
ar
X

iv
:1

21
2.

68
31

v1
 [

cs
.D

S]
 3

1
D

ec
 2

01
2

An Exact Algorithm for TSP in Degree-3

Graphs via Circuit Procedure and Amortization

on Connectivity Structure ⋆

Mingyu Xiao1 and Hiroshi Nagamochi2

1 School of Computer Science and Engineering, University of Electronic Science and
Technology of China, China, myxiao@gmail.com

2 Department of Applied Mathematics and Physics, Graduate School of Informatics,
Kyoto University, Japan, nag@amp.i.kyoto-u.ac.jp

Abstract. The paper presents an O∗(1.2312n)-time and polynomial-
space algorithm for the traveling salesman problem in an n-vertex graph
with maximum degree 3. This improves the previous time bounds of
O∗(1.251n) by Iwama and Nakashima and O∗(1.260n) by Eppstein. Our
algorithm is a simple branch-and-search algorithm. The only branch rule
is designed on a cut-circuit structure of a graph induced by unprocessed
edges. To improve a time bound by a simple analysis on measure and
conquer, we introduce an amortization scheme over the cut-circuit struc-
ture by defining the measure of an instance to be the sum of not only
weights of vertices but also weights of connected components of the in-
duced graph.

Key words. Traveling Salesman Problem, Exact Exponential Algo-
rithm, Graph Algorithm, Connectivity, Measure and Conquer

1 Introduction

The traveling salesman problem (TSP) is one of the most famous and inten-
sively studied problems in computational mathematics. Many algorithmic meth-
ods have been investigated to beat this challenge of finding the shortest route
visiting each member of a collection of n locations and returning to the start-
ing point. The first O∗(2n)-time dynamic programming algorithm for TSP is
back to early 1960s. However, in the last half of a century no one can break
the barrier of 2 in the base of the running time. To make steps toward the
long-standing and major open problem in exact exponential algorithms, TSP in
special classes of graphs, especially degree bounded graphs, have also been inten-
sively studied. Eppstein [5] showed that TSP in degree-3 graphs (a graph with
maximum degree i is called a degree-i graph) can be solved in O∗(1.260n) time
and polynomial space, and TSP in degree-4 graphs can be solved in O∗(1.890n)
time and polynomial space. Iwama and Nakashima [9] refined Eppstein’s algo-
rithm for degree-3 graphs and improved the result to O∗(1.251n) by showing

⋆ Supported in part by Grant 60903007 of NSFC, China.

http://arxiv.org/abs/1212.6831v1

2 Mingyu Xiao and Hiroshi Nagamochi

that the worst case in Eppstein’s algorithm will not always happen. Gebauer [8]
designed an O∗(1.733n)-time exponential-space algorithm for TSP in degree-4
graphs, which is improved to O∗(1.716n) time and polynomial space by Xiao
and Nagamochi [13]. Bjorklund et al. [2] also showed TSP in degree bounded
graph can be solved in O∗((2 − ε)n) time, where ε > 0 depends on the degree
bound only. There is a Monte Carlo algorithm to decide a graph is Hamiltonian
or not in O∗(1.657n) time [1]. For planar TSP and Euclidean TSP, there are
sub-exponential algorithms based on small separators [3].

In this paper, we present an improved deterministic algorithm for TSP in
degree-3 graphs, which runs in O∗(2

3

10
n) = O∗(1.2312n) time and polynomial

space. The algorithm is simple and contains only one branch rule that is designed
on a cut-circuit structure of a graph induced by unprocessed edges. We will apply
the measure and conquer method to analyze the running time. Note that our
algorithm for TSP in degree-4 graphs in [13] is obtained by successfully applying
the measure and conquer method to TSP for the first time. However, direct
application of measure and conquer to TSP in degree-3 graphs may only lead to
an O∗(1.260n)-time algorithm. To effectively analyze our algorithm, we use an
amortization scheme over the cut-circuit structures by setting weights to both
vertices and connected components of the induced graph.

2 Preliminaries

In this paper, a graph means an undirected edge-weighted graph with maximum
degree 3, which possibly has multiple edges, but no self-loops. Let G = (V,E)
be a graph with an edge weight. For a subset V ′ ⊆ V of vertices and a subset
E′ ⊆ E of edges, the subgraphs induced by V ′ and E′ are denoted by G[V ′] and
G[E′] respectively. We also use cost(E′) to denote the total weight of edges in
E′. For any graph G′, the sets of vertices and edges in G′ are denoted as V (G′)
and E(G′) respectively. A graph consisting of a single vertex is called trivial. A
cycle of length l (also denoted as l-cycle) is a graph with l vertices vi and l edges
vivi+1 (i ∈ {1, 2 . . . , l} and vl+1 = v1). An edge vivj (|i − j| ≥ 2) between two
vertices in the cycle but different from the l edges in it is called a chord of the
cycle. Two vertices in a graph are k-edge-connected if there are k-edge-disjoint
paths between them. A graph is k-edge-connected if every pair of vertices in it are
k-edge-connected. We treat a trivial graph as a k-edge-connected graph for any
k ≥ 1. A Hamiltonian cycle is a cycle through every vertex. Given a graph with
an edge weight, the traveling salesman problem (TSP) is to find a Hamiltonian
cycle of minimum total weight in the edges.

2.1 Forced TSP

In some branch-and-search algorithms for TSP, we may branch on an edge in
the graph by including it to the solution or excluding it from the solution. In
this way, we need to maintain a set of edges that must be used in the solution.
We introduce the forced traveling salesman problem as follows. An instance is

An Exact Algorithm for TSP in Degree-3 Graphs 3

a pair (G,F) of an edge-weighted undirected graph G = (V,E) and a subset
F ⊆ E of edges, called forced edges. A Hamiltonian cycle of G is called a tour
if it passes though all the forced edges in F . The objective of the problem is to
compute a tour of minimum weight in the given instance (G,F). An instance
is called infeasible if no tour exists. A vertex is called forced if there is a forced
edge incident on it. For convenience, we say that the sign of an edge e is 1 if e
is a forced edge and 0 if e is an unforced edge. We use sign(e) to denote the sign
of e.

2.2 U-graphs and U-components

We consider an instance (G,F). Let U = E(G) − F denote the set of unforced
edges. A subgraph H of G is called a U -graph if H is a trivial graph or H is
induced by a subset U ′ ⊆ U of unforced edges (i.e., H = G[U ′]). A maximal con-
nected U -graph is called a U -component. Note that each connected component
in the graph (V (G), U) is a U -component.

For a vertex subset X (or a subgraph X) of G, let cut(X) denote the set of
edges in E = F ∪U between X and V (G)−X , and denote cutF (X) = cut(X)∩F
and cutU (X) = cut(X) ∩ U . Edge set cut(X) is also called a cut of the graph.
We say that an edge is incident on X if the edge is in cut(X). The degree d(v) of
a vertex v is defined to be |cut({v})|. We also denote dF (v) = |cutF ({v})| and
dU (v) = |cutU ({v})|. A U -graph H is k-pendent if |cutU (H)| = k. A U -graph H

is called even (resp., odd) if |cutF (H)| is even (resp., odd). A U -component is
0-pendent.

In this paper, we will always keep every U -component 2-edge-connected. For
simplicity, we may regard a maximal path of forced edges between two vertices
u and v as a single forced edge uv in an instance (G,F), since we can assume
that dF (v) = 2 always implies d(v) = 2 for any vertex v.

2.3 Circuits and blocks

We consider a nontrivial U -component H in an instance (G,F). A circuit C in H

is a maximal sequence e1, e2, . . . , ep of edges ei = uivi ∈ E(H) (1 ≤ i ≤ p) such
that for each ei ∈ C (i 6= p), the next edge ei+1 ∈ C is given by a subgraph Bi

of H such that cutU (Bi) = {ei, ei+1}. See Fig. 1 for an illustration. We say that
each subgraph Bi is a block along C and vertices vi and ui+1 are the endpoints
of block Bi. By the maximality of C, we know that any two vertices in each
block Bi are 2-edge-connected in the induced subgraph G[Bi]. It is possible that
a circuit in a 2-edge-connected graph H may contain only one edge e = u1v1.
For this case, vertices u1 and v1 are connected by three edge-disjoint paths in H

and the circuit is called trivial, where the unique block is the U -component H .
Each nontrivial circuit contains at least two blocks, each of which is a 2-pendent
subgraph of H . In our algorithm, we will consider only nontrivial circuits C.
When H is 2-edge-connected, there are p ≥ 2 different blocks along a nontrivial
circuit C, where u1 and vp are in the same block Bp and cutU (Bp) = {ep, e1}.
A block Bi is called trivial if |V (Bi)| = 1 and dF (v) = 1 for the only vertex v

4 Mingyu Xiao and Hiroshi Nagamochi

in it (v is of degree 3 in G). A block Bi is called reducible if |V (Bi)| = 1 and
dF (v) = 0 for the only vertex v in it (v is of degree 2 in G). A block Bi with
V (Bi) = {vi = ui+1} is either trivial or reducible in a 2-edge-connected graph.

u2

v3=u4

u1

vp vi

v2

ui+1

u3

v1
B1

Bp

B3

B2

Bi

H

Fig. 1. A circuit in a 2-edge-connected graph H

We state more properties on circuits and blocks.

Lemma 1. In a degree-3 graph, let H be a 2-edge-connected U -component and
C be any circuit in it. For each block Bi of C, Bi is not trivial or reducible if and
only if the two endpoints vi and ui+1 of it are two different vertices of degree 3
in H.

Lemma 2. Each edge in a 2-edge-connected U -component H of a degree-3 graph
is contained in exactly one circuit. A partition of E(H) into circuits can be
obtained in linear time.

Proof. It is known that the set of all minimum cuts (a set of k edges in a k-edge-
connected multigraph is called a minimum cut if the graph becomes disconnected
by removing the k edges) can be represented by a cactus structure (cf. [11]). In
particular, when the size of a minimum cut is two, the cactus structure of mini-
mum cuts can be obtained in linear time by contracting each 3-edge-connected
component (a maximal set of vertices every two of which are 3-connected in the
given graph) into a single vertex, and for each cycle C in the resulting graph, a
pair of any two edges in C corresponds to a minimum cut in the original graph
[10]. In a 2-edge-connected U -component H , (i) an edge e ∈ E(H) forms a cir-
cuit C having only one block if and only if e is not in any minimum cut of H ;
and (ii) A circuit C with at least two edges in H corresponds to a cycle C in
the cactus structure. Based on the cactus structure, we can obtain a partition
of edge sets into circuits in linear time.

2.4 Branch-and-search algorithms

Our algorithm is a branch-and-search algorithm: we search the solution by iter-
atively branching on the current instance into several smaller instances until the
current instance becomes trivial (or polynomially solvable). In this paradigm, we
will get a search tree. In each leaf of the search tree, we can solve the problem

An Exact Algorithm for TSP in Degree-3 Graphs 5

directly. The size of the search tree is the exponential part of the running time
of the search algorithm. Let µ be a measure of the instance (for graph problems,
the measure can be the number of vertices or edges in the graph and so on). Let
C(µ) denote the maximum number of leaves in the search tree generated by the
algorithm for any instance with measure µ. We shall determine an upper bound
on C(µ) by evaluating all the branches. When we branch on an instance (G,F)
with k branches such that the i-th branch decreases the measure µ of (G,F) by
at least ai, we obtain the following recurrence

C(µ) ≤ C(µ− a1) + C(µ− a2) + · · ·+ C(µ− ak).

Solving this recurrence, we get C(µ) = [α(a1, a2, . . . , ak)]
µ, where α(a1, a2, . . . , ak)

is the largest root of the function f(x) = 1−
∑k

i=1
x−ai . In this paper, we repre-

sent the above recurrence by a vector (a1; a2; · · · ; ak) of measure decreases, called
a branch vector (cf. [7]). In particular, when ai = ai+1 = · · · = aj for some i ≤ j,
it may be written as (a1; a2; · · ·ai−1; [ai]j−i+1; aj+1; · · · ; ak), and a vector ([a]k)
is simply written as [a]k. When we compare two branch vectors b = (a1; a2)
(a1 ≤ a2) and b′ = (a′1; a

′
2) such that “ai ≤ a′i (i = 1, 2)” or “a′1 = a1 − ε and

a′2 = a2 + ε for some 0 ≤ ε ≤ a2 − a1,” we only consider branch vector b in
analysis, since a solution α from b is not smaller than that from b′ (cf. [7]). We
say that b covers b′ in this case.

3 Reductions based on small cuts

For some special cases, we can reduce the instance directly without branching.
Most of out reduction rules are based on the structures of small cuts in the
graph. In fact, we will deal with cuts of size 1, 2, 3 and 4.

3.1 Sufficient conditions for infeasibility

The parity condition on an instance is: (i) every U -component is even; and (ii)
the number of odd blocks along every circuit is even.

Lemma 3. An instance (G,F) is infeasible if G is not 2-edge-connected or it
violates the parity condition.

Proof. Since any tour is a 2-edge-connected spanning graph of G, it cannot exist
when G is not 2-edge-connected. Since any tour is an Eulerian graph, it cannot
exist in any instance with an odd U -component. For a circuit which has an
odd number of odd blocks, we see that at least one odd block will be an odd
U -component in any way of including/deleting edges in the circuit.

3.2 Eliminable, reducible and parallel edges

The unique unforced edge incident on a 1-pendent U -graph is eliminable. From
parity condition (i), we can decide whether each eliminable edge need to be

6 Mingyu Xiao and Hiroshi Nagamochi

included to F or deleted from the graph just by depending on the parity of
|cutF (H)|.

For any subgraph H of G with |cut(H)| = 2, we call the unforced edges in
cut(H) reducible. From the connectivity condition and parity condition (i), we
see that all reducible edges need to be included to F . In particular, any edge uv
incident to a vertex v with d(v) = 2 (or with a neighbor v′ with multiple edges
of vv′ ∈ F and vv′ ∈ U) is reducible, since uv ∈ cut(X) and |cut(X)| = 2 for
X = {v} (or X = {v, v′}).

If there are multiple edges with the same endpoints u and v, we can reduce
the instance in the following way preserving the optimality: If the graph has only
two vertices u and v, solve the problem directly; else if there are forced edges
between u and v, the problem is infeasible; and otherwise remove all unforced
edges between u and v except one with the smallest weight.

3.3 Reductions based on 3-cuts and 4-cuts

Lemma 4. Let (G,F) be an instance where G is a graph with maximum degree
3. For any subgraph X with |cut(X)| = 3, we can replace X with a single vertex x
and update the three edges incident on x preserving the optimality of the instance.

Proof. Denote cut(X) by {y1x1, y2x2, y3x3} with xi ∈ V (X) and yi ∈ V −V (X).
We will replaceX and cut(X) with a single vertex x and three new edges xy1, xy2
and xy3. Let G

′ denote the new graph. We only need to decide the weights and
signs of edges xy1, xy2 and xy3 in G′ to satisfy the lemma. Let Ii (i = 1, 2, 3)
denote the problem of finding a path P from xi1 to xi2 ({i, i1, i2} = {1, 2, 3})
of minimum total cost in X that passes through all vertices and forced edges
in X . We say that Ii infeasible if it has no such path. We consider the three
problems Ii (i = 1, 2, 3). There are four possible cases. Case 1. None of the
three problems is feasible: We can see that the original instance (G,F) is also
infeasible. In G′, we let sign(xy1) = sign(xy2) = sign(xy3) = 1. Since the trivial
U -component {x} is odd, the new instance is infeasible by Lemma 3. Case 2.
Only one of the three problems, say Ij1 ({j1, j2, j3} = {1, 2, 3}), is feasible: Let
Sj1 be an optimal solution to Ij1 . Then there is a solution S to (G,F) such that
S ∩ E(X) = E(Sj1) (if (G,F) is feasible). Therefore, in G′, we let sign(xyj2) =
sign(xyj3) = 1, sign(xyj1) = sign(xj1yj1), cost(xyj2) = cost(xj2yj2) + cost(Sj1),
cost(xyj3) = cost(xj3yj3) and cost(xyj1) = cost(xj1yj1). Case 3. Exactly two of
the three problems, say Ij1 and Ij2 ({j1, j2, j3} = {1, 2, 3}), are feasible: Let Sj1

and Sj2 be an optimal solution to Ij1 and Ij2 respectively. Then there is a solution
S to (G,F) such that either S∩E(X) = E(Sj1) or S∩E(X) = E(Sj2). Therefore,
in G′, we let sign(xyj3) = 1, sign(xyj1) = sign(xj1yj1), sign(xyj2) = sign(xj2yj2),
cost(xyj3) = cost(xj3yj3), cost(xyj1) = cost(xj1yj1)+ cost(Sj2) and cost(xyj2) =
cost(xj2yj2) + cost(Sj1). Case 4. All of the three problems are feasible: Let S1,
S2 and S3 be an optimal solution to I1, I2 and I3 respectively. In G′, we let
sign(xyi) = sign(xiyi) and cost(xyi) = cost(xiyi) +

1

2

∑3

j=1
cost(Sj) − cost(Si)

(i = 1, 2, 3). Straightforward computation can verify that with these setting G′

will preserve the optimality.

An Exact Algorithm for TSP in Degree-3 Graphs 7

Similar to Lemma 4, we can simplify a subgraph X with |cut(X)| = 4.
However, there are many cases needed to consider. In fact, in our algorithms, we
only need to consider a special case.

We consider a subgraph X with |cutF (X)| = 4 and |cutU (X)| = 0. We want
to reduce X . Denote cut(X) by {y1x1, y2x2, y3x3, y4x4} with xi ∈ V (X) and
yi ∈ V − V (X), where xi 6= xj (1 ≤ i < j ≤ 4). We define Ii (i = 1, 2, 3) to
be instances of the problem of finding two disjoint paths P and P ′ of minimum
total cost in X such that all vertices and forced edges in X appear in exactly
one of the two paths, and one of the two paths is from xi to x4 and the other
one is from xj1 to xj2 ({j1, j2} = {1, 2, 3} − {i}). We say that Ii infeasible if it
has no solution.

A subgraph X is 4-cut reducible if |cutF (X)| = 4, |cutU (X)| = 0, and at
least one of the three problems I1, I2 and I3 defined above is infeasible. We have
the following lemma to reduce the 4-cut reducible subgraph.

Lemma 5. Let (G,F) be an instance where G is a graph with maximum degree
3. A 4-cut reducible subgraph X can be replaced with one of the following sub-
graphs X ′ with four vertices and |cutF (X ′)| = 4 so that the optimality of the
instance is preserved:
(i) four single vertices (i.e., there is no solution to this instance);
(ii) a pair of forced edges; and
(iii) a 4-cycle with four unforced edges.

Proof. We consider the three problems Ii (i = 1, 2, 3). Since at least one of them
is infeasible, there are three possible cases. Case 1. None of the three problems is
feasible: We can see that the original instance (G,F) is also infeasible. Then we
can replace X with a graph containing only four vertices {x1, x2, x3, x4} and no
edge. Now x1 becomes a degree-1 vertex in the new graph and the new instance
is infeasible. Case 2. Only one of the three problems, say Ii0 (i0 ∈ {1, 2, 3}),
is feasible: Let Si0 be an optimal solution to Ii0 . Then there is a solution S

to (G,F) such that S ∩ E(X) = E(Si0). Therefore, we can replace X with
a graph of four vertices {x1, x2, x3, x4} and two edges xix4 and xj1xj2 in G

preserving the optimality of the instance, where the costs of xi0x4 and xj1xj2

are the costs of the two paths in Si0 . Note that in the new instance after the
replacement, the four vertices {x1, x2, x3, x4} become degree-2 vertices and the
two new edges xix4 and xj1xj2 should be included into F . Case 3. Two of the
three problems, say Ii1 and Ii2 (i1, i2 ∈ {1, 2, 3}), are feasible: Let Si1 and Si2

be optimal solutions to Ii1 and Ii2 respectively. Then there is a solution S to
(G,F) such that S ∩ E(X) = E(Si1) or S ∩ E(X) = E(Si2). Therefore, we can
replace X with a 4-cycle xi1x4xi2xj preserving the optimality of the instance,
where {j} = {1, 2, 3}− {i1, i2}, the costs of xi1x4 and xi2xj are the costs of the
two paths in Si1 , and the costs of x4xi2 and xjxi1 are the costs of the two paths
in Si2 .

Lemma 6. Let X be an induced subgraph of a degree-3 graph G such that X

contains at most eight vertices of degree 3 in G. Then X is 4-cut reducible if
|cutF (X)| = 4, |cutU (X)| = 0, and X contains at most two unforced vertices.

8 Mingyu Xiao and Hiroshi Nagamochi

Proof. We only need to show that at least one of the three problem instances
I1, I2 and I3 (defined before Lemma 5) is infeasible. Assume that no two edges
in cutF (X) meet at a same vertex in X , since otherwise only one of I1, I2 and
I3 is feasible. Also assume that X has no multiple edges or induced triangles,
since otherwise X can be reduced to a smaller graph preserving its optimality.
Note that X contains an even number k of degree 3 vertices in G. Since k = 4
(i.e., |V (X)| = 4) implies the lemma, we consider the case of k = 6, 8. When
k = 6, X is either a 6-cycle with a chord or a graph obtained from a 5-cycle
with a chord by subdividing the chord with a new vertex. In any case, we see
that one of I1, I2 and I3 is infeasible. Let k = 8. In this case, there are four
vertices ui (i = 1, 2, 3, 4) which are not incident to any of the four edges in
cut(B) = cutF (B), and two of them, say u1 and u2 are joined by a forced edge
u1u2 ∈ F by the assumption on the number of unforced vertices in X . Then
we see that there are three possible configurations for such an induced graph X

with no induced triangles, and a straightforward inspection shows that none of
them admits a set of three feasible instances I1, I2 and I3.

Lemma 4 and Lemma 5 imply a way of simplifying some local structures of
an instance. However, it is not easy to find solutions to problems Ii in the above
two lemmas. In our algorithm, we only do this replacement for X containing no
more than 10 vertices and then the corresponding problems Ii can be solved in
constant time by a brute force search.

We define the operation of 3/4-cut reduction: If there a subgraphX of G with
|V (X)| ≤ 10 such that |cut(X)| = 3 or X is 4-cut reducible, then we simplify
the graph by replacing X with a graph according to Lemma 4 or Lemma 5.
Note that a 3/4-cut can be found in polynomial time if it exists and then this
reduction operation can be implemented in polynomial time.

3.4 A solvable case and reduced graphs

A 3/4-cut reduction reduce the subgraph X to a trivial graph except for the
last case of Lemma 5 where X will become a 4-cycle. Eppstein has identified a
polynomially solvable case of forced TSP [5], which can deal with U -components
of 4-cycles.

Lemma 7. [5] If every U -component is a component of a 4-cycle, then a mini-
mum cost tour of the instance can be found in polynomial time.

Based on this lemma, we do not need to deal with U -components of 4-cycles
in our algorithms.

All above reduction rules can be applied in polynomial time. An instance
(G,F) is called a reduced instance if G is 2-edge-connected, (G,F) satisfies the
parity condition, and has none of reducible edges, eliminable edges and multiple
edges, and the 3/4-cut reduction cannot be applied on it anymore. Note that a
reduced instance has no triangle, otherwise 3-cut reduction would be applicable.

An Exact Algorithm for TSP in Degree-3 Graphs 9

An instance is called 2-edge-connected if every U -component in it is 2-edge-
connected. The initial instance (G,F = ∅) is assumed to be 2-edge-connected,
otherwise it is infeasible by Lemma 3. In our algorithm, we will guarantee that
the input instance is always 2-edge-connected, and we branch on a reduced graph
to search a solution.

4 The circuit procedure

The circuit procedure is one of the most important operations in our algorithm.
The procedure will determinate each edge in a circuit to be included into F or to
be deleted from the graph. It will be widely used as the only branching operation
in our algorithm.

Processing circuits: Determining an unforced edge means either including it to
F or deleting it from the graph. When an edge is determined, the other edges in
the same circuit containing this edge can also be determined directly by reducing
eliminable edges. We call the series of procedures applied to all edges in a circuit
together as a circuit procedure. Thus, in the circuit procedure, after we start to
process a circuit C either by including an edge e1 ∈ C to F or by deleting e1 from
the graph, the next edge ei+1 of ei becomes an eliminable edge and we continue
to determine ei+1 either by deleting it from the graph if block Bi is odd and
ei = uivi is included to F (or Bi is even and ei is deleted); or by including it
to F otherwise. Circuit procedure is a fundamental operation to build up our
proposed algorithm. Note that a circuit procedure determines only the edges in
the circuit. During the procedure, some unforced edges outside the circuit may
become reducible and so on, but we do not determine them in this execution.

Lemma 8. Let H be a 2-edge-connected U -component in an instance (G,F)
and C be a circuit in H. Let (G′, F ′) be the resulting instance after applying
circuit procedure on C. Then
(i) each block Bi of C becomes a 2-edge-connected U -component in (G′, F ′); and
(ii) any other U -component H ′ than H in (G,F) remains unchanged in (G′, F ′).

Proof. Since H is 2-edge-connected, we know that each block Bi induces a 2-
edge-connected subgraph from H according to the definition of circuits. Hence
Bi will be a 2-edge-connected U -component in (G′, F ′). Then we get (i). Since
H and H ′ are vertex-disjoint and only edges in H are determined, we see that
(ii) holds.

We call a circuit reducible if it contains at least one reducible edge. We can
apply the circuit procedure on a reducible circuit directly starting by including
a reducible edge to F . In our algorithm, we will deal with reducible edges by
processing a reducible circuit. When the instance becomes a reduced instance,
we may not be able to reduce the instance directly. Then we search the solution
by “branching on a circuit.” Branching on a circuit C at edge e ∈ C means
branching on the current instance to generate two instances by applying the

10 Mingyu Xiao and Hiroshi Nagamochi

circuit procedure to C after including e to F and deleting e from the graph
respectively. Branching on a circuit is the only branching operation used in our
algorithm.

5 A simple algorithm based on circuit procedures

We first introduce a simple algorithm for forced TSP to show the effectiveness
of the circuit procedures. Improved algorithms are given in the next sections.

The simple algorithm contains only two steps: First reduce the instance until
it becomes a reduced one; and then select a U -component H that is neither
trivial nor a 4-cycle and branch on a circuit C in H such that at least one block
along C is trivial. Note that there is always a circuit having a trivial block as
long as the forced edge set F is not empty.

Here we use a traditional method to analyze the simple algorithm. It is
natural to consider how many edges can be added to F in each operation of the
algorithm. The size of F will not decrease by applying the reduction rules. Let
r = n− |F | and C(r) denote the maximum number of leaves in the search tree
generated by the algorithm for any instance with measure r. We only need to
consider the branching operation in the second step.

For convenience, we call a maximal sequence P = {e1, e2, . . . , ep} of edges
ei = uiui+1 ∈ E(H) (1 ≤ i ≤ p− 1) a chain if all vertices uj (j = 2, 3, . . . , p− 1)
are forced vertices. In the definition of the chain, we allow u1 = up. Observe
that each chain is contained in the same circuit. Since the selected circuit C has
some trivial block, we know that C contains at least one chain P of size ≥ 2. We
distinguish two cases according to the size of P being even or odd.

Case 1. |P | is even: If all the blocks of C are trivial, then the U -component
H containing C is a cycle of even length. Since H cannot be a 4-cycle, the length
of cycle H is at least 6 (see Fig. 2(a) for an illustration). In each branch, after
processing the circuit C, we can include at least 3 edges to F . This gives us
branch vector

(3; 3). (1)

Next, we assume that C has a nontrivial block. We look at the worst case where P
is of size 2 and C has only one nontrivial block (see Fig. 2(b) for an illustration).
Now C = P . Let C = {u1v1, u2v2}, where v1 = u2. We branch on the circuit at
edge u1v1. In the branch of deleting u1v1, we include u2v2 into F . Furthermore,
we can include the remaining two edges incident on u1 into F by simply applying
reduction rules. In the other branch of including u1v1 into F , we will delete u2v2
and include the other two edges incident on v2 into F . We still can get branch
vector (1). Note that when C is not of the worst case, it is not hard to verify
that we may include more edges to F and we can get a branch vector covered by
(1). We omit the details here, since the detailed proof can also be derived from
the analysis of the improved algorithm in the next sections.

Case 2. |P | is odd: Now circuit C must contain at least one nontrivial block,
otherwise the instance violates the parity condition. We also look at the worst

An Exact Algorithm for TSP in Degree-3 Graphs 11

1u

3u

4u

2u

5u6u

1 2v u

3v
1u

2 3v u

1 2v u

3v1u

2 3v u

1u

3u

4u

2u

5u6u

1u

3u

4u

2u

5u6u

1 2v u

2v1u

1 2v u

3v1u

2 3v u

(a) (b)

(c)

1 2v u

2v1u

1 2v u

2v1u

: newly forced edges : newly deleted edges: forced edges

Fig. 2. Three bottleneck cases in branching on a cirucuit C: (a) C is a 6-cycle; (b) C is
a chain P of length 2; (c) C is a chain P of length 3.

case where P is of size 3 (since |P | ≥ 2) and C has only one nontrivial block
(see Fig. 2(c) for an illustration). Let C = {u1v1, u2v2, u3v3}, where v1 = u2

and v2 = u3. We branch on the circuit at edge u1v1. In the branch of deleting
u1v1, we will also delete u3v3 and include the following five edges to F : v2u2, the
remaining two edges incident on u1 and the remaining two edges incident on v3
(note that since the graph is reduced, u1 and v3 are not adjacent and then the
five edges are different to each other). In the other branch of including u1v1 to
F , we will delete u2v2 and include u3v3 to F . We can get branch vector

(5; 2). (2)

When C is not of the worst case, we can reduce more edges and get (2) at least.

Since C(r) = 1.260r satisfies the two recurrences corresponding to (1) and
(2), we know that the simple algorithm can solve the TSP problem in an n-vertex
degree-3 graph in O∗(1.260n) time, which achieves the same running time bound
of Eppstein’s algorithm for TSP3 in [5].

12 Mingyu Xiao and Hiroshi Nagamochi

6 The measure and conquer method

The measure and conquer method, first introduced by Fomin, Grandoni and
Kratsch [6], is one of the most powerful tools to analyze exact algorithms. It can
obtain improved running time bound for many branching-and-search algorithms
without making any modification to the algorithms. Currently, many best exact
algorithms for NP-hard problems are based on this method. In the measure and
conquer method, we may set a weight of vertices in the instance and use the
sum w of the total weight in the graph as the measure to evaluate the running
time. In the algorithm, the measure w should satisfy the measure condition: (i)
when w ≤ 0 the instance can be solved in polynomial time; (ii) the measure
w will never increase in each operation in the algorithm; and (iii) the measure
will decrease in each of the subinstances generated by applying a branching rule.
With these constraints, we may build recurrences for the branching operations.
Next, we introduce a way of applying the measure and conquer method to the
above simple algorithm.

The graph has three different vertex-weight. For each vertex v, we set its
vertex-weight w(v) to be

w(v) =







w3 = 1 if dU (v) = 3
w3′ if dU (v) = 2 and dF (v) = 1
0 otherwise.

We will determine the best value of w3′ such that the worst recurrence in our
algorithm is best. Let ∆3 = w3 − w3′ . For a subset of vertices (or a subgraph)
X , we also use w(X) to denote the total vertex-weight in X .

Now we analyze the simple algorithm presented in Section 5 by using this
vertex-weight setting. Note that since we require that w3 = 1, the total vertex
weight w in the graph is not greater than the number n of vertices in the graph.
We can get a running time bound related to n if we get a running time bound
related to w. Here we only examine the three bottleneck cases in Fig. 2.

When we branch on a circuit of 6-cycle in Fig. 2(a), in each branch, all the
six forced vertices will be reduced and then we can reduce w by 6w3′ . We get
the following branching vector:

[6w3′]2. (3)

When we branch on a circuit of chain of length 2 in Fig. 2(b), in the branch
where u1v1 is included to F , u2v2 is deleted, and v2v

′
2 and v2v

′′
2 are also included

to F by reduction rules, where v′2 and v′′2 are the two neighbors of v2 other than
u2. Then we can reduce w by w3′ from v1, ∆3 from u1, w3 from v2, and 2δ1 from
v′2 and v′′2 , where δ1 ≥ min{∆3, w3′}. The second branch can be analyzed in a
similar manner. We get

[w3′ +∆3 + w3 + 2δ1]2 = [2 + 2δ1]2. (4)

When we branch on a circuit of chain of length 3 in Fig. 2(c), in the branch of
including u1v1 to F , we reduce w by 2∆3 from u1 and v3 and 2w3′ from v1 and

An Exact Algorithm for TSP in Degree-3 Graphs 13

v2. In the other branch, we can reduce w by 2w3 from u1 and v3, 2w3′ from v1
and v2, and 4δ1 from {u′

1, u
′′
1 , v

′
3, v

′′
3 }, where u′

1 and u′′
1 are the two neighbors of

u1 other than v1 and v′3 and v′′3 are the two neighbors of v3 other than u3. We
get

(2; 2w3 + 2w3′ + 4δ1). (5)

We can verify that under that above three constraints, the best value of w3′ is
1

2
w3 = 1

2
. With this setting, we can see that (3) and (4) become (1), and (5)

becomes (2). This also tells us that the measure and conquer method cannot
directly derive a better running time bound of the simple algorithm. In the next
section, we present a new technique and show an improvement by combining the
new technique with the traditional measure and conquer method.

7 Amortization on connectivity structures

To improve the time bound by the above simple analysis, we need to use more
structural properties of the graph. Note that for the bottleneck case of Fig. 2(a),
the above algorithm reduces all the vertices in this U -component. It is impossible
to improve by reducing more vertices (or edges) and so on. But we also reduce
the number of U -components by 1. This observation gives us an idea of an
amortization scheme over the cut-circuit structure by setting a weight on each
U -component in the graph.

In this method, each vertex in the graph receives a nonnegative weight as
shown in Section 6. We also set a weight (which is possibly negative, but bounded
from by a constant c ≥ 0) to each U -component. Let µ be the sum of all vertex
weight and U -component weight. We will use µ to measure the size of the search
tree generated by our algorithm. The measure µ will also satisfy the measure
condition. Initially there is only one U -component and µ < n + c holds. If we
get a running time bound related to µ for our algorithm, then we get a running
time bound related to n.

A simple idea is to set the same weight to each nontrivial U -component. It is
possible to improve the previous best result by using this simple idea. However,
to get further improvement, in this paper, we set several different component-
weights. Our purpose is to distinguish some “bad” U -components, which will be
characterized as “critical” U -components.

An extension of a 6-cycle is obtained from a 6-cycle v1v2v3v4v5v6 and a 2-
clique ab by joining them with two independent edges avi and bvj (i 6= j). An
extension of a 6-cycle always has exactly eight vertices. A chord of an extension
of a 6-cycle is an edge between two vertices in it but different from the eight
edges v1v2, v2v3, v3v4, v4v5, v5v6, v6v1, avi, bvj and ab.

A subgraph H of a U -component in an instance (G,F) is k-pendent critical,
if it is a 6-cycle or an extension of a 6-cycle with |cutU (H)| = k and |cutF (H)| =
6 − k (i.e., H has no chord of unforced/forced edge). A 0-pendent critical U -
component is also simply called a critical graph or critical U -component. Fig. 3
illustrates two examples of critical graphs of extensions of a 6-cycle. Branching

14 Mingyu Xiao and Hiroshi Nagamochi

on a critical U -component may lead to a bottleneck recurrence in our algorithm.
So we set a different component-weight to this kind of components to get im-
provement.

Fig. 3. Extensions of a 6-cycle

For each U -component H , we set its component-weight c(H) to be

c(H) =















0 if H is trivial
−4w3′ if H is a 4-cycle

γ if H is a critical U -component
δ otherwise,

where we set c(H) = −4w3′ so that c(H) + w(H) = 0 holds for every 4-cycle
U -component H .

We also require that the vertex-weight and component-weight satisfy the
following requirements

2∆3 ≥ γ ≥ δ ≥ ∆3 ≥
1

2
w3, w3′ ≥

1

5
w3 and γ − δ ≤ w3′ . (6)

Under these constraints, we still need to decide the values of w3′ , γ and δ such
that the time bound derived by the worst recurrences in our algorithm will be
minimized. In (6), 2∆3 ≥ γ is important, because it will be used to satisfy the
measure condition (ii). The other constraints in (6) are mainly used to simplify
some arguments and they will not become the bottleneck in our analysis. Next,
we first describe our simple algorithm.

8 The algorithm

A block is called a normal block if it is none of trivial, reducible and 2-pendent
critical. A normal block is minimal if no subgraph of it is a normal block along
any circuit. Note that when F is not empty, each U -component has at least
one nontrivial circuit. Our recursive algorithm for forced TSP only contains two
main steps:
1. First apply the reduction rules to a given instance until it becomes a reduced
one; and

An Exact Algorithm for TSP in Degree-3 Graphs 15

2. Then take any U -component H that is neither trivial nor a 4-cycle (if no such
U -component H , then the instance is polynomially solvable by Lemma 7), and
branch on a nontrivial circuit C in H , where C is chosen so that
(1) no normal block appears along C (i.e., C has only trivial and 2-pendent critical
blocks) if this kind of circuit exist; and
(2) a minimal normal block B1 in H appears along C otherwise.

We use µ as the measure to analyze the size of the search tree in our al-
gorithm. It is easy to see that after applying the reduction rules on a 2-edge-
connected instance, the resulting instance remains 2-edge-connected. By this
observation and Lemma 8, we can guarantee that an input instance is always
2-edge-connected. Our analysis is based on this.

8.1 Basic properties of the measure

Before analyzing the time bound on our algorithm, we first give basic properties
of the measure µ.

We show that the measure will not increase after applying any reduction
operation in an 2-edge-connected instance. Since an input instance is 2-edge-
connected, there is no eliminable edge. In fact, we always deal with eliminable
edges in circuit procedures. For reducible edges, we deal with them during a
process of a reducible circuit (including the reducible edges to F and dealing
with the resulting eliminable edges). We will show that µ never increases after
processing a circuit. The measure µ will not increase after deleting any unforced
parallel edge. The following lemma also shows that applying the 3/4-cut reduc-
tion does not increase µ.

Lemma 9. For a given instance,
(i) applying the 3-cut reduction does not increase the measure µ; and
(ii) applying the 4-cut reduction on a U -component X decreases the measure µ

by w(X) + c(X).

Proof. It is easy to observe (i). Next we prove (ii). In the case where the resulting
graph consists of four single vertices or a pair of forced edges after applying
the 4-cut reduction, the whole component X is eliminated, decreasing µ by
w(X) + c(X) and then the lemma holds. Otherwise the resulting component,
say X ′ is a 4-cycle, where w(X ′) + c(X ′) = 0 according to our setting on the
component-weight of 4-cycles, and µ again decreases by w(X) + c(X).

Next we consider how much amount of measure decreases by processing a
circuit. We consider that the measure µ becomes zero whenever we find an
instance infeasible by Lemma 3. After processing a circuit C = {ei = uivi |
1 ≤ i ≤ p} in a U -component H , each block Bi along C becomes a new U -
component, which we denote by B̄i. We define the direct benefit β′(Bi) from Bi

to be the decrease in vertex-weight of the endpoints vi and ui+1 of Bi minus
the component-weight c(B̄i) in the new instance after the circuit procedure.

16 Mingyu Xiao and Hiroshi Nagamochi

Immediately after the procedure, the measure µ decreases by w(H) + c(H) −
∑

i(w(B̄i)+ c(B̄i)) = c(H)+
∑

i β
′(Bi). After the circuit procedure, we see that

the vertex-weights of endpoints of each non-reducible and nontrivial block Bi

decreases by ∆3 and ∆3 (or w3 and w3) respectively if Bi is even, and by ∆3

and w3 (or w3 and ∆3) respectively if Bi is odd. Summarizing these, the direct
benefit β′(B) from a block B is given by

β′(B) =























































0 if B is reducible,
w3′ if B is trivial,

w3+∆3−δ if B is odd and nontrivial,
2w3 − δ if B is even and non-reducible, and cutU (B) is deleted,
2∆3 − γ if B is 2-pendent critical, and cutU (B) is included in F,

w(B) if B is a 2-pendent 4-cycle, and cutU (B) is included in F ,

2∆3 − δ otherwise (i.e., B is even, non-reducible but not
a 2-pendent critical U -graph or a 2-pendent 4-cycle,
and cutU (B) is included to F).

(7)
By (6), we have that β′(Bi) ≥ 0 for any type of block Bi, which implies that

the decrease c(H) +
∑

i β
′(Bi) ≥ c(H) ≥ 0 (where H is not a 4-cycle) is in fact

nonnegative, i.e., the measure µ never increases by processing a circuit.
After processing a circuit C, a reduction operation may be applicable to some

U -components B̄i and we can decrease µ more by reducing them. The indirect
benefit β′′(B) from a block B is defined as the amount of µ decreased by applying
reduction rules on the U -component B̄ after processing the circuit. Since we have
shown that µ never increases by applying reduction rules, we know that β′′(B)
is always nonnegative. The total benefit (benefit, for short) from a block B is

β(B) = β′(B) + β′′(B).

Lemma 10. After processing a circuit C in a 2-edge-connected U -component
H (not necessary being reduced) and applying reduction rules until the instance
becomes a reduced one, the measure µ decreases by

c(H) +
∑

i

β(Bi),

where Bi are the blocks along circuit C.

The indirect benefit from a block depends on the structure of the block. In
our algorithm, we hope that the indirect benefit is as large as possible. Here we
prove some lower bounds on it for some special cases.

Lemma 11. Let H be a U -component containing no induced triangle and C′ be
a reducible circuit in it such that there is exactly one reducible block along C′.
The measure µ decreases by at least 2∆3 by processing the reducible circuit C′

and applying reduction rules.

An Exact Algorithm for TSP in Degree-3 Graphs 17

Proof. By assumption, the reducible circuit has at least two blocks, one reducible
block B1 and one non-reducible block B2. (1) Assume that every other block than
B1 along C′ is trivial. Then H should be a cycle of length k ≥ 5 (if H is a 4-cycle,
then there are three odd blocks along C′ and we find the instance infeasible by
Lemma 3). There are k − 1 ≥ 4 trivial blocks along C′. After processing the
circuit, the whole component H will be eliminated decreasing µ by at least
c(H) + w(H) ≥ δ + 4w3′ ≥ 2∆3 (by (6)). (2) Otherwise, i.e., there is a block
B2 of more than one vertex (B2 is not trivial or reducible): (2-i) cutU (B2) is
deleted in the circuit procedure: Then µ decreases by at least c(H) + β′(B2) =
δ+(2w3− δ) = 2w3 ≥ 2∆3 by (7). Hence assume that cutU (B2) is included to F

in (2). (2-ii)B2 is not 2-pendent critical: Then the measure µ decreases by at least
c(H)+β′(B2) = δ+(2∆3−δ) = 2∆3. The remaining case is that B2 is 2-pendent
critical and cutU (B2) is included to F . (2-iii) there are only two blocks B1 and
B2 along C′: By processing the circuit C′, the two edges in {xz, yz} = cutU (B2)
become forced edges. Since they are incident on the single vertex z in B1, we can
replace xz and yz with a single forced edge xy and then B2 becomes a 0-pendent
6-cycle or extension of a 6-cycle with only one forced chord xy. After the circuit
procedure of C′, we can apply 4-cut reduction to the 0-pendent 6-cycle B2 (by
Lemma 6) and then this decreases µ by c(H) + β(B2) = δ + w(B2) > 2∆3

(by Lemma 9(ii)). (2-iv) there is a pair of two trivial blocks B3 and B4 or a
nontrivial and non-reducible block B5 along C′: Now we can decrease µ by at
least c(H)+β(B2)+

∑

i6=2
β(Bi) ≥ δ+(2∆3− γ)+min{2w3′ , (2∆3− δ)} ≥ 2∆3

(by (6)).
In any case, the measure µ decreases by at least 2∆3.

Lemma 12. In the circuit procedure for a circuit C in a reduced instance, the
indirect benefit from a block B along C satisfies

β′′(B) ≥































2∆3 if B is odd and nontrivial, (i)
w(B) − β′(B) if B is a 2-pendent cycle or critical graph,

and cutU (B) is deleted, (ii)
δ if B is even but not reducible or a 2-pendent

cycle, and cutU (B) is deleted, (iii)
0 otherwise. (iv)

Proof. We will use B̄ to denote the U -component resulting from B after the
circuit procession. Case (i): Since B is odd, only one edge in cutU (B) is deleted
(the other one is included to F) in the circuit procession. Then there is exactly
one vertex of degree 2 in B̄, which is the only reducible block along a circuit C′

in B̄. Since the original instance is reduced and contains no triangle, we know
that circuit C′ satisfies the condition in Lemma 11. By processing C′ in B̄, we
can decrease µ by at least 2∆3 by Lemma 11. Then we get β′′(B) ≥ 2∆3. For
case (ii), if B is a 2-pendent cycle, we can reduce the whole U -component B̄

after the circuit procedure, and then we have β′′(B) = c(B̄) + w(B̄). Otherwise
B in (ii) is a 2-pendent critical graph and the 4-cut reduction can be applied to
B̄ by Lemma 6 since the two end vertices of edges in cutU (B) will be of degree
2 in B̄ after cutU (B) is deleted. Then we still have β′′(B) = c(B̄) + w(B̄) by

18 Mingyu Xiao and Hiroshi Nagamochi

Lemma 9(ii). Note that β′(B) = w(B)−w(B̄)−c(B̄) (by the definition of β′(B)).
We get β′′(B) = w(B)− β′(B). For Case (iii), we will get at least one reducible
circuit C′ in B̄. Note that B̄ has some vertex of degree 2 and cannot be a critical
graph. Hence c(B̄) = δ. By processing the reducible circuit C′, we can decrease
µ by at least c(B̄) +

∑

i β(B
′
i) ≥ c(B̄) = δ, where B′

i are the blocks along C′.
The inequality in (iv) holds since we have proved that µ will never increase after
applying reduction rules.

9 The Analysis

Now we are ready to analyze our algorithm. In the algorithm, branching on
a circuit generates two instances (G1, F1) and (G2, F2). By Lemma 10, we get
branch vector

(c(H) +
∑

i

β1(Bi); c(H) +
∑

i

β2(Bi)),

where βj(B), β′
j(B) and β′′

j (B) denote the functions β(B), β′(B) and β′′(B)
evaluated in (Gj , Fj), j = 1, 2 for clarifying how branch vectors are derived in
the subsequent analysis. We consider this branch vector for different cases. First
we analyze the easy case where the chosen circuit C has no normal block. Then
we analyze the somewhat complicated case where there is a minimal normal
block along C.

9.1 Circuits with only trivial and 2-pendent critical blocks

In this subsection, we assume that the chosen circuit C in a U -component H

(not a 4-cycle) has only trivial and 2-pendent critical blocks. We consider the
following three cases.

Case 1. All blocks along C are trivial blocks: Now H should be a cycle of
even length l ≥ 6. By (7) and Lemma 10, we know that in each branch we can
decrease µ by at least

c(H) +
∑

i

β(Bi) ≥

{

γ + 6w3′ if l = 6
δ + 8w3′ if l ≥ 8.

Then we get branch vectors

[6w3′ + γ]2 (8)

for l = 6 and [8w3′ + δ]2 for l ≥ 8, which is covered by (8). Note that (8) is tight
for a circuit of 6-cycle in Fig. 2(a).

Case 2. There is only one 2-pendent critical block B1 along C: Since B1 is
even, the number r > 0 of trivial blocks (odd blocks) along C is also even by
the parity condition. Note that if r = 2 and B1 is 2-pendent 6-cycle then H

is a critical graph (an extension of a 6-cycle) and c(H) = γ. Otherwise H is
not critical and c(H) = δ. Then in the branch where cutU (B1) is deleted, the

An Exact Algorithm for TSP in Degree-3 Graphs 19

decrease c(H)+
∑

i β(Bi) of µ is at least c(H)+w(B2)+ rw3′ ≥ min{γ+(2w3+
4w3′) + 2w3′ , δ + (4w3 + 4w3′) + 2w3′ , δ + (2w3 + 4w3′) + 4w3′} =

γ + 2w3 + 6w3′ .

In the branch where cutU (B1) is included to F , the decrease c(H) +
∑

i β(Bi)
of µ is at least

min{γ, δ}+ (2∆3 − γ) + 2w3′ = δ + 2w3 − γ.

This gives branch vector

(γ + 2w3 + 6w3′ ; δ + 2w3 − γ). (9)

Case 3. There are at least two 2-pendent critical blocks B1 and B2 along C:
If cutU (B2) is included to F in the branch where cutU (B1) is deleted, then we
can get branch vector [c(H)+β(B1)+β(B2)]2 = [δ+(2w3+4w3′)+(2∆3−γ)]2 =
[δ + 4w3 + 2w3′ − γ]2, which is covered by (8). On the other hand, if cutU (B2)
is also deleted in the branch where cutU (B1) is deleted, we get branch vector

(δ + 2(2∆3 − γ); δ + 2(2w3 + 4w3′)). (10)

9.2 Circuits with a minimal normal block

In this subsection, we assume that the chosen circuit C in a U -component H has
a minimal normal block B1. Now c(H) = δ always holds. We distinguish several
cases to analyze the branch vectors.

Case 1. Block B1 is odd: Circuit C has another odd block B2. By (7) we
have β(B2) ≥ β′(B2) = min{w3′ , w3+∆3−δ} = w3′ in each branch. For B1,
we have that β′(B1) = w3 +∆3 − δ and β′′(B1) ≥ 2∆3 by Lemma 12. In each
branch, µ decreases by at least c(H)+

∑

i β(Bi) ≥ δ+β′(B1)+β′′(B1)+β(B2) ≥
δ+(w3+∆3− δ)+2∆3+w3′ = 4w3−2w3′ . Therefore, we can get branch vector

[4w3 − 2w3′]2. (11)

Note that (11) is tight for a circuit of chain of length 2 in Fig. 2(b).

Next, we assume that B1 is even. In the branch where cutU (B1) is included to
F , we have that β′

1(B1) = 2∆3 − δ. In the other branch, we have that β′
2(B1) =

2w3 − δ. By branching on C, we get branch vector

(δ + β′
1(B1) + β′′

1 (B1) + ξ1; δ + β′
2(B1) + β′′

2 (B1) + ξ2),

where ξj =
∑

i6=1
βj(Bi) ≥ 0 (j ∈ {1, 2}), β′

1(B1) = 2∆3 − δ and β′
2(B1) =

2w3 − δ. We here evaluate ξ1 and ξ2. If all blocks other than B1 along C are
2-pendent critical, then we have that ξ1 ≥ 2∆3 − γ and ξ2 =

∑

i6=1
w(Bi) ≥

w(B2) ≥ 2w3 + 4w3′ . Otherwise, ξ1 ≥ min{2w3′ , w3 +∆3 − δ, 2∆3 − δ} = 2w3′

20 Mingyu Xiao and Hiroshi Nagamochi

and ξ2 ≥ min{2w3′ , w3 + ∆3 − δ, 2w3 − δ} = 2w3′ . We have the following two
choices for (ξ1, ξ2):

(ξ1, ξ2) = (2∆3 − γ, 2w3 + 4w3′) and (2w3′ , 2w3′). (12)

In what follows, we derive some lower bounds on β′′
1 (B1) and β′′

2 (B1) by exam-
ining the structure of B1.

Let cutU (B1) = {xv, yu}, where x and y are in B1. Let (G1, F1) and (G2, F2)
be the two resulting instances after branching and processing the circuit C, where
(G1, F1) corresponds to the branch where cutU (B1) is included to F and (G2, F2)
corresponds to the branch where cutU (B1) is deleted. Let x1x and x2x (resp.,
y1y and y2y) be the two unforced edges incident on x (resp., y) in (G1, F1). Note
that x1x and x2x (resp., y1y and y2y) will be in the same circuit Cx (resp., Cy)
in (G1, F1), since x (resp., y) is a forced vertex now. See Fig. 4 for illustrations
of the structure of the edges incident to x and y.

1B

u

x

v

y

1x 2x 1y 2y

1B

u

x

v

y

1x 1y

1B

u

x

v

y

1x
2y2x

1y

(a) (b) (c)

Fig. 4. Illustrations of block B1: (a) Cx 6= Cy; (b) Cx = Cy and x and y are adjacent;
(c) Cx = Cy and x and y are not adjacent.

Case 2. Block B1 is even and Cx and Cy are two different circuits in (G1, F1)
(see Fig. 4(a)): Now Cx and Cy are two different circuits also in (G2, F2). In
the branch where cutU (B1) is deleted, we have β′′

2 (B1) ≥ 4∆3 (by applying
Lemma 11 to Cx and Cy). Next we consider the other blocks along C.

Case 2.1. There are at least two odd blocks B2 and B3 along C: By (7),
β1(Bi) ≥ w3′ and β2(Bi) ≥ w3′ (i ∈ {2, 3}). Since c(H) +

∑

i β(Bi) ≥ δ +
β(B1) + β(B2) + β(B3), we get branch vector

(δ + (2∆3 − δ) + 2w3′ ; δ + (2w3 − δ) + 4∆3 + 2w3′) = (2w3; 6w3 − 2w3′).(13)

Case 2.2. There is no odd block along C: Let B2 be the block along C con-
taining vertex v. Then B2 is an even block such that cutU (B2) is also included
to F in the branch where cutU (B1) is included to F . Then c(H) +

∑

i β(Bi) ≥
δ+β(B1)+β(B2). If B2 is not a 2-pendent critical block, then β′

1(B2) = 2∆3−δ,

An Exact Algorithm for TSP in Degree-3 Graphs 21

β′
2(B2) = 2w3 − δ and β′′

2 (B2) ≥ δ (by Lemma 12), and we get branch vector

(δ + 2(2∆3 − δ); δ + (2w3 − δ) + 4∆3 + 2w3) = (4∆3 − δ; 4w3 + 4∆3). (14)

Otherwise B2 is a 2-pendent critical block. Then β′
1(B2) = 2∆3−γ and β2(B2) =

β′
2(B2)+β′′

2 (B2) = w(B2) ≥ 2w3 +4w3′ (by (7) and Lemma 12). We get branch
vector (δ + (2∆3 − δ) + (2∆3 − γ); δ + (2w3 − δ) + 4∆3 + (2w3 + 4w3′)), i.e.,

(4∆3 − γ; 8w3). (15)

Case 3. Block B1 is even and Cx = Cy in (G1, F1) (see Fig. 4(b),(c)): First of
all, we consider β′′

1 (B1), β
′′
2 (B1) and others. We look at the circuit Cx in (G1, F1).

Except blocks {x} and {y}, there are some other blocks along Cx. Note that each
block B′ along Cx should be a trivial or 2-pendent critical block since B1 is a
minimal normal block. We distinguish three cases by considering the number of
critical blocks along Cx.

Case 3.1. B1 is a 2-pendent cycle of length ℓ (all blocks along Cx are trivial in
(G1, F1)): Then ℓ is an even integer with ℓ = 4 or ℓ ≥ 8 (since B1 is even and non-
critical). When ℓ = 4, in both branches, we have β(B1) = w(B1) = 2w3 + 2w3′ .
Then we can branch with a branch vector [c(H) + β(B1)]2 = [δ + 2w3 + 2w3′]2
covered by (8). Next we assume that ℓ ≥ 8. Now we may get only β′

1(B1) =
2∆3− δ and β′′

1 (B1) ≥ 0 instead of β1(B1) = w(B1). But it holds that β2(B1) =
w(B1) = 2w3 + (ℓ− 2)w3′ ≥ 2w3 + 6w3′ . We get branch vector

(δ + (2∆3 − δ) + ξ1; δ + (2w3 + 6w3′) + ξ2). (16)

Case 3.2. There are only three blocks {x}, {y} and B′ along Cx in (G1, F1),
where B′ is a 2-pendent critical block: Now x and y are adjacent (see Fig. 4(b)).
We assume that x2 = y, y2 = x, and x1, y1 ∈ B1. We look at (G2, F2) wherein
x and y are degree-2 vertices. After including edges xy, xx1 and yy1 to F ,
B′ becomes a 4-cut reducible graph by Lemma 6. Then µ decreases by w(B′)
after applying the 4-cut reduction. Then we know that β2(B1) = w(B1) =
w(x) + w(y) + w(B′) ≥ 4w3 + 4w3′ . Therefore, we get branch vector

(δ + (2∆3 − δ) + ξ1; δ + (4w3 + 4w3′) + ξ2),

which is covered by (16).
Case 3.3. B1 is not a 2-pendent cycle and there are more than three blocks

along Cx in (G1, F1): Then there is a nontrivial and nonreducible block B′
1 along

Cx in (G1, F1), where B′
1 is a 2-pendent critical block since B1 is a minimal

normal block. For this case, we only get the following branch vector by branching
on C: (δ + (2∆3 − δ) + ξ1; δ + (2w3 − δ) + β′′

2 (B1) + ξ2) =

(2∆3 + ξ1; 2w3 + β′′
2 (B1) + ξ2). (17)

In fact, the branch vector (17) in Case 3.3 can be the bottleneck in the analysis
of our algorithm. However, in (G1, F1), circuit Cx is a circuit with only trivial
and 2-pendent critical blocks. In our algorithm, circuit Cx will be one of the

22 Mingyu Xiao and Hiroshi Nagamochi

circuits for the next branching, and it will never be destroyed until we branch
on it. In fact, branching on Cx proves a branch vector better than (17). For the
purpose of analysis, we derive a branch vector for the three branches, i.e., the
branching on C followed by the branching on Cx in (G1, F1) in the branch of
including cutU (B1) into F .

In Case 3.3, we see that: either (a) Cx has at least two trivial blocks B′
2 and

B′
3 different from {x} and {y} (since the number of odd blocks is even); or (b)

all blocks other than {x} and {y} are 2-pendent critical.
Case (a): There is also a 2-pendent critical blockB′

1 along Cx (since B1 is not a
2-pendent cycle). In (G2, F2), we can see that β′′

2 (B1) ≥ c(B1)+w(B′
2)+w(B′

3) =
δ+2w3′ (since B

′
2 and B′

3 are trivial blocks). In (G1, F1), by branching on Cx, we

can get branch vector (c(B1)+β1({x})+β1({y})+
∑3

i=1
β1(B

′
i); c(B1)+β2({x})+

β2({y}) +
∑3

i=1
β2(B

′
i)) = (δ + 4w3′ + (2∆3 − γ); δ + 4w3′ + (2w3 + 4w3′)) =

(δ + 2w3 + 2w3′ − γ; δ + 2w3 + 8w3′).

By combining it with (17) and taking β′′
2 (B1) = δ + 2w3′ , we get branch vector

(2∆3+ξ1+(δ+2w3+2w3′−γ); 2∆3+ξ1+(δ+2w3+8w3′); 2w3+δ+2w3′+ξ2). (18)

Case (b): There are at least two 2-pendent critical blocks B′
1 and B′

2 along
Cx (since there are at least four blocks among Cx). In (G2, F2), we may get only
β′′
2 (B1) ≥ δ. In (G1, F1), by branching on Cx, at least we can get branch vector

(δ + 2w3′ + 2(2∆3 − γ); δ + 2w3′ + 2(2w3 + 4w3′).

By combining it with (17) and taking β′′
2 (B1) = δ, we get branch vector

(2∆3+ξ1+(δ+4w3−2w3′−2γ); 2∆3+ξ1+(δ+4w3+10w3′); 2w3+δ+ξ2). (19)

Finally, by replacing ξ1 and ξ2 in (16), (18) and (19) respectively with the
bounds in (12), we get the following six branch vectors

(4∆3 − γ; δ + 4w3 + 10w3′), (20)

(2w3; δ + 2w3 + 8w3′), (21)

(δ + 6w3 − 2w3′ − 2γ; δ + 6w3 + 4w3′ − γ; δ + 4w3 + 6w3′), (22)

(δ + 4w3 + 2w3′ − γ; δ + 4w3 + 8w3′ ; δ + 2w3 + 4w3′), (23)

(δ + 8w3 − 6w3′ − 3γ; δ + 8w3 + 6w3′ − γ; δ + 4w3 + 4w3′), (24)

and

(δ + 6w3 − 2w3′ − 2γ; δ + 6w3 + 10w3′ ; δ + 2w3 + 3w3′). (25)

An Exact Algorithm for TSP in Degree-3 Graphs 23

9.3 Overall analysis

A quasiconvex program is obtained from (6) and 13 branch vectors (from (8) to
(15) and from (20) to (25)) in our analysis. There is a general method to solve
quasiconvex programs [4]. For our quasiconvex program, we observe a simple way
to solve it. We look at (8) and (11). Note that min{6w3′ + γ, 4w3 − 2w3′} under
the constraint 2∆3 ≥ γ gets the maximum value at the time when 6w3′ + γ =
4w3 − 2w3′ and 2∆3 = γ. We get w3′ = 1

3
and γ = 4

3
. With this setting, we

can verify that when δ ∈ [1.2584, 1.2832], all branch vectors other than (8) and
(11) in our quasiconvex program will not be the bottleneck. We get a time bound

O∗(αµ) with α = 2
3

10 < 1.2312 by setting w3′ =
1

3
,γ = 4

3
and δ ∈ [1.2584, 1.2832]

for our problem. The bottlenecks in the analysis are (8), (11) and 2∆3 ≥ γ in
(6).

Theorem 1. TSP in an n-vertex graph G with maximum degree 3 can be solved
in O∗(1.2312n) time and polynomial space.

10 Concluding Remarks

In this paper, we have presented an improved exact algorithm for TSP in degree-
3 graphs. The basic operation in the algorithm is to process the edges in a circuit
by either including an edge in the circuit to the solution or excluding it from the
solution. The algorithm is analyzed by using the measure and conquer method
and an amortization scheme over the cut-circuit structure of graphs, wherein
we introduce not only weights of vertices but also weights of U -components to
define the measure of an instance.

The idea of amortization schemes introducing weights on components may
yield better bounds for other exact algorithms for graph problems if how re-
duction/branching procedures change the system of components is successfully
analyzed.

References

1. Bjorklund, A.: Determinant sums for undirected Hamiltonicity. In: Proc. 51st
Annual IEEE Symp. on Foundations of Computer Science (2010) 173-182

2. Bjorklund, A., Husfeldt, T., Kasaki, P. and Koivisto, M.: The travelling salesman
problem in bounded degree graphs. In: ICALP 2008, LNCS 5125 (2008) 198-209

3. Dorn, F., Penninkx, E., Bodlaender, H. L., and Fomin, F. V.: Efficient exact
algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica
58(3) (2010) 790-810

4. Eppstein, D.: Quasiconvex analysis of multivariate recurrence equations for back-
tracking algorithms. ACM Trans. on Algorithms 2(4) (2006) 492-509

5. Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algo-
rithms and Applications 11(1) (2007) 61-81

6. Fomin, F., Grandoni, F., Kratsch, D. Measure and Conquer: Domination - A Case
Study, ICALP Springer-Verlag LNCS 3580 (2005), pp. 191–203.

24 Mingyu Xiao and Hiroshi Nagamochi

7. Fomin, F. V., Kratsch, D.: Exact Exponential Algorithms, Springer (2010)
8. Gebauer, H.: Finding and enumerating Hamilton cycles in 4-regular graphs. The-

oretical Computer Science 412(35) (2011) 4579-4591
9. Iwama, K. and Nakashima, T.: An improved exact algorithm for cubic graph TSP.

In: COCOON 2007. LNCS 4598 (2007) 108-117
10. Nagamochi, H., Ibaraki, T.: A linear time algorithm for computing 3-edge-

connected components in multigraphs, J. of Japan Society for Industrial and
Applied Mathematics, 9(2) (1992) 163-180

11. Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivities, Ency-
clopedia of Mathematics and Its Applications, Cambridge University Press (2008)

12. Woeginger, G. J.: Exact algorithms for NP-hard problems: A survey. In: Combi-
natorial Optimization. LNCS 2570 (2003) 185-207

13. Xiao, M. and Nagamochi, H.: An improved exact algorithm for TSP in degree-4
graphs. In: COCOON 2012. LNCS 7434 (2012) 74-85

