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Abstract

We consider a basic problem in unsupervised learning: ileguam unknowrPoisson Binomial Distribu-
tion. A Poisson Binomial Distribution (PBD) ové, 1, ..., n} is the distribution of a sum of independent
Bernoulli random variables which may have arbitrary, pogly non-equal, expectations. These distribu-
tions were first studied by S. Poisson in 18%bi{37 and are a natural-parameter generalization of the
familiar Binomial Distribution. Surprisingly, prior to awvork this basic learning problem was poorly under-
stood, and known results for it were far from optimal.

We essentially settle the complexity of the learning probfer this basic class of distributions. As
our first main result we give a highly efficient algorithm whiearns tcee-accuracy (with respect to the total
variation distance) usin@(1/¢*) samplesndependent of. The running time of the algorithm guasilinear
in the size of its input data, i.eQ(log(n)/€®) bit-operations. (Observe that each draw from the distribution
is alog(n)-bit string.) Our second main result igpeoperlearning algorithm that learns teaccuracy using
O(1/€?) samples, and runs in tinfe /¢)P°y(02(1/9) . 100 . This sample complexity is nearly optimal, since
any algorithm for this problem must usg1/¢%) samples. We also give positive and negative results for
some extensions of this learning problem to weighted sumsdefpendent Bernoulli random variables.

1 Introduction

We begin by considering a somewhat fanciful scenario: Yeutlae manager of an independent weekly news-
paper in a city ofn people. Each week theth inhabitant of the city independently picks up a copy ofiyo
paper with probabilityp;. Of course you do not know the valugs, .. ., p,,; each week you only see the total
number of papers that have been picked up. For many reasivextjgaing, production, revenue analysis, etc.)
you would like to have a detailed “snapshot” of the probapitiistribution (pdf) describing how many readers
you have each weelts there an efficient algorithm to construct a high-accurapproximation of the pdf from
a number of observations thatirsdependenbf the populatiom? We show that the answer is “yes.”

A Poisson Binomial Distributiomf ordern is the distribution of a sum

X = zn:X
i=1

whereXy, ..., X,, are independent Bernoulli (0/1) random variables. The etgtiens(E[X;] = p;); heed not
all be the same, and thus these distributions generaliZgittoenial distributionBin(n, p) and, indeed, comprise
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We write O(-) to hide factors which are polylogarithmic in the argumentXg); thus, for exampleQ (a log b) denotes a quantity
which isO(alogb - log®(alog b)) for some absolute constant


http://arxiv.org/abs/1107.2702v4

a much richer class of distributions. (See Secfighbelow.) It is believed that PoissoR$i37 was the first to
consider this extension of the Binomial distributicemd the distribution is sometimes referred to as “Poisson’s
Binomial Distribution” in his honor; we shall simply calléke distributions PBDs.

PBDs are one of the most basic classes of discrete distitsjtindeed, they are arguably the simplest
parameter probability distribution that has some noratigtructure. As such they have been intensely studied
in probability and statistics (see Secti@r?) and arise in many settings; for example, we note here tliat ta
bounds on PBDs form an important special case of Chernadfifidimg bounds €he52 Hoe63 DP09. In
application domains, PBDs have many uses in research arelagas survey sampling, case-control studies, and
survival analysis, see e.gCIL97] for a survey of the many uses of these distributions in &pfilbns. Given
the simplicity and ubiquity of these distributions, it isigusurprising that the problem afensity estimation
for PBDs (i.e., learning an unknown PBD from independentas) is not well understood in the statistics or
learning theory literatureThis is the problem we consider, and essentially settldigdaper.

We work in a natural PAC-style model of learning an unknowscokte probability distribution which is
essentially the model oKMR 794]. In this learning framework for our problem, the learnepievided with the
value ofn and with independent samples drawn from an unknown RBYsing these samples, the learner must
with probability at least —d output a hypothesis distributiaki such that the total variation distanéey (X, X )
is at moste, wheree, § > 0 are accuracy and confidence parameters that are provided learne? A proper
learning algorithm in this framework outputs a distributithat is itself a Poisson Binomial Distribution, i.e., a
vectorp = (p, . . ., pn) which describes the hypothesis PBD= 3" | X; whereE[X;] = p;.

1.1 Our results.

Our main result is an efficient algorithm for learning PBDsnfrO(1/¢?) many samples independent [af.
Since PBDs are an-parameter family of distributions over the domair), we view such a tight bound as a
surprising result. We prove:

Theorem 1(Main Theorem). LetX = >"" | X; be an unknown PBD.

1. [Learning PBDs from constantly many samples]There is an algorithm with the following properties:
givenn, e, 6 and access to independent draws frdmthe algorithm uses

O ((1/¢%) -log(1/9))
samples from¥X, performs

0, ((1/63) -logn - log? %)

bit operations, and with prgbability at least— & outputs a (succinct description of a) distributiéhover
[n] which is such thatly (X, X) < e.

2. [Properly learning PBDs from constantly many samples]There is an algorithm with the following
properties: givem, ¢, § and access to independent draws frdmthe algorithm uses

O(1/€?) - 1og(1/5)
samples fromX, performs

(1/6)O(log2(1/5)) . O~ <logn . log %)

bit operations, and with prgbability at Ieaé{— ¢ outputs a (succinct description of a) vectpr=
(1, ..., pn) defining a PBDX such thatdy (X, X) < e.

2We thank Yuval Peres and Sam Watson for this informatiw[L1.
3[KMR*94] used the Kullback-Leibler divergence as their distancasnee but we find it more natural to use variation distance.



We note that, since every sample drawn framis alog(n)-bit string, for constant the number of bit-
operations performed by our first algorithmdsasilinearin the length of its input. Moreover, the sample
complexity of both algorithms is close to optimal, sir@€l /e?) samples are required even to distinguish the
(simpler) Binomial distribution®in(n, 1/2) andBin(n, 1/2+¢/1/n), which have total variation distan€¥e).
Indeed, in view of this observation, our second algorithrasisentially sample-optimal.

Motivated by these strong learning results for PBDs, we atsusider learning a more general class of
distributions, namely distributions of the fordi = > " , w;X; which areweightedsums of independent
Bernoulli random variables. We give an algorithm which ué&gn) samples and runs ipoly(n) time if
there are only constantly many different weights in the sum:

Theorem 2 (Learning sums of weighted independent Bernoulli random vaiables). Let X = > | a;X;
be a weighted sum of unknown independent Bernoullis sudtttitbee are at mosk different values among
ai,...,ay. Then there is an algorithm with the following propertiesvenn,e,d, a4,...,a, and access to
independent draws frodX, it uses

O(k/€?) -log(n) - log(1/9)
samples fromX, runs in time
poly (nk . e_klogQ(l/e)) -log(1/90),

and with p[obability at least — § outputs a hypothesis vectpre A[O, 1" defining independent Bernoulli random
variables X; with E[X;] = p; such thatdry (X, X) < ¢, whereX = 3" | a,X;.

To complement Theorer®, we also show that if there are many distinct weights in tha,ghen even for
weights with a very simple structure any learning algorittmust use many samples:

Theorem 3 (Sample complexity lower bound for learning sums of weightedndependent Bernoullis). Let
X = > ,i-X, beaweighted sum of unknown independent Bernoullis (whereth weight is simplyi).
Let L be any learning algorithm which, givenand access to independent draws frémoutputs a hypothesis
distribution X such thatdry (X, X) < 1/25 with probability at lease—°("™). ThenL must us&2(n) samples.

1.2 Related work.

At a high level, there has been a recent surge of interesteirthtboretical computer science community on
fundamental algorithmic problems involving basic typeguabability distributions, see e.gkKMV10, MV10,
BS1Q VV11] and other recent papers; our work may be considered as anséoth of this theme. More specif-
ically, there is a broad literature in probability theorudying various properties of PBDs; sa&4n93 for an
accessible introduction to some of this work. In particutaany results study approximations to the Poisson
Binomial distribution via simpler distributions. In a wddhown result, Le CamQam6Q shows that for any
PBD X = Z?:l X; with E[XZ] = Di, it holds that

drv (X, Poi( > p2)> <23 p?,
=1 =1

wherePoi()\) is the Poisson distribution with parameter Subsequently many other proofs of this result and
similar ones were given using a range of different techrsg{leC60, Che74 DP86 BHJ9] is a sampling of
work along these lines, and SteeBt¢94 gives an extensive list of relevant references. Much wak&lso been
done on approximating PBDs by normal distributions (see [Bgr41, Ess42 Mik93, Vol95]) and by Binomial
distributions (see e.g.Ehm91 S0096 Roo0(). These results provide structural information about BRIbat
can be well-approximated via simpler distributions, buit $aort of our goal of obtaining approximations of
an unknown PBD up tarbitrary accuracy Indeed, the approximations obtained in the probabiligréiture
(such as the Poisson, Normal and Binomial approximationsgally depend only on the first few moments of



the target PBD. This is attractive from a learning perspedbecause it is possible to efficiently estimate such
moments from random samples, but higher moments are cffociatbitrary approximationRoo0d.

Taking a different perspective, it is easy to show (see 8ea@iof [KG71]) that every PBD is a unimodal
distribution over[n]. (Recall that a distributiop over [r] is unimodal if there is a valué € {0,...,n} such
thatp(:) < p(i + 1) for i < ¢andp(i) > p(i + 1) for ¢ > ¢.) The learnability of general unimodal distributions
over [n] is well understood: BirgéHir87a Bir97] has given a computationally efficient algorithm that can
learn any unimodal distribution oveén] to variation distance from O(log(n)/e*) samples, and has shown
that any algorithm must us@(log(n)/e®) samples. (TheBir87a, Bir97] upper and lower bounds are stated
for continuous unimodal distributions, but the arguments easily adapted to the discrete case.) Our main
result, Theoremi, shows that the additional PBD assumption can be leveragettain sample complexity
independent of, with a computationally highly efficient algorithm.

So, how might one leverage the structure of PBDs to remofrem the sample complexity? A first obser-
vation is that a PBD assigris— ¢ of its mass ta),(y/n) points. So one could draw samples to (approximately)
identify these points and then try to estimate the probgbéssigned to each such point, but clearly such an
approach, if followed naively, would giveoly(n) sample complexity. Alternatively, one could run Birgéls a
gorithm on the restricted support of sigk(,/n), but that will not improve the asymptotic sample complexity
A different approach would be to construct a smatlover (under the total variation distance) of the space of
all PBDs onn variables. Indeed, if such a cover has si¥geit can be shown (see Lemnid) in Section3.1, or
Chapter 7 of PLO1])) that a target PBD can be learned fraéntlog(N) /%) samples. Still it is easy to argue that
any cover needs to have si2¢n), so this approach too giveda@g(n) dependence in the sample complexity.

Our approach, which removescompletely from the sample complexity, requires a refinedeustanding
of the structure of the set of all PBDs envariables, in fact one that is more refined than the undeisign
provided by the aforementioned results (approximating B B a Poisson, Normal, or Binomial distribution).
We give an outline of the approach in the next section.

1.3 Our approach.

The starting point of our algorithm for learning PBDs is adien of [DP11 Das0§ that gives detailed infor-
mation about the structure of a smaltover (under the total variation distance) of the spacdléBDs onn
variables (see Theorerd). Roughly speaking, this result says that every PBD is eitlese to a PBD whose
support is sparse, or is close to a translated “heavy” Biabdistribution. Our learning algorithm exploits this
structure of the cover; it has two subroutines correspantbrthese two different types of distributions that the
cover contains. First, assuming that the target PBD is dlmsesparsely supported distribution, it runs Birgé’s
unimodal distribution learner over a carefully selectebisterval of[n] to construct a hypothesHs; the (pur-
ported) sparsity of the distribution makes it possible fos &lgorithm to us@(l/é‘) samples independent of
n. Then, assuming that the target PBD is close to a translétealy” Binomial distribution, the algorithm con-
structs a hypothesis Translated Poisson Distribufign[R07] whose mean and variance match the estimated
mean and variance of the target PBD; we show fiiatis close to the target PBD if the target PBD is not close
to any sparse distribution in the cover. At this point theoaltpm has two hypothesis distributionds and Hp,
one of which should be good; it remains to select one as thediriput hypothesis. This is achieved using a
form of “hypothesis testing” for probability distributisn

The above sketch captures the main ingredients of Part (Ihebreml, but additional work needs to be
done to get the proper learning algorithm of Part (2). Forrtbe-sparse case, first note that the Translated
Poisson hypothesi® p is not a PBD. Via a sequence of transformations we are ableote that the Translated
Poisson hypothesi p can be converted to a Binomial distributi®in(n’, p) for somen’ < n. To handle the
sparse case, we use an alternate learning approach: imdteaihg Birgé’s unimodal algorithm (which would
incur a sample complexity d2(1/¢%)), we first show that, in this case, there exists an efficientlystructible
O(e)-cover of size(1/¢)0(1e”(1/9) _and then apply a general learning result that we now describe

The general learning result that we use (Lemibd is the following: We show that for any class of



target distributions, ifS has ane-cover of sizeN then there is a generic algorithm for learning an unknown
distribution fromS to accuracyO(e) that usesO((log N)/e?) samples. Our approach is rather similar to the
algorithm of [DLO1] for choosing a density estimate (but different in some itltat works by carrying out a
tournament that matches every pair of distributions in thescagainst each other. Our analysis shows that with
high probability some-accurate distribution in the cover will survive the toumrent undefeated, and that any
undefeated distribution will with high probability #@(¢)-accurate.

Applying this general result to th@(e)-cover of size(1/¢)°(°s*(1/9) described above, we obtain a PBD
that isO(e)-close to the target (this accounts for the increased rgntime in Part (2) versus Part (1)). We
stress that for both the non-proper and proper learningigtigas sketched above, many technical subtleties and
challenges arise in implementing the high-level plan gizbave, requiring a careful and detailed analysis.

We prove Theorem using the general approach of Lemiftaspecialized to weighted sums of independent
Bernoullis with constantly many distinct weights. We shawtthe tournament can be implemented efficiently
for the classS of weighted sums of independent Bernoullis with constantny distinct weights, and thus
obtain Theoren?. Finally, the lower bound of Theorefhis proved by a direct information-theoretic argument.

1.4 Preliminaries.

Distributions.  For a distributionX supported orn| = {0,1,...,n} we write X (i) to denote the value
Pr[X = i] of the probability density function (pdf) at poirt and X (< i) to denote the valu®r[X < 7]
of the cumulative density function (cdf) at point For S C [n], we write X (S) to denote) ;4 X (i) and
X to denote the conditional distribution &f restricted taS. Sometimes we writéX' (1) and X for a subset
I C [0,n], meaningX (I N [n]) and X;n,) respectively.

Total Variation Distance. Recall that theotal variation distancebetween two distribution andY over a
finite domainD is
dry (X,Y) = (1/2)- > |X(a) = Y(a)| = max[X(S) — Y (9)].
aeD SCD
Similarly, if X andY are two random variables ranging over a finite set, theit t@taation distancelry (X,Y")
is defined as the total variation distance between theiriloligions. For convenience, we will often blur the
distinction between a random variable and its distribution

Covers. Fix a finite domainD, and let? denote some set of distributions ovBr Givend > 0, a subset
Q C P is said to be a-cover of P (w.r.t. the total variation distance) if for every distrilmn P in P there exists
some distributiony) in Q such thatdry (P, Q) < §. We sometimes say that distributio®s() ared-neighbors
if dry (P, Q) < 4. If this holds, we also say that is /-close toQ) and vice versa.

Poisson Binomial Distribution. A Poisson binomial distribution of order € Nis a sumy_;" , X; of n mutu-
ally independent Bernoulli random variabl&s, . . ., X,,. We denote the set of all Poisson binomial distributions
of ordern by S,, and, ifn is clear from context, jus§.

A Poisson binomial distributioD € S,, can be represented uniquely as a ve¢igi!" ; satisfying0 <
P <p2<...<p, <1 TogofromD € S, to its corresponding vector, we find a collectidi, . . ., X,, of
mutually independent Bernoullis such thal’ ; X; is distributed according t& andE[X;] < ... < E[X,,].
(Such a collection exists by the definition of a Poisson bilabufistribution.) Then we set; = E[X;] for all i.
Lemma 1 of PP13 shows that the resulting vect@p,, . .., p,) is unique.

We denote byPBD(p1, .. .,p,) the distribution of the sum) ", X; of mutually independent indicators
X1,..., X, with expectationg; = E[X;], for all i. Given the above discussidBD(p1, ..., p,) IS unique
up to permutation of the;'s. We also sometimes writgX;} to denote the distribution of ;" ; X;. Note the
difference betwee# X;}, which refers to the distribution df, X;, and{X;};, which refers to the underlying
collection of mutually independent Bernoulli random vatés.
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Translated Poisson Distribution. We will make use of the translated Poisson distribution fgeraximating
the Poisson Binomial distribution. We define the transldeisson distribution, and state a known result on
how well it approximates the Poisson Binomial distribution

Definition 1 ([RO7]). We say that an integer random varialifeis distributed according to theanslated Poisson
distribution with parameterg ando?, denotedl’ Py, o2), iff Y can be written as

Y:LM_02J+Z7

whereZ is a random variable distributed according Rvisson (o2 + {1z — 0%}), where{; — 0%} represents the
fractional part ofy, — 0.

The following lemma gives a useful bound on the variatiotestise between a Poisson Binomial Distribution
and a suitable translated Poisson distribution. Note fitheivariance of the Poisson Binomial Distribution is
large, then the lemma gives a strong bound.

Lemma 1 (see (3.4) of R07)). Let.J, ..., J, be independent random indicators wiil.J;] = p;. Then

n VI P = p) +2
dry Ji, TP(u,02) | < ;
(; ' ( ) > i1 pi(l —pi)
wherey = 371 p;ando® = 377 pi(1 — pi).

The following bound on the total variation distance betwianslated Poisson distributions will be useful.

Lemma 2 (Lemma 2.1 of BLO6]). For 1, us € Rando?, 03 € Ry with [p3 — 0% ] < |ue — 03], we have

2 2

- o1 —o3+1

dry (TP, 07), TP (s, o)) < 1121 7= oal 2,
1

Running Times, and Bit Complexity. Throughout this paper, we measure the running times of gorighms
in numbers of bit operations. For a positive integemwe denote byn) its description complexity in binary,
namely(n) = [log, n|. Moreover, we represent a positive rational numpmq—;, whereg; andg, are relatively
prime positive integers. The description complexity;éé defined to béq) = €q1> + (g2). We will assume that
all ¢’s andd’s input to our algorithms are rational numbers.

2 Learning a sum of Bernoulli random variables from poly(1/¢) samples

In this section, we prove Theorehby providing a sample- and time-efficient algorithm for ldag an unknown
PBDX = >"" , X;. We start with an important ingredient in our analysis.

A cover for PBDs. We make use of the following theorem, which provides a covehe setS = S, of all
PBDs of ordem. The theorem was given implicitly irdP1] and explicitly as Theorem 1 irfP13.

Theorem 4 (Cover for PBDs) For all € > 0, there exists ar-coverS, C S of S such that
2
1. |S| <n?+n- (%)Oﬂog 1/9. and
2
2. S, can be constructed in time linear in its representation sieg, O(n? log n)+O(n logn)- (%)O(log 1/e)

Moreover, if{Y;} € S, then the collection o Bernoulli random variablegY;};—1, ., has one of the following
forms, wheré: = k(¢) < C'/e is a positive integer, for some absolute constant 0:

5



() (k-Sparse Form) There is sonde< k3 = O(1/€®) such that, for alli < ¢, E[Yj] € {k%, Z. ’i;l}
and, for alli > ¢, E[Y;] € {0, 1}.

(i) (k-heavy Binomial Form) There is some= {1,...,n} andq € {1 2 ...,%} such that, for alli < ¢,

E[Y;] = g and, for alli > ¢, E[Y;] = 0; moreover/, q satisfy/q > 2 Zmdﬁq(l —q) >k —k—1.
Finally, for every{X;} € S for which there is na-neighbor inS, that is in sparse form, there exists some
{Y;} € S in k-heavy Binomial form such that

(i) drv (3, X, 5, Y3) < 6 and

(v) if u = E[X, Xi], ' = E[Y,Yi], 0? = Var[}_, X;] ando’? = Var[}_, Vi, then|u — u/| = O(1) and
0% =] =01+ ¢ (1+07)).

We remark that the cover theorem as statediR13 does not include the part of the above statement following
“finally.” We provide a proof of this extension in Appendix

The Basic Learning Algorithm. The high-level structure of our learning algorithms whidtegTheoreml
is provided in AlgorithmLear n- PBD of Figurel. We instantiate this high-level structure, with approfia
technical modifications, in Sectidh4, where we give more detailed descriptions of the non-prapelrproper
algorithms that give parts (1) and (2) of Theorém

Lear n- PBD(n, ¢, 9)

1. RunLear n- Spar se¥(n, ¢,4/3) to get hypothesis distributiof 5.
2. RunLear n- Poi sson¥(n, ¢, 4/3) to get hypothesis distributiofl p.

3. Return the distribution which is the output@foose- Hypot hesi s*(Hg, Hp,¢,5/3).

Figure 1:Lear n- PBD(n, ¢, §)

At a high level, the subroutinkear n- Spar se is given sample access £ and is designed to find an
e-accurate hypothesif g with probability at leastt — /3, if the unknown PBDX is e-close to some sparse
form PBD inside the cove$.. Similarly, Lear n- Poi sson is designed to find as-accurate hypothesid p,
if X is note-close to a sparse form PBD (in this case, Theodemplies thatX must bee-close to somé:(e)-
heavy Binomial form PBD). FinallyChoose- Hypot hesi s is designed to choose one of the two hypotheses
Hg, Hp as being--close toX. The following subsections specify these subroutines, dsas@ow the algorithm
can be used to establish Theordm We note thatLear n- Spar se and Lear n- Poi sson do not return
the distributionsHs and Hp as a list of probabilities for every point im]. They return instead a succinct
description of these distributions in order to keep the imgitime of the algorithm logarithmic in. Similarly,
Choose- Hypot hesi s operates with succinct descriptions of these distribstion

2.1 Learning whenX is close to a sparse form PBD.

Our starting point here is the simple observation that anyp P8a unimodal distribution over the domain
{0,1,...,n}. (There is a simple inductive proof of this, or see Sectiof [KX&71].) This enables us to use the
algorithm of Birgé Bir97] for learning unimodal distributions. We recall Birgéssult, and refer the reader to
AppendixB for an explanation of how Theorebas stated below follows fronBjro7].



Theorem 5([Bir97]). For all n,e,é > 0, there is an algorithm that draws

logn 1
0] ( log 5 + log 5 log log S)
samples from an unknown unimodal distributi&nover [n], does

~ (log?n o1
O( 3 log S)

bit-operations, and outputs a (succinct description ofyg)dthesis distributior{ over[ | that has the following
form: H is uniform over subintervalgy, b1], [az, ba), - . . , [ax, bx], whose unionJ%_, [a;, b;] = [n], wherek =

(0] (l(’f") . In particular, the algorithm outputs the lists; througha, and b; throughb;, as well as the total

probability mass thatf assigns to each subintervl;, b;],7 = 1, ..., k. Finally, with probability at least — 4,
dry(X,H) <e.

The main result of this subsection is the following:

Lemma 3. For all n, €', ¢’ > 0, there is an algorithniear n- Spar seX(n, ¢, ¢') that draws

1 1
O( log log — 5, log 5 log log 5/>
samples from a target PBIY over [n], does

~ 1
logn - O < log? 6’)

bit operations, and outputs a (succinct description of g)dthesis distributiont ¢ over [n] that has the fol-
lowing form: its support is contained in an explicitly spfésil interval[a, b] C [n], where|b — a| = O(1/€?),

and for every point iffa, b] the algorithm explicitly specifies the probability assigrte that point byHg. *

The algorithm has the following guarantee: Xf is ¢/-close to some sparse form PBDin the coverS,. of

Theoren¥, then with probability at least — ¢', dry (X, Hg) < ¢1€, for some absolute constant > 1, and

the support off{ g lies in the support ot".

The high-level idea of Lemmais quite simple. We truncat®(¢’) of the probability mass from each end
of X to obtain a conditional distributioX , ;,; sinceX is unimodal so isX, ;. If b— ais larger tharO(1/¢")
then the algorithm outputs “fail” (and cou‘ld not have been close to a sparse -form distributionerctiver).
Otherwise, we use Birgé’s algorithm to learn the unimodatritbution X[a,b]- A detailed description of the
algorithm is given in Figur& below.

Proof of Lemma: As described in Figurg, algorithmLear n- Spar seX(n, €, &) first drawsM = 321log(8/4") /e
samples fromX gnd sorts them to obtain a list of values< s; < --- < s3; < n. We claim the following about
the values: andb defined in Step 2 of the algorithm:

Claim 4. With probability at leastl — §'/2, we haveX (< a) € [3¢//2,5¢/ /2] and X (< b) € [1 — 5€'/2,1 —
3¢’ /2].

Proof. We only show thatX (< a) > 3¢'/2 with probability at least — ¢'/8, since the arguments fox (<
a) <5€/2, X(<b) <1-3€/2andX (< b) > 1— 5€¢/2 are identical. Given that each of these conditions is
met with probability at least — ¢’/8, the union bound establishes our claim.

“In particular, our algorithm will output a list of pointensiapping every pointifu, b] to some memory location where the probability
assigned to that point b¥f s is written.



Lear n- Spar seX(n, ¢, d)

1. Draw M = 32log(8/8") /€’ samples fromX and sort them to obtain a list of valugs< s; <
“< sy < n.

2. Defineg := S(QG’M] and@ = S|_(1—26’)MJ'

3. Ifb—a > (C/€) (whereC is the constant in the statement of Theorémoutput “fail” and
return the (trivial) hypothesis which puts probability redson the point0.

4. Otherwise, run Birgé’s unimodal distribution learn&€héorem5) on the conditional distribution
X 0 and output the hypothesis that it returns.

Figure 2:Lear n- Spar se*(n, ¢, d’)

To show thatX (< a) > 3¢’/2 is satisfied with probability at leagt— ¢’/8 we argue as follows: Let’ =
max{i | X (< i) < 3¢'/2}. Clearly, X (< o/) < 3€¢//2 while X (< o/ + 1) > 3€//2. Given this, if M samples
are drawn fromX then the expected number of them that are\’ is at most3¢’' M /2. It follows then from
the Chernoff bound that the probability that more tHaf\/ samples are< o is at moste—(<'/9°M/2 < §//8,
Hence except with this failure probability, we have> o’ + 1, which implies thatX (< a) > 3¢'/2. O

As specified in Steps 3 and 4t a > (C/€)?, whereC is the constant in the statement of Theorgrthe
algorithm outputs “fail”, returning the trivial hypothesivhich puts probability masson the poin0). Otherwise,
the algorithm runs Birgé’s unimodal distribution learii@heoremS) on the conditional distributiork’,. i and
outputs the result of Birgé’s algorithm. Sincé is unimodal, it follows thatX . ab is also unimo aI hence
Birgé’s algorithm is appropriate for learning it. The waye wapply Birgé’s algonthm to IearIX[ B given
samples from the original distributioi is the obvious one: we draw samples frdfmgnonng all samples that
fall outside of{a, b], until the rightO (log(1/¢") log(1/¢') /¢’*) number of samples fall inside, b], as required by
Birgé’s algorithm for learning a distribution of suppoftsize (C'/¢')? with probability at least — &’ /4. Once
we have the right number of samples|in B], we run Birgé’s algorithm to learn the conditional distriion
X535 Note that the number of samples we need to draw ffSrantil the right O(log(1/6") log(1/¢') /")

number of samples fall insid@, b] is still O(log(1/6") log(1/€')/€"*), with probability at least — & /4. Indeed,
since X ([a,b]) = 1 — O(¢), it follows from the Chernoff bound that with probability kast1 — &’ /4, if
K = O(log(1/8')1og(1/¢") /€’®) samples are drawn fro, at leastk (1 — O(¢')) fall inside [a, b).

Analysis: It is easy to see that the sample complexity of our algorithiasipromised. For the running time,
notice that, if Birgé’s algorithm is invoked, it will retartwo lists of numberga; througha; andb, throughby, as
well as a list of probability masses, . . . , g, assigned to each subinterval, b;],i = 1, ..., k, by the hypothesis
distribution Hg, wherek = O(log(1/¢')/€¢'). In linear time, we can compute a list of probabilitigs . . . , g,
representing the probability assigned Hy, to every point of subintervdh;, b;], for: = 1,..., k. So we can
represent our output hypothesis; via a data structure that maintai@$1/¢’®) pointers, having one pointer per
point inside[a, b]. The pointers map points to probabilities assigneddyyto these points. Thus turning the
output of Birgé’s algorithm into an explicit distributiaver|a, b] incurs linear overhead in our running time, and
hence the running time of our algorithm is also as promis8de (AppendixB for an explanation of the running
time of Birgé’s algorithm.) Moreover, we also note that thaput distribution has the promised structure, since
in one case it has a single atomDand in the other case it is the output of Birgé’s algorithrmedtistribution of

support of siz€C'/€')3.
It only remains to justify the last part of the lemma. Létbe the sparse-form PBD tha is close to;
say thatY is supported of{d’,...,b'} wheret — o’ < (C/€)3. Since X is €-close toY in total variation

distance it must be the case th&({< o’ — 1) < €. SinceX(< a) > 3€¢/2 by Claim 4, it must be the



case thati > «. Similar arguments give thdt < ¥'. So the intervala, b] is contained inja’,?'] and has
length at most{C/¢')3. This means that Birgé’s algorithm is indeed used corydayl our algorithm to learn
dej , with probability at leasi — §’/2 (that is, unless Claim fails). Now it follows from the correctness of
Birgé’s algorithm (Theorem) and the discussion above, that the hypothékisoutput when Birgé’s algorithm
is invoked satisfiegry (Hg, X[a,z}]) < €, with probability at least — §'/2, i.e., unless either Birgé’s algorithm

fails, or we fail to get the right number of samples landingjde [a, 13]. To conclude the proof of the lemma we
note that:

2dTV(X7X[@,1;}) = Z ’X[@,i)}(i)_X(i)’+ Z ’X[@j)}(i)_X(i)’
i€[a,b] i¢[a,b]
1
- ¥ ‘mx*(z‘)—xu) + 3 X3
i€[a,b] ’ i¢[a,b]
B 1 . . /
_ 2 ‘1_0(6,))((1) X(z)‘ +O()
i€la,b
_ 0 , /
= =6 > ‘X(z)‘+0(e)
1€la,b
= 0O(€).
So the triangle inequality givegiry (Hg, X) = O(¢’), and Lemma&B is proved. O

2.2 Learning when X is close to ak-heavy Binomial Form PBD.

Lemma 5. For all n, €, &' > 0, there is an algorithniear n- Poi sson*(n, ¢, ') that draws
O(log(1/4")/€?)
samples from a target PBIY over [n], does
O(logn -log(1/8")/€?)

bit operations, and returns two parametgisand 52. The algorithm has the following guarantee: Suppdse
is note’-close to any sparse form PBD in the cov®r of Theoremd. Let Hp = T P(ji,5?) be the translated
Poisson distribution with parametefsands2. Then with probability at least— &’ we havelry (X, Hp) < ca¢€’
for some absolute constaat > 1.

Our proof plan is to exploit the structure of the cover of Tilego4. In particular, if X is note’-close to any
sparse form PBD in the cover, it must Heclose to a PBD in heavy Binomial form with approximately t@ne
mean and variance a8, as specified by the final part of the cover theorem. Henceuaaiatrategy is to obtain
estimates: and 42 of the mean and variance of the unknown PRD and output as a hypothesis a translated
Poisson distribution with parametgisands2. We show that this strategy is a successful one. Before girayi
the details, we highlight two facts that we will establishtliie subsequent analysis and that will be used later.
The first is that, assuming is note’-close to any sparse form PBD in the cor, its variances? satisfies

o2 =Q(1/€?) > 6> for some universal constaft (1)

The second is that under the same assumption, the estijnatess? of the mean and variances? of X that
we obtain satisfy the following bounds with probability eastl — o:

lw—pl <€-o and |o% -2 <€ -0’ 2

9



Lear n- Poi sson¥(n, ¢, d)

1. Lete=¢€/,/4+ gz andd = ¢

2. Run algorithmA(n, €, §) to obtain an estimatg of E[X] and an estimaté? of Var[X].

3. Output the translated Poisson distributibie (i, 52).

Figure 3:Lear n- Poi sson¥(n,¢,§'). The valued used in Line 1 is the universal constant specified in the
proof of Lemmab.

A(n, e, 0)
1. Letr = O(log 1/4). Fori = 1,...,r repeat the following:

(@) Drawm = [3/¢?] independent samplé%; 1, . .., Z; ,,, from X.

(b) Letj; = 2% 52 _ o= S i)

m

2. Setji to be the median of;, . . ., i, and set? to be the median of?, ..., 2.

3. Outputi andé?.

Figure 4: A(n,€,0)

See Figure3 and the associated Figusefor a detailed description of thieear n- Poi sson™(n, ¢, §')
algorithm.

Proof of Lemmab: We start by showing that we can estimate the mean and varadrtbe target PBDX .

Lemma 6. For all n,e,0 > 0, there exists an algorithml(n, €, ) with the following properties: given access
to a PBD X of ordern, it produces estimates and 42 for = E[X] ando? = Var[X] respectively such that
with probability at leastl — §:

1
lu—pnl<e-o and ‘0'2—(5'2’§6’0'2\/4+§.

O(log(1/6)/€*)

The algorithm uses

samples and runs in time
O(lognlog(1/8)/€%).

Proof. We treat the estimation qf and o2 separately. For both estimation problems we show how to use
O(1/€?) samples to obtain estimat@gsands? achieving the required guarantees with probability attleas
(we refer to these as “weak estimators”). Then a routineqaore allows us to boost the success probability to
1 — 4 at the expense of a multiplicative factolog 1/6) on the number of samples. While we omit the details
of the routine boosting argument, we remind the reader thiatalves running the weak estimatox(log 1/6)
times to obtain estimates, . . ., fioa.g1/5) and outputting the median of these estimates, and simifarly
estimatings?.

We proceed to specify and analyze the weak estimators émdo? separately:

10



e Weak estimator for: Let 71, ..., Z,, be independent samples frakh, and leti = ZTZ Then
. . 1 1,
E[i] = p and Var[i] = —Var[X]| = —o°.
m m

So Chebyshev’s inequality implies that

Prllis — > to /] < .

Choosingt = v/3 andm = [3/€%], the above imply thalis — 1| < eo with probability at leas®/3.

e Weak estimator fos?: Let Z1,. .., Z,, be independent samples froi, and let6? = u
be the unbiased sample variance. (Note the use of Bessalextion.) Then it can be checkedlohOCj

that )
E[6?] = 02 and Var[6?] = ¢* <— + i) ,
m—1 m

wherek is the excess kurtosis of the distribution ®f(i.e. x =
o? suppose thak = Y7 | X;, whereE[X;] = p; for all i. Then

E[()ii;ﬂy‘] — 3). To boundx in terms of

7

1

i

W= 30— 6l -p))(L—pp: (see NIOG)
1

<

Hence Var[6?] = o* (m T+ ) (4 + ~). So Chebyshev’s inequality implies that
2
.2 9 o 1 1

Choosingt = v/3 andm = [3/€?], the above imply thals? — 0| < es?/4 + 2 with probability at
least2/3.

O

We proceed to prove Lemnta Lear n- Poi sson®(n,€,§') runs A(n,e,6) from Lemma6é with ap-
propriately choserm = ¢(¢’) andd = §(¢'), given below, and then outputs the translated Poissorikiitton
TP(j1,6?), whereji and6? are the estimated mean and varianceXobutput by A. Next, we show how to
choose: andd, as well as why the desired guarantees are satisfied by thaetaistribution.

If X is note’-close to any PBD in sparse form inside the cagigrof Theoremd, there exists a PBLY in
(k = O(1/€))-heavy Binomial form insideS., that is within total variation distance from X. We use the
existence of sucly to obtain lower bounds on the mean and varianc& ofndeed, suppose that the distribution
of Z is Bin(¥, q), a Binomial with parameter§ ¢q. Then Theoren certifies that the following conditions are
satisfied by the parametefsy, 1 = E[X] ando? = Var[X]:

(@) g > k?;

(b) Lq(1 —q) > k> —k —1;

(©) [fq — pl =0O(1);and

(d) [g(1 —q) —o*| =01 +¢ - (1+0%)).

11



In particular, conditions (b) and (d) above imply that

o2 = QK% = Q(1/€?) > 62,

for some universal constaff establishing 1). In terms of this9, we choose = ¢/, /4 + eiz andé = ¢ for the

application of Lemmé to obtain—fromO(log(1/46")/¢"?) samples—estimatgsands? of ; ando?.
From our choice of parameters and the guarantees of LeBnméollows that, if X is not¢’-close to any
PBD in sparse form inside the cow§y, then with probability at least — ¢ the estimateg ands? satisfy:

w—pl <€é-o and |0% -2 <€ o2,

establishing Z). Moreover, ifY is a random variable distributed according to the trandl&eisson distribution
TP(j1,5%), we show thatl andY” are withinO(¢') in total variation distance, concluding the proof of Lem#na

Claim 7. If X andY are as above, thedry (X,Y) < O(¢€).

Proof. We make use of Lemma Suppose thak’ = " | X;, whereE[X;] = p; for all i. Lemmal implies
that

> Pl (1 —pi) +2
Zipi(l — i)
Zipi(l —pi) +2
Zipi(l — i)

2

1
Sl Snd—p)
1 2
o o2

= 0(€). 3)

dTV(Xv TP(:“» 02)) <

IN

It remains to bound the total variation distance betweentrifeslated Poisson distributio8P(u, o) and
TP(j1,6?). For this we use Lemma Lemma2 implies

I L e

drv(TP(p,0%), TP(j1,6%) <

min(o,4)  min(o2,452)
- o € -02+1
~ min(o,6) min(c?,52?)
o €-02+1
< +
S oNI-e 210
/
= O() + 70(102 €)
= 0() +0(?)
= 0(€). (4)
The claim follows from 8), (4) and the triangle inequality. O

The proof of Lemma is concluded. We remark that the algorithm described aboes dot need to know
a priori whether or nof is ¢/-close to a PBD in sparse form inside the coerof Theoremd. The algorithm

simply runs the estimator of Lemntawith e = ¢//,/4 + 9% andd’ = ¢ and outputs whatever estimatgsand
&2 the algorithm of Lemm& produces. O

12



2.3 Hypothesis testing.

Our hypothesis testing routineghoose- Hypot hesi s* uses samples from the unknown distributi&nto
run a “competition” between two candidate hypothesis ithistions //; and H, over [n] that are given in the
input. We show that if at least one of the two candidate hygsehk is close to the unknown distributigh then
with high probability over the samples drawn frakhthe routine selects as winner a candidate that is close to
X. This basic approach of running a competition between ciatelihypotheses is quite similar to the “Scheffé
estimate” proposed by Devroye and Lugosi (d2e96b, DL964 and Chapter 6 oflpL01], as well as at85]),
but our notion of competition here is different.

We obtain the following lemma, postponing all running-tisr@alysis to the next section.

Lemma 8. There is an algorithnChoose- Hypot hesi s*(H,, Hs, €, §') which is given sample access to
distribution X, two hypothesis distribution&l;, H, for X, an accuracy parameted’ > 0, and a confidence
parameterd’ > 0. It makes

m = O(log(1/8") /")

draws fromX and returns somél € {Hy, Ho}. If dry (H;, X) < € for somei € {1, 2}, then with probability
at leastl — ¢’ the distributionH that Choose- Hypot hesi s returns hasity (H, X) < 6€'.

Proof of LemmaB: Figure5 describes how the competition betweln and H, is carried out.

Choose- Hypot hesi s(Hy, Ho, €', ¢')
INPUT: Sample access to distributiot; a pair of hypothesis distributiond?;, H); €, " > 0.

Let W be the support o, Wi = W (H1, Hy) := {w € W|Hy(w) > Hy(w)}, andp; = Hi (W),
p2 = Ha(Wh). I* Clearly, p1 > ps anddry (Hy, Hz) = p1 — p2. */

1. If p1 — po < 5¢€, declare a draw and return eith8g. Otherwise:

2. Drawm = ngi#‘y) samplessy, ..., s, from X, and letr = L |{i | s; € Wy }| be the fraction of
samples that fall insid&V); .

3. Ifr>p; — %e/, declareH; as winner and returi/; ; otherwise,
4. if < po + %e’, declareHs as winner and returi/s; otherwise,

5. declare a draw and return eithiér.

Figure 5:Choose- Hypot hesi s(Hy, Hy, €', 0")

The correctness dthoose- Hypot hesi s is an immediate consequence of the following claim. (In fact
for Lemma8 we only need item (i) below, but item (ii) will be handy laterthe proof of Lemmad.0.)

Claim 9. Suppose thairy (X, H;) < ¢, for some € {1,2}. Then:

(i) if drv (X, H3_;) > 6¢, the probability thatChoose- Hypot hesi s*(Hy, Hs, €, §') does not declare
H,; as the winner is at mote—™<*/2 wherem is chosen as in the description of the algorithm. (Intu-
itively, if H3_; is very bad then it is very likely tha{; will be declared winner.)

(i) if drv (X, Hs_;) > 4¢€, the probability thatChoose- Hypot hesi sX(H;, Hy, €, ') declaresH;_; as
the winner is at mosze—m<”/2. (Intuitively, if Hs_; is only moderately bad then a draw is possible but it
is very unlikely thats;_; will be declared winner.)

13



Proof. Let r = X (W,). The definition of the total variation distance implies that- p;| < ¢. Let us
define independent indicatofsZ; } | such that, for allj, Z; = 1iff s; € Wi. Clearly,7 = 37", Z;
andE[r] = E[Z;] = r. Since theZ;’s are mutually independent, it follows from the Chernoffubd that
Prl|r —r| > ¢//2] < 2e7™<*/2. Using|r — p;| < € we get thaPr[|7 — p;| > 3¢//2] < 2¢~™"*/2, Hence:

e For part (i): Ifdpy (X, H3—;) > 6€, from the triangle inequality we get that — po = dpy (Hy, Hy) >
5¢’. Hence, the algorithm will go beyond step 1, and with proligbat leastl — 26 /2 it will stop
at step 3 (when = 1) or step 4 (when = 2), declaringH; as the winner of the competition betwe&h
andHs.

e For part (ii): If p — po < 5¢ then the competition declares a draw, heitfg ; is not the winner.

Otherwise we have; — py > 5¢’ and the above arguments imply that the competition betw&eand
H, will declare H3_; as the winner with probability at moge < /2.

This concludes the proof of Claith
In view of Claim9, the proof of LemmaB is concluded. O

OurChoose- Hypot hesi s algorithm implies a generic learning algorithm of indepemidinterest.

Lemma 10. LetS be an arbitrary set of distributions over a finite domain. Mover, letS. C S be ane-cover
of S of sizeN, for somee > 0. For all § > 0, there is an algorithm that uses

O(e?log N log(1/4))

samples from an unknown distributidh € S and, with probability at least — §, outputs a distributior”Z € S,
that satisfiesity (X, Z) < 6e.

Proof. The algorithm performs a tournament, by runni@igoose- Hypot hesi sX(H;, H;,¢, 6/(4N)) for
every pair(H;, H;), i < j, of distributions inS.. Then it outputs any distributiol™* € S, that was never a
loser (i.e., won or tied against all other distributions hie tover). If no such distribution exists & then the
algorithm says “failure,” and outputs an arbitrary disttibn froms..

SinceS. is ane-cover of S, there exists som¥ < S, such thatdTy (X,Y) < e. We first argue that with
high probability this distributiort” never loses a competition against any otkérc S, (so the algorithm does
not output “failure”). Consider any”’ € S.. If dry(X,Y’) > 4e, by Claim 9(ii) the probability thaty”
loses toy” is at mosae—m@/?g%. On the other hand, idry (X,Y”’) < 4e, the triangle inequality gives that
dry(Y,Y’) < 5e and thusY” draws against”’. A union bound over allV — 1 distributions inS, \ {Y'} shows
that with probability at least — §/2, the distributionY” never loses a competition.

We next argue that with probability at leaist- §/2, every distributionY” € S, that never loses must be
close toX. Fix a distributionY” such thatdry (Y, X) > 6e. Lemma9(i) implies thatY” loses toY with
probability at least — 2e~me/2 > 1 — d/(2N). A union bound gives that with probability at ledst- §/2,
every distributionY” that hasiry (Y’, X) > 6e loses some competition.

Thus, with overall probability at leadt — ¢, the tournament does not output “failure” and outputs some
distributionY™* such thatlty (X, Y™*) < 6e. This proves the lemma. O

Remark 11. We note that Devroye and Lugosi (Chapter 7@ED1]) prove a similar result, but there are some
differences. They also have all pairs of distributions ie ttover compete against each other, but they use a
different notion of competition between every pair. Mogptheir approach chooses a distribution in the cover
that wins the maximum number of competitions, whereas @ari#thm chooses a distribution that is never
defeated (i.e., won or tied against all other distributianghe cover).

Remark 12. Recent work DK14, AJOS14 SOAJ14improves the running time of the tournament approaches
of Lemmal0, Devroye-Lugosi and other related tournaments to have aitinaar dependence @¥(N log N)

on the sizeV = |S,| . In particular, they avoid runningchoose- Hypot hesi s for all pairs of distributions
inS..
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2.4 Proof of Theoreml.

Non- Pr oper - Lear n- PBD(n, €, 0)

1. RunLear n- Spar se®(n 0/3) to get hypothesis distributioH g.

" 13 max{q ca}?

2. RunLear n- Poi sson®(n 0/3) to get hypothesis distributioH p.

13 maX{C]_,CQ} ’

3. RunChoose- Hypot hesi sX(HS,]TI;, €/8,0/3). If it returns Hg then returnHg, and if it
returnsH p then returnH p.

Figure 6: Non- Pr oper - Lear n- PBD(n, ¢,4). The values:, ¢, are the absolute constants from Lemras
and5. Hp is defined in terms off p as described in Definitio.

We first show Part (1) of the theorem, where the learning @lgormay output any distribution ovén|
and not necessarily a PBD. The algorithm for this part of ie@temNon- Pr oper - Lear n- PBD, is given in
Figure6. This algorithm follows the high-level structure outlinedFigure 1 with the following modifications:
(a) first, if the total variation distance to within which weant to learnX is ¢, the second argument of both
Lear n- Spar se andLear n- Poi sson is set tom wherec; andc, are respectively the constants

from Lemmas3 and5; (b) the third step ofear n- PBDis replaced by’hoose- Hypot hesi sX(Hs,fI;, €/8,96/3),
whereH p is defined in terms off » as described in Definitio# below; and (c) ifChoose- Hypot hesi s re-
turns Hg, thenLear n- PBDalso returngdg, while if Choose- Hypot hesi s returnsH p, thenLear n- PBD
returnsHp.

Definition 2. (Definition of f{;:) fI; is defined in terms aff p and the support of{ g in three steps:
(i) for all pointsi such thatHg(i) = 0, we Ietf{;(z‘) = Hp(i);

(i) for all points i such thatHg(i) # 0, we describe in Appendi€ an efficient deterministic algorithm
that numerically approximate& p(i ) to within an additive error oft-¢/48s, wheres = O(1/€3) is the
cardlnallty of the support ofHg. If le is the approximation td{p( /) output by the algorithm, we set
Hp( )= maX{O,Hp’Z €/48s}; notice then that p(i) — €/24s < Hp( ) < Hp(i); finally,

(iii) for an arbitrary point ¢ such thatHg(i) = 0, we setf[}(i) =1-> 4 Hp( /), to make sure thakl p is
a probability distribution.

Observe thath SatISfIESdTv(Hp,Hp) < 6/24 and thEI'EfOIddTv(HP, ) dTv(X Hp)| < 6/24.

Hence, Idev(X Hp) < 12,thendTV(X Hp) << and Idev(X Hp) S be thendTV(X Hp) <.

We remark that the reason why we do not wish to fe directly in Choose- Hypot hesi s is purely
computational. In particular, sindép is a translated Poisson distribution, we cannot computerdbabilities
Hp(i) exactly, and we need to approximate them. On the other hamthe®d to make sure that using approx-
imate values will not caus€hoose- Hypot hesi s to make a mistake. Ou/ﬂ-; is carefully defined so as to
make sure thaChoose- Hypot hesi s selects a probability distribution that is close to the wwn X, and
that all probabilities thaChoose- Hypot hesi s needs to compute can be computed without much overhead.
In particular, we remark that, in runnirghoose- Hypot hesi s, we do not a priori compute the vaIueE‘f;
at every point; we do instead a lazy evaluatio@, as explained in the running-time analysis below.

We now proceed to the analysis of our modified algoritbear n- PBD. The sample complexity bound and
correctness of our algorithm are immediate consequendesnofnas3, 5 and8§, taking into account the precise
choice of constants and the distance betwg&gnand J/LI;. Next, let us bound the running time. Lemnias
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and5 bound the running time of Steps 1 and 2 of the algorithm, seritains to bound the running time of
the Choose- Hypot hesi s s step. Notice thawl(HS,fI;) is a subset of the support of the distributiéfy.
Hence to compute/\il(Hs,Hp) it suffices to determine the probabilitiéss () ande( ) for every pointi in
the support ofHs. For every suchi, Hg (i) is explicitly given in the output of.ear n- Spar se, so we only
need to computé/;f;(z‘). It follows from Theorem6 (Appendix C) that the time needed to comp@(z‘) is
O(log(1/€)® +1og(1/e€) - (log n + (f1) + (62))). Sincefi ands? are output byear n- Poi sson, by inspection

of that algorithm it is easy to see that they each have bit ¢exitp at mostO (log n + log(1/e€)) bits. Hence,
given that the support dffs has cardinalit)O(l/e ), the overall time spent computing the probabiliti[/ég(z‘)

for every point: in the support ofHg is O( logn). After W, is computed, the computation of the values

=HsWi),q1 = Hp(Wl) andp; — ¢ takes time linear in the data produced by the algorithm s@agathese
computations merely involve adding and subtracting priitiels that have already been explicitly computed by
the algorithm. Computing the fraction of samples franthat fall inside)V; takes timeO (log n - log(1/6)/€*)
and the rest o€hoose- Hypot hesi s takes time linear in the size of the data that have been writbsvn so
far. Hence the overall running time of our algorithni$; log nlog? 1). This gives Part (1) of Theoreth

Now we turn to Part (2) of Theoreih the proper learning result. The algorithm for this parthaf theorem,
Pr oper - Lear n- PBD,is given in FigureZ. The algorithm is essentially the sameNas- Pr oper - Lear n- PBD
but with the following modifications, to produce a PBD thatighin O(e¢) of the unknownX: First, we re-
placeLear n- Spar se with a different learning algorithmPr oper - Lear n- Spar se, which is based on
Lemmal0, and always outputs a PBD. Second, we add a post-procegsimgos ear n- Poi sson that con-
verts the translated Poisson distributiip output by this procedure to a PBD (in fact, to a Binomial dlistr
tion). After we describe these new ingredients in detail ewglain and analyze our proper learning algorithm.

Proper - Lear n- PBD(n, ¢, 6)

1. RunPr oper - Lear n- Spar seX(n 0/3) to get hypothesis distributioH g.

n, 12 max{cl ca}?

2. RunLear n- Poi sson¥(n §/3) to get hypothesis distributiofl p = T'P(ji, 52).

n, 12max{cl,02}7
3. RunChoose- Hypot hesi sX(Hg, Hp,¢/8,5/3).

(@) IfitreturnsHg then returnHg.

(b) Otherwise, if it returnsfl;, then runLocat e- Bi noni al (j1,62,n) to obtain a Binomia
distribution Hp = Bin(n, p) with n < n, and returnf .

Figure 7:Pr oper - Lear n- PBD(n, ¢,6). The values:, co are the absolute constants from Lemr3and 5.
Hp is defined in terms off p as described in Definitiof.

1. Proper - Lear n- Spar se¥(n, ¢,): This procedure draw®(1/€?) - log(1/5) samples fromX, does
(1/e) O(log?(1/9)) . & (logn - log %) bit operations, and outputs a PBIDs in sparse form. The guarantee
is similar to that ofLear n- Spar se. Namely, if X is e-close to some sparse form PBDin the cover
S, of Theoren¥, then, with probability at least— 6 over the samples drawn froi, dry (X, Hg) < Ge.

The procedurér oper - Lear n- Spar seX(n, ¢, ) is given in Figure8; we explain the procedure in

tandem with a proof of correctness. Adiaar n- Spar se, we start by truncatin®(e) of the probability
mass from each end df to obtain a conditional dIS'[I’IbutIOIX[ B In particular, we computé andb as

described in the beginning of the proof of Lemﬁwesettmge = eandd’ = §). Claim4 implies that, with
probability at least — §/2, X (< a),1 — X(< b) € [3¢/2,5¢/2]. (Let us denote this event l§j.) We
distinguish the following cases:

16



Proper - Lear n- Spar se(n,¢,0)

1. Draw M = 32log(8/6)/e* samples fromX and sort them to obtain a list of values< s; <

2. Defineq := S(QGM] andB = SL(I—ZE)MJ'

3. Ifb—a > (C/e)® (whereC is the constant in the statement of Theospoutput “fail” and return
the (trivial) hypothesis which puts probability malsen the point).

4. Otherwise,

(@) ConstructS!, ane-cover of the set of all PBDs of ordé€'/¢)? (see Theorem).
(b) LetS, be the set of all distributions of the fora(z — 3) whereA is a distribution froms!

andg is an integer in the rangé — (C/¢)3, ..., b].

(c) Run the tournament described in the proof of Lendrian S., using confidence parameter
d/2. Return the (sparse PBD) hypothesis that this tournameptitsu

Figure 8:Pr oper - Lear n- Spar se(n, ¢, ).

o If b—a > w = (C/e)?, whereC is the constant in the statement of Theorgrthe algorithm outputs
“fail,” returning the trivial hypothesis that puts probhiyi mass1 on the point0. Observe that, if
b—a>wandX(< a),1 — X(< b) € [3¢/2,5¢/2], then X cannot bee-close to a sparse-form
distribution in the cover.

e If b—a < w, then the algorithm proceeds as follows. L¥tbe ane-cover of the set of all PBDs
of orderw, i.e., all PBDs which are sums of justBernoulli random variables. By Theoref it
follows that|S!| = (1/¢)0(°s*(1/9) and thatS! can be constructed in time /¢)0(e* (/<) Now,
let S, be the set of all distributions of the ford(z — 3) whereA is a distribution fromS’ and3 is
an integer “shift” which is in the rang@ — w, . .., b]. Observe that there arg(1/¢*) possibilities
for 8 and|S!| possibilities for4, so we similarly get thatS.| = (1/¢)°Uoe*(1/9) and thatS. can
be constructed in timél /¢)©1°8*(1/<) Jog . Our algorithmPr oper - Lear n- Spar se constructs
the setS. and runs the tournament described in the proof of LerifnaisingS, in place ofS., and
0/2 in place ofd). We will show that, ifX is e-close to some sparse form PBDe S, and eveny
happens, then, with probability at ledst g the output of the tournament is a sparse PBD théd-is
close toX.

Analysis: The sample complexity and running timeRifoper - Lear n- Spar se follow immediately
from Claim4 and Lemmal0. To show correctness, it suffices to argue thak is e-close to some sparse
form PBDY ¢ S. and eventy happens, therX is e-close to some distribution iS.. Indeed, suppose
thatY is an ordet PBD Z translated by somg and suppose that (< a),1 — X (< b) € [3¢/2, 5¢/2].
Since at least — O(¢) of the mass ofX is in [a, D], it is clear that3 must be in the rangg — w, ..., b],

as otherwiseX could not bec-close toY. SoY € S..

2. Locat e- Bi noni al (fi,62,n): This routine takes as input the outgit 52) of Lear n- Poi sson®(n, e, d)
and computes a Binomial distributidi 5, without any additional samples froii. The guarantee is that,
if X is note-close to any sparse form distribution in the cogerof Theoremd4, then, with probability at
leastl — o (over the randomness in the outputi@far n- Poi sson), Hp will be O(e)-close toX.

Let » ando? be the (unknown) mean and variance of distributirand assume thaX is not e-close
to any sparse form distribution ifl.. Our analysis from SectioR.2 shows that, with probability at least

17



Locat e- Bi nomi al (1,62, n)

(a) If 62 < 2, seto} = 67 otherwise, set} = 2.

(b) If 42 < n(ji — o2), seto? = o?; otherwise, set3 — "A=i2

n

(c) Return the hypothesis distributiohz = Bin(n,p), wheren = |4?/(i—o03)] andp =
(i —a3)/f.

Figure 9:Locat e- Bi noni al (1,62, n).
1 — 4, the output(i, %) of Lear n- Poi sson¥(n, ¢, ) satisfies thatity (X, TP(j1,62)) = O(e) as
well as the boundslj and @) of Section2.2 (with ¢ in place ofe’). We will call all these conditions our

“working assumptions.” We provide no guarantees when th&iwg assumptions are not satisfied.

Locat e- Bi nomi al is presented in Figur®; we proceed to explain the algorithm and establish its
correctness. This routine has three steps. The first twdrelba corner-cases in the valuesjoénd 42,
while the last step defines a Binomial distributiéfy; = Bin(n,p) with 2 < n that isO(e)-close to
Hp = TP(j1,5%) and hence toX under our working assumptions. (We note that a significartiqro

of the work below is to ensure that < n, which does not seem to follow from a more direct approach.
Gettingn < n is necessary in order for our learning algorithm for ordePBDs to be truly proper.)
Throughout (a), (b) and (c) below we assume that our worksguptions hold. In particular, our
assumptions are used every time we employ the bouh)dm@ @) of Section2.2.

(a) Tweaking 6%: If 62 < Z, we sets? = 57; otherwise, we set? = Z. (As intuition for this tweak,
observe that the largest possible variance of a Binomidiiloligion Bin(n, -) is n/4.) We note for
future reference that in both casé&3 gives

(1 —€)o® <of < (1+e)?, (5)

where the lower bound follows fron2) and the fact that any PBD satisfie$ < <7
We prove next that our setting of results indry (T'P(ji,62), TP(ji,0%)) < O(e). Indeed, if
6% < 2 then this distance is zero and the claim certainly holdse@ilse we have thdfl + ¢) o2 >
52 > a% =2 > 0% where we used?). Hence, by Lemma we get:
6% —af| +1

A2
ec? +1

o2

drv(TP(j1,6%), TP(f1,0%)) <

- 0(6)7 (6)

where we used the fact that = Q(1/¢?) from (2).
(b) Tweakmg o If p%2 < n(i — o?) (equivalently,o? < "“ i ), seto? = o2; otherwise, set3 =
"“ i . (As intuition for this tweak, observe that the variance &ia(n, -) distribution with mean

i cannot excee&M ) We claim that this results idry (TP (j1,02), T P(fi,03)) < O(e). Indeed,
if 12 <n(p—o?), then clearly the distance is zero and the claim holds. @ilser

e Observe firstthat? > 0% anda3 > 0, where the last assertion follows from the fact that n
by construction.
e Next, suppose thaX = PBD(py,...,ps). Then from Cauchy-Schwarz we get that

n 2 n
= (n) (3] <ot
i=1 =1
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Rearranging this yields
/j’(n — /j’) 2' (7)

We now have that
ni—i* _ n(p—eo) = (n+eo)’

n n
np — p? — e20? — e (n + 2u)

n
2 €
>0°— —0° —3eo
n
> (1 —€é*)o? —3e0 > (1 — O(e))o? (8)

where the first inequality follows fron], the second inequality follows fronY) and the fact
that any PBD over variables satisfies < n, and the last one froni}.

e Given the above, we get by Lemrdhat:

2 2
drv (TP(Lo?). TP (o) < 72 ]
1
€)o? — (1 — €))o?
< (I+¢) (1(_1 6)002( ))o”+1 = O(e), (9)

where we used that?> = Q(1/¢2) from (2).

(c) Constructing a Binomial Distribution: We construct anBinial distributionH 5 that isO(¢)-close
to TP(fi,02). If we do this then, by®), (9), our working assumption thakry (Hp, X) = O(e),
and the triangle inequality, we have théty (Hp, X) = O(¢) and we are done. The Binomial
distribution H 5 that we construct i8in(n, p), where

i=|p*/(h—03)] andp= (@ —03)/f

Note that, from the way that? is set in Step (b) above, we have that< n andp € [0,1], as
required forBin(7, p) to be a valid Binomial distribution and a valid output for P2of Theoreml.

Let us bound the total variation distance betw&an(7,p) andT P(j1,03). First, using Lemma
we have:

dry (Bin(n, p), TP (np, ip(1 — p))
1 2

. 10
- ﬁﬁ(l—ﬁ)+ﬁﬁ(1—ﬁ) (10)
Notice that
w-n = (1) (57 (5
= 03 —p(1—p) > (1-0(e)o? — 1
> Q(1/€%),

where the second inequality usé (or (5) depending on which case of Step (b) we fell into) and

the last one uses the fact thet = Q(1/¢2) from (1). So plugging this into0) we get:

dTV(Bln(ﬁaﬁ)7TP(ﬁﬁ7 ﬁﬁ(l _ﬁ)) = O(G)
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The next step is to compateP (np, ap(1 — p)) andT P(fi,03). Lemma2 gives:

dry (T P(7p, np(1 — p)), TP(ji,03))
_ |9 — i (1 —p) — 03] + 1
= min(\/ap(l — p),o2)  min(p(l — p),o3)
< +
ap(1—p)  np(l—p)
= O(e).

By the triangle inequality we get
dry (Bin(n, p), TP(j1,03) = O(e),
which was our ultimate goal.

3. Proper - Lear n- PBD: Given thePr oper - Lear n- Spar se andLocat e- Bi noni al routines de-
scribed above, we are ready to describe our proper leartguogithm. The algorithm is similar to our
non-proper learning ond,ear n- PBD, with the following modifications: In the first step, insteafl
running Lear n- Spar se, we runPr oper - Lear n- Spar se to get a sparse form PBBgs. In the
second step, we still ruhear n- Poi sson as we did before to get a translated Poisson distribution
Hp. Then we runChoose- Hypot hesi s feeding it Hg and Hp as input. If the distribution re-
turned byChoose- Hypot hesi s is Hg, we just outputHg. If it returns Hp instead, then we run
Locat e- Bi nom al to convert it to a Binomial distribution that is still close the unknown distribu-
tion X. We tune the parametersandd based on the above analyses to guarantee that, with pribpabil
leastl — 9, the distribution output by our overall algorithmeslose to the unknown distributiod. The
number of samples we need@1/¢?) log(1/4), and the running time i(s%)o(k’g2 le. O(logn -log 1).
This concludes the proof of Part 2 of Theorépand thus of the entire theorem. O

3 Learning weighted sums of independent Bernoullis

In this section we consider a generalization of the probldénearning an unknown PBD, by studying the
learnability of weighted sums of independent Bernoullidam variablesX = > " | w; X;. (Throughout this
section we assume for simplicity that the weights are “knithe learning algorithm.) In Sectich1we show
that if there are only constantly many different weightstiseich distributions can be learned by an algorithm
that use) (log n) samples and runs in timely(n). In Section3.2we show that if there are distinct weights
then even if those weights have an extremely simple streictihei-th weight is simplyi — any algorithm must
use(n) samples.

3.1 Learning sums of weighted independent Bernoulli randonvariables with few distinct weights
Recall Theoren:

THEOREM2. LetX = )", a;X; be a weighted sum of unknown independent Bernoulli randaiablas such
that there are at most different values in the sdiu, ..., a,}. Then there is an algorithm with the following
properties: givem, a1, ..., a, and access to independent draws fradmit uses

O(k/e) -Tog(n) - log(1/)

samples from the target distributiok, runs in time
poly (" - (/)% *19) - log(1/5),
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and with probability at least —  outputs a hypothesis vectpre A[O, 1" defining independent Bernoulli random
variablesX; with E[X;] = p; such thatdry (X, X) < e, whereX =>"" | a; X;.

Remark 13. A special case of a more general recent resDIDJO"13] implies a highly efficient algorithm for
the special case of Theorehin which thek distinct values that, . .., a, can have are jus{0,1,...,k — 1}.

In this case, the algorithm offDO"13] draws poly(k, 1/¢) samples from the target distribution and, in the
bit complexity model of this paper, has running timey (k, 1 /¢, log n); thus its running time and sample com-
plexity are both significantly better than Theor@mHowever, even the most general version of BBQ 13
result cannot handle the full generality of Theor@nwhich imposes no conditions of any sort on thdistinct
weights — they may be any real values. TRB®D'13] result leverages known central limit theorems for total
variation distance from probability theory that deal witbrss of independent (small integer)-valued random
variables. We are not aware of such central limit theorermgtfe more general setting of arbitrary real values,
and thus we take a different approach to Theo&mia covers for PBDs, as described below.

Given a vector = (ay, . . . ,a,) of weights, we refer to a distributioX = > , a;X; (WhereX;,..., X,
are independent Bernoullis which may have arbitrary meassya-weighted sum of Bernoullignd we write
Sz to denote the space of all such distributions.

To prove Theoren2 we first show thatSz has are-cover that is not too large. We then show that by running
a “tournament” between all pairs of distributions in the @pwsing the hypothesis testing subroutine from
Section2.3, it is possible to identify a distribution in the cover thatdlose to the target-weighted sum of
Bernoullis.

Lemma 14. There is ane-coverS; . C Sy of size|S.c| < (n/k)3* - (k/e)k0os*(k/9) that can be constructed
in timepoly (|Sz.¢|)-

Proof. Let {b;}»_, denote the set of distinct weightsn, ..., a,, and letn; = |{i € [n] | a; = b;}|. With
this notation, we can writeX’ = Zle b;S; = g(S), whereS = (S,...,S;) with eachS; a sum ofn;
many independent Bernoulli random variables ati, ..., yx) = >_5_, b;y;. Clearly we have"_, n; = n.

By Theoremy, for eachj € {1,...,k} the space of all possiblé;’s has an explicil(e/k)-coversg/k of size

\Sg/k] <n?+n- (k/e_)O(IOgQ(’“/E)). By independence acrosg’s, the productQ = H;?:l Sg/k is ane-cover for
the space of all possibl&’s, and hence the set

k

{Q: ijSj : (Sl,...,Sk)EQ}

j=1
is ane-cover forSz. SoSz has an explicit-cover of sizd Q| = H§:1 ]Sg/k\ < (n/k)?k - (k/e)Olog?(k/e) O

Proof of Theoren®: We claim that the algorithm of LemmiED has the desired sample complexity and can be
implemented to run in the claimed time bound. The sample texiip bound follows directly from Lemmao.
It remains to argue about the time complexity. Note that tiing time of the algorithm ipoly(|Sz |) times
the running time of a competition. We will show that a comtpari betweent;, H, € Sz . can be carried out by
an efficient algorithm. This amounts to efficiently compgtthe probabilitieg, = H1(W;) andq; = Hy(Wy)
and efficiently computing?; (z) and Hz(x) for each of then samplest drawn in step (2) of the competition.
Note that each element € W (the support ofX in the competitionChoose- Hypot hesi s) is a value
w = Z;‘?zl bjn’; wheren; € {0,...,n;}. Clearly,|W| < H?zl(nj +1) = O((n/k)¥). Itis thus easy to see
thatp;, g1 and each off;(x), Hy(x) can be efficiently computed as long as there is an efficiewmtrifgn for
the following problem: giverf{ = Zle b;S; € Sa. andw € W, computeH (w). Indeed, fix any Sucltf, w.
We have that
k
H(w)= Y [IPr[S;=mj),

M1y...,MME ]:1
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where the sum is over at-tuples(m, ..., my) such that < m; < n; forall j andbym; + - -- + bpmy, = w
(as noted above there are at mO%(n/k)*) suchk-tuples). To complete the proof of Theoréhwe note that
Pry[S; = m;] can be computed iﬁ?(n?) time by standard dynamic programming. O

We close this subsection with the following remark: DS12H the authors have givenjaoly (¢, log(n),
1/¢)-time algorithm that learns ar§tmodal distribution ovefn] (i.e., a distribution whose pdf has at mdst
“peaks” and “valleys”) using)(¢log(n)/e3 + (£/¢)3log(¢/¢)) samples. It is natural to wonder whether this
algorithm could be used to efficiently learn a sumafeighted independent Bernoulli random variables wkith
distinct weights, and thus give an alternate algorithm fleedrem?2, perhaps with better asymptotic guarantees.
However, it is easy to construct a sukh= Y " , a;X; of n weighted independent Bernoulli random variables
with & distinct weights such thaX is 2¢-modal. Thus, a naive application of the[PS124 result would only
give an algorithm with sample complexity exponentialkinrather than the quasilinear sample complexity of
our current algorithm. If th@*-modality of the above-mentioned example is the worst cagech we do not
know), then the PDS128 algorithm would give apoly(2¥,1og(n), 1/¢)-time algorithm for our problem that
usesO (2 log(n)/e®) + 200 . O(1/€*) examples (so comparing with Theor@exponentially worse sample
complexity as a function df, but exponentially better running time as a functiompfFinally, in the context of
this question (how many modes can there be for a sumwéighted independent Bernoulli random variables
with £ distinct weights), it is interesting to recall the resultkafl. Sato [Sat93 which shows that for anyv
there are two unimodal distributions, Y such thatX + Y has at leasiv modes.

3.2 Sample complexity lower bound for learning sums of weigied independent Bernoulli ran-
dom variables

Recall Theorens:

THEOREM 3. Let X = " i - X; be a weighted sum of unknown independent Bernoulli randaiables
(where thei-th weight is simplyi). Let L be any learning algorithm which, givemand access to independent
draws from X, outputs a hypothesis distributioh’ such thathV(X,X) < 1/25 with probability at least
e~°") . ThenL must use(n) samples.

The intuition underlying this lower bound is straightfondaSuppose there are/100 variablesX;, chosen
uniformly at random, which have; = 100/n (call these the “relevant variables”), and the rest ofjifie are
zero. Given at most - n draws fromX for a small constant, with high probability some constant fraction
of the relevantX;’s will not have been “revealed” as relevant, and from thiss ibot difficult to show that any
hypothesis must have constant error. A detailed arguméon®
Proof of TheorenB: We define a probability distribution over possible targatbability distributionsX as

follows: A subsetS € {n/2 +1,...,n} of size|S| = n/100 is drawn uniformly at random from a(ln’/‘{go)
possible outcomes.. The vectpr= (p1,...,p,) is defined as follows: for each € S the valuep; equals

100/n = 1/|S], and for all otheri the valuep; equals 0. Theé-th Bernoulli random variablé&’; hasE[X;] = p;,
and the target distribution & = X; = """ | i X;.
We will need two easy lemmas:

Lemma 15. Fix any S, p as described above. For angyc {n/2+ 1,...,n} we haveX;(j) # 0 if and only if
j € S. Foranyj € S the valueXp () is exactly(100/n)(1 — 100/n)"/190=1 > 35 /n (for n sufficiently large),
and henceX;({n/2+1,...,n}) > 0.35 (again forn sufficiently large).

The first claim of the lemma holds because any set of 2 numbers from{n/2 + 1, ..., n} must sum to
more tham. The second claim holds because the only way a drémem X5 can haver = jisif X; = 1 and
all other X; are 0 (here we are usiign, (1 — 1/z)* = 1/e).

The next lemma is an easy consequence of Chernoff bounds:
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Lemma 16. Fix anyp as defined above, and consider a sequence/@000 independent draws fromX; =
S, iX;. With probability 1 — e=}(™) the total number of indiceg € [n] such thatX; is ever 1 in any of the
n/2000 draws is at most,/1000.

We are now ready to prove Theoredn Let L be a learning algorithm that receive$2000 samples. Let
S c{n/2+1,...,n} andp be chosen randomly as defined above, and set the targettaXy.

We consider an augmented leardéthat is given “extra information.” For each point in the saeyinstead
of receiving the value of that draw froki the learner’ is given the entire vectqrX, ..., X,,) € {0,1}". Let
T denote the set of elementsc {n/2 + 1,...,n} for which the learner is ever given a vec(ot, ..., X,,)
that hasX; = 1. By Lemmal6 we have|T| < n/1000 with probability at least — e~*(); we condition on
the eventT’| < n/1000 going forth.

Fix any value/ < n/1000. Conditioned onT'| = ¢, the setT is equally likely to be any-element subset of
S, and all possible “completions” @f with an additionak/100—¢ > 9n,/1000 elements of n/2+1,... ,n}\T
are equally likely to be the true s&t

Let H denote the hypothesis distribution oJef that algorithmZ outputs. LetR denote the sefn/2 +
1,...,n} \ T; note that sincdT’| = ¢ < n/1000, we have|R| > 499n/1000. Let U denote the sef: €
R : H(i) > 30/n}. SinceH is a distribution we must havig/| < n/30. It is easy to verify that we have
drv (X, H) > 2|S\U|. SinceS is a uniform random extension @fwith at most./100—¢ € [9n,/1000, n/100]
unknown elements oRR and |R| > 499n/1000, an easy calculation shows that[|S \ U| > 8n/1000] is
1 — =%, This means that with probability — e~*") we havedry (X, H) > o2 . 2 = 1/25, and the

] 1000 ~ n
theorem is proved. O

4 Conclusion and open problems

Since the initial conference publication of this wolR[pS124, some progress has been made on problems
related to learning Poisson Binomial Distributions. Théahconference versiorJDS123 asked whether log-
concave distributions oveén| (a generalization of Poisson Binomial Distributions) canléarned to accuracy

e with poly(1/¢) samples independent af An affirmative answer to this question was subsequentlyigeal

in [CDSS13. More recently, PDO'13] studied a different generalization of Poisson Binomiastbbutions

by considering random variables of the fortkh = > | X; where theX;’s are mutually independent (not
necessarily identical) distributions that are each suppaoon the integer$0, 1, ...,k — 1} (so, thek = 2 case
corresponds to Poisson Binomial DistributionspDO"13] gave an algorithm for learning these distributions
to accuracy usingpoly(k, 1/¢) samples (independent oj.

While our results in this paper essentially settle the sampimplexity of learning an unknown Poisson Bi-
nomial Distribution, several goals remain for future wotkur non-proper learning algorithm is computationally
more efficient than our proper learning algorithm, but usésctor of 1/e more samples. An obvious goal is to
obtain “the best of both worlds” by coming up with &{1/¢2)-sample algorithm which perforn@(log(n)/e?)
bit operations and learns an unknown PBD to accuea@gteally, such an algorithm would even be proper and
output a PBD as its hypothesis). Another goal is to sharperséimple complexity bounds dpO+13] and
determine the correct polynomial dependencé: @md1/e for the generalized problem studied in that work.
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A Extension of the Cover Theorem: Proof of Theorem4

Theorem4 is restating the main cover theorem (Theorem 1)[@P13, except that it claims an additional
property, namely what follows the word “finally” in the statent of the theorem. (We will sometimes refer
to this property as thiast partof Theorem4 in the following discussion.) Our goal is to show that the erov
of [DP13 already satisfies this property without any modificatiahgreby establishing Theorefn To avoid
reproducing the involved constructions @R13, we will assume that the reader has some familiarity with
them. Still, our proof here will be self-contained.

First, we note that the-cover S. of Theorem 1 of DP13 is a subset of a large§-cover S’ /2 of size

n?+n- (1/6)0(1/62), which includes all thé-sparse and all the-heavy Binomial PBDs (up to permutations of
the underlyingp;’s), for somek = O(1/¢). Let us caIISé/2 the “larges-cover” to distinguish it fromS,, which
we will call the “smalle-cover.” The reader is referred to Theorem 2DP[L3 (and the discussion following
that theorem) for a description of the largecover, and to Section 3.2 obP1J for how this cover is used to
construct the smakl-cover. In particular, the smadtcover is a subset of the larg¢2-cover, including only a
subset of the sparse form distributions in the larg&cover. Moreover, for every sparse form distribution in the
largee/2-cover, the smak-cover includes at least one sparse form distribution 8wt2-close in total variation
distance. Hence, if the largg¢2-cover satisfies the last part of Theorérfwith /2 instead ok andsS’ /2 instead

of S,), it follows that the smalk-cover also satisfies the last part of Theorém

So we proceed to argue that, for allthe largec-cover implied by Theorem 2 ofJP13 satisfies the last
part of Theoremd. Let us first review how the large cover is constructed. (Seeién 4 of PP13 for the
details.) For every collection of indicato{s{; }}"_; with expectationd E[.X;] = p; }, the collection is subjected
to two filters, called th&tage landStage Jilters, and described respectively in Sections 4.1 and4.RB13.
Using the same notation aBP13, let us denote by Z;}; the collection output by the Stage 1 filter and by
{Y;}; the collection output by the Stage 2 filter. The collectifri}; output by the Stage 2 filter satisfies
drv (>, Xi, >, Yi) < ¢ and is included in the cover (possibly after permuting Yfis). Moreover, it is in
sparse or heavy Binomial form. This way, it is made sure tloatevery { X; };, there exists somgY;}; in the
cover that is-close and is in sparse or heavy Binomial form. We proceedhéwwshat the cover thus defined
satisfies the last part of Theoren

For {X;}i, {Yi}; and{Z;}; as above, letu,o?), (uz,0%) and (uy, 0% ) denote respectively the (mean,
variance) pairs of the variables = 3. X;, Z = >, Z; andY = ), V;. We argue first that the paipiz, 0%)
satisfiesy — pz| = O(e) and|o? — 0%| = O(e - (1 + ?)). Next we argue that, if the collectioft; }; output
by the Stage 2 filter is in heavy Binomial form, thémy, 0% ) satisfies|u — py| = O(1) and|o? — 02| =
O(1 + € (1 + o?)), concluding the proof.

e Prooffor(uz, 0% ): The Stage 1 filter only modifies the indicato¥s with p; € (0,1/k)U(1—1/k, 1), for
some well-chosek = O(1/¢). For convenience let us defidg, = {i|p; € (0,1/k)} andH; = {i|p; €
(1 —-1/k, 1)} asin DP13. The filter of Stage 1 rounds the expectations of the indisaindexed by,
to some value if0, 1/k} so that no single expectation is altered by more than anieelditk, and the
sum of these expectations is not modified by more than aniegldijtc. Similarly, the expectations of the
indicators indexed by, are rounded to some value{n — 1/k,1}. See the details of how the rounding
is performed in Section 4.1 obP13. Let us then denote b{p’ }, the expectations of the indicatof&; };
resulting from the rounding. We argue that the mean andveeiafZ = ), Z; is close to the mean and
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e Proof for (uy, 0% ): After the Stage 1 filter is applied to the collecti¢; };, the resulting collection of
random variable§Z; }; has expectationg, € {0,1} U [1/k,1 — 1/k], for all i. The Stage 2 filter has
different form depending on the cardinality of the get = {i | p, € [1/k,1 — 1/k]}. In particular, if
|IM| > k2 the output of the Stage 2 filter is in heavy Binomial form, \ehifi| M| < k2 the output of the
Stage 2 filter is in sparse form. As we are only looking to plevjuarantee for the distributions in heavy
Binomial form, it suffices to only consider the former casgtne

— |M| > K Let {Y;}; be the collection produced by Stage 2 and¥fet= }_.Y;. Then Lemma 4
of [DP13 implies that

luz — py| = 0(1) and |0} — o} | = O(1).
Combining this with {1) and (L2) gives
I~ py| = 0(1) and [o? — o%| = O(1 + - (1 +0?)).

This concludes the proof of Theorein O

B Birgé’s theorem: Learning unimodal distributions

Here we briefly explain how Theoreffollows from [Bir97]. We assume that the reader is moderately familiar
with the paperBir97].

Birgé (see his Theorem 1 and Corollary 1) upper bounds thea®d variation distance between the target
distribution (which he denoteg) and the hypothesis distribution that is constructed byalg®rithm (which
he denotes,,; it should be noted, though, that his™parameter denotes the number of samples used by the
algorithm, while we will denote this byr#”, reserving %" for the domain{1,...,n} of the distribution).
More precisely, Bir97] shows that this expected variation distance is at mostdh#te Grenander estimator
(applied to learn a unimodal distribution when the mode wvkm) plus a lower-order term. For our Theorém
we take Birgé’s #)” parameter to be. With this choice ofy, by the results of Bir87a, Bir87b] bounding the
expected error of the Grenander estimatonif= O(log(n)/€*) samples are used in Birgé’s algorithm then the
expected variation distance between the target distabund his hypothesis distribution is at mote). To
go from expected erraP (e¢) to anO(e)-accurate hypothesis with probability at least 4, we run the above-
described algorithn®(log(1/6)) times so that with probability at least- § some hypothesis obtained@¥ce)-
accurate. Then we use our hypothesis testing procedurenmfae3, or, more precisely, the extension provided
in Lemmalo, to identify anO(e)-accurate hypothesis from within this pool ©flog(1/0)) hypotheses. (The
use of Lemmad.0is why the running time of Theoredepends quadratically dag(1/9) and why the sample
complexity contains the secoréllog § log log 5 term.)

It remains only to argue that a single run of Birgé’s alduriton a sample of sizew = O(log(n)/€?) can be
carried out inO(log?(n)/€®) bit operations (recall that each sample isg(n)-bit string). His algorithm begins
by locating an- € [n] that approximately minimizes the value of his functidr) (see Section 3 oHir97]) to
within an additiven = ¢ (see Definition 3 of his paper); intuitively thisrepresents his algorithm’s “guess” at
the true mode of the distribution. To locate suchrafollowing Birgé’s suggestion in Section 3 of his paper, we
begin by identifying two consecutive points in the samplehsihatr lies between those two sample points. This
can be done usinipg m stages of binary search over the (sorted) points in the sanwblere at each stage of the
binary search we compute the two functiafis andd™ and proceed in the appropriate direction. To compute
the functiond~(j) at a given pointj (the computation ofi ™ is analogous), we recall thdt (;) is defined as
the maximum difference ovét, j] between the empirical cdf and its convex minorant d¥ej]. The convex
minorant of the empirical cdf (over. points) can be computed @((log n)m) bit-operations (where thieg n
comes from the fact that each sample point is an element|pfand then by enumerating over all points in the
sample that lie i1, j] (in time O((log n)m)) we can computé—(j). Thus it is possible to identify two adjacent
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points in the sample such thaties between them in timé&((log n)m). Finally, as Birgé explains in the last
paragraph of Section 3 of his paper, once two such points lheee identified it is possible to again use binary
search to find a point in that interval wherel(r) is minimized to within an additive). Since the maximum
difference betweed~ andd, can never exceed 1, at mdsg(1/n) = log(1/¢) stages of binary search are
required here to find the desired

Finally, once the desiredhas been obtained, it is straightforward to output the figpbthesis (which Birgé
denotesf,,). As explained in Definition 3, this hypothesis is the detix@of F,’;, which is essentially the convex
minorant of the empirical cdf to the left efand the convex majorant of the empirical cdf to the right oAs
described above, given a value othese convex majorants and minorants can be computél (g n)m)
time, and the derivative is simply a collection of unifornstributions as claimed. This concludes our sketch of
how Theoren® follows from [Bir97].

C Efficient Evaluation of the Poisson Distribution

In this section we provide an efficient algorithm to comput@dditive approximation to the Poisson probability
mass function. It seems that this should be a basic opernatiommerical analysis, but we were not able to find
it explicitly in the literature. Our main result for this g&m is the following.

Theorem 6. There is an algorithm that, on input a rational number> 0, and integersk > 0 andt¢ > 0,
produces an estimaig, such that

N 1
DK — pi| < 7
wherep, = ”,jj—,ﬂ is the probability that the Poisson distribution of paraereh assigns to integek. The

running time of the algorithm i©((t)% + (k) - () + (\) - (t)).

Proof. Clearly we cannot just compute *, \* and k! separately, as this will take time exponential in the
description complexity ok and A. We follow instead an indirect approach. We start by remgitihe target
probability as follows

= e—)\+k In(A\)—In(k!)

Motivated by this formula, let

Ei = =X+ kIn(\) — In(k!).
Note thatF), < 0. Our goal is to approximaté&); to within high enough accuracy and then use this approxima-
tion to approximateyy.

In particular, the main part of the argument involves an igfficalgorithm to compute an approximatifﬁ\};
to F, satisfying
= 1 1 1
— <—< = - —.
‘E’f Eilsp=% s (13)
This approximation will have bit complexit9 ((k)+(\)+(t)) and be computable in tim@( (k) (t)+(\)+(t)*).
We show that if we had such an approximation, then we wouldbbe @ complete the proof. For this,

we claim that it suffices to approximat&’ to within an additive erro%. Indeed, ifpy, were the result of this
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approximation, then we would have:
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To approximatee@ given]/E;, we need the following lemma:

v

v

v

Lemma 17. Leta < 0 be a rational number. There is an algorithm that computesstimatec® such that
— 1

[

‘e ‘ ‘ =9

and has running timé((a) - (t) + (t)?).

Proof. Sincee® € [0,1], the point of the additive griq £ }#, closest toe™ achieves error at modt/(4t).
Equivalently, in a logarithmic scale, consider the dfid 4%}?;1 and letj* := arg min; {‘a — ln(%)‘}. Then,
we have that

J" ol o1

L e < —.

‘ (4t) ~ 4t

The idea of the algorithm is to approximately identify thémg™, by computing approximations to the points of

the logarithmic grid combined with a binary search procedundeed, consider the “rounded” greh -},

—

where eactn(Z;) is an approximation tdn(--) that is accurate to within an additivﬁ;. Notice that, for

i1=1,...,4t:
1+ 1 7 1 1
_ N ) > -l )
ln< m > ln<4t> ln<1+i> _ln<1+4t> > 1/8t

Given that our approximations are accurate to within antaedi /16¢, it follows that the rounded gri¢in 4% ;il
is monotonic ini.

The algorithm does not construct the points of this grid iexpl, but adaptively as it needs them. In
particular, it performs a binary search in the §g&t. . . , 4t} to find the point* := arg min, {‘a — ln(ﬁ)‘}. In
every iteration of the search, when the algorithm examihegbintj, it needs to compute the approximation

gj = 111(4%) and evaluate the distanpe— g;|. Itis known that the logarithm of a numbemith a binary fraction

31



of L bits and an exponent of ) bits can be computed to within a relative er@2~") in time O(L) [Bre79.
It follows from this thatg; hasO((t)) bits and can be computed in tini®((¢)). The subtraction takes linear
time, i.e., it usex({a) + (t)) bit operations. Therefore, each step of the binary seamtbeadone in time
O({(a)) + O((t)) and thus the overall algorithm hax(«) - (t)) + O((t)?) running time.

The algorithm output% as its final approximation te®. We argue next that the achieved error is at most
an additive%. Since the distance between two consecutive points of te{lyr - }1* | is more thari /(8t) and
our approximations are accurate to within an additiyé6t, a little thought reveals that € {j*—1, j*, j*+1}.
This implies that% is within an additivel /2¢ of e® as desired, and the proof of the lemma is complete. [

Given Lemmal?, we describe how we could approximat@v givenfk. Recall that we want to output an
estimatep;, such thatp;, — e®+| < 1/(2t). We distinguish the following cases:

o If Ek > 0, we outputp, := 1. Indeed, given th%tEk Ek‘ < L andE;‘C <0, if Ek > OthenEk € [o, 41t]

—

Hence, because> 1, e ¢ [1,14 1/2t], sol is within an additivel /2¢ of the right answer.
e Otherwise,py, is defined to be the estimate obtained by applying Lenihfor o := E; Given the bit
complexity of £y, the running time of this procedure will B8((k) - (t) + (\) - (&) + (£)?).
Hence, the overall running time @((k) - (t) + (\) - (t) + ()*).
In view of the above, we only need to show how to compﬁ;e There are several steps to our approxima-
tion:

1. (Stirling’s Asymptotic Approximation): Recall Stirliy's asymptotic approximation (see e.dWV1i80]
p.193), which says thah k! equals

kin(k) — k+ (1/2) - In(2m) + ) jﬂ_f—)_lk)j_l +O0(1/k™)
j=2

whereB;, are the Bernoulli numbers. We define an approximatioméf as follows:

- mo —1)J
Ink! = kIn(k) — k + (1/2) - In(2n) +Z%
3G —

for mo ::OG%W +1>.

2. (Definition of an approximate exponeﬁi): DefineE; = =X+ kIn(\) — ln/(k:\') Given the above
discussion, we can calculate the distancépto the true exponent;, as follows:

|Ey, — Eil < |In(k) — In(kD)| < O(1/k™) (14)
<1 (15)
10¢

So we can focus our attention to approximatﬁg Note tha@ is the sum ofng + 2 = O( 1°§t) terms.
To approximate it within errot /(10t), it suffices to approximate each summand within an additiver e

of O(1/(t -logt)). Indeed, we so approximate each summand and our final z;lpnmt)'qzihﬁC will be the
sum of these approximations. We proceed with the analysis:
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3. (Estimating27): Since2w shows up in the above expression, we should try to approgimat is known
that the first¢ digits of = can be computed exactly in tin@(log ¢ - M (¢)), whereM (¢) is the time to
multiply two ¢-bit integers §al76 Bre7q. For example, if we use the Schonhage-Strassen algofithm
multiplication [SS71, we getM (¢) = O(¢ - log ¥ - loglog ¢). Hence, choosing := [logy (12t - logt)],
we can obtain in tim@((t)) an approximatior2r of 27 that has a binary fraction dfbits and satisfies:

27 —27] <27 = (1-2792r <27 < (1+2%)2n
Note that, with this approximation, we have

In(27) — In(27)| < In(1 —27%) <274 < 1/(12t - log t).

4. (FIoating—\Point Representation): We will also need eatguapproximations ttm o, Ink andln \. We
think of 27 andk as multiple-precision floating point numbers basén particular,

e 27 can be described with a binary fraction/o# 3 bits and a constant size exponent; and

o = 2Mskl. -k can be described with a binary fraction[abg /], i.e., (k), bits and an exponent
of lengthO(log log k), i.e.,O(log (k)).

Also, since) is a positive rational numbep, = i—; where\; and \, are positive integers of at most
(\) bits. Hence, fori = 1,2, we can think of\; as a multiple-precision floating point number base
2 with a binary fraction of(\) bits and an exponent of length(log (\)). Hence, if we choosd, =
Mogy(12(3k + 1)t - k- A1 - A2)] = O((k) + (A) + (t)), we can represent all numbes, A;, Ay, k as
multiple precision floating point numbers with a binary fian of L bits and an exponent @(log L)
bits.

5. (Estimating the logs): Itis known that the logarithm ofiaberx with a binary fraction ofZ bits and an
exponent ob(L) bits can be computed to within a relative erf@f2-%) in time O(L) [Bre75. Hence,

—

in time O(L) we can obtain approximations 577, 1?17@ ﬁ, EA\Q such that:

o |Ink—Ink| <2 Llnk< m, and similarly
[ ] |ln)\l—ln)\l|§m,f0r121,2,
[ ] |1H§—ID2A7T| S m

6. (Estimating the terms of the series): To complete theyaislwe also need to approximate each term of
the forme; = m_?ﬁ up to an additive error o®(1/(t - logt)). We do this as follows: We compute

the numbers3; andk’~! exactly, and we perform the division approximately.

Clearly, the positive integé/ ~! has description complexity: (k) = O(mo - (k)) = O((t) + (k)), since

j = O(mg). We computes’~! exactly using repeated squaring in tie; - (k ) = O((t) + (k:>) Itis
known [Fil92] that the rational numbeB; hasO(j) bits and can be computed @(;2) = O((t )%) time.
Hence, the approximate evaluation of the tern{up to the desired additive error of (¢t1log t)) can be
done inO((t)*+ (k)), by a rational division operation (see e.dnpi81]). The sum of all the approximate
terms takes linear time, hence the approximate evaluatithre@ntire truncated series (comprising at most
mo < (t) terms) can be done i@((t)* + (k) - (t)) time overall.

Let EZ; be the approximation arising if we use all the aforementiomgproximations. It follows from the
above computations that



7. (Overall Error): Combining the above computations we get

= 1
E—E(<_.
"“ Bl =4

The overall time needed to obtaii, was O((k) - (t) + (\) + (t)°) and the proof of Theorers is
complete. O

O
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