
A UNIFIED APPROACH TO LINEAR PROBING HASHING

WITH BUCKETS

SVANTE JANSON AND ALFREDO VIOLA

Abstract. We give a unified analysis of linear probing hashing with a gen-

eral bucket size. We use both a combinatorial approach, giving exact formulas
for generating functions, and a probabilistic approach, giving simple deriva-

tions of asymptotic results. Both approaches complement nicely, and give a

good insight in the relation between linear probing and random walks. A key
methodological contribution, at the core of Analytic Combinatorics, is the use

of the symbolic method (based on q-calculus) to directly derive the generating

functions to analyze.

1. Motivation

Linear probing hashing , defined below, is certainly the simplest “in place” hash-
ing algorithm [25].

A table of length m, T [1 . .m], with buckets of size b is set up, as well as a
hash function h that maps keys from some domain to the interval [1 . .m] of
table addresses. A collection of n keys with n 6 bm are entered sequentially
into the table according to the following rule: Each key x is placed at the
first bucket that is not full starting from h(x) in cyclic order, namely the
first of h(x), h(x) + 1, . . . ,m, 1, 2, . . . , h(x)− 1.

In [26] Knuth motivates his paper in the following way: “The purpose of this
note is to exhibit a surprisingly simple solution to a problem that appears in a
recent book by Sedgewick and Flajolet [36]:
Exercise 8.39 Use the symbolic method to derive the EGF of the number of
probes required by linear probing in a successful search, for fixed M .”

Moreover, at the end of the paper in his personal remarks he declares: “None of
the methods available in 1962 were powerful enough to deduce the expected square
displacement, much less the higher moments, so it is an even greater pleasure to
be able to derive such results today from other work that has enriched the field
of combinatorial mathematics during a period of 35 years.” In this sense, he is
talking about the powerful methods based on Analytic Combinatorics that has
been developed for the last decades, and are presented in [16].

In this paper we present in a unified way the analysis of several random variables
related with linear probing hashing with buckets, giving explicit and exact trivariate
generating functions in the combinatorial model, together with generating functions
in the asymptotic Poisson model that provide limit results, and relations between

Date: 20 October, 2014.

2010 Mathematics Subject Classification. 60W40; 68P10, 68P20.
Key words and phrases. hashing; linear probing; buckets; generating functions; analytic

combinatorics.
SJ partly supported by the Knut and Alice Wallenberg Foundation.

1

ar
X

iv
:1

41
0.

59
67

v1
 [

cs
.D

S]
 2

2
O

ct
 2

01
4

2 SVANTE JANSON AND ALFREDO VIOLA

the two types of results. We consider also the parking problem version, where there
is no wrapping around and overflow may occur from the last bucket. Linear probing
has been shown to have strong connections with several important problems (see
[26; 15; 7] and the references therein). The derivations in the asymptotic Poisson
model are probabilistic and use heavily the relation between random walks and the
profile of the table. Moreover, the derivations in the combinatorial model are based
in combinatorial specifications that directly translate into multivariate generating
functions. As far as we know, this is the first unified presentation of the analysis of
linear probing hashing with buckets based on Analytic Combinatorics (“if you can
specify it, you can analyze it”).

We will see that results can easily be translated between the exact combinatorial
model and the asymptotic Poisson model. Nevertheless, we feel that it is important
to present independently derivations for the two models, since the methodologies
complement very nicely. Moreover, they heavily rely in the deep relations between
linear probing and other combinatorial problems like random walks, and the power
of Analytic Combinatorics.

The derivations based on Analytic Combinatorics heavily rely on a lecture pre-
sented by Flajolet whose notes can be accessed in [12]. Since these ideas have
only been partially published in the context of the analysis of hashing in [16], we
briefly present here some constructions that lead to q-analogs of their corresponding
multivariate generating functions.

2. Some previous work

The main application of linear probing is to retrieve information in secondary
storage devices when the load factor is not too high, as first proposed by Peterson
[33]. One reason for the use of linear probing is that it preserves locality of reference
between successive probes, thus avoiding long seeks [29].

The first published analysis of linear probing was done by Konheim and Weiss
[28]. In addition, this problem also has a special historical value since the first
analysis of algorithms ever performed by D. Knuth [24] was that of linear probing
hashing. As Knuth indicates in many of his writings, the problem has had a strong
influence on his scientific carreer. Moreover, the construction cost to fill a linear
probing hash table connects to a wealth of interesting combinatorial and analytic
problems. More specifically, the Airy distribution that surfaces as a limit law in
this construction cost is also present in random trees (inversions and path length),
random graphs (the complexity or excess parameter), and in random walks (area),
as well as in Brownian motion (Brownian excursion area) [26; 15; 22].

Operating primarily in the context of double hashing, several authors [4; 1; 18]
observed that a collision could be resolved in favor of any of the keys involved,
and used this additional degree of freedom to decrease the expected search time
in the table. We obtain the standard scheme by letting the incoming key probe
its next location. So, we may see this standard policy as a first-come-first-served
(FCFS) heuristic. Later Celis, Larson and Munro [5; 6] were the first to observe
that collisions could be resolved having variance reduction as a goal. They defined
the Robin Hood heuristic, in which each collision occurring on each insertion is
resolved in favor of the key that is farthest away from its home location. Later,
Poblete and Munro [34] defined the last-come-first-served (LCFS) heuristic, where
collisions are resolved in favor of the incoming key, and others are moved ahead

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 3

one position in their probe sequences. These strategies do not look ahead in the
probe sequence, since the decision is made before any of the keys probes its next
location. As a consequence, they do not improve the average search cost, although
the variance of this random variable is different for each strategy.

For the FCFS heuristic, if Am,n denotes the number of probes in a successful
search in a hash table of size m with n keys (assuming all keys in the table are
equally likely to be searched), and if we assume that the hash function h takes all
the values in 0 . . .m− 1 with equal probabilities, then we know from [25; 17]

E[Am,n] =
1

2
(1 +Q0(m,n− 1)), (2.1)

Var[Am,n] =
1

3
Q2(m,n− 1)− 1

4
Q0(m,n− 1)2 − 1

12
. (2.2)

where

Qr(m,n) =

n∑
k=0

(
k + r

k

)
nk

mk

and nk defined as nk = n(n−1) . . . (n−k+1) for real n and integer k ≥ 0 is the k:th
falling factorial power of n. The function Q0(m,n) is also known as Ramanujan’s
Q-function [13].

For a table with n = αm keys, and fixed α < 1 and n,m→∞, these quantities
depend (essentially) only on α:

E[Am,αm] =
1

2

(
1 +

1

1− α

)
− 1

2(1− α)3m
+O

(
1

m2

)
,

Var[Am,αm] =
1

3(1− α)3
− 1

4(1− α)2
− 1

12
− 1 + 3α

2(1− α)5m
+O

(
1

m2

)
.

For a full table, these approximations are useless, but the properties of the Q
functions can be used to obtain the following expressions, reproved in Corollary 12.5,

E[Am,m] =

√
2πm

4
+

1

3
+

1

48

√
2π

m
+O

(
1

m

)
, (2.3)

Var[Am,m] =

√
2πm3

12
+

(
1

9
− π

8

)
m+

13
√

2πm

144
− 47

405
− π

48
+O

(
1√
m

)
. (2.4)

As it can be seen the variance is very high, and as a consequence the Robin
Hood and LCFS heuristics are important in this regard. It is proven in [5; 6] that
Robin Hood achieves the minimum variance among all the heuristics that do not
look ahead at the future, and that LCFS has an asymptotically optimal variance
[35]. This problem appears in the simulations presented in Section 13, and as a
consequence even though the expected values that we present are very informative,
there is still a disagreement with the experimental results.

Moreover, in [21] and [39], a distributional analysis for the FCFS, LCFS and
Robin Hood heuristic is presented. These results consider a hash table with buckets
of size 1. However, very little is known when we have tables with buckets of size b.

In [3], Blake and Konheim studied the asymptotic behavior of the expected
cost of successful searches as the number of keys and buckets tend to infinity with
their ratio remaining constant. Mendelson [30] derived exact formulae for the same
expected cost, but only solved them numerically. These papers consider the FCFS
heuristic. Moreover, in [41] an exact analysis of a linear probing hashing scheme

4 SVANTE JANSON AND ALFREDO VIOLA

with buckets of size b (working with the Robin Hood heuristic) is presented. The
first complete distributional analysis of the Robin Hood heuristic with buckets of
size b is presented in [40], where an independent analysis of the parking problem
presented in [37] is also proposed.

In the present paper we consider an arbitrary bucket size b > 1. The special case
b = 1 has been studied in many previous works. In this case, many of our results
reduce to known results, see e.g. [21] and [39] and the references given there.

3. Some notation

We study tables with m buckets of size b and n keys, where b > 1 is a constant.
We often consider limits as m,n→∞ with n/bm→ α with α ∈ (0, 1). We consider
also the Poisson model with n ∼ Po(αbm), and thus Po(bα) keys hashed to each
bucket; in this model we can also take m = ∞ which gives a natural limit object,
see Sections 6–7.

A cluster or block is a (maximal) sequence of full buckets ended by a non-full
one. An almost full table is a table consisting of a single cluster.

The tree function [16, p. 127] is defined by

T (z) :=

∞∑
n=1

nn−1

n!
zn, (3.1)

which converges for |z| 6 e−1; T (z) satisfies T (e−1) = 1 and

z = T (z)e−T (z). (3.2)

In particular, note that (3.2) implies that T (z) is injective on |z| 6 e−1. Recall
also the well-known formula (easily obtained by taking the logarithmic derivative
of (3.2))

T ′(z) =
T (z)

z(1− T (z))
. (3.3)

(The tree function is related to the Lambert W -function W (z) [31, §4.13] by T (z) =
−W (−z).)

Let ω = ωb := e2πi/b be a primitive b:th unit root.
For α with 0 < α < 1, we define

ζ`(q) = ζ`(q;α) := T
(
ω`αe−αq1/b

)
/α (3.4)

and

ζ` := ζ`(1) = T
(
ω`αe−α

)
/α. (3.5)

Note that

ζ0 = T
(
αe−α

)
/α = 1, (3.6)

cf. (3.2) (with z = αe−α). We note the following properties of these numbers.

Lemma 3.1. Let 0 < α < 1. Then (3.4) defines b numbers ζ`(q), ` = 0, . . . , b− 1,
for every q with |q| 6 R := (eα−1/α)b > 1. If furthermore q 6= 0, then these b
numbers are distinct.

If |q| 6 1, then the b numbers ζ`(q), ` = 0, . . . , b − 1, satisfy |ζ`(q)| 6 1, and
they are the b roots in the unit disc of

ζb = eαb(ζ−1)q. (3.7)

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 5

Proof. Note first that

|αe−αω`q1/b| 6 e−1 (3.8)

is equivalent to

|q| 6 R := (eα−1/α)b > 1, (3.9)

so all ζ`(q) are defined for |q| 6 R. If also q 6= 0, then ζ0(q), . . . , ζb−1(q) are distinct,
because T is injective by (3.2). Furthermore, for |q| 6 1, using (3.4), the fact that
(3.1) has positive coefficients, and (3.6),

|ζ`(q)| 6 α−1T
(
αe−α

)
= 1. (3.10)

Moreover, (3.4) and (3.2) imply

αζ`(q)e
−αζ`(q) = αe−αω`q1/b (3.11)

which by taking the b:th powers yields (3.7). Since the derivative of eαb(r−1)−rb at
r = 1 is αb− b < 0, we can find r > 1 such that eαb(r−1) < rb, and then Rouché’s
theorem shows that, for any q with |q| 6 1, ζb − eαb(ζ−1)q has exactly b roots in
|ζ| < r; thus, the b roots ζ0(q), . . . , ζb−1(q) are the only roots of (3.7) in |ζ| < r.
(The case q = 0 is trivial.) �

Remark 3.2. In order to define an individual ζ`(q), we have to fix a choice of
q1/b in (3.4). It is thus impossible to define each ζ`(q) as a continuous function
in the entire unit disc; they rather are different branches of a single, multivalued,
function, with a branch point at 0. Nevertheless, it is only the collection of all of
them together that matters, for example in (10.8), and this collection is uniquely
defined.

We denote convergence in distribution of random variables by
d−→.

4. Combinatorial characterization of linear probing

As a combinatorial object, a non-full linear probing hash table is a sequence of
almost full tables (or clusters) [26; 15; 40]. As a consequence, any random variable
related with the table itself (like block lengths, or the overflow in the parking
problem) or with a random key (like its search cost) can be studied in a cluster
(that we may assume to be the last one in the sequence), and then use the sequence
construction. Figure 1 presents an example of such a decomposition.

We briefly recall here some of the definitions presented in [3; 40]. Let Fbi+d be
the number of ways to construct an almost full table of length i+ 1 and size bi+ d
(that is, there are b− d empty slots in the last bucket). Define also

Fd(u) :=
∑
i≥0

Fbi+d
ubi+d

(bi+ d)!
, Nd(z, w) :=

b−1−d∑
s=0

wb−sFs(zw), 0 ≤ d ≤ b− 1.

(4.1)

In this setting Nd(z, w) is the generating function for the number of almost full
tables with more than d empty locations in the last bucket. More specifically
N0(z, w) is the generating function for the number of all the almost full tables.
(Our generating functions use the weight wbmzn/n! for a table of length m and n
keys; they are thus exponential generating functions in n and ordinary generating
functions in m.) We present below some basic identities.

6 SVANTE JANSON AND ALFREDO VIOLA

Lemma 4.1.

F (bz, x) :=

b−1∑
d=0

Fd(bz)x
d = xb −

b−1∏
j=0

(
x− T (ωjz)

z

)
, (4.2)

b−1∑
d=0

Nd(bz, w)xd =

b−1∏
j=0

(
1− xT (ωjzw)

z

)
−
b−1∏
j=0

(
1− T (ωjzw)

z

)
1− x , (4.3)

b−1∑
d=0

Nd(bα, e
−α)xd =

b−1∏
j=1

(
1− xT (ωjαe−α)

α

)
. (4.4)

Proof. Equation (4.2) can be derived from Lemma 2.3 in [3].
Moreover, from equation (4.1),

b−1∑
d=0

Nd(bz, w)xd =

b−1∑
d=0

xd
b−1−d∑
s=0

wb−sFs(bzw) =

b−1∑
s=0

wb−sFs(bzw)

b−1−s∑
d=0

xd

=

b−1∑
s=0

wb−sFs(bzw)−
b−1∑
s=0

(wx)b−sFs(bzw)

1− x

=

wbF

(
bzw,

1

w

)
− (wx)bF

(
bzw,

1

wx

)
1− x .

Then (4.3) follows from (4.2).
Finally (4.4) follows from (4.3), and since T (αe−α) = α the factor for j = 0

cancels the second product, and gives the factor (1−x) in the first one that cancels
with the denominator. �

Corollary 4.2.

Nd(bz, w) = [xd]

b−1∏
j=0

(
1− xT (ωjzw)

z

)
−
b−1∏
j=0

(
1− T (ωjzw)

z

)
1− x , (4.5)

and more specifically (formula (3.8) in [3]),

N0(bz, w) = 1−
b−1∏
j=0

(
1− T (ωjzw)

z

)
. (4.6)

Moreover (Lemma 5 in [40]),

Nd(bα, e
−α) =

[
xd
] b−1∏
j=1

(
1− xT (ωjαe−α)

α

)
. (4.7)

Let also Qm,n,d, for 0 6 d 6 b − 1, be the number of ways of inserting n keys
into a table with m buckets of size b, so that a given (say the last) bucket of the
table contains more than d empty slots. (We include the empty table, and define

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 7

Q0,0,d = 1.) In this setting, by a direct application of the sequence construction as
presented in [16] (sequence of almost full tables) we derive a result presented in [3]:

Λ0(bz, w) :=
∑
m≥0

∑
n≥0

Qm,n,0
(bz)n

n!
wbm =

1

1−N0(bz, w)
=

1∏b−1
j=0

(
1− T (ωjzw)

z

) ,
(4.8)

where Λ0(bz, w) is the generating function for the number of ways to construct hash
tables such that their last bucket is not full, and more generally

Λd(bz, w) :=
∑
m≥0

∑
n≥0

Qm,n,d
(bz)n

n!
wbm = 1 +

Nd(bz, w)

1−N0(bz, w)
. (4.9)

Moreover Od(bz, w), the generating function for the number of ways to construct
hash tables such that their last bucket has exactly d 6 b− 1 keys, is

Od(bz, w) :=
Fd(bzw)wb−d

1−N0(bz, w)
. (4.10)

������������������ ��� ������ ���
........

������������������ ��� ���
........

������������������
........

�
�

�
�
��	

@
@
@
@
@@R

n

bi+ dn− bi− d

m− i− 1 i+ 1

� -� -

1

Figure 1. A decomposition for b = 3 and d = 2.

Consider a hash table of length m and n keys, where collisions are resolved by
linear probing. Let P be a non-negative integer-valued property (e.g. cost of a
successful search or block length), related with the last cluster of the sequence, or
with a random key inside it. Let pbi+d(q) be the probability generating function
of P calculated in the cluster of length i + 1 and with bi + d keys (as presented
in Figure 1). We may express pm,n(q), the generating function of P for a table of
length m and n keys with at least one empty spot in the last bucket, as the sum of
the conditional probabilities:

pm,n(q) =

b−1∑
d=0

∑
i>0

#{tables where last cluster has size i+ 1 and bi+ d keys} pbi+d(q).

There are Qm−i−1,n−bi−d,0 ways to insert n − bi − d keys in the leftmost hash
table of length m−i−1, leaving their rightmost bucket not full. Moreover, there are
Fbi+d ways to insert bi+d keys in the almost full table of length i+1. Furthermore,
there are

(
n

bi+d

)
ways to choose which bi+ d keys go to the last cluster. Therefore,

pm,n(q) =

b−1∑
d=0

∑
i≥0

(
n

bi+ d

)
Qm−i−1,n−bi−d,0 Fbi+d pbi+d(q).

8 SVANTE JANSON AND ALFREDO VIOLA

Then, the trivariate generating function for pm,n(q) is

P (z, w, q) :=
∑
m,n≥0

pm,n(q) wbm
zn

n!
= Λ0(z, w)N̂0(z, w, q), (4.11)

with

N̂0(z, w, q) :=
∑
i≥0

wb(i+1)
b−1∑
d=0

Fbi+d
zbi+d

(bi+ d)!
pbi+d(q), (4.12)

which could be directly derived with the sequence construction [16]. In this setting,
w marks the total capacity (b(i+ 1)) while z marks the number of keys in the table
(bi + d with 0 ≤ d < b). Equation (4.11) can be interpreted as follows: to analyze
a property in a linear probing hash table, do the analysis in an almost full table
(giving the factor N̂0(z, w, q)), and then use the sequence construction (giving the
factor Λ0(z, w)).

Notice that, as expected, N̂0(z, w, 1) = N0(z, w) and P (z, w, 1) = Λ0(z, w) − 1,
since we consider only m ≥ 1 (we have a last, non-filled bucket).

Remark 4.3. We have here, for simplicity, assumed that each pbi+d(q) is a proba-
bility generating function, corresponding to a single property P of the last cluster.
However, the argument above generalizes to the case when pbi+d(q) is a gener-
ating function corresponding to several values of a property P for each cluster;
(4.11) and (4.12) still hold, although we no longer have pbi+d(1) = 1 and thus not

N̂0(z, w, 1) = N0(z, w) (in general). We use this in Sections 11 and 12.

4.1. The Poisson Transform. There are two standard models that are exten-
sively used in the analysis of hashing algorithms: the exact filling model and the
Poisson filling model. Under the exact model, we have a fixed number of keys, n,
that are distributed among m buckets of size b, and all mn possible arrangements
are equally likely to occur.

Under the Poisson model, we assume that each location receives a number of keys
that is Poisson distributed with parameter bα (with 0 ≤ α < 1) , and is independent
of the number of keys going elsewhere. This implies that the total number of keys,
N , is itself a Poisson distributed random variable with parameter bαm:

Pr [N = n] =
e−bαm(bαm)n

n!
, n = 0, 1, . . .

(For finite m, there is an exponentially small probability that N > bm; this possi-
bility can usually be ignored in the limit m,n → ∞. For completeness we assume
either that we consider the parking problem where overflow may occur, or that we
make some special definition when N > bm. See also the infinite Poisson model in
Section 7, where this problem disappears.) This model was first considered in the
analysis of hashing, for a somewhat different problem, by Fagin et al [10] in 1979.

The results obtained under the Poisson filling model can be interpreted as an
approximation of those one would obtain under the exact filling model when n =
bαm. For most situations and applications, this approximation is satisfactory for
large m and n. (However, it cannot be used when we have a full, or almost full,
table, so α is very close to 1.) We give a detailed statement of one general limit
theorem (Theorem 7.4) later, but give a brief sketch here. We begin with some
algebraic identities.

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 9

Consider a hash table of size m with n keys, in which conflicts are resolved by
open addressing using some heuristic. Let the variable P be a non-negative integer-
valued property of the table (e.g. the block length of a random cluster), or of a
random key of the table (e.g., the cost of a successful search), and let fm,n be the
result of applying a linear operator f (e.g., an expected value) to the probability
generating function of P for the exact filling model. Let Pm[fm,n; bα] be the result
of applying the same linear operator f to the probability generating function of P
computed using the Poisson filling model. Then

Pm[fm,n; bα] =
∑
n≥0

Pr [N = n] fm,n = e−bmα
∑
n≥0

(bmα)n

n!
fm,n. (4.13)

In this context, Pm[fm,n; bα] is called the Poisson transform of fm,n.
In particular, let Pm,n(q) be the generating function of a variable P in a hash

table of size m with n keys, and let pm,n(q) = Pm,n(q)/mn be the corresponding
probability generating function of P regarded as a random variable (with all mn

tables equally likely). Define the trivariate generating function

P (z, w, q) :=
∑
m≥0

wbm
∑
n≥0

Pm,n(q)
zn

n!
=
∑
m≥0

wbm
∑
n≥0

pm,n(q)
(mz)n

n!
.

Then, for a fixed 0 ≤ α < 1, using (4.13),

P (bα, y1/be−α, q) =
∑
m≥0

ym

e−bmα∑
n≥0

pm,n(q)
(bmα)n

n!

=
∑
m≥0

ymPm [pm,n(q); bα] . (4.14)

In other words, P (bα, y1/be−α, q) is the generating function of Pm[pm,n(q); bα].
Asymptotic results for the probability generating function in the Poisson model,

can thus be found by singularity analysis [14; 16] from P (bα, y1/be−α, q). In our
problems, the dominant singularity is a simple pole at y = 1. Furthermore, as-
ymptotic results for the exact model can be found by de-Poissonization; we give a
probabilistic proof of one such result in Theorem 7.4(i).

The same formulas without the variable q hold if Pm,n is the number of hash
tables with a certain Boolean property, and pm,n = Pm,n/m

n is the corresponding
probability that a random hash table has this property. In this case, the trivariate
generating function (4.14) is replaced by the bivariate

P (bα, y1/be−α) =
∑
m≥0

yme−bmα
∑
n≥0

pm,n
(bmα)n

n!
. (4.15)

For example, from equation (4.8), Λ0(bα, y1/be−α) has a dominant simple pole
at y = 1 originated by the factor with j = 0, since T (αe−α)/α = 1. More precisely,
using (3.3),

1

1− T(y1/bαe−α)
α

∼
y→1

b(1− α)

1− y .

10 SVANTE JANSON AND ALFREDO VIOLA

Marking a position 7→ ∂w Cbn+d = (n+ 1)Abn+d
C = Pos(A) C(z, w) = w

b
∂
∂w (A(z, w))

Adding a key 7→
∫

Cbn+d = Abn+d−1
C = Add(A) C(z, w) =

∫ z
0
A(u,w)du

Bucketing 7→ exp Cm,n = δ(m, 1)
C = Bucket(Z) C(z, w) = wb exp(z)
Marking a key 7→ ∂z Cm,n = nAm,n
C = Mark(A) C(z, w) = z ∂

∂zA(z, w)

Figure 2. Constructions used in hashing

and the residue of Λ0(bα, y1/be−α) at y = 1 is

T0(bα) :=
b(1− α)∏b−1

j=1

(
1− T (ωjαe−α)

α

) . (4.16)

Then the following result presented in ([3; 40]) is rederived, see also Theorem 7.4(ii)(iii):

lim
m→∞

Pm[Qm,n,0/m
n; bα] = T0(bα). (4.17)

Moreover, from (4.11) we similarly obtain, for a property P ,

lim
m→∞

Pm[pm,n(q)/mn; bα] = T0(bα)N̂0(bα, e−α, q). (4.18)

By de-Poissonization, we further find asymptotics for Qm,n,0 and (for suitable prop-
erties P) pm,n(q), see Theorem 7.4(i).

Even though by equations (4.14) and (4.18) the results in the exact model can
be directly translated into their counterpart in the Poisson model, in this paper we
present derivations for both approaches. We feel this is very important to present
a unified point of view of the problem. Furthermore, the deriviations made in each
model are also unified. For the exact model, a direct approach using the symbolic
method and the powerful tools from Analytic Combinatorics [16] is presented, while
for the Poisson model, a unified approach using random walks is used. Presenting
both related but independently derived analyses, helps in the better understanding
of the combinatorial, analytic and probabilistic properties of linear probing.

5. A q-calculus to specify random variables

All the generating functions in this paper are exponential in n and ordinary in
m. Moreover, the variable q marks the value of the random variable at hand. As
a consequence all the labelled constructions in [16] and their respective translation
into EGF can be used. However, to specify the combinatorial properties related
with the analysis of linear probing hashing, new constructions have to be added.
These ideas have been presented by Flajolet in [12], but they do not seem to have
been published in the context of hashing. As a consequence, we briefly summarize
them in this section.

We first concentrate in counting generating functions (q = 1), and we generalize
these constructions in Section 5.1 for distributional results where their q-analogue
counterparts are presented. Figure 2 presents a list of combinatorial constructions
used in hashing and their corresponding translation into EGF, where Z is an atomic

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 11

class comprising a single key of size 1. We motivate these constructions that are
specifically defined for this analysis.

Because of the sequence interpretation of linear probing, insertions are done in
an almost full table with n+ 1 buckets of size b (total capacity b(n+ 1)) and bn+d

keys. As it is seen in (4.12) in N̂0(z, w, q) the variable w marks the total capacity,
while z marks the number of keys. So, in this context all the generating functions
to be used for the first two constructions have the form

A(z, w) =
∑
n≥0

wb(n+1).

b−1∑
d=0

Abn+d
zbn+d

(bn+ d)!
.

To help in fixing ideas, we may think (as an analogue with equation (4.12)) that
Abn+d = Fbn+d pbn+d(1).

To insert a key, a position is first chosen, and then the key is inserted. Both
actions can be formally specified using the symbolic method.

• Marking a position.
Given an almost full table with n+ 1 buckets (the last one with d keys,

0 ≤ d < b), a new key can hash in n+ 1 different places. As a consequence,
we have the counting relation Cbn+d = (n + 1)Abn+d, leading to the ∂w
relation in their respective multivariate generating functions.

Notice that the key has not been inserted yet, only a position is chosen,
and so the total number of keys in the table does not change.
• Adding a key.

Once a position is chosen, then a key is added. In this setting Cbn+d =
Abn+d−1, leading to the

∫
relation. No further calculations are needed,

since it only specifies that the number of keys has been increased by 1 (all
the other calculations were done when marking the position).

Other constructions are also useful to analyze linear probing hashing.

• Bucketing.
When considering a single bucket, it has capacity b, giving the factor

wb in the generating function. Moreover, for each n, there is only one
way to hash n keys in this bucket (all these key have this hash position).
Since the generating functions are exponential in n, this gives the factor ez

(reflecting the fact that Cm,n = 1 for n ≥ 0 and m = 1 since there is only
one bucket). In this context δ is the Dirac’s δ function (δ(a, b) = 1 if a = b
and 0 otherwise).

This construction is used for general hash tables with m buckets and n
keys (not necessarily almost full) in Sections 8 and 9.
• Marking a key.

In some cases, we need to choose a key among n keys that hash to some
specific location. The q-analogue of this construction is used in Section
9. The counting relation Cm,n = nAm,n leads to the ∂z relation in their
respective multivariate generating functions.

5.1. The q-calculus. In an almost full table with n + 1 buckets, there are n + 1
places where a new key can hash. However, if a distributional analysis is done, its
displacement depends on the place where it has hashed: it is i if the key hashes
to bucket n + 1 − i with 1 ≤ i ≤ n + 1. In this context, to keep track of the
distribution of random variables (e.g. the displacement of a new inserted key), we

12 SVANTE JANSON AND ALFREDO VIOLA

need generalizations of the constructions above that belong to the area of q-calculus
(equations (5.2) and (5.3)).

The same happens to the Mark construction We rank the n keys by the la-
bels 0, . . . , n − 1 (in arbitrary order), and give the key with label k the weight qk

(equations (5.4) and (5.5)).
We present below some of these translations, where the variable q marks the

value of the random variable at hand. Moments result from using the operators ∂q
(differentiation w.r.t. q) and Uq (setting q = 1).

n 7→ [n] := 1 + q + q2 + . . .+ qn−1 =
1− qn
1− q , (5.1)

∑
n≥0

(n+ 1)wb(n+1) ·
b−1∑
d=0

Abn+d
zbn+d

(bn+ d)!

7→
∑
n≥0

[n+ 1]wb(n+1) ·
b−1∑
d=0

Abn+d(q)
zbn+d

(bn+ d)!
, (5.2)

w

b

∂

∂w
A(z, w) 7→ H[A(z, w)] :=

A(z, w)−A(z, wq
1
b)

1− q , (5.3)∑
m≥0

wm ·
∑
n≥0

nAm,n
zn

n!
7→
∑
m≥0

wm ·
∑
n≥0

[n]Am,n(q)
zn

n!
, (5.4)

z
∂

∂z
A(z, w) 7→ Ĥ[A(z, w)] :=

A(z, w)−A(qz, w)

1− q . (5.5)

6. Probabilistic method: finite and infinite hash tables

In general, consider a hash table, with locations (“buckets”) each having capacity
b; we suppose that the buckets are labelled by i ∈ T, for a suitable index set T. Let
for each bucket i ∈ T, Xi be the number of keys that have hash address i, and thus
first try bucket i. We are mainly interested in the case when the Xi are random,
but in this section Xi can be any (deterministic or random) non-negative integers;
we consider the random case further in the next section.

Moreover, let Hi be the total number of keys that try bucket i and let Qi be
the overflow from bucket i, i.e., the number of keys that try bucket i but fail to
find room and thus are transferred to the next bucket. We call the sequence Hi,
i ∈ T, the profile of the hash table. (We will see that many quantities of interest
are determine by the profile.) These definitions yield the equations

Hi = Xi +Qi−1, (6.1)

Qi = (Hi − b)+. (6.2)

The final number of keys stored in bucket i is Yi := Hi ∧ b := min(Hi, b); in
particular, the bucket is full if and only if Hi > b.

Remark 6.1. The equations (6.1)–(6.2) are the same as in queuing theory, with
Qi the queuing process generated by the random variables Xi − b, see [11, Section
VI.9, in particular Example (c)].

Standard hashing is when the index set T is the cyclic group Zm. Another
standard case is the parking problem, where T is an interval {1, . . . ,m} for some

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 13

integer m; in this case the Qm keys that try the last bucket but fail to find room
there are lost (overflow), and (6.1)–(6.2) use the initial value Q0 := 0.

In the probabilistic analysis, we will mainly study infinite hash tables, either
one-sided with T = N := {1, 2, 3, . . . }, or two-sided with T = Z; as we shall see,
these occur naturally as limits of finite hash tables. In the one-sided case, we
again define Q0 := 0, and then, given (Xi)

∞
1 , Hi and Qi are uniquely determined

recursively for all i > 1 by (6.1)–(6.2). In the doubly-infinite case, it is not obvious
that the equations (6.1)–(6.2) really have a solution; we return to this question in
Lemma 6.2 below.

In the case T = Zm, we allow (with a minor abuse of notation) also the index i
in these quantities to be an arbitrary integer with the obvious interpretation; then
Xi, Hi and so on are periodic sequences defined for i ∈ Z.

We can express Hi and Qi in Xi by the following lemma, which generalizes
(and extends to infinite hashing) the case b = 1 treated in [25, Exercise 6.4-32], [8,
Proposition 5.3], [20, Lemma 2.1].

Lemma 6.2. Let Xi, i ∈ T, be given non-negative integers.

(i) If T = {1, . . . ,m} or N, then the equations (6.1)–(6.2), for i ∈ T, have a
unique solution given by, considering j > 0,

Hi = max
j<i

i∑
k=j+1

(Xk − b) + b, (6.3)

Qi = max
j6i

i∑
k=j+1

(Xk − b). (6.4)

(ii) If T = Zm, and moreover n :=
∑m

1 Xi < bm, then the equations (6.1)–
(6.2), for i ∈ T, have a unique solution given by (6.3)–(6.4), now with
j ∈ Z. Furthermore, there exists i0 ∈ T such that Hi0 < b and thus
Qi0 = 0.

(iii) If T = Z, assume that

N−1∑
i=0

(b−X−i)→∞ as N →∞. (6.5)

Then the equations (6.1)–(6.2), for i ∈ T, have a solution given by (6.3)–
(6.4), with j ∈ Z. This is the minimal solution to (6.1)–(6.2), and, fur-
thermore, for each i ∈ T there exists i0 < i such that Hi0 < b and thus
Qi0 = 0. Conversely, this is the only solution such that for every i there
exists i0 < i with Qi0 = 0.

In the sequel, we will always use this solution of (6.1)–(6.2) for hashing on Z
(assuming that (6.5) holds); we can regard this as a definition of hashing on Z.

Before giving the proof, we introduce the partial sums Sk of Xi; these are defined
by S0 = 0 and Sk−Sk−1 = Xk, where for the four cases above we let Sk be defined
for k ∈ {0, . . . ,m} when T = {1, . . . ,m}, k > 0 when T = N, k ∈ Z when T = Zm
or T = Z. Explicitly, for such k, (with an empty sum defined as 0)

Sk :=

{∑k
i=1Xi, k > 0,

−∑0
i=k+1Xi, k < 0.

(6.6)

14 SVANTE JANSON AND ALFREDO VIOLA

Note that in a finite hash table with T = Zm or {1, . . . ,m}, the total number n of
keys is Sm. (For T = Zm, note also that Sk+m = Sk + n for all k ∈ Z, so Sk is not
periodic.)

In terms of Sk, (6.3)–(6.4) can be written

Hi = max
j<i

(
Si − Sj − b(i− j) + b

)
(6.7)

= Si − bi−min
j<i

(Sj − bj) + b, (6.8)

Qi = max
j6i

(
Si − Sj − b(i− j)

)
(6.9)

= Si − bi−min
j6i

(Sj − bj). (6.10)

Remark 6.3. In the doubly-infinte Poisson model discussed further in Section 7,
the Xi are i.i.d. with Xi ∼ Po(bα). Thus Si − bi is a random walk with negative
drift EXi− b = −b(1−α). We can interpret (6.8) and (6.10) as saying that Hi and
Qi are two variants of the corresponding reflected random walk, i.e., this random
walk forced to stay non-negative.

of Lemma 6.2. (i): Here the maxima in (6.3)–(6.4) are over finite sets (and thus
well-defined), since we consider only j > 0. It is clear by induction that the equa-
tions (6.1)–(6.2) have a unique solution with Q0 = 0. Furthermore, (6.1)–(6.2)
yield

Qi = (Qi−1 +Xi − b)+ = max(Qi−1 +Xi − b, 0) (6.11)

and (6.4) follows by induction for all i > 0. (Note that the term j = i in (6.4) is∑i
i+1(Xk − b) = 0, by definition of an empty sum.) Then (6.3) follows by (6.1).
(iii): The assumption (6.5) implies that the maxima in (6.3)–(6.4) are well de-

fined, since the expressions tend to −∞ as j → −∞. If we define Hi and Qi by
these equations, then (6.3)–(6.4) imply Hi = Qi−1 + Xi, i.e., (6.1). Furthermore,
(6.4) implies (6.11), and thus also (6.2). Hence Hi and Qi solve (6.1)–(6.2). We
denote temporarily this solution by H∗i and Q∗i .

Suppose that Hi, Qi is any other solution of (6.1)–(6.2). Then

Qi = (Hi − b)+ > Hi − b = Qi−1 +Xi − b (6.12)

and thus by induction, for any j 6 i,

Qi > Qj +

i∑
k=j+1

(Xk − b) >
i∑

k=j+1

(Xk − b). (6.13)

Taking the maximum over all j 6 i we find Qi > Q∗i , and thus by (6.1) also
Hi > H∗i . Hence, H∗i , Q

∗
i is the minimal solution to (6.1)–(6.2).

Furthermore, since Sj − bj → ∞ as j → −∞ by (6.5), for any i there exists
i0 < i such that minj<i0(Sj − bj) > Si0 − bi0, and hence, by (6.8), H∗i0 < b, which
implies Q∗i0 = 0 by (6.2).

Conversely, if Hi, Qi is any solution and Qi0 = 0 for some i0 6 i, let i0 be the
largest such index. Then Qj > 0 for i0 < j 6 i, and thus by (6.2) and (6.1),
Qj = Hj − b = Qj−1 +Xj − b. Consequently,

Qi = Qi0 +

i∑
j=i0+1

(Xj − b) =

i∑
j=i0+1

(Xj − b) 6 Q∗i . (6.14)

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 15

On the other hand, we have shown that Qi > Q∗i for any solution. Hence Qi = Q∗i .
If this holds for all i, then also Hi = H∗i by (6.1).

(ii): Solutions of (6.1)–(6.2) with i ∈ Zm can be regarded as periodic solutions
of (6.1)–(6.2) with i ∈ Z (with period m), with the same Xi. The assumption
Sm < bm implies (6.5), as is easily seen. (If N = k + `m, then bN + S−N =
bk + S−k + `(bm − Sm).) Hence we can use (iii) (for hashing on Z) and see that
(6.3)–(6.4) yield a periodic solution to (6.1)–(6.2).

Conversely, suppose that Hi, Qi is a periodic solution to (6.1)–(6.2). Suppose
first that Hi > b for all i. Then, by (6.2) and (6.1), Qi = Hi − b = Qi−1 +Xi − b,
and by induction

Qm = Q0 +

m∑
j=1

(Xj − b) = Q0 + Sm − bm < Q0,

which contradicts the fact that Qm = Q0. (This just says that with fewer than bm
keys, we cannot fill every bucket.) Consequently, every periodic solution must have
Hi < b and Qi = 0 for some i, and thus by (iii) the periodic solution is unique. �

Remark 6.4. In case (iii), there exists other solutions, with Qi > 0 for all i < −M
for some M . These solutions have Hi → ∞ and Qi → ∞ as i → −∞. They
correspond to hashing with an infinite number of keys entering from−∞, in addition
to the Xi keys at each finite i; these solutions are not interesting for our purpose.

In case (ii), we have assumed n = Sm < bm. There is obviously no solution if
n > bm, since then the n keys cannot fit in the m buckets. If n = Sm = bm, so
the n keys fit precisely, it is easy to see that (6.3)–(6.4) still yield a solution; this
is the unique solution with Qj = 0 for some j. (We have Hi > b, so Qi = Hi − b
and Yi = b for all i.) There are also other solutions, giving by adding a positive
constant to all Hi and Qi; these correspond to hashing with some additional keys
eternally circling around the completely filled hash table, searching in vain for a
place; again these solutions are not interesting.

7. Convergence to an infinite hash table

In the exact model, we consider hashing on Zm with n keys having independent
uniformly random hash addresses; thus X1, . . . , Xm have a multinomial distribution
with parameters n and (1/m, . . . , 1/m). We denote these Xi by Xm,n;i, and denote
the profile of the resulting random hash table by Hm,n;i, where as above i ∈ Zm
but we also can allow i ∈ Z in the obvious way.

We consider a limit with m,n → ∞ and n/bm → α ∈ (0, 1). The appropriate
limit object turns out to be an infinite hash table on Z with Xi = Xα;i that
are independent and identically distributed (i.i.d.) with the Poisson distribution
Xi ∼ Po(αb); this is an infinite version of the Poisson model defined in Section 4.1.
Note that EXi = αb < b, so E(b−Xi) > 0 and (6.5) holds almost surely by the law
of large numbers; hence this infinite hash table is well-defined almost surely (a.s.).
We denote the profile of this hash table by Hα;i.

Remark 7.1. We will use subscripts m,n and α in the same way for other random
variables too, with m,n signifying the exact model and α the infinite Poisson model.
However, we often omit the α when it is clear from the context.

We claim that the profile (Hm,n;i)
∞
i=−∞, regarded as a random element of the

product space ZZ, converges in distribution to the profile (Hα;i)
∞
i=−∞. By the

16 SVANTE JANSON AND ALFREDO VIOLA

definition of the product topology, this is equivalent to convergence in distribution
of any finite vector (Hm,n;i)

N
−M to (Hα;i)

N
−M .

Lemma 7.2. Let m,n → ∞ with n/bm → α for some α with 0 6 α < 1. Then

(Hm,n;i)
∞
i=−∞

d−→ (Hα;i)
∞
i=−∞.

Proof. We note first that eachXm,n;i has a binomial distribution, Xm,n;i ∼ Bin(n, 1/m).
Since 1/m → 0 and n/m → bα, it is well-known that then each Xm,n;i is asymp-

totically Poisson distributed; more precisely, Xm,n;i
d−→ Po(bα). Moreover, this

extends to the joint distribution for any fixed number of i’s; this well-known fact is
easily verified by noting that for every fixed M > 1 and k1, . . . , kM > 0, for m >M
and with K := k1 + · · ·+ kM ,

Pr
(
Xm,n;i = ki, i = 1, . . . ,M

)
=

(
n

k1, . . . , kM , n−K

)
·
M∏
i=1

(1

m

)ki
·
(

1− M

m

)n−K
=
(
1 + o(1)

) M∏
i=1

1

ki!

(n
m

)ki
· e−Mn/m

→
M∏
i=1

(bα)ki

ki!
· e−Mbα =

M∏
i=1

Pr
(
Xi;α = ki

)
.

Hence, using also the translation invariance, for any M1,M2 > 0,(
Xm,n;i

)M2

i=−M1

d−→
(
Xα;i

)M2

i=−M1
. (7.1)

Next, denote the overflow Qi for the finite exact model and the infinite Poisson

model by Qm,n;i and Qα;i, respectively. We show first that Qm,n;i
d−→ Qα;i for

each fixed i. By translation invariance, we may choose i = 0.
Recall that by Lemma 6.2, Q0 is given by (6.4) for both models. We introduce

truncated versions of this: For L > 0, let

Q
(L)
m,n;0 := max

−L6j60

0∑
k=j+1

(Xm,n;k − b), Q
(L)
α;0 := max

−L6j60

0∑
k=j+1

(Xα;k − b).

Then (7.1) implies

Q
(L)
m,n;0

d−→ Q
(L)
α;0 (7.2)

for any fixed L.

Almost surely (6.5) holds, and thus Q
(L)
α;0 = Qα;0 for large L; hence

Pr
(
Qα;0 6= Q

(L)
α;0

)
→ 0 as L→∞. (7.3)

Moreover, since Xm,n;i is periodic in i with period m, and the sum over a period
is n < bm, the maximum in (6.4) is attained for some j 6 0 with j > −m.

Hence, Qm,n;0 = Q
(m)
m,n;0, and furthermore, Qm,n;0 6= Q

(L)
m,n;0 only if L < m and the

maximum is attained for some j ∈ [−m, . . . ,−L− 1]. Hence, for any L > 0,

Pr
(
Qm,n;0 6= Q

(L)
m,n;0

)
6
−L−1∑
j=−m

Pr

 0∑
k=j+1

(Xm,n;k − b) > 0

 . (7.4)

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 17

Moreover, for j 6 0 and J := |j|,

Pr

 0∑
k=j+1

(Xm,n;k − b) > 0

 = Pr

(
0∑

k=1−J

Xm,n;k > Jb

)
. (7.5)

Here, for m > J ,
∑0
k=1−J Xm,n;k ∼ Bin(n, J/m), and a simple Chernoff bound [23,

Remark 2.5] yields

Pr

(
0∑

k=1−J

Xm,n;k > Jb

)
6 exp

(
−2(Jb− Jn/m)2

J

)
= exp

(
−2J(b− n/m)2

)
.

(7.6)
By assumption, b − n/m → b − bα = (1 − α)b > 0, and thus, for sufficiently large
m, b− n/m > 0.9(1− α)b and then (7.4)–(7.6) yield

Pr
(
Qm,n;0 6= Q

(L)
m,n;0

)
6

m∑
J=L+1

exp
(
−J(1− α)2b2

)
6

∞∑
J=L+1

exp
(
−J(1− α)2b2

)
.

(7.7)
It follows from (7.3) and (7.7) that given any ε > 0, we can find L such that, for

all large m, Pr
(
Qm,n;0 6= Q

(L)
m,n;0

)
< ε and Pr

(
Qα;0 6= Q

(L)
α;0

)
< ε. Hence, for any

k > 0,∣∣Pr(Qm,n;0 = k)− Pr(Qα;0 = k)
∣∣ < ∣∣Pr(Q

(L)
m,n;0 = k)− Pr(Q

(L)
α;0 = k)

∣∣+ 2ε, (7.8)

which by (7.2) is < 3ε if m is large enough. Thus Pr(Qm,n;0 = k)→ Pr(Qα;0 = k)
for every k, i.e.,

Qm,n;0
d−→ Qα;0. (7.9)

Moreover, the argument just given extends to the vector (Q0, X1, X2 . . . , XN)
for any N > 0; hence also

(
Qm,n;0, Xm,n;1, . . . , Xm,n;N

) d−→
(
Qα;0, Xα;1, . . . , Xα;N

)
. (7.10)

Since H1, . . . ,HN by (6.1)–(6.2) are determined by Q0, X1, . . . , XN , (7.10) implies

(
Hm,n;1, . . . ,Hm,n;N

) d−→
(
Hα;1, . . . ,Hα;N

)
. (7.11)

By translation invariance, this yields also (Hm,n;i)
N
i=−M

d−→ (Hα;i)
N
i=−M for any

fixed M and N , which completes the proof. �

For future use, we note also the following uniform estimates.

Lemma 7.3. Suppose that α1 < 1. Then there exists C and c > 0 such that
E ecHm,n;i 6 C and E ecQm,n;i 6 C for all m and n with n/bm 6 α1.

18 SVANTE JANSON AND ALFREDO VIOLA

Proof. We may choose i = m by symmetry. Let c := b(1−α1) > 0, so b−n/m > c.
By Lemma 6.2(ii) and (6.4), and a Chernoff bound as in (7.6), for any x > 0,

Pr(Qm,n;m > x) 6
m−1∑
j=1

Pr

 m∑
j+1

(Xj − b) > x

 =

m−1∑
k=1

Pr (Sk − kb > x)

6
m−1∑
k=1

exp

(
−2(kb+ x− kn/m)2

k

)

6
∞∑
k=1

exp
(
−2k(b− n/m)2 − 4x(b− n/m)

)
6
∞∑
k=1

exp
(
−2kc2 − 4cx

)
= C1e

−4cx.

Hence, E ecQm,n;m 6 C2. The result for Hi follows because Hi 6 Qi+b by (6.2). �

Many interesting properties of a hash table are determined by the profile, and
Lemma 7.2 then implies limit results in many cases. We give one explicit general
theorem, which apart from applying to asymptotic results for several variables also
shows a connection between the combinatorial and probabilistic approaches.

Theorem 7.4. Let P be a (possibly random) non-negative integer-valued property
of a hash table, and assume that (the distribution of) P is determined by the profile
Hi of the hash table. Let 0 6 α < 1 and suppose further that almost surely the
profile Hα;i, i ∈ Z, is such that there exists some N such that (the distribution of)
P is the same for every hash table with a profile that equals Hα;i for |i| 6 N .

Let Pm,n and Pα be the random variables given by P for the exact model with
m buckets and n keys, and the doubly infinite Poisson model with T = Z and
each Xi ∼ Po(bα), respectively; furthermore, denote the corresponding probability
generating functions by pm,n(q) and pα(q).

(i) If m,n → ∞ with n/bm → α, then Pm,n
d−→ Pα, and thus pm,n(q) →

pα(q) when |q| 6 1.
(ii) If m→∞ and |q| 6 1, then Pm[pm,n(q); bα]→ pα(q).

(iii) If 0 6 α < 1 and |q| 6 1, and the generating function P (bα, y1/be−α, q)
in (4.14) has a simple pole at y = 1 but otherwise is analytic in a disc
|y| < r with radius r > 1, then the residue at y = 1 equals −pα(q).

Proof. (i): Assume for simplicity that P is competely determined by the profile.
(The random case is similar.) By the assumptions, P = f((Hi)

∞
i=−∞) for some

function f : ZZ → Z, where, moreover, the function f is continuous at (Hα;i)i a.s.
Hence, Lemma 7.2 and the continuous mapping theorem [2, Theorem 5.1] imply

Pm,n = f
(
(Hm,n;i)i

) d−→ f
(
(Hα;i)i

)
= Pα.

(ii): Fix q with |q| 6 1. We can write (4.13) as Pm[pm,n(q); bα] = E pm,N (q),
with N ∼ Po(bαm). We may assume N =

∑m
i=1Xi for a fixed i.i.d. sequence

Xi ∼ Po(bα), and then N/m
p−→ bα as m → ∞ a.s. by the law of large numbers.

Consequently, by (i), pm,N (q) → pα(q) a.s., and thus, by dominated convergence
using |pm,N (q)| 6 1,

Pm[pm,n(q); bα] = E pm,N (q)→ pα(q).

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 19

(iii): Let the residue be ρ. Then, by (4.14) and simple singularity analysis
[14; 16], Pm[pm,n(q); bα] ∼ −ρ as m→∞, and thus −ρ = pα(q) by (ii). �

A Boolean property that a hash table either has or has not can be regarded
as a 0/1-valued property, but in this context it is more natural to consider the
probability that a random hash table has the property. In this case we obtain the
following version of Theorem 7.4.

Corollary 7.5. Let P be a Boolean property of a hash table, and assume that P
satisfies the assumptions of Theorem 7.4.

Let pm,n and pα be the probabilities that P hold in the exact model with m
buckets and n keys, and in the doubly infinite Poisson model with T = Z and each
Xi ∼ Po(bα), respectively.

(i) If m,n→∞ with n/bm→ α, then pm,n → pα.
(ii) If m→∞ and, then Pm[pm,n; bα]→ pα.

(iii) If 0 6 α < 1, and the bivariate generating function P (bα, y1/be−α) in
(4.15) has a simple pole at y = 1 but otherwise is analytic in a disc |y| < r
with radius r > 1, then the residue at y = 1 equals −pα.

Proof. Regard P as a 0/1-valued property and let P := 1 − P . The results follow
by taking q = 0 in Theorem 7.4, applied to P , since pm,n = pm,n(0) and pα =
pα(0). �

Remark 7.6. The case n/bm → α = 0 is included above, but rather trivial since
Xα;i = 0 so the limiting infinite hash table is empty. In the sequel, we omit this
case.

8. The profile and overflow

8.1. Combinatorial approach. Let Ω(z, w, q) be the generating function for the
number of keys that overflow from a hash table (i.e., the number of cars that cannot
find a place in the parking problem)

Ω(z, w, q) :=
∑
m>0

∑
n>0

∑
k>0

Nm,n,kw
bm z

n

n!
qk, (8.1)

where Nm,n,k is the number of hash tables of length m with n keys and overflow k.
(We include an empty hash table with m = n = k = 0 in the sum (8.1).) Thus w
marks the number of places in the table, z the number of keys and q the number of
keys that overflow. The following result has also been presented by Panholzer [32]
and Seitz [37].

Theorem 8.1.

Ω(bz, w, q) =
1

qb − wbebqz ·
∏b−1
j=0

(
q − T (ωjzw)

z

)
∏b−1
j=0

(
1− T (ωjzw)

z

) . (8.2)

Proof. In the empty hash table, there is no overflow, and so N0,0,0 = 1.
Let consider now a hash table with m > 1 buckets of size b and its last bucket

m. The number of keys that probe the last bucket, are the ones that overflow from
bucket m− 1 plus the ones that hash into bucket m. All these keys but the b that
stay in the last buckets overflow from this table.

Formally, as a first approach, this can be expressed by

20 SVANTE JANSON AND ALFREDO VIOLA

table ≈ empty + table ∗ Bucket(Z),

that by means of the constructions presented in Section 5 translates into

Ω(z, w, q) ≈ 1 + Ω(z, w, q)
wbezq

qb
. (8.3)

The variable q in zq marks all the keys that hash into bucket m, and the division
by qb indicates that b keys stay in the last bucket, and as a consequence do no
overflow.

We have to include however, a correction factor when the total number of keys
that probe position m is 0 6 d < b. In this case equation (8.3) gives terms with
negative powers qd−b. As a consequence,

Ω(z, w, q) = 1 + Ω(z, w, q)
wbezq

qb
+

b−1∑
d=0

(1− qd−b)Od(z, w), (8.4)

where Od(z, w) is the generating function for the number of hash tables that have
d keys in bucket m.

From equations (4.10), (4.1) and (4.6) we have the following chain of identities:

qb

(
1 +

b−1∑
d=0

(1− qd−b)Od(bz, w)

)
= qb

(
1 +

N0(bz, w)

1−N0(bz, w)
− N0(bzq, w/q)

1−N0(bz, w)

)
= qb

1−N0(bzq, w/q)

1−N0(bz, w)

=
qb
∏b−1
j=0

(
1− T (ωjzw)

qz

)
∏b−1
j=0

(
1− T (ωjzw)

z

) .

Then, the result follows from equation (8.4). �

We can obtain a closed form for the expectation of the overflow from the gener-
ating function in (8.2). Let Qm,n denote the overflow in a random hash table with
m buckets and n keys.

Corollary 8.2.

EQm,n = m−n
n∑
j=0

bj/bc∑
k=1

(
n

j

)
(j − kb)kj−1(m− k)n−j . (8.5)

Proof. Taking the derivative at q = 1 in (8.1) and (8.2), we obtain, since there are
mn hash tables with m buckets and n keys,∑

m>0

∑
n>0

EQm,nmnwbm
(bz)n

n!
= Uq∂qΩ(bz, w, q)

= − b− bzwbebz
(1− wbebz)2 +

1

1− wbebz
b−1∑
j=0

1

1− T (ωjzw)/z

= b(z − 1)
wbebz

(1− wbebz)2 +
1

1− wbebz
b−1∑
j=0

T (ωjzw)/z

1− T (ωjzw)/z
. (8.6)

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 21

We have

1

1− wbebz =

∞∑
m=0

wbmebmz =

∞∑
m=0

∞∑
n=0

mnwbm
(bz)n

n!
, (8.7)

wbebz

(1− wbebz)2 =

∞∑
m=0

mwbmebmz =

∞∑
m=0

∞∑
n=0

mn+1wbm
(bz)n

n!
. (8.8)

Furthermore, by a well-known application of the Lagrange inversion formula, for
any real r, (

T (z)

z

)r
= erT (z) =

∞∑
n=0

r(n+ r)n−1
zn

n!
(8.9)

and thus

T (zw)/z

1− T (zw)/z
=

∞∑
r=1

wr
(
T (zw)

zw

)r
=

∞∑
r=1

∞∑
n=0

r(n+ r)n−1
zn

n!
wn+r. (8.10)

Substituting ωjw for w and summing over j, we kill all powers of w that are not
multiples of b and we obtain, writing n+ r = kb,

b−1∑
j=0

T (ωjzw)/z

1− T (ωjzw)/z
= b

∞∑
k=1

kb−1∑
n=0

(kb− n)(kb)n−1
zn

n!
wbk. (8.11)

Substituting these expansions in (8.6) and extracting coefficients we obtain

mn EQm,n = nmn − bmn+1 +

m∑
k=1

n∑
j=0

(
n

j

)
(kb− j)+kj−1(m− k)n−j , (8.12)

where x+ := x1[x > 0]. Using the the elementary summation

m∑
k=1

n∑
j=0

(
n

j

)
(j − kb)kj−1(m− k)n−j = nmn − bmn+1, (8.13)

we obtain from (8.12) also

mn EQm,n =

m∑
k=1

n∑
j=0

(
n

j

)
(j − kb)+kj−1(m− k)n−j , (8.14)

and the result follows. �

We note the following alternative exact formula and asymptotic formula for
almost full tables, both taken from [41, Theorem 14]. An asymptotic formula when
n/bm→ α ∈ (0, 1) is given in Corollary 8.4 below.

E[Qm,n] =
∑
i≥2

(
n

i

)
(−1)i

mi

m∑
k=1

ki−1
(
bk − i
bk − 1

)
, (8.15)

E[Qm,bm−1] =

√
2πbm

4
− 7

6
+

b−1∑
d=1

T
(
ωde−1

)
1− T (ωde−1)

+
1

48

√
2π

bm
+O

(
1

m

)
. (8.16)

22 SVANTE JANSON AND ALFREDO VIOLA

8.2. Probabilistic approach. For the probabilistic version, we use Theorem 7.4
and study in the sequel infinite hashing on Z, with Xi = Xα;i i.i.d. random Poisson
variables with Xi ∼ Po(αb), where 0 < α < 1. (We consider a fixed α and omit
it from the notations for convenience.) Thus Xi has the probability generating
function

ψX(q) := E qXi = eαb(q−1). (8.17)

We begin by finding the distributions of Hi = Hα;i and Qi = Qα;i. Let ψH(q) :=
E qHi and ψQ(q) := E qQi denote the probability generating functions of Hi and Qi
(which obviously do not depend on i ∈ Z), defined at least for |q| 6 1.

Theorem 8.3. Let 0 < α < 1. The random variables Hα;i and Qα;i in the infinite
Poisson model have probability generating functions ψH(q) and ψQ(q) that extend
to meromorphic functions given by, with ζ` = T

(
ω`αe−α

)
/α as in (3.5),

ψH(q) =
b(1− α)(q − 1)

qbeαb(1−q) − 1

∏b−1
`=1

(
q − ζ`

)∏b−1
`=1

(
1− ζ`

) , (8.18)

ψQ(q) =
b(1− α)(q − 1)

qb − eαb(q−1)
∏b−1
`=1

(
q − ζ`

)∏b−1
`=1

(
1− ζ`

) . (8.19)

Moreover, for the exact model, Hm,n;i and Qm,n;i converge in distribution to Hα;i

and Qα;i, respectively, as m,n→∞ with n/bm→ α; furthermore, for some δ > 0,
their probability generating functions converge to ψH(q) and ψQ(q), uniformly for
|q| 6 1 + δ. Hence, EH`

m,n;i → EH`
α and EQ`m,n;i → EQ`α for any ` > 0.

The formula (8.19), which easily implies (8.18), see (8.20) below, was shown by
the combinatorial method in [40, Theorem 9]. Indeed, it follows from Theorem 8.1
by Theorem 7.4(iii) and (3.3); we omit the details. The formula is also implicit in
[25, Exercise 6.4-55]. We give a probabilistic proof very similar to the argument in
[25].

Proof. By (6.4), Qi−1 depends only on Xj for j 6 i−1; hence, Qi−1 is independent
of Xi and thus (6.1) yields, for |q| 6 1, using (8.17),

ψH(q) = ψX(q)ψQ(q) = eαb(q−1)ψQ(q). (8.20)

Furthermore, by (6.2), Qi + b = max(Hi, b) and thus, for |q| 6 1,

qbψQ(q)− ψH(q) =

∞∑
k=0

qmax(k,b) Pr(Hi = k)−
∞∑
k=0

qk Pr(Hi = k)

=

b−1∑
k=0

Pr(Hi = k)
(
qb − qk

)
= π(q) (8.21)

for some polynomial π of degree b. Combining (8.20) and (8.21) we obtain,(
qb − eαb(q−1)

)
ψQ(q) = π(q), |q| 6 1. (8.22)

By (3.7), with q = 1, we have for every `

ζb` = ebα(ζ`−1). (8.23)

Substituting this in (8.22) (recalling |ζ`| 6 1 by Lemma 3.1) shows that π(ζ`) = 0
for every `. Since ζ0, . . . , ζb−1 are distinct, again by Lemma 3.1, these numbers are

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 23

the b roots of the b:th degree polynomial π, and thus

π(q) = τ

b−1∏
`=0

(q − ζ`) (8.24)

for some constant τ . Using this in (8.22) yields, recalling ζ0 = 1 by (3.6),

ψQ(q) = τ

∏b−1
`=0(q − ζ`)

qb − eαb(q−1) = τ
(q − 1)

∏b−1
`=1(q − ζ`)

qb − eαb(q−1) . (8.25)

To find τ , we let q → 1 and use l’Hôpital’s rule, which yields

1 = ψQ(1) = τ

∏b−1
`=1(1− ζ`)
b− αb . (8.26)

Hence, recalling T0(bα) from (4.16), see [40, Theorem 7] and [3, Theorem 4.1],

τ =
b(1− α)∏b−1
`=1(1− ζ`)

= T0(bα). (8.27)

We now obtain (8.19) from (8.25) and (8.27); (8.18) then follows by (8.20).
The convergence in distribution in the final statement follows from Theorem 7.4(i)

(or Lemma 7.2); note that Hi and Qi trivially satisfy the condition in Theo-
rem 7.4. The convergence of the probability generating functions follows from this
and Lemma 7.3 by a standard argument (for any δ < ec−1, with c as in Lemma 7.3).
By another standard result, the convergence of the probability generating functions
in a neighbourhood of 1 implies convergence of all moments. �

The moments can be computed from the probability generating functions (8.18)
and (8.19). We do this explicitly for the expectation only; the formulas for higher
moments are similar but more complicated. The expectation (8.29) was given in
[25, Exercise 6.4-55].

Corollary 8.4. As m,n→∞ with n/bm→ α ∈ (0, 1),

EHm,n;i → EHα =
1

2(1− α)
− (1− α)b

2
+

b−1∑
`=1

1

1− ζ`
, (8.28)

EQm,n;i → EQα =
1

2(1− α)
− (1 + α)b

2
+

b−1∑
`=1

1

1− ζ`
. (8.29)

Proof. By the last claim in Theorem 8.3, it suffices to compute EHα and EQα.
Moreover, in the infinite Poisson model, EXi = bα, and thus (6.1) implies EHα =
bα+ EQα. Finally, EQα = ψ′Q(1) is easily found from (8.19), using Taylor expan-
sions in the first factor. �

We obtain also results for individual probabilities. Recall that Yi = min(Hi, b)
denotes the final number of keys that are stored in bucket i.

Corollary 8.5. In the infinite Poisson model, for k = 0, . . . , b− 1,

Pr(Yi = k) = Pr(Hi = k) = −b(1− α)
[qk]

∏b−1
`=0

(
q − T

(
ω`αe−α

)
/α
)∏b−1

`=1

(
1− T

(
ω`αe−α

)
/α
)

= (−1)b−k+1 b(1− α)αk−beb−k
(
T
(
ω0αe−α

)
, . . . , T

(
ωb−1αe−α

))∏b−1
`=1

(
1− T

(
ω`αe−α

)
/α
) (8.30)

24 SVANTE JANSON AND ALFREDO VIOLA

where eb−k is the (b− k):th elementary symmetric function. In particular,

Pr(Yi = 0) = Pr(Hi = 0) = (−1)b−1b(1− α)

∏b−1
`=1 T

(
ω`αe−α

)∏b−1
`=1

(
α− T

(
ω`αe−α

)) . (8.31)

Furthermore, the probability that a bucket is not full is given by

Pr(Yi < b) = Pr(Hi < b) = T0(bα) =
b(1− α)∏b−1

`=1

(
1− T

(
ω`αe−α

)
/α
) (8.32)

and thus
Pr(Yi = b) = Pr(Hi > b) = 1− T0(bα). (8.33)

In the exact model, these results hold asymptotically as m,n→∞ with n/bm→
α.

Proof. By (8.18), for small |q|, again using (3.6),

ψH(q) = − b(1− α)∏b−1
`=1(1− ζ`)

b−1∏
`=0

(q − ζ`) +O(|q|b) (8.34)

and (8.30) follows by identifying Taylor coefficients, recalling (3.5). Taking k = 0
we obtain (8.31). Summing (8.30) over k 6 b− 1 yields, using (8.27),

Pr(Hi < b) = T0(bα)

b−1∑
k=0

(−1)b−k+1eb−k(ζ0, . . . , ζb−1)

= T0(bα)
(

1−
b∑

k=0

(−1)b−keb−k(ζ0, . . . , ζb−1)
)

= T0(bα)
(

1−
b−1∏
`=0

(1− ζ`)
)

= T0(bα), (8.35)

since ζ0 = 1 by (3.6). �

The generating functions Td(u) defined in [40] for 0 6 d 6 b−1 have the property
[40, p. 318] that Td(bα) is the limit of the probability that in the exact model, a
given bucket contains more than d empty slots, when m → ∞ and n ∼ Po(αbm).
This can now be extended by Corollary 7.5, and we find also the following relation.

Theorem 8.6. In the infinite Poisson model, for d = 0, . . . , b− 1,

Td(bα) = Pr(Yi < b− d) = Pr(Hi < b− d) =

b−d−1∑
s=0

Pr(Yi = s). (8.36)

Equivalently, for k = 0, . . . , b− 1,

Pr(Yi = k) = Tb−k−1(bα)− Tb−k(bα), (8.37)

with T−1(bα) := 1 and Tb(bα) := 0.
In the exact model, these results hold asymptotically as m,n→∞ with n/bm→

α. �

Using (8.37), it is easy to verify that the formula (8.30) is equivalent to [40,
Theorem 8]. The results above also yield a simple proof of the following result from
[40, Theorem 10] on the asymptotic probability of success in the parking problem,
as m,n→∞ with n/m→ α.

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 25

Corollary 8.7. In the infinite Poisson model, the probability of no overflow from
a given bucket is

Pr(Qi = 0) = (−1)b−1b(1− α)eαb
∏b−1
`=1 T

(
ω`αe−α

)∏b−1
`=1

(
α− T

(
ω`αe−α

)) = ebαTb−1(bα). (8.38)

This is the asymptotic probability of success in the parking problem, as m,n→∞
with n/m→ α,

Proof. Let q = 0 in (8.19) to obtain the first equality. Alternatively, use (8.31) and
Pr(Hi = 0) = Pr(Qi = 0) Pr(Xi = 0) = Pr(Qi = 0)e−bα from (6.1); this also yields
the second equality by (8.36). The final claim follows by Corollary 7.5. �

9. Robin Hood displacement

We follow the ideas presented in [39], [40], [41] and the references therein. Fig-
ure 3 shows the result of inserting keys with the keys 36, 77, 24, 69, 18, 56, 97, 78,
49, 79, 38 and 10 in a table with ten buckets of size 2, with hash function h(x) = x
mod 10, and resolving collisions by linear probing using the Robin Hood heuristic.
When there is a collision in bucket i (bucket i is already full), then the key in this
bucket that has probed the least number of locations, probes bucket (i + 1) mod
m. In the case of a tie, we (arbitrarily) move the key whose key has largest value.

a
69 10 24 36 77 18 78

79 56 97 38 49

0 1 2 3 4 5 6 7 8 9

Figure 3. A Robin Hood Linear Probing hash table.

Figure 4 shows the partially filled table after inserting 58. There is a collision
with 18 and 38. Since there is a tie (all of them are in their first probe bucket),
we arbitrarily decide to move 58, the largest key. Then 58 is in its second probe
bucket, 78 also, but 49 is in its first one. So 49 has to move. Then 49, 69, 79 are all
in their second probe bucket, so 79 has to move to its final position by the tie-break
policy described above.

a
49 79 24 36 77 18 58

69 10 56 97 38 78

0 1 2 3 4 5 6 7 8 9

Figure 4. The table after inserting 58.

The following properties are easily verified:

• At least one key is in its home bucket.

26 SVANTE JANSON AND ALFREDO VIOLA

• The keys are stored in nondecreasing order by hash value, starting at some
bucket k and wrapping around. In our example k=4 (corresponding to the
home bucket of 24).
• If a fixed rule (that depends only on the value of the keys and not in

the order they are inserted) is used to break ties among the candidates
to probe their next probe bucket (eg: by sorting these keys in increasing
order), then the resulting table is independent of the order in which the
keys were inserted [5].

As a consequence, the last inserted key has the same distribution as any
other key, and without loss of generality we may assume that it hashes to
bucket 0.

If we look at a hash table with m buckets (numbered 0, . . . ,m−1) after the first n
keys have been inserted, all the keys that hash to bucket 0 (if any) will be occupying
contiguous buckets, near the beginning of the table. The buckets preceding them
will be filled by keys that wrapped around from the right end of the table, as can
be seen in Figure 4. The key observation here is that those keys are exactly the
ones that would have gone to the overflow area. Since the displacement DRH of a
key x that hashes to 0 is the number of buckets before the one containing x, and
each bucket has capacity b, it follows that

DRH = bCRH/bc, (9.1)

where CRH, the number of keys that win over x in the competition for slots in the
buckets, is the sum

CRH = Q−1 + V (9.2)

of the number Q−1 = Qm−1 of keys that overflow into 0 and the number V of keys
that hash to 0 that win over x. Furthermore, it is easy to see that the number
Qm−1 of keys that overflow does not change when the keys that hash to 0 are
removed. Hence, we may here regard Q−1 = Qm−1 as the overflow from the hash
table obtained by considering only the buckets 1, . . . ,m−1; this is thus independent
of V .

The discussion above assumes n 6 bm, since otherwise there are no hash tables
with m buckets and n keys. However, for the purpose of defining the generating
functions in Section 9.1, we formally allow any n > 0, taking (9.1)–(9.2) as a
definition when n > bm, and then ignoring bucket 0 and the keys that hash to it
when computing Q−1 = Qm−1.

9.1. Combinatorial approach. We consider the displacement DRH of a marked
key •. By symmetry, it suffices to consider the case when • hashes to the first
bucket. Thus, let

RH(z, w, q) :=
∑
m>0

∑
n>0

∑
k>0

CRHm,n,kw
bm z

n

n!
qk, (9.3)

where CRHm,n,k is the number of hash tables of length m with n keys (one of them
marked as •) such that • hashes to the first bucket and the displacement DRH of •
equals k. (I.e., • hashes to bucket 0 but is eventually placed in bucket k.) Moreover,
let Cm,n,k be the number of hash tables of length m with n keys keys (one of them
marked as •) such that • hashes to the first bucket and the variable CRH of • equals
k, and let C(z, w, q) be its trivariate generating function.

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 27

In terms of generating function, (9.1) translates to, see [40, equation (32)],

RH(z, w, q) =
∑
m>0

∑
n>0

∑
k>0

Cm,n,kw
bm z

n

n!
qbk/bc

=
1

b

b−1∑
d=0

C
(
z, w, ωdq1/b

) b−1∑
p=0

(
ωdq1/b

)−p
. (9.4)

Theorem 9.1.

RH(bz, w, q) =
1

b

b−1∑
d=0

C
(
bz, w, ωdq1/b

) b−1∑
p=0

(
ωdq1/b

)−p
, (9.5)

with

C(bz, w, q) =
wb(ebz − ebzq)

(1− q)(qb − wbebzq)

∏b−1
j=0

(
q − T (ωjzw)

z

)
∏b−1
j=0

(
1− T (ωjzw)

z

) . (9.6)

Proof. Equation (9.5) has been derived in (9.4). Moreover, in (9.2) Q−1 is the over-
flow already studied in Section 8 , so we present here the combinatorial specification
of V .

We assume that the marked key • hashes to the first bucket. Moreover, if k keys
collide in the first bucket, then exactly one of of them has the variable V equal to
i, for 0 ≤ i ≤ k−1, leading to a contribution of qi in the generating function. Then
this cost is specified by adding a bucket, and marking as • an arbitrary key from
the ones that hash to it. As a consequence, we have the specification

C = Overflow ∗Mark(Bucket).

Thus, by (8.1) and the constructions presented in Section 5 (including (5.5), the
q-analogue version of Mark),

C(bz, w, q) = Ω(bz, w, q)
wbebz − wbebzq

1− q ,

and the result follows by Theorem 8.1. �

Moments of the displacement can in principle be found from the generating
function (9.5). We consider here only the expectation, for which it is easier to use
Corollary 8.2 (or (8.15)) for the overflow together with the following simple lemma,
see [25, 6.4-(45) and Exercise 6.4-55]. Note that the expectation of the displacement
(but not the variance) is the same for any insertion heuristic. We let Dm,n denote
the displacement of a random element in a hash table with m buckets and n keys.

Lemma 9.2. For linear probing with the Robin Hood, FCFS or LCFS (or any
other) heuristic,

EDm,n =
m

n
EQm,n. (9.7)

Proof. For any hash table, and any linear probing insertion policy, the sum of
the n displacements of the keys equals the sum of the m overflows Qi. Take the
expectation. �

28 SVANTE JANSON AND ALFREDO VIOLA

We note also (for use in Section 13) the following results for the expectation of
the displacement for full tables presented in [38] and [41].

bE[Dm,bm] =
∑
i≥2

(
bm− 1

i

)
(−1)i

mi

m∑
k=1

ki−1
(
bk − i
bk − 1

)
+
m− 1

2m
, (9.8)

bE[Dm,bm] =

√
2πbm

4
− 2

3
+

b−1∑
d=1

T
(
ωde−1

)
1− T (ωde−1)

+
1

48

√
2π

bm
+O

(
1

m

)
. (9.9)

9.2. Probabilistic approach. In the infinite Poisson model, it is not formally well
defined to talk about a “random key”. Instead, we add a new key to the table and
consider its displacement. By symmetry, we may assume that the new key hashes
to 0, and then its displacement DRH

α is given by (9.1)–(9.2), with Q−1 = Qα;−1 and
V = Vα independent. Furthermore, Q−1 has the probability generating function
(8.19) and given X0, V is a uniformly random integer in {0, . . . , X0}.

Similarly, in the exact model, by the discussion above we may study the Robin
Hood displacement of the last key instead of taking a random key; this is the same
as the displacement of a new key added to a table with m buckets and n− 1 keys.

Theorem 9.3. Let 0 < α < 1. In the infinite Poisson model, the variable Vα, the
number of keys that win over the new key CRH

α and its Robin Hood displacement
DRH
α have the probability generating functions

ψV (q) =
1− ebα(q−1)
bα(1− q) (9.10)

ψC(q) = ψQ(q)ψV (q) =
1− α
α

1− ebα(q−1)
ebα(q−1) − qb

∏b−1
`=1

(
q − ζ`

)∏b−1
`=1

(
1− ζ`

) . (9.11)

ψRH(q) =
1

b

b−1∑
j=0

ψC
(
ωjq1/b

) 1− q−1
1− ω−jq−1/b . (9.12)

Moreover, for the exact model, as m,n → ∞ with n/bm → α, Vm,n
d−→ Vα,

CRH
m,n

d−→ CRH
α and DRH

m,n
d−→ DRH

α , with convergence of all moments; furthermore,
for some δ > 0, the corresponding probability generating functions converge, uni-
formly for |q| 6 1 + δ.

Proof. For the convergence, we consider the displacement of a new key added to
the hash table. By symmetry we may assume that the new key hashes to 0, and
then (9.1)–(9.2) apply, where Q−1 by (6.2) is determined by H−1 and V is random,
given the hash table, with a distribution determined by X0, and thus by H0 and
Q−1, and thus by H−1 and H0. Consequently, Theorem 7.4 applies, and yields the
convergence in distribution. (Since we consider adding a new key to the table, this

really proves DRH
m,n+1

d−→ DRH
α , etc.; we may obviously replace n by n− 1 in order

to get the result.)
For the probability generating functions and moments, note that for the exact

model, for every c > 0,

E(1 + c)Vm,n 6 E(1 + c)X0 =

(
1 +

c

m

)n
6 ecn/m 6 ebc. (9.13)

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 29

This together with (9.2), Lemma 7.3 and Hölder’s inequality yields, for some c1 > 0
and C1 <∞,

E ec1C
RH
m,n 6

(
E e2c1Vm,n E e2c1Qm,n

)1/2
6 C1. (9.14)

The convergence of probability generating functions and moments now follows from
the convergence in distribution, using 0 6 DRH 6 CRH.

For the distributions for the Poisson model, note that if X0 = k > 0, then there
are, together with the new key, k+ 1 keys competing at 0, and the number V = Vα
of them that wins over the new key is uniform on {0, . . . , k}. Thus

E(qV | X0 = k) =
1 + · · ·+ qk

k + 1
=

1− qk+1

(k + 1)(1− q) . (9.15)

Hence, since X0 ∼ Po(bα),

E(qV) =
∞∑
k=0

(bα)k

k!
e−bα

1− qk+1

(k + 1)(1− q) =
e−bα

bα(1− q)
∞∑
k=0

(bα)k+1 − (bαq)k+1

(k + 1)!
,

yielding (9.10). This, (9.2) and (8.19) yields (9.11). Finally, (9.1) then yields (9.12),
cf. [40], �

Corollary 9.4. As m,n→∞ with n/bm→ α ∈ (0, 1),

ECRH
m,n → ECRH

α =
1

2(1− α)
− b

2
+

b−1∑
`=1

1

1− ζ`
, (9.16)

EDRH
m,n → EDRH

α =
1

2bα

(
1

1− α − b− bα
)

+
1

bα

b−1∑
`=1

1

1− ζ`
. (9.17)

Proof. In the infinite Poisson model, by symmetry, E(Vα | X0) = 1
2X0, and thus

EVα = 1
2 EX0 = 1

2bα. Consequently, by (9.2),

ECRH
α = EQα + EVα = EQα + 1

2bα, (9.18)

which yields (9.16) by (8.29).
For EDRH

α we differentiate (9.12), for j = 0 using (1 − q−1)/(1 − q−1/b) =
1 + q−1/b + · · ·+ q−(b−1)/b, and obtain

EDRH
α = ψ′RH(1) =

1

b
ψ′C(1)− 1

b
ψC(1)

b− 1

2
+

1

b

b−1∑
j=1

ψC
(
ωj
) 1

1− ω−j (9.19)

where ψ′C(1) = ECRH
α is given by (9.16) and ψC(1) = 1. We compute the sum in

(9.19) as follows. (See the proof of [40, Theorem 14] for an alternative method.)

By (9.11), ψC(ωj) = − 1−α
α p(ωj) where p(q) :=

∏b−1
`=1

(
q − ζ`

)
/
∏b−1
`=1

(
1 − ζ`

)
is a

polynomial of degree b− 1. Define

f(q) :=
p(q)

(qb − 1)(q − 1)
; (9.20)

then f is a rational function with poles at ωj , j = 0, . . . , b − 1. Furthermore,
f(q) = O(|q|−2) as |q| → ∞, so integrating f(z) dz around the circle |q| = R and
letting R→∞, the integral tends to 0 and by Cauchy’s residue theorem, the sum
of the residues of f is 0. The residue of f at q = ωj , j = 1, . . . , b− 1 is

p(q)

bqb−1(q − 1)
=

p(ωj)

b(1− ω−j) (9.21)

30 SVANTE JANSON AND ALFREDO VIOLA

and the residue at the double pole q = 1 is, after a simple calculation,

− b− 1

2b
p(1) +

1

b
p′(1). (9.22)

Consequently,

1

b

b−1∑
j=1

ψC(ωj)

1− ω−j = −1− α
α

b−1∑
j=1

p(ωj)

b(1− ω−j) =
1− α
α

(
−b− 1

2b
p(1) +

1

b
p′(1)

)

=
1− α
αb

(
−b− 1

2
+

b−1∑
j=1

1

1− ζ`

)
. (9.23)

We obtain (9.17) by combining (9.19), (9.16) and (9.23) �

Remark 9.5. The result presented in (9.17) may also be directly derived from
Corollary 8.4 and Lemma 9.2.

Remark 9.6. The probabilities Pr(DRH = k) can be obtained by extracting the
coefficients of ψC (Theorem 13 in [40]).

10. Block length

We want to consider a “random block”. Some care has to be taken when defining
this; for example, (as is well-known) the block containing a given bucket is not what
we want. (This would give a size-biased distribution, see Theorem 10.9.) We do
this slightly differently in the combinatorial and probabilistic approaches.

10.1. Combinatorial approach. By symmetry, it suffices as usual to consider
hash tables such that the rightmost bucket is not full, and thus ends a block; we
consider that block. Thus, let

B(z, w, q) :=
∑
m>0

∑
n>0

∑
k>0

Bm,n,kw
bm z

n

n!
qk, (10.1)

where Bm,n,k is the number of hash tables with m buckets and n keys such that
the rightmost bucket is not full and the last block has length k.

Theorem 10.1.

B(bz, w, q) =
1−∏b−1

j=0

(
1− T (ωjzwq1/b)

z

)
∏b−1
j=0

(
1− T (ωjzw)

z

) . (10.2)

Proof. In an almost full table the length of the block is marked by wb in N0(bz, w).
Then, in the combinatorial model, the generating function B(z, w, q) for the block
length is, using (4.6) and (4.8),

B(bz, w, q) = Λ0(bz, w)N0(bz, wq1/b) =
1−∏b−1

j=0

(
1− T (ωjzwq1/b)

z

)
∏b−1
j=0

(
1− T (ωjzw)

z

) .

�

Let Bm,n be the length of a random block, chosen uniformly among all blocks
in all hash tables with m buckets and n keys. This is the same as the length of the
last block in a uniformly random hash table such that the rightmost bucket is not
full. Recall that we denote the number of such hash tables by Qm,n,0.

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 31

Corollary 10.2. If 0 6 n < bm, then

EBm,n =
mn

Qm,n,0
. (10.3)

Proof. This can be shown by taking the derivative at q = 1 in (10.2) after some
manipulations similar to (8.11). However, it is simpler to note that the sum of the
block lengths in any hash table is m, and thus the sum of the lengths of all blocks
in all tables is m ·mn, while the number of blocks ending with a given bucket is
Qm,n,0 and thus the total number of blocks is m ·Qm,n,0. �

10.2. Probabilistic approach. For the probabilistic version, we consider one-
sided infinite hashing on T = N, with Xi ∼ Po(αb) i.i.d. as above, and let B be the
length of the first block, i.e.,

B = Bα := min{i > 1 : Yi < b} = min{i > 1 : Hi < b}. (10.4)

Remark 10.3. We consider here the first block in hashing on N. Furthermore,
since by definition there is no overflow from a block, the second block, the third
block, and so on all have the same distribution.

Moreover, for our usual infinite Poisson model on Z, it is easy to see, using the
independence of the Xi’s, that we obtain the same distribution if we for any fixed
i condition on Hi < b, (i.e., on that a block ends at i), and then take the length of
the block starting at i+ 1.

We also obtain the same distribution if we fix any i and consider the length of
the first (or second, . . .) block after i, or similarly the last block before i.

Hence, B is the first positive index i such that the number of keys Si = X1 +
· · · + Xi hashed to the i first buckets is less than the capacity bi of these buckets,
i.e.,

B = min{i > 1 : Si < bi}. (10.5)

(This also follows from Lemma 6.2.) In other words, if we consider the random
walk

S′n := Sn − bn =

n∑
i=1

(Xi − b), (10.6)

the block length B is the first time this random walk becomes negative. Since
E(Xi−b) = αb−b < 0, it follows from the law of large numbers that a.s. S′n → −∞
as n→∞, and thus B <∞.

Note also that S′B−1 > 0, and thus 0 > S′B > −b. In fact, the number of keys
that hash to the first B buckets is SB = S′B + bB, and since all buckets before B
are full and thus take (B − 1)b keys, the number of keys in the final bucket of the
block is

YB = HB = SB − (B − 1)b = S′B + b ∈ {0, . . . , b− 1}. (10.7)

Recall the numbers ζ`(q) = ζ`(q;α) defined in (3.4).

Theorem 10.4. Let 0 < α < 1. The probability generating function ψB(q) := E qB
of B = Bα is given by

ψB(q) = 1−
b−1∏
`=0

(
1− ζ`(q)

)
, (10.8)

for |q| 6 R for some R > 1, where ζ`(q) = ζ`(q;α) is given by (3.4).

32 SVANTE JANSON AND ALFREDO VIOLA

More generally, for |q| 6 R and t ∈ C,

E
(
qBtYB

)
= E

(
qBtHB

)
= tb −

b−1∏
`=0

(
t− ζ`(q)

)
. (10.9)

Remark 10.5. Related results in a case where Xi are bounded but otherwise have
an arbitrary distribution are proved by a similar but somewhat different method in
[11, Example XII.4(c) and Problem XII.10.13].

Proof. We consider separately the different possibilities for S′B (or equivalently, see
(10.7), for the number of keys in the final bucket of the block) and define b partial
probability generating functions f1(q), . . . , fb(q) by

fk(q) := E
(
qB ; S′B = −k

)
=

∞∑
n=1

Pr
(
B = n and S′B = −k

)
qn, k = 1, . . . , b.

(10.10)
Let ζ and q be non-zero complex numbers with |ζ|, |q| 6 1, and define the complex

random variables

Zn := ζS
′
nqn =

n∏
i=1

(ζXi−bq), n > 0. (10.11)

We have, by (8.17),

E
(
ζXi−bq

)
= ζ−bqψX(ζ) = ζ−bqeαb(ζ−1). (10.12)

Fix an arbitrary q with 0 < |q| 6 1 and choose ζ = ζ`(q), noting |ζ| 6 1 by
Lemma 3.1. Then (3.7) holds, and thus (10.12) reduces to E

(
ζXi−bq

)
= 1. Since

the random variables Xi are independent, it then follows from (10.11) that (Zn)∞n=0

is a martingale. (See e.g. [19, Chapter 10] for basic martingale theory.) Moreover,
(10.5) shows that B is a stopping time for the corresponding sequence of σ-fields.
Hence also the stopped process (Zn∧B)∞n=0 is a martingale. Furthermore, for n 6 B,
we have S′n > −b and thus by (10.11) |Zn| 6 |ζ|−b, so the martingale (Zn∧B)∞n=0

is bounded. Consequently, by a standard martingale result (see e.g. [19, Theorem
10.12.1]) together with (10.10),

1 = EZ0 = E lim
n→∞

Zn∧B = EZB = E ζS
′
BqB =

b∑
k=1

ζ−kfk(q). (10.13)

Thus, for any q with 0 < |q| 6 1, the b different choices ζ = ζ`(q) yield b linear
equations

b∑
k=1

ζ`(q)
−kfk(q) = 1, ` = 0, . . . , b− 1 (10.14)

in the b unknowns f1(q), . . . , fb(q). Note that the coefficient matrix of this system
of equations is (essentially) a Vandermonde matrix, and since ζ0(q), . . . , ζb−1(q) are
distinct, its determinant is non-zero, so the system of equations (10.14) has a unique
solution.

To find the solution explicitly, let us temporarily define f0(q) := −1. Then
(10.14) can be written

b∑
k=0

ζ`(q)
−kfk(q) = 0. (10.15)

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 33

Define the polynomial

p(t) :=

b∑
k=0

fk(q)tb−k; (10.16)

then by (10.15), p(ζ`(q)) = 0 and thus p(t) has the b (distinct) roots ζ0(q), . . . ,
ζb−1(q); since further p(t) has leading term f0(q)tb = −tb, this implies

p(t) = −
b−1∏
`=0

(
t− ζ`(q)

)
. (10.17)

Furthermore, by (10.7) and (10.10), for any t ∈ C,

E
(
qBtYB

)
=

b∑
k=1

E
(
qB ; S′B = −k

)
tb−k =

b∑
k=1

fk(q)tb−k. (10.18)

Hence, by (10.16) and (10.17),

E
(
qBtYB

)
= p(t)− f0(q)tb = p(t) + tb = tb −

b−1∏
`=0

(
t− ζ`(q)

)
. (10.19)

This proves (10.9) for 0 < |q| 6 1, and (10.8) follows by taking t = 1; the results
extend by analyticity and continuity to |q| 6 R. �

Remark 10.6. By identifying coefficients in (10.17) (or (10.9)) we also obtain

fk(q) = (−1)k−1ek
(
ζ0(q), . . . , ζb−1(q)

)
, (10.20)

which gives the distribution of the length of blocks with a given number of keys in
the last bucket. In particular, taking q = 1 and using (10.7) and (10.10),

Pr(YB = b− k) = Pr(S′B = −k) = fk(1) = (−1)k−1ek
(
ζ0, . . . , ζb−1

)
. (10.21)

By (8.30) and (8.32), this says that YB has the same distribution as (Yi | Yi < b),
the number of keys placed in a fixed bucket in hashing on Z, conditioned on the
bucket not being full. This is (more or less) obvious, since the buckets that are not
full are exactly the last buckets in the blocks.

Corollary 10.7. The random block length B = Bα defined above has expectation

EBα =
1

T0(bα)
(10.22)

and variance, with ζ` given by (3.5),

VarBα =
1

b(1− α)2T0(bα)
− 2

bT0(bα)

b−1∑
`=1

ζ`
(1− ζ`)(1− αζ`)

− 1

T0(bα)2
. (10.23)

Proof. We have from (10.8), recalling that ζ0(1) = 1 and using (8.27),

EBα = ψ′B(1) = ζ ′0(1)

b−1∏
`=1

(
1− ζ`(1)

)
= ζ ′0(1)

b(1− α)

T0(bα)
. (10.24)

Furthermore, (logarithmic) differentiation of (3.4) yields, using (3.3),

ζ ′`(q) =
ζ`(q)

bq(1− αζ`(q))
, (10.25)

34 SVANTE JANSON AND ALFREDO VIOLA

and in particular

ζ ′0(1) =
1

b(1− α)
, (10.26)

and (10.22) follows.
Similarly,

EBα(Bα − 1) = ψ′′B(1) = ζ ′′0 (1)

b−1∏
`=1

(
1− ζ`(1)

)
− 2

b−1∑
j=1

ζ ′0(1)ζ ′j(1)

∏b−1
`=1

(
1− ζ`(1)

)
1− ζj(1)

(10.27)
and (10.23) follows after a calculation, using (8.27), (10.25)–(10.26) and, by (10.25),
differentiation and (10.25) again,

qζ ′′` (q) + ζ ′`(q) =
(
qζ ′`(q)

)′
=

ζ ′`(q)

b(1− αζ`(q))2
=

ζ`(q)

b2q(1− αζ`(q))3
. (10.28)

We omit the details. �

As said above, the length of the block B̂i containing a given bucket i has a
different, size-biased distribution. We consider both the exact model and the infinite
Poisson model, and use the notations B̂m,n and B̂α in our usual way. We first note
an analogue of Lemma 7.3.

Lemma 10.8. Suppose that α1 < 1. Then there exists C and c1 > 0 such that

E ec1B̂m,n 6 C for all m and n with n/bm 6 α1.

Proof. Let again c := b(1−α1) > 0, so b−n/m > c. Consider the block containing
bucket 0. If this block has length k > 2 and starts at j, then −k + 1 6 j 6 0

(modulo m) and
∑j+k−2
i=j (Xi − b) > 0. Hence, by a Chernoff bound as in (7.6),

Pr(B̂m,n = k) 6 kPr
(
Sk−1 − (k − 1)b > 0

)
6 k exp

(
−2(k − 1)c2

)
.

The result follows with c1 = c2. �

Theorem 10.9. In the infinite Poisson model, B̂ = B̂α has the size-biased distri-
bution

Pr(B̂α = k) =
kPr(Bα = k)

EBα
= T0(bα)kPr(Bα = k) (10.29)

and thus the probability generating function

ψB̂(q) = T0(bα)qψ′B(q) = T0(bα)q

b−1∑
`=0

ζ ′`(q)
∏
j 6=`

(1− ζj(q)). (10.30)

Moreover, for the exact model, as m,n→∞ with n/bm→ α, B̂m,n
d−→ B̂α with

convergence of all moments; furthermore, for some δ > 0, the probability generating
function converges to ψB̂(q), uniformly for |q| 6 1 + δ.

Proof. Consider the block containing bucket 0. This block has length k if and only
if there is some i < 0 with i > −k such that Hi < b and the block starting at i+ 1
has length k (and thus contains 0). Hence, using Remark 10.3 and (8.32),

Pr(B̂ = k) =

−1∑
i=−k

Pr(H−i < b) Pr(B = k) = kT0(bα) Pr(B = k), (10.31)

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 35

which together with (10.22) shows (10.29). (Note also that summing (10.31) over k
yields another proof of (10.22).) The formulas (10.30) for the probability generating
function follow from (10.29) and (10.8).

The convergence in distribution of B̂m,n follows from Theorem 7.4. Convergence
of moments and probability generating function then follows using Lemma 10.8. �

Corollary 10.10. As m,n→∞ with n/bm→ α ∈ (0, 1),

E B̂m,n → E B̂α =
1

b(1− α)2
− 2

b

b−1∑
`=1

ζ`
(1− ζ`)(1− αζ`)

. (10.32)

Proof. The convergence follows by Theorem 10.9, which also implies

E B̂α =
∑
k

kPr(B̂α = k) =
∑
k

k2 Pr(Bα = k)

EBα
=

EB2
α

EBα
. (10.33)

The result follows by Corollary 10.7. �

Recall Bm,n defined in Section 10.1.

Theorem 10.11. In the exact model, B̂m,n has the size-biased distribution

Pr(B̂m,n = k) =
kPr(Bm,n = k)

EBm,n
=
Qm,n,0
mn

kPr(Bm,n = k). (10.34)

Proof. B̂m,n is defined as the length of the block containing a given bucket i. We
may instead let i be a random bucket, which means that among all blocks in all
hash tables, each block is chosen with probability proportional to its length. The
result follows by (10.3). �

Theorem 10.12. For the exact model, as m,n→∞ with n/bm→ α, Bm,n
d−→ Bα

with convergence of all moments.

Proof. By Theorem 10.9, B̂m,n
d−→ B̂α and thus by (10.34) and (10.29),

kPr(Bm,n = k)

EBm,n
= Pr(B̂m,n = k)→ Pr(B̂α = k) =

kPr(Bα = k)

EBα
. (10.35)

Furthermore, it is well-known that for integer-valued random variables, convergence
in distribution is equivalent to convergence in total variation, i.e. (in this case)∑
k |Pr(B̂m,n = k) − Pr(B̂α = k)| → 0. Consequently, using (10.34) and (10.29)

again,

1

EBm,n
=

∞∑
k=1

1

k
Pr(B̂m,n = k)→

∞∑
k=1

1

k
Pr(B̂α = k) =

1

EBα
, (10.36)

and thus EBm,n → EBα. This and (10.35) yield Pr(Bm,n = k)→ Pr(Bα = k) for

all k > 1, i.e. Bm,n
d−→ Bα. The moment convergence follows from the moment

convergence in Theorem 10.9, since, generalizing (10.33), EBrm,n = E B̂r−1m,n EBm,n
and EBrα = E B̂r−1α EBα for all r. �

36 SVANTE JANSON AND ALFREDO VIOLA

11. Unsuccessful search

We consider the cost U of an unsuccessful search. For convenience, we define U
as the number of full buckets that are searched, noting that the total number of
inspected buckets is U + 1.

Note also that U is the displacement of a new key inserted using the FCFS rule;
thus U can be seen as the cost of inserting (and in the case of FCFS also retrieving)
the n+ 1st key. This approach is taken in Section 12.

11.1. Combinatorial approach. Let

U(z, w, q) :=
∑
m>1

∑
n>0

um,n(q)wbm
(mz)n

n!
, (11.1)

where um,n(q) is the probability generating function of the cost U of a unsuccessful
search in a hash table with m buckets and n keys. (We define um,n(q) = 0 when
n > bm.)

Theorem 11.1.

U(bz, w, q) = Λ0(bz, w)
N0(bz, w)−N0(bz, wq1/b)

1− q

=

∏b−1
j=0

(
1− T (ωjzwq1/b)

z

)
−∏b−1

j=0

(
1− T (ωjzw)

z

)
(1− q)∏b−1

j=0

(
1− T (ωjzw)

z

) . (11.2)

Proof. U(z, w, q) is the trivariate generating function of the number of hash tables
(with m buckets and n keys) where a new key added at a fixed bucket, say 0,
ends up with some displacement k. (The variable q marks this displacement.) By
symmetry, this number is the same as the number of hash tables where a key added
to any bucket ends up in a fixed bucket, say the last, with displacement k. Since
this implies that the last bucket is not full (before the addition of the new key), we
can use the sequence construction of hash tables in Section 4; we then allow the
new key to hash to any bucket in the last cluster. By Remark 4.3 and equations
(4.11) and (4.12), it is thus enough to study the problem in a cluster.

Let C be a combinatorial class representing a cluster. In a cluster with m buckets,
the number of visited full buckets in a unsuccessful search ranges from 0 to m− 1.
As a consequence, in the combinatorial model, the specification Pos(C) represents
the displacements in the last cluster; by the argument above, the displacement U
is thus represented by Seq(C) ∗Pos(C). By (4.11) and Remark 4.3, this leads, using
equations (5.2) and (5.3), to (11.2). �

This result is also derived in [3, Lemma 4.2].

11.2. Probabilistic approach. Let Ui > 0 denote the number of full buckets that
we search in an unsuccessful search for a key that does not exist in the hash table,
when we start with bucket i. Thus Ui = k − i where k is the index of the bucket
that ends the block containing i.

In the probabilistic version, we consider again the infinite Poisson model on Z,
with Xi ∼ Po(αb) independent. Obviously, all Ui have the same distribution, so we
may take i = 0; we also use the notation Uα = U0 for this model. We similarly use
Um,n for the exact model.

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 37

Theorem 11.2. In the infinite Poisson model, the probability generating function
of Uα is given by

ψU (q) =
T0(bα)

1− q
b−1∏
`=0

(1− ζ`(q)) . (11.3)

Moreover, for the exact model, as m,n→∞ with n/bm→ α, Um,n
d−→ Uα with

convergence of all moments; furthermore, for some δ > 0, the probability generating
function converges to ψU (q), uniformly for |q| 6 1 + δ.

Proof. This is similar to the proof of Theorem 10.9. By the comments just made,
U0 = k if and only if there exists i 6 −1 such that Hi < b, and thus a block
ends at i, and the block beginning at i + 1 ends at k, and thus has length k − i.
Consequently, using Remark 10.3 and (8.32),

Pr(U0 = k) =

−1∑
i=−∞

Pr(Hi < b) Pr(B = k − i) = T0(bα)

−1∑
i=−∞

Pr(B = k − i)

= T0(bα) Pr(B > k), k > 0. (11.4)

Hence, the probability generating function ψU (q) is given by

ψU (q) := E qU0 =

∞∑
k=0

T0(bα) Pr(B > k)qk =

∞∑
k=0

∑
j>k

T0(bα) Pr(B = j)qk

= T0(bα)

∞∑
j=1

Pr(B = j)

j−1∑
k=0

qk = T0(bα)

∞∑
j=1

Pr(B = j)
1− qj
1− q

= T0(bα)
1− ψB(q)

1− q . (11.5)

The result (11.3) now follows by (10.8).
As ususal, the final claim follows by Theorem 7.4 together with a uniform esti-

mate, which in this case comes from Lemma 10.8 and the bound Ui 6 B̂i. �

Remark 11.3. Of course, ψU (1) = 1. We can verify that the right-hand side of
(11.3) equals 1 (as a limit) for q = 1 by (10.26) and (8.27).

It is also possible to derive (11.3) (for |q| < 1, say) from Theorem 11.2 and
Theorem 7.4(iii).

In principle, moments of Uα can be computed by differentiation of ψU (q) in
(11.3) at q = 1. However, the factor 1− q in the denominator makes the evaluation
at q = 1 complicated, since we have to take a limit. Instead, we prefer to relate
moments of Uα to moments of Bα. We give the expectation as an example, and
leave higher moments to the reader.

Corollary 11.4. As m,n→∞ with n/bm→ α ∈ (0, 1),

EUm,n → EUα = T0(bα)E
Bα(Bα − 1)

2

=
1

2b(1− α)2
− 1

2
− 1

b

b−1∑
`=1

ζ`
(1− ζ`)(1− αζ`)

. (11.6)

38 SVANTE JANSON AND ALFREDO VIOLA

Proof. In the infinite Poisson model, by (11.4),

EU =

∞∑
k=0

kPr(U = k) = T0(bα)

∞∑
k=0

kPr(B > k) = T0(bα)

∞∑
j=0

Pr(B = j)

j−1∑
k=1

k

which yields the first equality in (11.6). The second follows by Corollary 10.7. �

Remark 11.5. The cost of an unsuccessful search starting at i, measured as the
total number of buckets inspected, is Ui + 1, which has probability generating
function qψU (q) and expectation EU + 1.

The number of keys inspected in an unsuccessful search is Ũi = bUi +U ′i , where
U ′i is the number of keys in the first non-full bucket. We can compute its probability
generating function too.

Theorem 11.6. In the infinite Poisson model, the number Ũ = Ũα of keys in-
spected in an unsuccessful search has probability generating function

ψŨ (q) = T0(bα)

∏b−1
`=0(q − ζ`(qb))−

∏b−1
`=0(q − ζ`(1))

1− qb . (11.7)

Moreover, for the exact model, as m,n→∞ with n/bm→ α, Ũm,n
d−→ Ũα with

convergence of all moments; furthermore, for some δ > 0, the probability generating
function converges to ψŨ (q), uniformly for |q| 6 1 + δ.

Proof. Arguing as in (11.5), we obtain the probability generating function

ψŨ (q) := E qŨi =

∞∑
k=0

b−1∑
`=0

T0(bα) Pr(B > k, YB = `)qbk+`

= T0(bα)

∞∑
j=1

b−1∑
`=0

Pr(B = j, YB = `)

j−1∑
k=0

qbk+`

= T0(bα)

∞∑
j=1

b−1∑
`=0

Pr(B = j, YB = `)
1− qbj
1− qb q

`

= T0(bα)
E(qYB)− E(qbBqYB)

1− qb

and (11.7) follows by (10.9).
The final claims follow in the usual way from Theorem 7.4 and Lemma 10.8,

using Ũi < bB̂i. �

Corollary 11.7. As m,n→∞ with n/bm→ α ∈ (0, 1),

E Ũm,n → E Ũα =
1

2(1− α)2
− b

2
+

b−1∑
`=1

1− 2αζ`
(1− ζ`)(1− αζ`)

. (11.8)

Proof. By differentiation of (11.7) at q = 1, recalling ζ`(1) = 1 and using (10.25)–
(10.26) and (10.28). We omit the details. �

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 39

12. FCFS displacement

12.1. Combinatorial approach. We consider, as for Robin Hood hashing in Sec-
tion 9.1, the displacement of a marked key •, which we by symmetry may assume
hashes to the first bucket. Thus, let

FCFS(z, w, q) :=
∑
m>1

∑
n>1

∑
k>0

FCFSm,n,kw
bm z

n

n!
qk, (12.1)

where FCFSm,n,k is the number of hash tables of length m with n keys (one of
them marked as •) such that • hashes to the first bucket and the displacement DFC

of • equals k. For a given m and n with 1 6 n 6 bm, there are nmn−1 such tables
(n choices to select • and mn−1 choices to place the other n − 1 elements). Thus,
if dm,n(q) is the probability generating function for the displacement of a random
key in a hash table with m buckets and n keys,

FCFS(z, w, q) =
∑
m>1

bm∑
n=1

nmn−1dm,n(q)wbm
zn

n!

= z
∑
m>1

bm−1∑
n=0

dm,n+1(q)wbm
mnzn

n!
. (12.2)

In other words, since there aremn hash tables withm buckets and n keys, z−1FCFS(z, w, q)
can be seen as the generating function of dm,n+1(q).

Theorem 12.1.

FCFS(bz, w, q) = b

∫ z

0

U(bt, wez−t, q) dt (12.3)

up to terms znwmqk with n > bm.

Proof. The probability generating function for the displacement of a random key
when having n keys in the table is

dm,n(q) =
1

n

n−1∑
i=0

um,i(q), (12.4)

where the generating function of um,i(q) is given by (11.1). This assumes n 6 bm,
but for the rest of the proof we redefine dm,n(q) so that (12.4) holds for all m and
n > 1, and we redefine FCFS(z, w, q) by summing over all n in (12.2); this will
only affect terms with n > bm.

By (12.4), for all m > 1 and n > 0,

um,n(q) = (n+ 1)dm,n+1(q)− ndm,n(q),

and so, by (11.1),

U(bz, w, q) =
∑
m≥1

wbm
∑
n≥0

(bmz)n

n!

(
(n+ 1)dm,n+1(q)− ndm,n(q)

)
.

Thus, FCFS(bz, w, q) in (12.2) satisfies

∂

∂z
FCFS(bz, w, q)− w ∂

∂w
FCFS(bz, w, q) = bU(bz, w, q). (12.5)

The differential equation (12.5) together with the boundary condition F (0, w, q)
= 0 leads to the solution (12.3). �

40 SVANTE JANSON AND ALFREDO VIOLA

Note also that, by symmetry, in the definition of FCFS(z, w, q), we may instead
of assuming that • hashes to the first bucket, assume that • ends up in a cluster
that ends with a fixed bucket, for example the last. We may then use the sequence
construction in Section 4, and by (4.11) and Remark 4.3, we obtain

FCFS(z, w, q) = Λ0(z, w)FC(z, w, q), (12.6)

where FC(z, w, q) is the generating function for the displacements in an almost full
table.

12.2. An alternative approach for b = 1. In this section we present an alterna-
tive approach to find the generating function for the displacement of a random key
in FCFS, without considering unsuccessful searches. We present it in detail only in
the case b = 1, when we are able to obtain explicit generating functions, and give
only a few remarks on the case b > 1.

Thus, let b = 1 and let FC(z, w, q) be the generating function for the displace-
ment of a marked key • in an almost full table (with n = m−1 keys). Furthermore
let FC specify an almost full table with one key • marked and AF specify a normal
almost full table.

Consider an almost full table with n > 0. Before inserting the last key, the table
consisted of two clusters (almost full subtables), with the last key hashing to the
first cluster. When considering also the marked key •, there are three cases, see
Figure 5:

(a) The new inserted key is • and has to find a position in an AF , with q
keeping track on the insertion cost.

(b) The new inserted key is not • and has to find a position in
(1) an FC (in case • is in the first cluster),
(2) an AF (in case • is in the second cluster).

Figure 5. Two cases in an FC table. In a) • is the last key
inserted, while in b) • is already in the table when the last key is
inserted.

As a consequence we have the specification:

FC = Add
(
Posq(AF) ∗AF + Pos(FC) ∗AF + Pos(AF) ∗ FC

)
, (12.7)

where Posq means that we operate on the generating functions by H in (5.3), while

the normal Pos operates by w
b
∂
∂w as in Figure 2. The construction Add translates

to integration
∫

, see Section 5; we eliminate this by taking the derivative ∂/∂z on
both sides. The specification (12.7) thus yields the partial differential equation

∂

∂z
FC(z, w, q) = H[AF (z, w)]AF (z, w)

+ w
∂

∂w

(
FC(z, w, q)

)
AF (z, w) + w

∂

∂w

(
AF (z, w)

)
FC(z, w, q). (12.8)

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 41

Moreover, since all generating functions here are for almost full tables, with n =
m− 1, they are all of the form F (wz)/z, and we have z∂z = w∂w − 1. Thus, (12.8)
reduces to the ordinary differential equation(
1− zAF (z, w)

)
w
∂

∂w
FC(z, w, q) =

(
1 + w

∂

∂w

(
zAF (z, w)

))
FC(z, w, q)

+ zH[AF (z, w)]AF (z, w). (12.9)

Furthermore, since b = 1, (4.1) yields AF (z, w) = wF0(zw) = N0(z, w), which
by (4.2) or (4.6) yields AF (w, z) = T (zw)/z. Substituting this in (12.9), the
differential equation is easily solved using (3.3) and the integrating factor (1 −
T (zw))/T (zw), and we obtain the following theorem.

Theorem 12.2. For b = 1,

FC(z, w, q) =

(
(1− T (zwq))2 − (1− T (zw))2

)
T (zw)

2z(1− q)(1− T (zw))
. (12.10)

Note that a similar derivation has been done in Section 4.6 of [38]. The differ-
ence is that in [38] a recurrence for n![znwn+1] is derived, and then moments are
calculated. Even though it could have been done, no attempt to find the generating
function from the recurrence is presented there. Moreover, in [39], the same recur-
rence as in [38] is presented and then the distribution is explicitly calculated for
the Poisson model (although the distribution is not presented for the combinatorial
model).

Here, with the same specification, the symbolic method leads directly to the gen-
erating function, avoiding the need to solve any recurrence. This example presents
in a very simple way how to use the approach “if you can specify it, you can analyze
it”.

By (12.6) and (4.8), we obtain immediately the generating function FCFS (for
general hash tables) in the case b = 1.

Theorem 12.3. For b = 1,

FCFS(z, w, q) =
((1− T (zwq))2 − (1− T (zw))2)T (zw)

2(1− q)(1− T (zw))(z − T (zw))
.

The distribution of the displacement DFC
m,n can be obtained by extracting coef-

ficients in FCFS, see (12.1)–(12.2). Instead of doing this, we just quote a result
from Theorem 5.1 in [39] (see also [21, Theorem 5.2]): If b = 1, 1 6 n 6 m and
k > 0, then

[qk]dm,n(q) = 1− n− 1

2m
−
k−1∑
j=0

(
n− 1

j

)
(j + 1)j−2(m− j − 1)n−j−1

mn−1 . (12.11)

Notice that there are two shifts from [39]: the first one in k since in [39] the studied
random variable is the search cost and here it is the displacement; the second one
in n, since in [39] the table has n+ 1 elements.

We can also derive a formula similar to Theorem 12.2 for completely full tables.
Let FC0(z, w, q) be the generating function for the displacement of a marked key
• in a full table (with n = m keys) such that the last key is inserted in the last
bucket. (By rotational symmetry, we might instead require that any given key, or
•, is inserted in any given bucket, or that any given key, or •, hashes to a given
bucket.)

42 SVANTE JANSON AND ALFREDO VIOLA

Theorem 12.4. For b = 1,

FC0(z, w, q) =
(1− T (zwq))2 − (1− T (zw))2

2(1− q)(1− T (zw))
. (12.12)

Proof. A full table is obtained by adding a key to an almost full table. This leads to
the specification FC0 = Add(Posq(AF)+Pos(FC)) and a differential equation that
yields the result. However, we prefer instead the following combinatorial argument:
Say that there is a cut-point after each bucket where the overflow is 0. By the
rotational symmetry, we may equivalently define FC0 as the class of full hash tables
with a marked element • such that the first cut-point after • comes at the end of
the table. By appending an almost full table to such a table, we obtain a table
of the type FC; this yields a specification FC = FC0 ∗ AF , since this operation
is a bijcetion, with an inverse given by cutting a table of the type FC at the first
cut-point after •. Consequently,

FC(z, w, q) = FC0(z, w, q)AF (z, w) = FC0(z, w, q)
T (zw)

z
(12.13)

and the result follows by (12.10). �

Moments are easily obtained from the generating functions above. In particular,
this gives another proof of (2.3)–(2.4):

Corollary 12.5. For b = 1,

EDFC
n,n =

√
2π

4
n1/2 − 2

3
+

√
2π

48n1/2
− 2

135n
+O

(
n−3/2

)
, (12.14)

Var(DFC
n,n) =

√
2π

12
n3/2 +

(
1

9
− π

8

)
n+

13
√

2π

144
n1/2 − 47

405
− π

48
+O

(
n−1/2

)
.

(12.15)

Proof. Taking q = 1 in (12.12) we obtain (by l’Hôpital’s rule) T (zw)/(1−T (zw)) =
(1 − T (zw))−1 − 1, which is the EGF of nn; this is correct since FC0 counts the
full tables with a marked key such that the last key is inserted in the last bucket,
and there are indeed nn such tables.

Taking the first and second derivatives of (12.12) at q = 1 we find, with T =
T (zw),

∞∑
n=1

nn EDFC
n,n

(zw)n

n!
= Uq∂qFC0(z, w, q) =

T 2

2(1− T)2

=
1

2(1− T)2
− 1

1− T +
1

2
,

∞∑
n=1

nn E(DFC
n,n)2

(zw)n

n!
= Uq∂

2
qFC0(z, w, q) + Uq∂qFC0(z, w, q) =

3T 2 − T 4

6(1− T)4

=
1

3(1− T)4
− 1

3(1− T)3
− 1

2(1− T)2
+

2

3(1− T)
− 1

6
.

Knuth and Pittel [27] defined the tree polynomials tn(y) as the coefficients in the
expansion

1

(1− T (z))y
=

∞∑
n=0

tn(y)
zn

n!
. (12.16)

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 43

By identifying coefficients, we thus obtain the exact formulas

nn EDFC
n,n = 1

2 tn(2)− tn(1), (12.17)

nn E(DFC
n,n)2 = 1

3 tn(4)− 1
3 tn(3)− 1

2 tn(2) + 2
3 tn(1). (12.18)

The result now follows from the asymptotic of tn(y) obtained by singularity analysis,
see [27, (3.15) and the comments below it]. �

Remark 12.6. The approach in this subsection can in principle be used also for
b > 1. For 1 6 k 6 b, let AFk(z, w) be the generating function for almost full hash
tables with k empty slots in the last bucket, and let FCk(z, w, q) be the generating
function for such tables with a marked key •, with q marking the displacement of
•. We can for each k argue as for (12.7), but we now also have the possibility that
the last key hashes to an almost full table with k+ 1 empty slots (provided k < b).
We thus have the specifications

FCk = Add
(
Posq(AF1) ∗AFk + Pos(FC1) ∗AFk + Pos(AF1) ∗ FCk

+ Posq(AFk+1) + Pos(FCk+1)
)
, k = 1, . . . , b (12.19)

with AFb+1 = FCb+1 = ∅. This yields a system of b differential equations similar
to (12.9) for the generating functions FCk(z, w, q); note that AFk is given by Fb−k
in (4.1) and (4.2). However, we do not know any explicit solution to this system,
and we therefore do not consider it further, preferring the alternative approach
presented in Section 12.1. (It seems possible that this approach at least might
lead to explicit generating functions for the expectation and higher moments by
differentiating the equations at q = 1, but we have not pursued this.)

12.3. Probabilistic approach. In the probabilistic model, when inserting a new
key in the hash table with the FCFS rule, we do exactly as in an unsuccessful search,
except that at the end we insert the new key. Hence the displacement of a new key
has the same distribution as Ui in Section 11. However (unlike the RH rule), the
keys are never moved once they are inserted, and when studying the displacement
of a key already in the table, we have to consider Ui at the time the key was added.

We consider again infinite hashing on Z, and add a time dimension by letting the
keys arrive to the buckets by independent Poisson process with intensity 1. At time
t > 0, we thus have Xi ∼ Po(t), so at time αb we have the same infinite Poisson
model as before, but with each key given an arrival time, with the arrival times
being i.i.d. and uniformly distributed on [0, αb]. (We cannot proceed beyond time
t = b; at this time the table becomes full and an infinite number of keys overflow
to +∞; however, we consider only t < b.)

Consider the table at time αb, containing all key with arrival times in [0, αb]. We
are interested in the FCFS displacement of a “randomly chosen key”. Since there
is an infinite number of keys, this is not well-defined, but we can interpret it as
follows (which gives the correct limit of finite hash tables, see the theorem below):
By a basic property of Poisson processes, if we condition on the existence of a key,
x say, that arrives to a given bucket i at a given time t, then all other keys form a
Poisson process with the same distribution as the original process. Hence the FCFS
displacement of x has the same distribution as Uβ , computed with the load factor
α replaced by β := t/b. Furthermore, as said above, the arrival times of the keys
are uniformly distributed in [0, αb], so β is uniformly distributed in [0, α]. Hence,

44 SVANTE JANSON AND ALFREDO VIOLA

the FCFS displacement DFC = DFC
α of a random key is (formally by definition) a

random variable with the distribution

Pr(DFC
α = k) =

1

α

∫ α

0

Pr
(
Uβ = k

)
dβ. (12.20)

This leads to the following, where we now write α as an explicit parameter of all
quantities that depend on it.

Theorem 12.7. In the infinite Poisson model, the probability generating function

ψFC(q;α) := E qDFC

of DFC = DFC
α is given by

ψFC(q;α) =
1

α

∫ α

0

ψU (q;β) dβ =
1

α

∫ α

0

T0(bβ)

1− q
b−1∏
`=0

(
1− ζ`(q;β)

)
dβ

=
1

α

∫ α

0

b(1− β)
∏b−1
`=0

(
1− ζ`(q;β)

)
(1− q)∏b−1

`=1(1− ζ`(1;β))
dβ. (12.21)

Moreover, for the exact model, as m,n → ∞ with n/bm → α, DFC
m,n

d−→ DFC
α

with convergence of all moments; furthermore, for some δ > 0, the probability
generating function converges to ψFC(q), uniformly for |q| 6 1 + δ.

Proof. The first equality in (12.21) follows by (12.20), and the second by Theo-
rem 11.2.

For the exact model, we have by the discussion above, for any k > 0,

Pr(DFC
m,n = k) =

1

n

n∑
j=1

Pr
(
Um,j−1 = k

)
=

∫ 1

0

Pr
(
Um,bnxc = k

)
dx.

For any x > 0, bnxc/bm d−→ xα, and thus Pr
(
Um,bnxc = k

)
→ Pr

(
Uxα = k

)
by Theorem 11.2. Hence, by dominated convergence and the change of variables
β = xα,

Pr(DFC
m,n = k)→

∫ 1

0

Pr
(
Uxα = k

)
dx =

1

α

∫ α

0

Pr
(
Uβ = k

)
dβ = Pr(DFC

α = k),

by (12.20). Hence DFC
m,n

d−→ DFC
α as m,n → ∞ with n/bm → α. Convergence

of moments and probability generating function follows by Lemma 10.8 and the
estimate DFC 6 Ui 6 B̂i for a key that hashes to i. �

Corollary 12.8. As m,n→∞ with n/bm→ α ∈ (0, 1),

EDFC
m,n → EDFC

α = EDRH
α =

1

2bα

(
1

1− α − b− bα
)

+
1

bα

b−1∑
`=1

1

1− ζ`
. (12.22)

Proof. The convergence follows by Theorem 12.7. In the exact model, EDFC
m,n =

EDRH
m,n, since the total displacement does not depend on the insertion rule, see

Lemma 9.2. Hence, using also Corollary 9.4, EDFC
α = EDRH

α , and the result follows
by (9.17). Alternatively, by (12.20),

EDFC
α =

1

α

∫ α

0

EUβ dβ, (12.23)

where EUβ is given by (11.6). It can be verified that this yields (12.22) (simplest

by showing that d
dα

(
αEDRH

α

)
= EUα, using (9.17), (3.5) and (3.3)). �

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 45

13. Some experimental results

In this section we check our theoretical results against the experimental values for
the FCFS heuristic presented in the original paper [33] from 1957, where the linear
probing hashing algorithm was first presented, since this is the first distributional
analysis made for the problem (for the general case, b ≥ 1).

The historical value of this section, relies on the fact that this is the first time
that these original experimental values are checked against distributional theoretical
results.

Length # records Length × # Empirical prob. Theoretical
1 8418 8418 0.9353 0.9352
2 336 672 0.0373 0.0364
3 111 333 0.0123 0.0122
4 70 280 0.0078 0.0059
5 26 130 0.0029 0.0033
6 9 54 0.0010 0.0020
7 14 98 0.0016 0.0013
8 7 56 0.0008 0.0009
9 5 45 0.0006 0.0006

10 1 10 0.0001 0.0005
11 1 11 0.0001 0.0003
12 0 0 0.0000 0.0003
13 1 13 0.0001 0.0002
14 1 14 0.0001 0.0002

sum|average 9000 10134 1.1260 1.1443

Figure 6. Table 3 in [33], with b = 20, m = 10000 and n =
9000 (α = 0.9), together with theoretical results taken from our
distributional results in the Poisson Model for the FCFS heuristic,
Theorem 12.7. For the keys with low search cost (3 or less) there
is a very good agreement with the experimental results. This is
consistent with the explanation that the high variance is originated
by all the latest keys inserted (and as a consequence, in FCFS,
by the ones with larger displacement). The last line presents the
average search cost, where a difference with the theoretical result
in Corollary 12.8 is noticed.

Even though we have exact distributional results for the search cost of random
keys by Theorem 12.1 for the generating function, the coefficients are very difficult
to extract and to calculate. As a consequence, except for the case when b = 1 where
exact results are easy to use by means of (2.1), we use the asymptotic approximate
results in the Poisson Model derived in Theorem 12.7 and Corollary 12.8. Notice
that Theorem 12.7 and Corollary 12.8 evaluate the displacement of a random key,
while in [33] its search cost is calculated. As a consequence, we have to add 1 to
the theoretical results. When the table is full, we use (9.9).

All the simulations in [33] were done in random-access memory with a IBM 704
addressing asystem (simulated memory with random identification numbers). It is

46 SVANTE JANSON AND ALFREDO VIOLA

% Full 1st run 2nd run 3rd run 4th run Theoretical
40 1.000 1.000 1.000 1.000 1.000
60 1.001 1.002 1.002 1.003 1.002
70 1.008 1.013 1.009 1.010 1.010
80 1.026 1.043 1.029 1.035 1.036
85 1.064 1.073 1.062 1.067 1.069
90 1.134 1.126 1.138 1.137 1.144
95 1.321 1.284 1.331 1.392 1.386
97 1.623 1.477 1.512 1.797 1.716
99 2.944 2.112 2.085 2.857 3.379
100 4.735 3.319 3.830 4.299 4.002

Figure 7. Table 4 in [33]: average length of search of a random
record with b = 20 and m = 500, together with theoretical results.
(The experiments were carried four times over the same data.) As
α increases, so does the variance of the results for the four runs.

interesting to note that the IBM 704 was the first mass-produced computer with
floating-point arithmetic hardware. It was introduced by IBM in 1954.

b = 1 | m = 500 b = 2 | m = 500
% Full Experimental Poisson Exact % Full Experimental Poisson

10 1.053 1.056 1.055 20 1.034 1.024
20 1.137 1.125 1.125 40 1.113 1.103
30 1.230 1.214 1.213 60 1.325 1.293
40 1.366 1.333 1.331 70 1.517 1.494
50 1.541 1.500 1.496 80 1.927 1.903
60 1.823 1.750 1.741 90 3.148 3.147
70 2.260 2.167 2.142 95 5.112 5.644
80 3.223 3.000 2.911 100 11.389 10.466
90 5.526 5.500 4.889
100 16.914 — 14.848

Figure 8. Table 5B in [33]: average length of search with b = 1
or 2 and m = 500 (average of 9 runs over the same data), together
with exact results taken from equation (2.1) and the Poisson ap-
proximation taken from Corollary 12.8 (and (9.9) for full tables).
Notice that the Poisson approximation matches very well when the
load factor is less than 0.9. This is consistent with the fact that this
approximation largely overestimates the exact result when α→ 1.

The high variance of the FCFS heuristic is originated by the fact that the first
keys stay in their home location, but when collisions start to appear, the search
cost of the latest inserted keys increases very rapidly. For example, the last keys
inserted have an O(m) displacement in average. As an aside, for the case b = 1
there are very interesting results that analyze the way contiguous clusters coalesce
[9]. A good understanding of this process, leads to a rigurous explanation of this
problem.

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 47

Runs 8 7 4 4 3 3
% Full b=5 b=10 b=20 b=30 b=40 b = 50

bm=2500 bm=5000 bm=5000 bm=10000 bm=10000 bm=10000
40 1.015 (1.012) 1.001 (1.001) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
60 1.072 (1.066) 1.016 (1.015) 1.002 (1.002) 1.001 (1.000) 1.000 (1.000) 1.000 (1.000)
70 1.131 (1.136) 1.042 (1.042) 1.010 (1.010) 1.003 (1.003) 1.001 (1.001) 1.000 (1.000)
80 1.280 (1.289) 1.111 (1.110) 1.033 (1.036) 1.017 (1.017) 1.011 (1.009) 1.005 (1.005)
85 1.443 (1.450) 1.172 (1.186) 1.066 (1.069) 1.038 (1.036) 1.028 (1.022) 1.015 (1.015)
90 1.762 (1.777) 1.330 (1.345) 1.134 (1.144) 1.082 (1.083) 1.071 (1.055) 1.034 (1.040)
95 2.467 (2.771) 1.755 (1.837) 1.334 (1.386) 1.231 (1.241) 1.185 (1.171) 1.110 (1.130)
97 3.154 (4.102) 2.187 (2.501) 1.602 (1.716) 1.374 (1.460) 1.399 (1.334) 1.228 (1.260)
99 4.950 (10.766) 3.212 (5.831) 2.499 (3.379) 1.852 (2.567) 2.007 (2.164) 1.585 (1.923)
100 6.870 (6.999) 4.889 (5.244) 4.041 (4.002) 2.718 (3.451) 2.844 (3.123) 2.102 (2.899)

Figure 9. Table 5A in [33]: average length of search. The first
number is the experimental result, and in parenthesis the theoret-
ical value. We see again that the disagreement is larger when α is
close to 1.

As a consequence, as it is explicitly said in [33], the experiments had to be
performed several times, and an average of the results are presented. Our theoretical
results seem to agree well with the experimental values when the load factor is less
than α = 0.9. Moreover, the closer the value of α gets to 1 then the larger the
difference. This is expected, since the formulae are good approximations when
α < 1, and tend to ∞ when α→ 1.

Acknowledgements. Philippe Flajolet has had a strong influence in our scientific
careers. The core of the use of the symbolic method in hashing problems has been
taken from [12]. Thank you Philippe for all the work you have left to inspire our
research. We also thank Alois Panholzer for interesting discussions, and Hsien-Kuei
Hwang for suggesting us the derivation that leads to Theorem 12.1.

References

[1] O. Amble and D. E. Knuth, Ordered hash tables. Computer Journal,
17(2):135–142, 1974.

[2] Patrick Billingsley, Convergence of Probability Measures. Wiley, New York,
1968.

[3] Ian F. Blake and Alan G. Konheim, Big buckets are (are not) better! J. Assoc.
Comput. Mach. 24(4):591–606, 1977

[4] Richard P. Brent, Reducing the retrieval time of scatter storage techniques.
C. ACM, 16(2):105–109, 1973.

[5] Pedro Celis, Robin Hood Hashing. PhD thesis, Computer Science Department,
University of Waterloo, April 1986. Technical Report CS-86-14.

[6] Pedro Celis, Per-Åke Larson and J. Ian Munro, Robin Hood hashing. In 26th
IEEE Sympusium on the Foundations of Computer Science, pages 281–288,
1985.

[7] Philippe Chassaing and Philippe Flajolet, Hachage, arbres, chemins & graphes.
Gazette des Mathématiciens 95:29–49, 2003.

[8] Philippe Chassaing and Svante Janson, A Vervaat-like path transformation for
the reflected Brownian bridge conditioned on its local time at 0. Ann. Probab.
29(4):1755–1779, 2001.

48 SVANTE JANSON AND ALFREDO VIOLA

[9] Philippe Chassaing and Guy Louchard, Phase transition for parking blocks,
brownian excursion and coalescence. Random Structures & Algorithms,
21(1):76–119, 2002.

[10] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong,
Extendible hashing - a fast access method for dynamic files. ACM Transactions
on Database Systems, 4(3):315–344, 1979.

[11] William Feller, An Introduction to Probability Theory and its Applications,
Volume II. 2nd ed., Wiley, New York, 1971.

[12] Philippe Flajolet, Slides of the lecture ”On the Analysis of Linear
Probing Hashing”, 1998. http://algo.inria.fr/flajolet/Publications/
lectures.html

[13] Philippe Flajolet, Peter J. Grabner, Peter Kirschenhofer and Helmut
Prodinger, On Ramanujan’s Q-function. Journal of Computational and Ap-
plied Mathematics 58:103–116, 1995.

[14] Philippe Flajolet and Andrew M. Odlyzko, Singularity Analysis of Generating
Functions. SIAM J. Discrete Math 3(2):216-240, 1990.

[15] Philippe Flajolet, Patricio Poblete and Alfredo Viola, On the Analysis of Linear
Probing Hashing. Algorithmica 22(4):490–515, 1998.

[16] Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics. Cambridge
University Press, 2009.

[17] Gaston H. Gonnet and Ricardo Baeza-Yates, Handbook of Algorithms and
Data Structures: in Pascal and C. Addison–Wesley, second edition, 1991.

[18] Gaston H. Gonnet and J. Ian Munro, Efficient ordering of hash tables. SIAM
Journal on Computing, 8(3):463–478, 1979.

[19] Allan Gut, Probability: A Graduate Course, 2nd ed., Springer, New York,
2013.

[20] Svante Janson, Asymptotic distribution for the cost of linear probing hashing.
Random Struct. Alg. 19(3-4):438–471, 2001.

[21] Svante Janson, Individual displacements for linear probing hashing with differ-
ent insertion policies. ACM Transactions on Algorithms, 1(2):177–213, 2005.

[22] Svante Janson, Brownian excursion area, Wright’s constants in graph enumer-
ation, and other Brownian areas. Probability Surveys 3:80–145, 2007.

[23] Svante Janson, Tomasz Luczak and Andrzej Ruciński, Random Graphs. Wiley,
New York, 2000.

[24] D. Knuth, Notes on “open” addressing. Unpublished memorandum, 1963.
(Memo dated July 22, 1963. With annotation “My first analysis of an algo-
rithm, originally done during Summer 1962 in Madison”. Also conjectures
the asymptotics of the Q-function, with annotation “Proved May 24, 1965”.).
Available at http://algo.inria.fr/AofA/Research/11-97.html

[25] Donald E. Knuth, The Art of Computer Programming. Vol. 3: Sorting and
Searching. 2nd ed., Addison-Wesley, Reading, Mass., 1998.

[26] Donald E. Knuth, Linear Probing and Graphs. Algorithmica 22(4):561–568,
1998.

[27] Donald E. Knuth and Boris Pittel, A recurrence related to trees. Proc. Amer.
Math. Soc. 105(2):335–349, 1989.

[28] Alan G. Konheim and Benjamin Weiss, An occupancy discipline and applica-
tions. SIAM Journal on Applied Mathematics, 6(14):1266–1274, 1966.

http://algo.inria.fr/flajolet/Publications/lectures.html
http://algo.inria.fr/flajolet/Publications/lectures.html
http://algo.inria.fr/AofA/Research/11-97.html

A UNIFIED APPROACH TO LINEAR PROBING HASHING WITH BUCKETS 49

[29] Per-Åke Larson, Analysis of uniform hashing. J. Assoc. Comput. Mach.,
30(4):805–819, 1983.

[30] Haim Mendelson, Analysis of linear probing with buckets. Information Sys-
tems, 8(3):207–216, 1983.

[31] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert and Charles W.
Clark, NIST Handbook of Mathematical Functions. Cambridge Univ. Press,
2010.
Also available as NIST Digital Library of Mathematical Functions. http://
dlmf.nist.gov/

[32] Alois Panholzer, Slides of the lecture “Asymptotic results for the number of
unsuccessful parkers in a one-way street”, 2009. http://info.tuwien.ac.at/
panholzer/

[33] W. W. Peterson, Addressing for random-access storage. IBM Journal of Re-
search and Development 1(2):130–146, 1957.

[34] Patricio V. Poblete and J. Ian Munro, Last-come-first-served hashing. Journal
of Algorithms, 10:228–248, 1989.

[35] Patricio V. Poblete, Alfredo Viola, and J. Ian Munro, The Diagonal Poisson
Transform and its application to the analysis of a hashing scheme. Random
Structures & Algorithms, 10(1-2):221–255, 1997.

[36] Robert Sedgewick and Philippe Flajolet, An Introduction to the Analysis of
Algorithms. Addison-Wesley, Reading, Mass., 1996.

[37] Georg Seitz, Parking functions and generalizations. Diploma Thesis, TU Wien,
2009.

[38] Alfredo Viola, Analysis of Hashing Algorithms and a New Mathematical Trans-
form. PhD thesis, Computer Science Department, University of Waterloo,
November 1995. Technical Report CS-95-50.

[39] Alfredo Viola, Exact distribution of individual displacements in linear probing
hashing. ACM Transactions on Algorithms, 1(2):214–242, 2005.

[40] Alfredo Viola, Distributional analysis of the parking problem and Robin Hood
linear probing hashing with buckets. Discrete Math. Theor. Comput. Sci.
12(2):307–332, 2010.

[41] Alfredo Viola and Patricio V. Poblete, The analysis of linear probing hashing
with buckets. Algorithmica, 21(1):37–71, 1998.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala,

Sweden

E-mail address: svante.janson@math.uu.se

URL: http://www2.math.uu.se/∼svante/

Universidad de la República, Montevideo, Uruguay

E-mail address: viola@fing.edu.uy

http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://info.tuwien.ac.at/panholzer/
http://info.tuwien.ac.at/panholzer/

	1. Motivation
	2. Some previous work
	3. Some notation
	4. Combinatorial characterization of linear probing
	4.1. The Poisson Transform

	5. A q-calculus to specify random variables
	5.1. The q-calculus.

	6. Probabilistic method: finite and infinite hash tables
	7. Convergence to an infinite hash table
	8. The profile and overflow
	8.1. Combinatorial approach
	8.2. Probabilistic approach

	9. Robin Hood displacement
	9.1. Combinatorial approach
	9.2. Probabilistic approach

	10. Block length
	10.1. Combinatorial approach
	10.2. Probabilistic approach

	11. Unsuccessful search
	11.1. Combinatorial approach
	11.2. Probabilistic approach

	12. FCFS displacement
	12.1. Combinatorial approach
	12.2. An alternative approach for b=1
	12.3. Probabilistic approach

	13. Some experimental results
	References

