,A decides about the set allocated to her).
Then,z is removed front.

We first show that any truthful priority mechanisrhthat processes elementary bids has an approxi-
mation ratio of at least for CAs with known bidders. The proof of the next result adape proof of[1,
Theorem 3].

Theorem 15 Let A be a truthful priority mechanism with verification and no regrior CAs with known
k-minded bidders. Ifl processes elementary bids then the approximation ratibisfgreater than(1—d)d,
foranyd > 0.

We note that with a minor change in the proof, the lower bouh@iheorem 15 applies to the special
case of2-minded bidders. Thus, taking into account instances withm, we obtain the following result.

Corollary 1 Let A be a truthful priority mechanism with verification and no regrior CAs with knowg-
minded bidders. IfA processes elementary bids then the approximation ratid isfgreater than1 — §)m,
foranyd > 0.

We next show that any truthful priority mechanistrthat processes bidders has an approximation ratio
of at leastn /2 for CAs with knownk-minded bidders. We note that such priority mechanisia potentially
more powerful than a priority mechanism that processesaréamy bids, since whed decides about the
set allocated to each biddgrit has full information about’s valuation function. The proof of the following
result adapts the proof dfl[1, Theorem 4] to our setting.

Theorem 16 Let A be a truthful priority mechanism with verification and no regrior CAs with known
2-minded bidders. IfA processes bidders then the approximation ratiola$ greater than(1 — 6)m /2, for
anyé > 0.

5.2 Discussion

A step that seems necessary for an approximation ratid(gfm) for CAs is that the algorithm somehow
compares the social welfare and chooses the best of thevinfidwo extreme solutions: a solution that only
consists of the most valuable set demanded by some bidd&g aalution consisting of many small sets
with a large total valuation. Otherwise, the algorithm aatrexcchieve an approximation ratio ofm) even
for the simple case where biddeis double-minded fold = {ay, ..., a,, } with valuationz € {1 + ¢, m?}
and for the good:; with valuation1, and each bidder, 2 < i < m, is single-minded for the good; with
valuationl. In fact, this is one of the restrictions of priority algdwihs exploited in the proofs of the lower
bounds of2(m) above.

On the other hand, comparing the social welfare of these fiverme solutions seems also sufficient for
anO(y/m)-approximation, in the sense that taking the best of (i) tiestrmaluable set demanded by some
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bidder, and (ii) the solution of Algorithral 5, if we only allate sets of cardinality at mostm, gives an
O(y/m)-approximation (see Theordml11 for the analysis, see alsp[8, Section 6] for another example
of anO(y/m)-approximation algorithm based on a similar comparison).

For CAs without money, it seems virtually impossible to lelsderministic mechanism truthfully imple-
ment a comparison between the social welfare of those egtsatutions. This is because the only way for
a deterministic mechanism to make sure that the bidder Wwé&hrtaximum valuation does not lie about it is
to allocate her most valuable set to her, so that verificamplies to this particular bid (see also how Algo-
rithm[2 learns about,,.,). But this leads to an approximation ratio@{m). In fact, this seems the main
obstacle towards a deterministic truthfa(/m)-approximate mechanism for CAs withminded bidders.
So, we conjecture that there is a strong lower bounf@f.) on the approximation ratio of deterministic
truthful mechanisms.
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A Postponed proofs

A.1 Proof of Lemmall

Proof. Let us first show that the existence of the thresholds forgorithm A implies thatA is k-monotone.
Fix i, b_; andt;; let a be a declaration i; such that(S?) > ©7(b_;) for some; € [k] anda(S!) <
O!(b_;) for £ < j. Then4;(a,b_;) = S?. Now takeb € D; such thab(S?) > a(S7). No matter what the
declarationb(S?) is, for h # j, by definition of thresholds we have that(b,b_;) = S, 1 < j.

For the opposite direction, fix b_; andt;; let a be a declaration iD; such that4;(a,b_;) = Sf We
prove by induction orj that there exists a threshd&f(b_i) as in the statement. For the base case consider
j = 1. Itis straightforward to see that the thresh@d(b_;) exists [19]. Now assume that there are
thresholdsd! (b_;),..., 6! (b_;) and takeb € D; to be such thak(S?) > a(S?) andb(S}) < ©F(b_;)
for b < j. By definition of©!(b_,),...,©7 ! (b_;) and that ofk-monotonicity,o(A; (b, b_;)|t;) = S7.

We can then conclude that there exists a thres@él(d)_i) as well. O

A.2 Proof of Lemmal2

Proof. We first prove the first bound. Because the algorithm sellg sells above their thresholds(S;) >
D ees, p’. Hence,

n n . 0r—1 o
NEED S I ED D) DITCESTS DY PELET PRy
i=1 e€S; i=1 e€S; ecU k=0 ecU

which gives the bound.

For the second bound of the lemma, consider an optimal feaailocationT = (71,...,T,,). The set
choice in lind_B in the algorithm of[18] is done by asking thehnd oracl.We observe here that the set
choice in this line in Algorithni 11 is sufficient for showingishclaim. Namely, ifv;(T;) > > cr. p, then
by the choice of the algorithm;(S;) > v;(T;), and so we have;(S;) > vi(T;) — >_ .7, pi- If on the other
handv;(T;) < 3_.cq, pLr thenui(S;) > vi(T;) — ., Pt @lso holds.

Because; > p}, for everyi ande, this impliesv;(S;) > vi(Ti) — Y- cq, P Summing over all bidders
givesv(S) = > 1L vi(Si) > D1 vi(Th) =D 201 D eer, Pe = v(T)—b 3" oy pE, Where the latter equation
uses the fact thaf is feasible so that each good is given to at mosdts. O

A.3 Proof of Theorem[8

Proof. The produced solutior? is feasible, because we ask bidders in [ihe 8 only for setsagung
available goods.

For proving the approximation ratio we observe that the dlifference between the randomized round-
ing algorithm from [18] and Algorithrl4 is that our algorithserves first the max bidder and allocates her
best set with probability. rather than with probabilityy < 1, the remaining bidders are served as in the
former algorithm. We restate Lemma 5 and 4 froml [18] here. firseof these lemmas is used to prove the
second and the second implies our approximation guarantee.

®Given goods’ prices, the demand oracle of a given bidder vathation functiorw; outputs the se§ maximizing the differ-
ence between the set’s valuatios{S) and the sum of the prices of its goods.
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Lemma 3 Let us consider CAs with demanded sets of size at ¢hostl and letg—! = 2ed!/? log(4bm).
Foranyl < i < nand any sef” C U with |T| < d, we haveE [v;(T N U;)] > Zv;(T).

Lemma 4 Suppose the probability ' = 2ed'/® log(4bm) is used in Algorithril4. The [v(S)] > LOPT
andE [v(R)] > ¢OPT.

1
8

The proof of the former lemma i [18] remains unchanged inacase. The only change that is needed
in the proof from [18] of the latter lemma is firstly to obsertrat the way of handling the max bidder
actually helps the approximation ratio. Secondly, as shiowthe proof of the second bound of Lemfa 2,
Algorithm[4 chooses in linEl8 s&; := argmax{v;(5) : S € S; such thatS C U; andv;(S) > > cqpLl},
which implies that; (S;) > vi(T;) — >_.cr. pe, and this is what is needed in the proof.

The universal truthfulness of Algorithii 4 is proved in theimaody of the paper. O

A.4 Proof of Theorem[7

Proof. We only give a sketch here. We use Algorithin 4 as a subroutideiae a standard randomization on
the top of this algorithm. Namely, the mechanism flips a fain¢o choose one out of two algorithms. If the
coin shows head, then Algorithinh 4 is executed with paramgegat analogously to the case of sets of size

at mostd = Lmb%lj, that is, withg—" = 2ed!/® log(4bm). If the coin shows tail, then the mechanism only
considers sets of full cardinality:. This setting corresponds to an auction where each biddetsvia buy
only a single super item (correspondingUpwhich is available irb copies. The copies of the super item
are sold by calling Algorithrhl4 witin = 1 (single item) andl = 1 (sets of cardinality 1). This mechanism
can easily be shown to be universally truthful and a simpbdyais shows the claimed approximation ratio,
see, e.g.[[18]. O

A.5 Proof of Proposition[3

Proof. We considen instanced, I’, I”, with known bidders anl = {a, b}. In all of them, bidderl is
interested irS; = {{a}, {b}}, and bidder is interested iS5, = {{a}} and has»({a}) = 1. Letd > 0 be
some small constant less thaf2. In I, bidder1 hasv;({a}) = 1 — ¢ andwvy ({b}) = 0. In I’, bidder1 has
vi({a}) = 1+ dandvi({b}) = 1. In I”, bidder1 hasv{({a}) = 1 — § andv] ({b}) = 1 — 24. Therefore,
the allocation of Algorithnib i§b} to bidder1 and{a} to bidder2 for instancel, {a} to bidder1 and{

to bidder2 for instancel’, and{b} to bidder1 and{a} to bidder2 for instancel”. Now we consider the
vertices corresponding tg, v}, andv of the declaration graph for Algorithid 5 and find an edgg v} ) of
weight—(1 — ¢), an edgdv}, v{') of weightd, and an edgév?, v;) of weight0. Therefore, the declaration
graph contains a negative cyale — v} — v{ — v, which implies that the valuation-greedy mechanism
cannot be truthfully implemented with money. O

A.6 Proof of Theorem[10

Proof. Since all bidders are single-minded in each subinstaipcehe allocation corresponding to the
maximum social welfar®PT, using a fixed tie-breaking rule is, by Theoréin 2, truthful,dach? € [].
Therefore RandExp is universally truthful. As for the approximation ratiogtlexpected social welfare of
RandExp is Y5_, OPT,/k. Since the maximum social welfare éfis at mosty_s_, OPT,, RandExp
has an approximation ratio &f 0
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A.7 Proof of Theorem[11

Proof. As for the truthfulness oRandPoly, the deterministic allocation of the set of maximum valoti
with a fixed tie-breaking rule is, by Theordrh 2, truthful. #aermore, the formation of the subinstange
and the application of Algorithil 5 to it can be regarded aseofithe algorithm o where any elementary
bid (4, S, v;(S)) with |S| > /m is considered unfeasible and immediately rejected. Bygusia arguments
used in Theorerl9, we can prove that this:-cardinality-sensitive variant of Algorithil 5 tbis truthful.
Therefore RandPoly is universally truthful.

As for the approximation ratio, we [€2PT denote the optimal social welfare 6f OPT, denote the
optimal social welfare of the subinstante andOPT; denote the optimal social welfare of the subinstance
I; =TI\ I;. We observe thadPT < OPT, + OPT). Sincel; contains only elementary bids, S, v;(5))
with |S| > /m andv;(S) < vpax, OPT; < /mumax. Moreover, by Theoreil 8, the allocation computed
by the application of valuation-greedy g is a (y/m + 1)-approximation ofOPT,. Hence, the expected
social welfare oRandPoly is at least:

1 . OPT, \ _ OPT, { OPT,
o\ T 1) T a(m 1)

Therefore, the approximation ratio BhndPoly is 2(y/m + 1). O

A.8 Proof of Theorem[12

Proof. For sake of contradiction, let us assume that there is ardetistic truthful mechanisny with an
approximation ratio o2 — ¢, for somes > 0. We consider two instances wheése= {a, b}, and both bidders
are inS; = Sy = {{a}, {b}}. Inthe firstinstancey; ({a}) = 1+ ¢d andv; ({b}) = 1, andva({a}) =140
andvy({b}) = 1. SinceA is a(2 — §)-approximation algorithmA (v, v2) must allocate both sefs:} and
{b}. Without loss of generality, we assume thiv;, v2) allocates{a} to bidder1 and{b} to bidder2.
Moreover, by Theoreml 1, if,({a}) = 1 + § andv({b}) = 0, then A(vy, v},) must allocate{a} to bidder
1 and{b} to bidder2. Therefore,A has an approximation ratio of at leg8t+ ¢)/(1 + ¢), which is larger
than2 — ¢, forall § > 0. O

A.9 Proof of Theorem[14

Proof. For sake of contradiction, we assume that there is a randéahtiathful-in-expectation mechanism
A with approximation ratio at mogt = 1.09.

As in the proofs of Theorenis 112 ahd] 13, we consider instantesedd = {a, b}, the first bidder is
interested inS; = {{a,b},{b}}, and the second bidder is interestedSin = {{a}}. We consider two
instances andI’. In both of them, the valuation of bidderis v2({a}) = 1. The valuation of biddet is
v1({a,b}) = ¢, wherep = (1 + +/5)/2 is the golden ratio, and; ({b}) = 0in I, andv}({a,b}) = ¢ and
vi({b}) =1inTI.

We assume that can have only two different solutions for instandeand’. More specifically, either
A allocates{a, b} to bidder1 and{) to bidder2, which happens with probability for instancel andq for
instancel’, or A allocates{b} to bidder1 and{a} to bidder2, which happens with probability — p for
instancel and1 — ¢ for instancel’. Note that this assumption is without loss of generalitgcsiall the
other feasible solutions have worst social welfare thanlweconsidered.
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Using that the approximation ratio &f is at mostp, we obtain that:

© ©o—p
———— <p=>p>—F—— (14)
pp+1—p plp —1)
2 2—pp
———<p=>1l-q¢>—F——" (15)
qp +2(1—q) p(2— )

where [(1#) follows from the approximation ratio dffor instancel, and [1%) follows from the approxima-
tion ratio of A for instancel”.

Moreover, sinced is truthful in expectation, the expected welfare of bidddrom A’s allocation for
instancel, which ispy, does not exceed her expected welfare frdimallocation for instancé’, which is
qe + (1 — q). Otherwise, biddet could underbid o b} by declaringv;, and get an expected welfare of
pp. Therefore, we obtain that:

pp —1
p—1

Combining [(14),[(1b), and (16), we conclude thaatisfies that:

pp<qp+1l—qg=q> (16)

P _
2—pp | Pae—n !

<1
p(2—¢) p—1

This is a contradiction, because the inequality above dothald if p € [1,1.09]. Thus, we conclude that
any randomized mechanismfor CAs that is truthful-in-expectation, has an approximatatio worse than
1.09. ]

A.10 Proof of Theorem[I%

Proof. For sake of contradiction, let us assume that for some giyer< d < m, there is a truthful priority
mechanismA for CAs with knownk-minded bidders that achieves an approximation ratiol6f §)d, for
some constant > 0.

Let L be any subset dfl of cardinalityd. As an input toA, we consider an instandg that for each
bidderi, contains elementary bids, L, 1 + ) and(i, S, 1), for all ) £ S C L. As a priority mechanism,
A selects a bid frond; and considers it first. In the following, we distinguish beem the case where the
first bid is(¢, L, 1 + d), for some biddef, and the case where the first bid(issS, 1), for some bidde¥ and
some sef5, and show how to arrive at contradiction in both.

Case 1l et us assume that the first bid(is L, 1 + ¢), for some biddei. Then, if A acceptdi, L, 1+ §), it
obtains a social welfare df+ ¢, while the optimal social welfare g which contradicts the hypothesis that
the approximation ratio ofl is (1 — §)d. If A rejects(i, L, 1 + ¢), we considerd’s approximation ratio for
an instancd, C I, that includes only the elementary kid L, 1 + §). SinceA cannot distinguish between
I, andIy, it rejects(i, L, 1 + §) when considerind,, which leads to an unbounded approximation ratio for
L.

Case 2l et us assume that the first bid(is S, 1), for some biddei and some set # S C L. Then, ifA
acceptg(i, S, 1), we considetd’s approximation ratio for an instandg C I; that includes the elementary
bids (i, .S,1) and (i, L, 1 + §). SinceA cannot distinguish betweeh and I3, it again selects bidi, S, 1)
first and accepts it, when it considefs But then consider the instandg in which i changeg(i, S, 1)
into (¢, 5,1/d). SinceA has an approximation ratio ¢ — §)d, it must allocateL to bidder: in I}. But
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this contradicts the hypothesis thatis truthful since the two bids of bidderin I3 and I; do not satisfy
k-monotonicity (cf. Definitior 11).

If A rejects(i, S, 1), we considerd’s approximation ratio for an instandg C I; that includes only the
elementary bidi, S, 1). SinceA cannot distinguish betweeh andly, it rejects(i, S, 1) when considering
14, which leads to an unbounded approximation ratioffior O

A.11 Proof of Theorem[16

Proof. For sake of contradiction, let us assume that there is aftiyphiority mechanismA for CAs with
known 2-minded bidders that processes bidders and achieves aoxapption ratio of(1 — 0)m/2, for
some constant > 0.

We consider a universd = {aq,...,a,,} andm bidders. For each, 1 < i < m, we letg; be
a single-minded valuation where the demanded sétj$ with valuation1. More specifically, for each
S CU,g(S)=1,if a; € S,andg;(S) = 0, otherwise. Moreover, for each1 < i < m, we letf; be a
double-minded valuation where the demanded set is efthérwith valuationm? + 4, or U with valuation
m? + 25. More specifically,f;(U) = m? + 26, and for eachS c U, fi(S) = m? + 6, if a; € S, and
fi(S) = 0, otherwise. In the following, we only considegstricted instancesf CAs where every bidder
has a valuation of type eithgror f.

We first show that for any bidderand for all instances where all biddefs# i have single-minded
valuations of typey and: has a valuation of typg, A allocatesU to : and( to any bidder; # i (this claim
is the equivalent of |1, Lemma 5] in our setting). We gt for somel < k < m, be the valuation of bidder
i. Since the optimal social welfare is at least + 25, A allocates eithet) or a setS 2O {a;} to bidder
1. Otherwise, the social welfare of would be at mosin — 1, which contradicts the hypothesis that the
approximation ratio ofd is (1 — §)m /2. However, the fact that is truthful, implies, by Theoreml 1, that
must assigrJ to ¢ on inputg valuations from bidders other tharand f, valuation from:. Indeed, assume
that it is not the case and consider a new instance in whiaebidieclares a single-minded valuation where
the demanded set i$ with valuationm? + 2. Because of the approximation guaranteeipbn this new
instance,A must grantU to i. The two declarations would then contradietmonotonicity (cf. Definition
). Therefore A allocatesU to bidder: and{) to any bidder; +# i.

Using this claim, we can prove the following proposition ahhis identical to[[lL, Lemma 6]. The proof
is by induction o, and is omitted because it is essentially identical to tl®fin [1]. In fact, that proof
uses only standard properties of priority algorithms, thsuanption that the approximation ratio dfis
(1 —9)m/2, and [1, Lemma 5], which, in our case, is replaced by the ckiove.

Proposition 4 Let A be any truthful priority mechanism which for restricted tansces withm goods,
achieves an approximation ratio ¢f — §)m/2, for some constand > 0. Then, there exists a labeling
of the bidders and the goods such that the following holdsafioi € {0,1,...,m/2 — 1}. Let instance
I ={(j,g5) : 1 < j < i}. Then, for any restricted instandeD I;, A considers all the bidders if; before
all other bidders inZ, and allocates) to each bidder irV;.

Using Propositiofl4, we can now complete the proof of the leminet!’” = {(j,g;) : 1 < j < m/2—-1}
be the instancé; defined in Propositionl4 for = m/2 — 1, and letl = I' U {(j,gm) : m/2 < j < m}.
We note that the optimal social welfare fbis m /2, and thatl is a restricted instance such tHatC I, as
required by Proposition] 4. Therefore, mechanidmonsiders bidders, ..., m/2 — 1 first and allocate$
to each of them. Since bidders/2, ..., m are all single-minded for good,,, the social welfare ofi for
instancel is at mostl, which contradicts the hypothesis that the approximatédio of A is (1 — §)m /2. O

25



	1 Introduction
	1.1 Our contribution
	1.2 Related work
	2 Model and preliminaries
	3 Characterization of truthful mechanisms
	3.1 Characterization for known bidders
	3.2 Characterization for unknown bidders
	3.3 Implications of our characterizations
	3.3.1 Single-minded versus multi-minded bidders
	3.3.2 Beyond CAs


	4 Upper bounds for unknown bidders
	4.1 CAs with arbitrary supply of goods
	4.1.1 Deterministic truthful CAs
	4.1.2 Randomized truthful CAs

	4.2 CAs with single supply
	4.2.1 Greedy algorithm
	4.2.2 Randomized Exponential-Time Mechanism
	4.2.3 Randomized Polynomial-Time Mechanism


	5 Lower bounds for known bidders
	5.1 Priority Mechanisms
	5.2 Discussion

	A Postponed proofs
	A.1 Proof of Lemma ??
	A.2 Proof of Lemma ??
	A.3 Proof of Theorem ??
	A.4 Proof of Theorem ??
	A.5 Proof of Proposition ??
	A.6 Proof of Theorem ??
	A.7 Proof of Theorem ??
	A.8 Proof of Theorem ??
	A.9 Proof of Theorem ??
	A.10 Proof of Theorem ??
	A.11 Proof of Theorem ??



