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Abstract

We consider a basic problem in unsupervised learning: learning an unknownPoisson Binomial Distribu-
tion. A Poisson Binomial Distribution (PBD) over{0, 1, . . . , n} is the distribution of a sum ofn independent
Bernoulli random variables which may have arbitrary, potentially non-equal, expectations. These distribu-
tions were first studied by S. Poisson in 1837 [Poi37] and are a naturaln-parameter generalization of the
familiar Binomial Distribution. Surprisingly, prior to our work this basic learning problem was poorly under-
stood, and known results for it were far from optimal.

We essentially settle the complexity of the learning problem for this basic class of distributions. As
our first main result we give a highly efficient algorithm which learns toǫ-accuracy (with respect to the total
variation distance) using̃O(1/ǫ3) samplesindependent ofn. The running time of the algorithm isquasilinear
in the size of its input data, i.e.,̃O(log(n)/ǫ3) bit-operations.1 (Observe that each draw from the distribution
is a log(n)-bit string.) Our second main result is aproper learning algorithm that learns toǫ-accuracy using
Õ(1/ǫ2) samples, and runs in time(1/ǫ)poly(log(1/ǫ)) · log n. This sample complexity is nearly optimal, since
any algorithm for this problem must useΩ(1/ǫ2) samples. We also give positive and negative results for
some extensions of this learning problem to weighted sums ofindependent Bernoulli random variables.

1 Introduction

We begin by considering a somewhat fanciful scenario: You are the manager of an independent weekly news-
paper in a city ofn people. Each week thei-th inhabitant of the city independently picks up a copy of your
paper with probabilitypi. Of course you do not know the valuesp1, . . . , pn; each week you only see the total
number of papers that have been picked up. For many reasons (advertising, production, revenue analysis, etc.)
you would like to have a detailed “snapshot” of the probability distribution (pdf) describing how many readers
you have each week.Is there an efficient algorithm to construct a high-accuracyapproximation of the pdf from
a number of observations that isindependentof the populationn? We show that the answer is “yes.”

A Poisson Binomial Distributionof ordern is the distribution of a sum

X =
n∑

i=1

Xi,

whereX1, . . . ,Xn are independent Bernoulli (0/1) random variables. The expectations(E[Xi] = pi)i need not
all be the same, and thus these distributions generalize theBinomial distributionBin(n, p) and, indeed, comprise

∗Research supported by a Sloan Foundation Fellowship, a Microsoft Research Faculty Fellowship, and NSF Award CCF- 0953960
(CAREER) and CCF-1101491.
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1We writeÕ(·) to hide factors which are polylogarithmic in the argument toÕ(·); thus, for example,̃O(a log b) denotes a quantity
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a much richer class of distributions. (See Section1.2below.) It is believed that Poisson [Poi37] was the first to
consider this extension of the Binomial distribution2 and the distribution is sometimes referred to as “Poisson’s
Binomial Distribution” in his honor; we shall simply call these distributions PBDs.

PBDs are one of the most basic classes of discrete distributions; indeed, they are arguably the simplestn-
parameter probability distribution that has some nontrivial structure. As such they have been intensely studied
in probability and statistics (see Section1.2) and arise in many settings; for example, we note here that tail
bounds on PBDs form an important special case of Chernoff/Hoeffding bounds [Che52, Hoe63, DP09]. In
application domains, PBDs have many uses in research areas such as survey sampling, case-control studies, and
survival analysis, see e.g., [CL97] for a survey of the many uses of these distributions in applications. Given
the simplicity and ubiquity of these distributions, it is quite surprising that the problem ofdensity estimation
for PBDs (i.e., learning an unknown PBD from independent samples) is not well understood in the statistics or
learning theory literature.This is the problem we consider, and essentially settle, in this paper.

We work in a natural PAC-style model of learning an unknown discrete probability distribution which is
essentially the model of [KMR+94]. In this learning framework for our problem, the learner isprovided with the
value ofn and with independent samples drawn from an unknown PBDX. Using these samples, the learner must
with probability at least1−δ output a hypothesis distribution̂X such that the total variation distancedTV (X, X̂)
is at mostǫ, whereǫ, δ > 0 are accuracy and confidence parameters that are provided to the learner.3 A proper
learning algorithm in this framework outputs a distribution that is itself a Poisson Binomial Distribution, i.e., a
vectorp̂ = (p̂1, . . . , p̂n) which describes the hypothesis PBD̂X =

∑n
i=1 X̂i whereE[X̂i] = p̂i.

1.1 Our results.

Our main result is an efficient algorithm for learning PBDs from Õ(1/ǫ2) many samples independent of[n].
Since PBDs are ann-parameter family of distributions over the domain[n], we view such a tight bound as a
surprising result. We prove:

Theorem 1(Main Theorem). LetX =
∑n

i=1Xi be an unknown PBD.

1. [Learning PBDs from constantly many samples]There is an algorithm with the following properties:
givenn, ǫ, δ and access to independent draws fromX, the algorithm uses

Õ
(
(1/ǫ3) · log(1/δ)

)

samples fromX, performs

Õ

(
(1/ǫ3) · log n · log2 1

δ

)

bit operations, and with probability at least1− δ outputs a (succinct description of a) distribution̂X over
[n] which is such thatdTV (X̂,X) ≤ ǫ.

2. [Properly learning PBDs from constantly many samples]There is an algorithm with the following
properties: givenn, ǫ, δ and access to independent draws fromX, the algorithm uses

Õ(1/ǫ2) · log(1/δ)

samples fromX, performs

(1/ǫ)O(log
2(1/ǫ)) · Õ

(
log n · log 1

δ

)

bit operations, and with probability at least1 − δ outputs a (succinct description of a) vectorp̂ =
(p̂1, . . . , p̂n) defining a PBDX̂ such thatdTV (X̂,X) ≤ ǫ.

2We thank Yuval Peres and Sam Watson for this information [PW11].
3[KMR+94] used the Kullback-Leibler divergence as their distance measure but we find it more natural to use variation distance.
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We note that, since every sample drawn fromX is a log(n)-bit string, for constantδ the number of bit-
operations performed by our first algorithm isquasilinear in the length of its input. Moreover, the sample
complexity of both algorithms is close to optimal, sinceΩ(1/ǫ2) samples are required even to distinguish the
(simpler) Binomial distributionsBin(n, 1/2) andBin(n, 1/2+ǫ/

√
n), which have total variation distanceΩ(ǫ).

Indeed, in view of this observation, our second algorithm isessentially sample-optimal.
Motivated by these strong learning results for PBDs, we alsoconsider learning a more general class of

distributions, namely distributions of the formX =
∑n

i=1wiXi which areweightedsums of independent
Bernoulli random variables. We give an algorithm which usesO(log n) samples and runs inpoly(n) time if
there are only constantly many different weights in the sum:

Theorem 2 (Learning sums of weighted independent Bernoulli random variables). Let X =
∑n

i=1 aiXi

be a weighted sum of unknown independent Bernoullis such that there are at mostk different values among
a1, . . . , an. Then there is an algorithm with the following properties: givenn, ǫ, δ, a1, . . . , an and access to
independent draws fromX, it uses

Õ(k/ǫ2) · log(n) · log(1/δ)
samples fromX, runs in time

poly
(
nk · ǫ−k log2(1/ǫ)

)
· log(1/δ),

and with probability at least1−δ outputs a hypothesis vectorp̂ ∈ [0, 1]n defining independent Bernoulli random
variablesX̂i with E[X̂i] = p̂i such thatdTV (X̂,X) ≤ ǫ, whereX̂ =

∑n
i=1 aiX̂i.

To complement Theorem2, we also show that if there are many distinct weights in the sum, then even for
weights with a very simple structure any learning algorithmmust use many samples:

Theorem 3 (Sample complexity lower bound for learning sums of weightedindependent Bernoullis). Let
X =

∑n
i=1 i · Xi be a weighted sum of unknown independent Bernoullis (where the i-th weight is simplyi).

LetL be any learning algorithm which, givenn and access to independent draws fromX, outputs a hypothesis
distributionX̂ such thatdTV (X̂,X) ≤ 1/25 with probability at leaste−o(n). ThenL must useΩ(n) samples.

1.2 Related work.

At a high level, there has been a recent surge of interest in the theoretical computer science community on
fundamental algorithmic problems involving basic types ofprobability distributions, see e.g., [KMV10, MV10,
BS10, VV11] and other recent papers; our work may be considered as an extension of this theme. More specif-
ically, there is a broad literature in probability theory studying various properties of PBDs; see [Wan93] for an
accessible introduction to some of this work. In particular, many results study approximations to the Poisson
Binomial distribution via simpler distributions. In a well-known result, Le Cam [Cam60] shows that for any
PBDX =

∑n
i=1 Xi with E[Xi] = pi, it holds that

dTV

(
X,Poi

( n∑
i=1

pi
))

≤ 2
n∑

i=1
p2i ,

wherePoi(λ) is the Poisson distribution with parameterλ. Subsequently many other proofs of this result and
similar ones were given using a range of different techniques; [HC60, Che74, DP86, BHJ92] is a sampling of
work along these lines, and Steele [Ste94] gives an extensive list of relevant references. Much work has also been
done on approximating PBDs by normal distributions (see e.g., [Ber41, Ess42, Mik93, Vol95]) and by Binomial
distributions (see e.g., [Ehm91, Soo96, Roo00]). These results provide structural information about PBDs that
can be well-approximated via simpler distributions, but fall short of our goal of obtaining approximations of
an unknown PBD up toarbitrary accuracy. Indeed, the approximations obtained in the probability literature
(such as the Poisson, Normal and Binomial approximations) typically depend only on the first few moments of
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the target PBD. This is attractive from a learning perspective because it is possible to efficiently estimate such
moments from random samples, but higher moments are crucialfor arbitrary approximation [Roo00].

Taking a different perspective, it is easy to show (see Section 2 of [KG71]) that every PBD is a unimodal
distribution over[n]. (Recall that a distributionp over [n] is unimodal if there is a valueℓ ∈ {0, . . . , n} such
thatp(i) ≤ p(i+ 1) for i ≤ ℓ andp(i) ≥ p(i+ 1) for i > ℓ.) The learnability of general unimodal distributions
over [n] is well understood: Birgé [Bir87a, Bir97] has given a computationally efficient algorithm that can
learn any unimodal distribution over[n] to variation distanceǫ from O(log(n)/ǫ3) samples, and has shown
that any algorithm must useΩ(log(n)/ǫ3) samples. (The [Bir87a, Bir97] upper and lower bounds are stated
for continuous unimodal distributions, but the arguments are easily adapted to the discrete case.) Our main
result, Theorem1, shows that the additional PBD assumption can be leveraged to obtain sample complexity
independent ofn with a computationally highly efficient algorithm.

So, how might one leverage the structure of PBDs to removen from the sample complexity? A first obser-
vation is that a PBD assigns1− ǫ of its mass toOǫ(

√
n) points. So one could draw samples to (approximately)

identify these points and then try to estimate the probability assigned to each such point, but clearly such an
approach, if followed naı̈vely, would givepoly(n) sample complexity. Alternatively, one could run Birgé’s al-
gorithm on the restricted support of sizeOǫ(

√
n), but that will not improve the asymptotic sample complexity.

A different approach would be to construct a smallǫ-cover (under the total variation distance) of the space of
all PBDs onn variables. Indeed, if such a cover has sizeN , it can be shown (see Lemma10 in Section3.1, or
Chapter 7 of [DL01])) that a target PBD can be learned fromO(log(N)/ǫ2) samples. Still it is easy to argue that
any cover needs to have sizeΩ(n), so this approach too gives alog(n) dependence in the sample complexity.

Our approach, which removesn completely from the sample complexity, requires a refined understanding
of the structure of the set of all PBDs onn variables, in fact one that is more refined than the understanding
provided by the aforementioned results (approximating a PBD by a Poisson, Normal, or Binomial distribution).
We give an outline of the approach in the next section.

1.3 Our approach.

The starting point of our algorithm for learning PBDs is a theorem of [DP11, Das08] that gives detailed infor-
mation about the structure of a smallǫ-cover (under the total variation distance) of the space of all PBDs onn
variables (see Theorem4). Roughly speaking, this result says that every PBD is either close to a PBD whose
support is sparse, or is close to a translated “heavy” Binomial distribution. Our learning algorithm exploits this
structure of the cover; it has two subroutines corresponding to these two different types of distributions that the
cover contains. First, assuming that the target PBD is closeto a sparsely supported distribution, it runs Birgé’s
unimodal distribution learner over a carefully selected subinterval of[n] to construct a hypothesisHS; the (pur-
ported) sparsity of the distribution makes it possible for this algorithm to usẽO(1/ǫ3) samples independent of
n. Then, assuming that the target PBD is close to a translated “heavy” Binomial distribution, the algorithm con-
structs a hypothesis Translated Poisson DistributionHP [R0̈7] whose mean and variance match the estimated
mean and variance of the target PBD; we show thatHP is close to the target PBD if the target PBD is not close
to any sparse distribution in the cover. At this point the algorithm has two hypothesis distributions,HS andHP ,
one of which should be good; it remains to select one as the final output hypothesis. This is achieved using a
form of “hypothesis testing” for probability distributions.

The above sketch captures the main ingredients of Part (1) ofTheorem1, but additional work needs to be
done to get the proper learning algorithm of Part (2). For thenon-sparse case, first note that the Translated
Poisson hypothesisHP is not a PBD. Via a sequence of transformations we are able to show that the Translated
Poisson hypothesisHP can be converted to a Binomial distributionBin(n′, p) for somen′ ≤ n. To handle the
sparse case, we use an alternate learning approach: insteadof using Birgé’s unimodal algorithm (which would
incur a sample complexity ofΩ(1/ǫ3)), we first show that, in this case, there exists an efficientlyconstructible
O(ǫ)-cover of size(1/ǫ)O(log2(1/ǫ)), and then apply a general learning result that we now describe.

The general learning result that we use (Lemma10) is the following: We show that for any classS of
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target distributions, ifS has anǫ-cover of sizeN then there is a generic algorithm for learning an unknown
distribution fromS to accuracyO(ǫ) that usesO((logN)/ǫ2) samples. Our approach is rather similar to the
algorithm of [DL01] for choosing a density estimate (but different in some details); it works by carrying out a
tournament that matches every pair of distributions in the cover against each other. Our analysis shows that with
high probability someǫ-accurate distribution in the cover will survive the tournament undefeated, and that any
undefeated distribution will with high probability beO(ǫ)-accurate.

Applying this general result to theO(ǫ)-cover of size(1/ǫ)O(log2(1/ǫ)) described above, we obtain a PBD
that isO(ǫ)-close to the target (this accounts for the increased running time in Part (2) versus Part (1)). We
stress that for both the non-proper and proper learning algorithms sketched above, many technical subtleties and
challenges arise in implementing the high-level plan givenabove, requiring a careful and detailed analysis.

We prove Theorem2 using the general approach of Lemma10specialized to weighted sums of independent
Bernoullis with constantly many distinct weights. We show how the tournament can be implemented efficiently
for the classS of weighted sums of independent Bernoullis with constantlymany distinct weights, and thus
obtain Theorem2. Finally, the lower bound of Theorem3 is proved by a direct information-theoretic argument.

1.4 Preliminaries.

Distributions. For a distributionX supported on[n] = {0, 1, . . . , n} we write X(i) to denote the value
Pr[X = i] of the probability density function (pdf) at pointi, andX(≤ i) to denote the valuePr[X ≤ i]
of the cumulative density function (cdf) at pointi. For S ⊆ [n], we writeX(S) to denote

∑
i∈S X(i) and

XS to denote the conditional distribution ofX restricted toS. Sometimes we writeX(I) andXI for a subset
I ⊆ [0, n], meaningX(I ∩ [n]) andXI∩[n] respectively.

Total Variation Distance. Recall that thetotal variation distancebetween two distributionsX andY over a
finite domainD is

dTV (X,Y ) := (1/2) · ∑
α∈D

|X(α) − Y (α)| = max
S⊆D

[X(S) − Y (S)].

Similarly, if X andY are two random variables ranging over a finite set, their total variation distancedTV (X,Y )
is defined as the total variation distance between their distributions. For convenience, we will often blur the
distinction between a random variable and its distribution.

Covers. Fix a finite domainD, and letP denote some set of distributions overD. Given δ > 0, a subset
Q ⊆ P is said to be aδ-cover ofP (w.r.t. the total variation distance) if for every distribution P in P there exists
some distributionQ in Q such thatdTV (P,Q) ≤ δ. We sometimes say that distributionsP,Q areδ-neighbors
if dTV (P,Q) ≤ δ. If this holds, we also say thatP is δ-close toQ and vice versa.

Poisson Binomial Distribution. A Poisson binomial distribution of ordern ∈ N is a sum
∑n

i=1Xi of n mutu-
ally independent Bernoulli random variablesX1, . . . ,Xn. We denote the set of all Poisson binomial distributions
of ordern by Sn and, ifn is clear from context, justS.

A Poisson binomial distributionD ∈ Sn can be represented uniquely as a vector(pi)
n
i=1 satisfying0 ≤

p1 ≤ p2 ≤ . . . ≤ pn ≤ 1. To go fromD ∈ Sn to its corresponding vector, we find a collectionX1, . . . ,Xn of
mutually independent Bernoullis such that

∑n
i=1 Xi is distributed according toD andE[X1] ≤ . . . ≤ E[Xn].

(Such a collection exists by the definition of a Poisson binomial distribution.) Then we setpi = E[Xi] for all i.
Lemma 1 of [DP13] shows that the resulting vector(p1, . . . , pn) is unique.

We denote byPBD(p1, . . . , pn) the distribution of the sum
∑n

i=1Xi of mutually independent indicators
X1, . . . ,Xn with expectationspi = E[Xi], for all i. Given the above discussionPBD(p1, . . . , pn) is unique
up to permutation of thepi’s. We also sometimes write{Xi} to denote the distribution of

∑n
i=1 Xi. Note the

difference between{Xi}, which refers to the distribution of
∑

iXi, and{Xi}i, which refers to the underlying
collection of mutually independent Bernoulli random variables.
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Translated Poisson Distribution. We will make use of the translated Poisson distribution for approximating
the Poisson Binomial distribution. We define the translatedPoisson distribution, and state a known result on
how well it approximates the Poisson Binomial distribution.

Definition 1 ([R0̈7]). We say that an integer random variableY is distributed according to thetranslated Poisson
distribution with parametersµ andσ2, denotedTP (µ, σ2), iff Y can be written as

Y = ⌊µ − σ2⌋+ Z,

whereZ is a random variable distributed according toPoisson(σ2+ {µ−σ2}), where{µ−σ2} represents the
fractional part ofµ− σ2.

The following lemma gives a useful bound on the variation distance between a Poisson Binomial Distribution
and a suitable translated Poisson distribution. Note that if the variance of the Poisson Binomial Distribution is
large, then the lemma gives a strong bound.

Lemma 1 (see (3.4) of [R0̈7]). LetJ1, . . . , Jn be independent random indicators withE[Ji] = pi. Then

dTV

(
n∑

i=1

Ji, TP (µ, σ2)

)
≤

√∑n
i=1 p

3
i (1− pi) + 2

∑n
i=1 pi(1− pi)

,

whereµ =
∑n

i=1 pi andσ2 =
∑n

i=1 pi(1− pi).

The following bound on the total variation distance betweentranslated Poisson distributions will be useful.

Lemma 2 (Lemma 2.1 of [BL06]). For µ1, µ2 ∈ R andσ2
1 , σ

2
2 ∈ R+ with ⌊µ1 − σ2

1⌋ ≤ ⌊µ2 − σ2
2⌋, we have

dTV (TP (µ1, σ
2
1), TP (µ2, σ

2
2)) ≤

|µ1 − µ2|
σ1

+
|σ2

1 − σ2
2|+ 1

σ2
1

.

Running Times, and Bit Complexity. Throughout this paper, we measure the running times of our algorithms
in numbers of bit operations. For a positive integern, we denote by〈n〉 its description complexity in binary,
namely〈n〉 = ⌈log2 n⌉. Moreover, we represent a positive rational numberq asq1

q2
, whereq1 andq2 are relatively

prime positive integers. The description complexity ofq is defined to be〈q〉 = 〈q1〉+ 〈q2〉. We will assume that
all ǫ’s andδ’s input to our algorithms are rational numbers.

2 Learning a sum of Bernoulli random variables from poly(1/ǫ) samples

In this section, we prove Theorem1by providing a sample- and time-efficient algorithm for learning an unknown
PBDX =

∑n
i=1 Xi. We start with an important ingredient in our analysis.

A cover for PBDs. We make use of the following theorem, which provides a cover of the setS = Sn of all
PBDs of order-n. The theorem was given implicitly in [DP11] and explicitly as Theorem 1 in [DP13].

Theorem 4(Cover for PBDs). For all ǫ > 0, there exists anǫ-coverSǫ ⊆ S of S such that

1. |Sǫ| ≤ n2 + n ·
(
1
ǫ

)O(log2 1/ǫ)
; and

2. Sǫ can be constructed in time linear in its representation size, i.e.,O(n2 log n)+O(n log n)·
(
1
ǫ

)O(log2 1/ǫ)
.

Moreover, if{Yi} ∈ Sǫ, then the collection ofn Bernoulli random variables{Yi}i=1,...,n has one of the following
forms, wherek = k(ǫ) ≤ C/ǫ is a positive integer, for some absolute constantC > 0:

5



(i) (k-Sparse Form) There is someℓ ≤ k3 = O(1/ǫ3) such that, for alli ≤ ℓ, E[Yi] ∈
{

1
k2 ,

2
k2 , . . . ,

k2−1
k2

}

and, for all i > ℓ, E[Yi] ∈ {0, 1}.

(ii) (k-heavy Binomial Form) There is someℓ ∈ {1, . . . , n} and q ∈
{

1
n ,

2
n , . . . ,

n
n

}
such that, for alli ≤ ℓ,

E[Yi] = q and, for all i > ℓ, E[Yi] = 0; moreover,ℓ, q satisfyℓq ≥ k2 andℓq(1− q) ≥ k2 − k − 1.

Finally, for every{Xi} ∈ S for which there is noǫ-neighbor inSǫ that is in sparse form, there exists some
{Yi} ∈ Sǫ in k-heavy Binomial form such that

(iii) dTV (
∑

iXi,
∑

i Yi) ≤ ǫ; and

(iv) if µ = E[
∑

iXi], µ′ = E[
∑

i Yi], σ2 = Var[
∑

iXi] andσ′2 = Var[
∑

i Yi], then|µ − µ′| = O(1) and
|σ2 − σ′2| = O(1 + ǫ · (1 + σ2)).

We remark that the cover theorem as stated in [DP13] does not include the part of the above statement following
“finally.” We provide a proof of this extension in AppendixA.

The Basic Learning Algorithm. The high-level structure of our learning algorithms which give Theorem1
is provided in AlgorithmLearn-PBD of Figure1. We instantiate this high-level structure, with appropriate
technical modifications, in Section2.4, where we give more detailed descriptions of the non-properand proper
algorithms that give parts (1) and (2) of Theorem1.

Learn-PBD(n, ǫ, δ)

1. RunLearn-SparseX(n, ǫ, δ/3) to get hypothesis distributionHS.

2. RunLearn-PoissonX(n, ǫ, δ/3) to get hypothesis distributionHP .

3. Return the distribution which is the output ofChoose-HypothesisX(HS,HP , ǫ, δ/3).

Figure 1:Learn-PBD(n, ǫ, δ)

At a high level, the subroutineLearn-Sparse is given sample access toX and is designed to find an
ǫ-accurate hypothesisHS with probability at least1 − δ/3, if the unknown PBDX is ǫ-close to some sparse
form PBD inside the coverSǫ. Similarly, Learn-Poisson is designed to find anǫ-accurate hypothesisHP ,
if X is notǫ-close to a sparse form PBD (in this case, Theorem4 implies thatX must beǫ-close to somek(ǫ)-
heavy Binomial form PBD). Finally,Choose-Hypothesis is designed to choose one of the two hypotheses
HS,HP as beingǫ-close toX. The following subsections specify these subroutines, as well as how the algorithm
can be used to establish Theorem1. We note thatLearn-Sparse andLearn-Poisson do not return
the distributionsHS andHP as a list of probabilities for every point in[n]. They return instead a succinct
description of these distributions in order to keep the running time of the algorithm logarithmic inn. Similarly,
Choose-Hypothesis operates with succinct descriptions of these distributions.

2.1 Learning whenX is close to a sparse form PBD.

Our starting point here is the simple observation that any PBD is a unimodal distribution over the domain
{0, 1, . . . , n}. (There is a simple inductive proof of this, or see Section 2 of [KG71].) This enables us to use the
algorithm of Birgé [Bir97] for learning unimodal distributions. We recall Birgé’s result, and refer the reader to
AppendixB for an explanation of how Theorem5 as stated below follows from [Bir97].
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Theorem 5([Bir97]). For all n, ǫ, δ > 0, there is an algorithm that draws

O

(
log n

ǫ3
log

1

δ
+

1

ǫ2
log

1

δ
log log

1

δ

)

samples from an unknown unimodal distributionX over [n], does

Õ

(
log2 n

ǫ3
log2

1

δ

)

bit-operations, and outputs a (succinct description of a) hypothesis distributionH over[n] that has the following
form: H is uniform over subintervals[a1, b1], [a2, b2], . . . , [ak, bk], whose union∪k

i=1[ai, bi] = [n], wherek =

O
(
logn
ǫ

)
. In particular, the algorithm outputs the listsa1 throughak and b1 throughbk, as well as the total

probability mass thatH assigns to each subinterval[ai, bi], i = 1, . . . , k. Finally, with probability at least1− δ,
dTV (X,H) ≤ ǫ.

The main result of this subsection is the following:

Lemma 3. For all n, ǫ′, δ′ > 0, there is an algorithmLearn-SparseX(n, ǫ′, δ′) that draws

O

(
1

ǫ′3
log

1

ǫ′
log

1

δ′
+

1

ǫ′2
log

1

δ′
log log

1

δ′

)

samples from a target PBDX over [n], does

log n · Õ
(

1

ǫ′3
log2

1

δ′

)

bit operations, and outputs a (succinct description of a) hypothesis distributionHS over [n] that has the fol-
lowing form: its support is contained in an explicitly specified interval[a, b] ⊂ [n], where|b − a| = O(1/ǫ′3),
and for every point in[a, b] the algorithm explicitly specifies the probability assigned to that point byHS. 4

The algorithm has the following guarantee: ifX is ǫ′-close to some sparse form PBDY in the coverSǫ′ of
Theorem4, then with probability at least1 − δ′, dTV (X,HS) ≤ c1ǫ

′, for some absolute constantc1 ≥ 1, and
the support ofHS lies in the support ofY .

The high-level idea of Lemma3 is quite simple. We truncateO(ǫ′) of the probability mass from each end
of X to obtain a conditional distributionX[â,b̂]; sinceX is unimodal so isX[â,b̂]. If b̂− â is larger thanO(1/ǫ′3)
then the algorithm outputs “fail” (andX could not have been close to a sparse-form distribution in the cover).
Otherwise, we use Birgé’s algorithm to learn the unimodal distribution X[â,b̂]. A detailed description of the
algorithm is given in Figure2 below.

Proof of Lemma3: As described in Figure2, algorithmLearn-SparseX(n, ǫ′, δ′) first drawsM = 32 log(8/δ′)/ǫ′2

samples fromX and sorts them to obtain a list of values0 ≤ s1 ≤ · · · ≤ sM ≤ n. We claim the following about
the valueŝa andb̂ defined in Step 2 of the algorithm:

Claim 4. With probability at least1 − δ′/2, we haveX(≤ â) ∈ [3ǫ′/2, 5ǫ′/2] andX(≤ b̂) ∈ [1 − 5ǫ′/2, 1 −
3ǫ′/2].

Proof. We only show thatX(≤ â) ≥ 3ǫ′/2 with probability at least1 − δ′/8, since the arguments forX(≤
â) ≤ 5ǫ′/2, X(≤ b̂) ≤ 1− 3ǫ′/2 andX(≤ b̂) ≥ 1− 5ǫ′/2 are identical. Given that each of these conditions is
met with probability at least1− δ′/8, the union bound establishes our claim.

4In particular, our algorithm will output a list of pointers,mapping every point in[a, b] to some memory location where the probability
assigned to that point byHS is written.
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Learn-SparseX(n, ǫ′, δ′)

1. DrawM = 32 log(8/δ′)/ǫ′2 samples fromX and sort them to obtain a list of values0 ≤ s1 ≤
· · · ≤ sM ≤ n.

2. Defineâ := s⌈2ǫ′M⌉ andb̂ := s⌊(1−2ǫ′)M⌋.

3. If b̂ − â > (C/ǫ′)3 (whereC is the constant in the statement of Theorem4), output “fail” and
return the (trivial) hypothesis which puts probability mass1 on the point0.

4. Otherwise, run Birgé’s unimodal distribution learner (Theorem5) on the conditional distribution
X[â,b̂] and output the hypothesis that it returns.

Figure 2:Learn-SparseX(n, ǫ′, δ′)

To show thatX(≤ â) ≥ 3ǫ′/2 is satisfied with probability at least1 − δ′/8 we argue as follows: Letα′ =
max{i | X(≤ i) < 3ǫ′/2}. Clearly,X(≤ α′) < 3ǫ′/2 while X(≤ α′ + 1) ≥ 3ǫ′/2. Given this, ifM samples
are drawn fromX then the expected number of them that are≤ α′ is at most3ǫ′M/2. It follows then from
the Chernoff bound that the probability that more than7

4ǫ
′M samples are≤ α′ is at moste−(ǫ′/4)2M/2 ≤ δ′/8.

Hence except with this failure probability, we haveâ ≥ α′ + 1, which implies thatX(≤ â) ≥ 3ǫ′/2.

As specified in Steps 3 and 4, ifb̂− â > (C/ǫ′)3, whereC is the constant in the statement of Theorem4, the
algorithm outputs “fail”, returning the trivial hypothesis which puts probability mass1 on the point0. Otherwise,
the algorithm runs Birgé’s unimodal distribution learner(Theorem5) on the conditional distributionX[â,b̂], and
outputs the result of Birgé’s algorithm. SinceX is unimodal, it follows thatX[â,b̂] is also unimodal, hence
Birgé’s algorithm is appropriate for learning it. The way we apply Birgé’s algorithm to learnX[â,b̂] given
samples from the original distributionX is the obvious one: we draw samples fromX, ignoring all samples that
fall outside of[â, b̂], until the rightO(log(1/δ′) log(1/ǫ′)/ǫ′3) number of samples fall inside[â, b̂], as required by
Birgé’s algorithm for learning a distribution of support of size(C/ǫ′)3 with probability at least1 − δ′/4. Once
we have the right number of samples in[â, b̂], we run Birgé’s algorithm to learn the conditional distribution
X[â,b̂]. Note that the number of samples we need to draw fromX until the rightO(log(1/δ′) log(1/ǫ′)/ǫ′3)

number of samples fall inside[â, b̂] is still O(log(1/δ′) log(1/ǫ′)/ǫ′3), with probability at least1− δ′/4. Indeed,
sinceX([â, b̂]) = 1 − O(ǫ′), it follows from the Chernoff bound that with probability atleast1 − δ′/4, if
K = Θ(log(1/δ′) log(1/ǫ′)/ǫ′3) samples are drawn fromX, at leastK(1−O(ǫ′)) fall inside [â, b̂].

Analysis: It is easy to see that the sample complexity of our algorithm is as promised. For the running time,
notice that, if Birgé’s algorithm is invoked, it will return two lists of numbersa1 throughak andb1 throughbk, as
well as a list of probability massesq1, . . . , qk assigned to each subinterval[ai, bi], i = 1, . . . , k, by the hypothesis
distributionHS, wherek = O(log(1/ǫ′)/ǫ′). In linear time, we can compute a list of probabilitiesq̂1, . . . , q̂k,
representing the probability assigned byHS to every point of subinterval[ai, bi], for i = 1, . . . , k. So we can
represent our output hypothesisHS via a data structure that maintainsO(1/ǫ′3) pointers, having one pointer per
point inside[a, b]. The pointers map points to probabilities assigned byHS to these points. Thus turning the
output of Birgé’s algorithm into an explicit distributionover[a, b] incurs linear overhead in our running time, and
hence the running time of our algorithm is also as promised. (See AppendixB for an explanation of the running
time of Birgé’s algorithm.) Moreover, we also note that theoutput distribution has the promised structure, since
in one case it has a single atom at0 and in the other case it is the output of Birgé’s algorithm ona distribution of
support of size(C/ǫ′)3.

It only remains to justify the last part of the lemma. LetY be the sparse-form PBD thatX is close to;
say thatY is supported on{a′, . . . , b′} whereb′ − a′ ≤ (C/ǫ′)3. SinceX is ǫ′-close toY in total variation
distance it must be the case thatX(≤ a′ − 1) ≤ ǫ′. SinceX(≤ â) ≥ 3ǫ′/2 by Claim 4, it must be the
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case that̂a ≥ a′. Similar arguments give that̂b ≤ b′. So the interval[â, b̂] is contained in[a′, b′] and has
length at most(C/ǫ′)3. This means that Birgé’s algorithm is indeed used correctly by our algorithm to learn
X[â,b̂], with probability at least1 − δ′/2 (that is, unless Claim4 fails). Now it follows from the correctness of
Birgé’s algorithm (Theorem5) and the discussion above, that the hypothesisHS output when Birgé’s algorithm
is invoked satisfiesdTV (HS ,X[â,b̂]) ≤ ǫ′, with probability at least1− δ′/2, i.e., unless either Birgé’s algorithm

fails, or we fail to get the right number of samples landing inside[â, b̂]. To conclude the proof of the lemma we
note that:

2dTV (X,X[â,b̂]) =
∑

i∈[â,b̂]

|X[â,b̂](i)−X(i)| +
∑

i/∈[â,b̂]

|X[â,b̂](i) −X(i)|

=
∑

i∈[â,b̂]

∣∣∣ 1

X([â, b̂])
X(i)−X(i)

∣∣∣ +
∑

i/∈[â,b̂]

X(i)

=
∑

i∈[â,b̂]

∣∣∣ 1

1−O(ǫ′)
X(i) −X(i)

∣∣∣ +O(ǫ′)

=
O(ǫ′)

1−O(ǫ′)

∑

i∈[â,b̂]

∣∣∣X(i)
∣∣∣ +O(ǫ′)

= O(ǫ′).

So the triangle inequality gives:dTV (HS ,X) = O(ǫ′), and Lemma3 is proved. �

2.2 Learning whenX is close to ak-heavy Binomial Form PBD.

Lemma 5. For all n, ǫ′, δ′ > 0, there is an algorithmLearn-PoissonX(n, ǫ′, δ′) that draws

O(log(1/δ′)/ǫ′2)

samples from a target PBDX over [n], does

O(log n · log(1/δ′)/ǫ′2)

bit operations, and returns two parametersµ̂ and σ̂2. The algorithm has the following guarantee: SupposeX
is not ǫ′-close to any sparse form PBD in the coverSǫ′ of Theorem4. LetHP = TP (µ̂, σ̂2) be the translated
Poisson distribution with parameterŝµ andσ̂2. Then with probability at least1−δ′ we havedTV (X,HP ) ≤ c2ǫ

′

for some absolute constantc2 ≥ 1.

Our proof plan is to exploit the structure of the cover of Theorem4. In particular, ifX is notǫ′-close to any
sparse form PBD in the cover, it must beǫ′-close to a PBD in heavy Binomial form with approximately thesame
mean and variance asX, as specified by the final part of the cover theorem. Hence, a natural strategy is to obtain
estimateŝµ and σ̂2 of the mean and variance of the unknown PBDX, and output as a hypothesis a translated
Poisson distribution with parametersµ̂ andσ̂2. We show that this strategy is a successful one. Before providing
the details, we highlight two facts that we will establish inthe subsequent analysis and that will be used later.
The first is that, assumingX is notǫ′-close to any sparse form PBD in the coverSǫ′ , its varianceσ2 satisfies

σ2 = Ω(1/ǫ′2) ≥ θ2 for some universal constantθ. (1)

The second is that under the same assumption, the estimatesµ̂ andσ̂2 of the meanµ and varianceσ2 of X that
we obtain satisfy the following bounds with probability at least1− δ:

|µ− µ̂| ≤ ǫ′ · σ and |σ2 − σ̂2| ≤ ǫ′ · σ2. (2)
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Learn-PoissonX(n, ǫ′, δ′)

1. Letǫ = ǫ′/
√

4 + 1
θ2

andδ = δ′.

2. Run algorithmA(n, ǫ, δ) to obtain an estimatêµ of E[X] and an estimatêσ2 of Var[X].

3. Output the translated Poisson distributionTP (µ̂, σ̂2).

Figure 3:Learn-PoissonX(n, ǫ′, δ′). The valueθ used in Line 1 is the universal constant specified in the
proof of Lemma5.

A(n, ǫ, δ)

1. Letr = O(log 1/δ). For i = 1, . . . , r repeat the following:

(a) Drawm = ⌈3/ǫ2⌉ independent samplesZi,1, . . . , Zi,m from X.

(b) Let µ̂i =
∑

j Zi,j

m , σ̂2
i =

∑
j(Zi,j−

1
m

∑
k Zi,k)

2

m−1 .

2. Setµ̂ to be the median of̂µ1, . . . , µ̂r and set̂σ2 to be the median of̂σ2
1, . . . , σ̂

2
r .

3. Outputµ̂ andσ̂2.

Figure 4:A(n, ǫ, δ)

See Figure3 and the associated Figure4 for a detailed description of theLearn-PoissonX(n, ǫ′, δ′)
algorithm.

Proof of Lemma5: We start by showing that we can estimate the mean and varianceof the target PBDX.

Lemma 6. For all n, ǫ, δ > 0, there exists an algorithmA(n, ǫ, δ) with the following properties: given access
to a PBDX of ordern, it produces estimateŝµ and σ̂2 for µ = E[X] andσ2 = Var[X] respectively such that
with probability at least1− δ:

|µ− µ̂| ≤ ǫ · σ and |σ2 − σ̂2| ≤ ǫ · σ2

√
4 +

1

σ2
.

The algorithm uses
O(log(1/δ)/ǫ2)

samples and runs in time
O(log n log(1/δ)/ǫ2).

Proof. We treat the estimation ofµ andσ2 separately. For both estimation problems we show how to use
O(1/ǫ2) samples to obtain estimatesµ̂ and σ̂2 achieving the required guarantees with probability at least 2/3
(we refer to these as “weak estimators”). Then a routine procedure allows us to boost the success probability to
1− δ at the expense of a multiplicative factorO(log 1/δ) on the number of samples. While we omit the details
of the routine boosting argument, we remind the reader that it involves running the weak estimatorO(log 1/δ)
times to obtain estimateŝµ1, . . . , µ̂O(log 1/δ) and outputting the median of these estimates, and similarlyfor
estimatingσ2.

We proceed to specify and analyze the weak estimators forµ andσ2 separately:
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• Weak estimator forµ: LetZ1, . . . , Zm be independent samples fromX, and letµ̂ =
∑

i Zi

m . Then

E[µ̂] = µ and Var[µ̂] =
1

m
Var[X] =

1

m
σ2.

So Chebyshev’s inequality implies that

Pr[|µ̂ − µ| ≥ tσ/
√
m] ≤ 1

t2
.

Choosingt =
√
3 andm = ⌈3/ǫ2⌉, the above imply that|µ̂− µ| ≤ ǫσ with probability at least2/3.

• Weak estimator forσ2: Let Z1, . . . , Zm be independent samples fromX, and letσ̂2 =
∑

i(Zi−
1
m

∑
i Zi)

2

m−1
be the unbiased sample variance. (Note the use of Bessel’s correction.) Then it can be checked [Joh03]
that

E[σ̂2] = σ2 and Var[σ̂2] = σ4

(
2

m− 1
+

κ

m

)
,

whereκ is the excess kurtosis of the distribution ofX (i.e. κ = E[(X−µ)4]
σ4 − 3). To boundκ in terms of

σ2 suppose thatX =
∑n

i=1Xi, whereE[Xi] = pi for all i. Then

κ =
1

σ4

∑

i

(1− 6pi(1− pi))(1 − pi)pi (see [NJ05])

≤ 1

σ4

∑

i

(1− pi)pi =
1

σ2
.

Hence,Var[σ̂2] = σ4
(

2
m−1 + κ

m

)
≤ σ4

m (4 + 1
σ2 ). So Chebyshev’s inequality implies that

Pr

[
|σ̂2 − σ2| ≥ t

σ2

√
m

√
4 +

1

σ2

]
≤ 1

t2
.

Choosingt =
√
3 andm = ⌈3/ǫ2⌉, the above imply that|σ̂2 − σ2| ≤ ǫσ2

√
4 + 1

σ2 with probability at

least2/3.

We proceed to prove Lemma5. Learn-PoissonX(n, ǫ′, δ′) runsA(n, ǫ, δ) from Lemma6 with ap-
propriately chosenǫ = ǫ(ǫ′) andδ = δ(δ′), given below, and then outputs the translated Poisson distribution
TP (µ̂, σ̂2), whereµ̂ and σ̂2 are the estimated mean and variance ofX output byA. Next, we show how to
chooseǫ andδ, as well as why the desired guarantees are satisfied by the output distribution.

If X is not ǫ′-close to any PBD in sparse form inside the coverSǫ′ of Theorem4, there exists a PBDZ in
(k = O(1/ǫ′))-heavy Binomial form insideSǫ′ that is within total variation distanceǫ′ from X. We use the
existence of suchZ to obtain lower bounds on the mean and variance ofX. Indeed, suppose that the distribution
of Z is Bin(ℓ, q), a Binomial with parametersℓ, q. Then Theorem4 certifies that the following conditions are
satisfied by the parametersℓ, q, µ = E[X] andσ2 = Var[X]:

(a) ℓq ≥ k2;

(b) ℓq(1− q) ≥ k2 − k − 1;

(c) |ℓq − µ| = O(1); and

(d) |ℓq(1− q)− σ2| = O(1 + ǫ′ · (1 + σ2)).
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In particular, conditions (b) and (d) above imply that

σ2 = Ω(k2) = Ω(1/ǫ′2) ≥ θ2,

for some universal constantθ, establishing (1). In terms of thisθ, we chooseǫ = ǫ′/
√

4 + 1
θ2 andδ = δ′ for the

application of Lemma6 to obtain—fromO(log(1/δ′)/ǫ′2) samples—estimateŝµ andσ̂2 of µ andσ2.
From our choice of parameters and the guarantees of Lemma6, it follows that, ifX is not ǫ′-close to any

PBD in sparse form inside the coverSǫ′ , then with probability at least1− δ′ the estimateŝµ andσ̂2 satisfy:

|µ− µ̂| ≤ ǫ′ · σ and |σ2 − σ̂2| ≤ ǫ′ · σ2,

establishing (2). Moreover, ifY is a random variable distributed according to the translated Poisson distribution
TP (µ̂, σ̂2), we show thatX andY are withinO(ǫ′) in total variation distance, concluding the proof of Lemma5.

Claim 7. If X andY are as above, thendTV (X,Y ) ≤ O(ǫ′).

Proof. We make use of Lemma1. Suppose thatX =
∑n

i=1 Xi, whereE[Xi] = pi for all i. Lemma1 implies
that

dTV (X,TP (µ, σ2)) ≤

√∑
i p

3
i (1− pi) + 2

∑
i pi(1− pi)

≤
√∑

i pi(1− pi) + 2∑
i pi(1− pi)

≤ 1√∑
i pi(1− pi)

+
2∑

i pi(1− pi)

=
1

σ
+

2

σ2

= O(ǫ′). (3)

It remains to bound the total variation distance between thetranslated Poisson distributionsTP (µ, σ2) and
TP (µ̂, σ̂2). For this we use Lemma2. Lemma2 implies

dTV (TP (µ, σ2), TP (µ̂, σ̂2)) ≤ |µ− µ̂|
min(σ, σ̂)

+
|σ2 − σ̂2|+ 1

min(σ2, σ̂2)

≤ ǫ′σ

min(σ, σ̂)
+

ǫ′ · σ2 + 1

min(σ2, σ̂2)

≤ ǫ′σ

σ/
√
1− ǫ′

+
ǫ′ · σ2 + 1

σ2/(1 − ǫ′)

= O(ǫ′) +
O(1− ǫ′)

σ2

= O(ǫ′) +O(ǫ′2)

= O(ǫ′). (4)

The claim follows from (3), (4) and the triangle inequality.

The proof of Lemma5 is concluded. We remark that the algorithm described above does not need to know
a priori whether or notX is ǫ′-close to a PBD in sparse form inside the coverSǫ′ of Theorem4. The algorithm

simply runs the estimator of Lemma6 with ǫ = ǫ′/
√

4 + 1
θ2

andδ′ = δ and outputs whatever estimatesµ̂ and

σ̂2 the algorithm of Lemma6 produces. �
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2.3 Hypothesis testing.

Our hypothesis testing routineChoose-HypothesisX uses samples from the unknown distributionX to
run a “competition” between two candidate hypothesis distributionsH1 andH2 over [n] that are given in the
input. We show that if at least one of the two candidate hypotheses is close to the unknown distributionX, then
with high probability over the samples drawn fromX the routine selects as winner a candidate that is close to
X. This basic approach of running a competition between candidate hypotheses is quite similar to the “Scheffé
estimate” proposed by Devroye and Lugosi (see [DL96b, DL96a] and Chapter 6 of [DL01], as well as [Yat85]),
but our notion of competition here is different.

We obtain the following lemma, postponing all running-timeanalysis to the next section.

Lemma 8. There is an algorithmChoose-HypothesisX(H1,H2, ǫ
′, δ′) which is given sample access to

distribution X, two hypothesis distributionsH1,H2 for X, an accuracy parameterǫ′ > 0, and a confidence
parameterδ′ > 0. It makes

m = O(log(1/δ′)/ǫ′2)

draws fromX and returns someH ∈ {H1,H2}. If dTV (Hi,X) ≤ ǫ′ for somei ∈ {1, 2}, then with probability
at least1− δ′ the distributionH thatChoose-Hypothesis returns hasdTV (H,X) ≤ 6ǫ′.

Proof of Lemma8: Figure5 describes how the competition betweenH1 andH2 is carried out.

Choose-Hypothesis(H1,H2, ǫ
′, δ′)

INPUT: Sample access to distributionX; a pair of hypothesis distributions(H1,H2); ǫ′, δ′ > 0.

Let W be the support ofX, W1 = W1(H1,H2) := {w ∈ W H1(w) > H2(w)}, andp1 = H1(W1),
p2 = H2(W1). /* Clearly, p1 > p2 anddTV (H1,H2) = p1 − p2. */

1. If p1 − p2 ≤ 5ǫ′, declare a draw and return eitherHi. Otherwise:

2. Drawm = 2 log(1/δ′)
ǫ′2

sampless1, . . . , sm fromX, and letτ = 1
m |{i | si ∈ W1}| be the fraction of

samples that fall insideW1.

3. If τ > p1 − 3
2ǫ

′, declareH1 as winner and returnH1; otherwise,

4. if τ < p2 +
3
2ǫ

′, declareH2 as winner and returnH2; otherwise,

5. declare a draw and return eitherHi.

Figure 5:Choose-Hypothesis(H1,H2, ǫ
′, δ′)

The correctness ofChoose-Hypothesis is an immediate consequence of the following claim. (In fact
for Lemma8 we only need item (i) below, but item (ii) will be handy later in the proof of Lemma10.)

Claim 9. Suppose thatdTV (X,Hi) ≤ ǫ′, for somei ∈ {1, 2}. Then:

(i) if dTV (X,H3−i) > 6ǫ′, the probability thatChoose-HypothesisX(H1,H2, ǫ
′, δ′) does not declare

Hi as the winner is at most2e−mǫ′2/2, wherem is chosen as in the description of the algorithm. (Intu-
itively, if H3−i is very bad then it is very likely thatHi will be declared winner.)

(ii) if dTV (X,H3−i) > 4ǫ′, the probability thatChoose-HypothesisX(H1,H2, ǫ
′, δ′) declaresH3−i as

the winner is at most2e−mǫ′2/2. (Intuitively, ifH3−i is only moderately bad then a draw is possible but it
is very unlikely thatH3−i will be declared winner.)
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Proof. Let r = X(W1). The definition of the total variation distance implies that|r − pi| ≤ ǫ′. Let us
define independent indicators{Zj}mj=1 such that, for allj, Zj = 1 iff sj ∈ W1. Clearly, τ = 1

m

∑m
j=1Zj

andE[τ ] = E[Zj] = r. Since theZj ’s are mutually independent, it follows from the Chernoff bound that
Pr[|τ − r| ≥ ǫ′/2] ≤ 2e−mǫ′2/2. Using|r − pi| ≤ ǫ′ we get thatPr[|τ − pi| ≥ 3ǫ′/2] ≤ 2e−mǫ′2/2. Hence:

• For part (i): If dTV (X,H3−i) > 6ǫ′, from the triangle inequality we get thatp1 − p2 = dTV (H1,H2) >
5ǫ′. Hence, the algorithm will go beyond step 1, and with probability at least1 − 2e−mǫ′2/2, it will stop
at step 3 (wheni = 1) or step 4 (wheni = 2), declaringHi as the winner of the competition betweenH1

andH2.

• For part (ii): If p1 − p2 ≤ 5ǫ′ then the competition declares a draw, henceH3−i is not the winner.
Otherwise we havep1 − p2 > 5ǫ′ and the above arguments imply that the competition betweenH1 and
H2 will declareH3−i as the winner with probability at most2e−mǫ′2/2.

This concludes the proof of Claim9.

In view of Claim9, the proof of Lemma8 is concluded. �

OurChoose-Hypothesis algorithm implies a generic learning algorithm of independent interest.

Lemma 10. LetS be an arbitrary set of distributions over a finite domain. Moreover, letSǫ ⊆ S be anǫ-cover
of S of sizeN , for someǫ > 0. For all δ > 0, there is an algorithm that uses

O(ǫ−2 logN log(1/δ))

samples from an unknown distributionX ∈ S and, with probability at least1− δ, outputs a distributionZ ∈ Sǫ

that satisfiesdTV (X,Z) ≤ 6ǫ.

Proof. The algorithm performs a tournament, by runningChoose-HypothesisX(Hi,Hj , ǫ, δ/(4N)) for
every pair(Hi,Hj), i < j, of distributions inSǫ. Then it outputs any distributionY ⋆ ∈ Sǫ that was never a
loser (i.e., won or tied against all other distributions in the cover). If no such distribution exists inSǫ then the
algorithm says “failure,” and outputs an arbitrary distribution fromSǫ.

SinceSǫ is anǫ-cover ofS, there exists someY ∈ Sǫ such thatdTV (X,Y ) ≤ ǫ. We first argue that with
high probability this distributionY never loses a competition against any otherY ′ ∈ Sǫ (so the algorithm does
not output “failure”). Consider anyY ′ ∈ Sǫ. If dTV (X,Y ′) > 4ǫ, by Claim 9(ii) the probability thatY
loses toY ′ is at most2e−mǫ2/2≤ δ

2N . On the other hand, ifdTV (X,Y ′) ≤ 4ǫ, the triangle inequality gives that
dTV (Y, Y

′) ≤ 5ǫ and thusY draws againstY ′. A union bound over allN − 1 distributions inSǫ \ {Y } shows
that with probability at least1− δ/2, the distributionY never loses a competition.

We next argue that with probability at least1 − δ/2, every distributionY ′ ∈ Sǫ that never loses must be
close toX. Fix a distributionY ′ such thatdTV (Y

′,X) > 6ǫ. Lemma9(i) implies thatY ′ loses toY with
probability at least1 − 2e−mǫ2/2 ≥ 1 − δ/(2N). A union bound gives that with probability at least1 − δ/2,
every distributionY ′ that hasdTV (Y

′,X) > 6ǫ loses some competition.
Thus, with overall probability at least1 − δ, the tournament does not output “failure” and outputs some

distributionY ⋆ such thatdTV (X,Y ⋆) ≤ 6ǫ. This proves the lemma.

Remark 11. We note that Devroye and Lugosi (Chapter 7 of [DL01]) prove a similar result, but there are some
differences. They also have all pairs of distributions in the cover compete against each other, but they use a
different notion of competition between every pair. Moreover, their approach chooses a distribution in the cover
that wins the maximum number of competitions, whereas our algorithm chooses a distribution that is never
defeated (i.e., won or tied against all other distributionsin the cover).

Remark 12. Recent work [DK14, AJOS14, SOAJ14] improves the running time of the tournament approaches
of Lemma10, Devroye-Lugosi and other related tournaments to have a quasilinear dependence ofO(N logN)
on the sizeN = |Sǫ| . In particular, they avoid runningChoose-Hypothesis for all pairs of distributions
in Sǫ.
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2.4 Proof of Theorem1.

Non-Proper-Learn-PBD(n, ǫ, δ)

1. RunLearn-SparseX(n, ǫ
12max{c1,c2}

, δ/3) to get hypothesis distributionHS.

2. RunLearn-PoissonX(n, ǫ
12max{c1,c2}

, δ/3) to get hypothesis distributionHP .

3. RunChoose-HypothesisX(HS , ĤP , ǫ/8, δ/3). If it returns HS then returnHS, and if it
returnsĤP then returnHP .

Figure 6:Non-Proper-Learn-PBD(n, ǫ, δ). The valuesc1, c2 are the absolute constants from Lemmas3
and5. ĤP is defined in terms ofHP as described in Definition2.

We first show Part (1) of the theorem, where the learning algorithm may output any distribution over[n]
and not necessarily a PBD. The algorithm for this part of the theorem,Non-Proper-Learn-PBD, is given in
Figure6. This algorithm follows the high-level structure outlinedin Figure1 with the following modifications:
(a) first, if the total variation distance to within which we want to learnX is ǫ, the second argument of both
Learn-Sparse andLearn-Poisson is set to ǫ

12max{c1,c2}
, wherec1 andc2 are respectively the constants

from Lemmas3and5; (b) the third step ofLearn-PBD is replaced byChoose-HypothesisX(HS , ĤP , ǫ/8, δ/3),
whereĤP is defined in terms ofHP as described in Definition2 below; and (c) ifChoose-Hypothesis re-
turnsHS , thenLearn-PBD also returnsHS , while if Choose-Hypothesis returnsĤP , thenLearn-PBD
returnsHP .

Definition 2. (Definition of ĤP :) ĤP is defined in terms ofHP and the support ofHS in three steps:

(i) for all points i such thatHS(i) = 0, we letĤP (i) = HP (i);

(ii) for all points i such thatHS(i) 6= 0, we describe in AppendixC an efficient deterministic algorithm
that numerically approximatesHP (i) to within an additive error of±ǫ/48s, wheres = O(1/ǫ3) is the
cardinality of the support ofHS. If ĤP,i is the approximation toHP (i) output by the algorithm, we set

ĤP (i) = max{0, ĤP,i − ǫ/48s}; notice then thatHP (i) − ǫ/24s ≤ ĤP (i) ≤ HP (i); finally,

(iii) for an arbitrary point i such thatHS(i) = 0, we set̂HP (i) = 1−∑j 6=i ĤP (j), to make sure that̂HP is
a probability distribution.

Observe that̂HP satisfiesdTV (ĤP ,HP ) ≤ ǫ/24, and therefore|dTV (ĤP ,X) − dTV (X,HP )| ≤ ǫ/24.
Hence, ifdTV (X,HP ) ≤ ǫ

12 , thendTV (X, ĤP ) ≤ ǫ
8 and, ifdTV (X, ĤP ) ≤ 6ǫ

8 , thendTV (X,HP ) ≤ ǫ.

We remark that the reason why we do not wish to useHP directly in Choose-Hypothesis is purely
computational. In particular, sinceHP is a translated Poisson distribution, we cannot compute itsprobabilities
HP (i) exactly, and we need to approximate them. On the other hand, we need to make sure that using approx-
imate values will not causeChoose-Hypothesis to make a mistake. Our̂HP is carefully defined so as to
make sure thatChoose-Hypothesis selects a probability distribution that is close to the unknown X, and
that all probabilities thatChoose-Hypothesis needs to compute can be computed without much overhead.
In particular, we remark that, in runningChoose-Hypothesis, we do not a priori compute the value of̂HP

at every point; we do instead a lazy evaluation of̂HP , as explained in the running-time analysis below.
We now proceed to the analysis of our modified algorithmLearn-PBD. The sample complexity bound and

correctness of our algorithm are immediate consequences ofLemmas3, 5 and8, taking into account the precise
choice of constants and the distance betweenHP andĤP . Next, let us bound the running time. Lemmas3
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and5 bound the running time of Steps 1 and 2 of the algorithm, so it remains to bound the running time of
theChoose-Hypothesis step. Notice thatW1(HS, ĤP ) is a subset of the support of the distributionHS.
Hence to computeW1(HS , ĤP ) it suffices to determine the probabilitiesHS(i) andĤP (i) for every pointi in
the support ofHS. For every suchi, HS(i) is explicitly given in the output ofLearn-Sparse, so we only
need to computêHP (i). It follows from Theorem6 (AppendixC) that the time needed to computêHP (i) is
Õ(log(1/ǫ)3+log(1/ǫ) · (log n+ 〈µ̂〉+ 〈σ̂2〉)). Sinceµ̂ andσ̂2 are output byLearn-Poisson, by inspection
of that algorithm it is easy to see that they each have bit complexity at mostO(log n + log(1/ǫ)) bits. Hence,
given that the support ofHS has cardinalityO(1/ǫ3), the overall time spent computing the probabilitieŝHP (i)
for every pointi in the support ofHS is Õ( 1

ǫ3 log n). After W1 is computed, the computation of the values

p1 = HS(W1), q1 = ĤP (W1) andp1−q1 takes time linear in the data produced by the algorithm so far, as these
computations merely involve adding and subtracting probabilities that have already been explicitly computed by
the algorithm. Computing the fraction of samples fromX that fall insideW1 takes timeO

(
log n · log(1/δ)/ǫ2

)

and the rest ofChoose-Hypothesis takes time linear in the size of the data that have been written down so
far. Hence the overall running time of our algorithm isÕ( 1

ǫ3
log n log2 1

δ ). This gives Part (1) of Theorem1.

Now we turn to Part (2) of Theorem1, the proper learning result. The algorithm for this part of the theorem,
Proper-Learn-PBD, is given in Figure7. The algorithm is essentially the same asNon-Proper-Learn-PBD
but with the following modifications, to produce a PBD that iswithin O(ǫ) of the unknownX: First, we re-
placeLearn-Sparse with a different learning algorithm,Proper-Learn-Sparse, which is based on
Lemma10, and always outputs a PBD. Second, we add a post-processing step toLearn-Poisson that con-
verts the translated Poisson distributionHP output by this procedure to a PBD (in fact, to a Binomial distribu-
tion). After we describe these new ingredients in detail, weexplain and analyze our proper learning algorithm.

Proper-Learn-PBD(n, ǫ, δ)

1. RunProper-Learn-SparseX(n, ǫ
12max{c1,c2}

, δ/3) to get hypothesis distributionHS.

2. RunLearn-PoissonX(n, ǫ
12max{c1,c2}

, δ/3) to get hypothesis distributionHP = TP (µ̂, σ̂2).

3. RunChoose-HypothesisX(HS , ĤP , ǫ/8, δ/3).

(a) If it returnsHS then returnHS.

(b) Otherwise, if it returnŝHP , then runLocate-Binomial(µ̂, σ̂2, n) to obtain a Binomial
distributionHB = Bin(n̂, p̂) with n̂ ≤ n, and returnHB.

Figure 7:Proper-Learn-PBD(n, ǫ, δ). The valuesc1, c2 are the absolute constants from Lemmas3 and5.
ĤP is defined in terms ofHP as described in Definition2.

1. Proper-Learn-SparseX(n, ǫ, δ): This procedure draws̃O(1/ǫ2) · log(1/δ) samples fromX, does

(1/ǫ)O(log
2(1/ǫ)) · Õ

(
log n · log 1

δ

)
bit operations, and outputs a PBDHS in sparse form. The guarantee

is similar to that ofLearn-Sparse. Namely, ifX is ǫ-close to some sparse form PBDY in the cover
Sǫ of Theorem4, then, with probability at least1− δ over the samples drawn fromX, dTV (X,HS) ≤ 6ǫ.

The procedureProper-Learn-SparseX(n, ǫ, δ) is given in Figure8; we explain the procedure in
tandem with a proof of correctness. As inLearn-Sparse, we start by truncatingΘ(ǫ) of the probability
mass from each end ofX to obtain a conditional distributionX[â,b̂]. In particular, we computêa andb̂ as

described in the beginning of the proof of Lemma3 (settingǫ′ = ǫ andδ′ = δ). Claim4 implies that, with
probability at least1 − δ/2, X(≤ â), 1 − X(≤ b̂) ∈ [3ǫ/2, 5ǫ/2]. (Let us denote this event byG.) We
distinguish the following cases:
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Proper-Learn-Sparse(n, ǫ, δ)

1. DrawM = 32 log(8/δ)/ǫ2 samples fromX and sort them to obtain a list of values0 ≤ s1 ≤
· · · ≤ sM ≤ n.

2. Defineâ := s⌈2ǫM⌉ andb̂ := s⌊(1−2ǫ)M⌋.

3. If b̂− â > (C/ǫ)3 (whereC is the constant in the statement of Theorem4), output “fail” and return
the (trivial) hypothesis which puts probability mass1 on the point0.

4. Otherwise,

(a) ConstructS ′
ǫ, anǫ-cover of the set of all PBDs of order(C/ǫ)3 (see Theorem4).

(b) Let S̃ǫ be the set of all distributions of the formA(x − β) whereA is a distribution fromS ′
ǫ

andβ is an integer in the range[â− (C/ǫ)3, . . . , b̂].

(c) Run the tournament described in the proof of Lemma10 on S̃ǫ, using confidence parameter
δ/2. Return the (sparse PBD) hypothesis that this tournament outputs.

Figure 8:Proper-Learn-Sparse(n, ǫ, δ).

• If b̂− â > ω = (C/ǫ)3, whereC is the constant in the statement of Theorem4, the algorithm outputs
“fail,” returning the trivial hypothesis that puts probability mass1 on the point0. Observe that, if
b̂ − â > ω andX(≤ â), 1 − X(≤ b̂) ∈ [3ǫ/2, 5ǫ/2], thenX cannot beǫ-close to a sparse-form
distribution in the cover.

• If b̂ − â ≤ ω, then the algorithm proceeds as follows. LetS ′
ǫ be anǫ-cover of the set of all PBDs

of orderω, i.e., all PBDs which are sums of justω Bernoulli random variables. By Theorem4, it
follows that|S ′

ǫ| = (1/ǫ)O(log2(1/ǫ)) and thatS ′
ǫ can be constructed in time(1/ǫ)O(log2(1/ǫ)). Now,

let S̃ǫ be the set of all distributions of the formA(x− β) whereA is a distribution fromS ′
ǫ andβ is

an integer “shift” which is in the range[â − ω, . . . , b̂]. Observe that there areO(1/ǫ3) possibilities
for β and |S ′

ǫ| possibilities forA, so we similarly get that|S̃ǫ| = (1/ǫ)O(log2(1/ǫ) and thatS̃ǫ can
be constructed in time(1/ǫ)O(log2(1/ǫ) log n. Our algorithmProper-Learn-Sparse constructs
the setS̃ǫ and runs the tournament described in the proof of Lemma10(usingS̃ǫ in place ofSǫ, and
δ/2 in place ofδ). We will show that, ifX is ǫ-close to some sparse form PBDY ∈ Sǫ and eventG
happens, then, with probability at least1− δ

2 , the output of the tournament is a sparse PBD that is6ǫ-
close toX.

Analysis: The sample complexity and running time ofProper-Learn-Sparse follow immediately
from Claim4 and Lemma10. To show correctness, it suffices to argue that, ifX is ǫ-close to some sparse
form PBDY ∈ Sǫ and eventG happens, thenX is ǫ-close to some distribution iñSǫ. Indeed, suppose
thatY is an orderω PBDZ translated by someβ and suppose thatX(≤ â), 1 −X(≤ b̂) ∈ [3ǫ/2, 5ǫ/2].
Since at least1− O(ǫ) of the mass ofX is in [â, b̂], it is clear thatβ must be in the range[â− ω, . . . , b̂],
as otherwiseX could not beǫ-close toY. SoY ∈ S̃ǫ.

2. Locate-Binomial(µ̂, σ̂2, n): This routine takes as input the output(µ̂, σ̂2) of Learn-PoissonX(n, ǫ, δ)
and computes a Binomial distributionHB, without any additional samples fromX. The guarantee is that,
if X is notǫ-close to any sparse form distribution in the coverSǫ of Theorem4, then, with probability at
least1− δ (over the randomness in the output ofLearn-Poisson),HB will be O(ǫ)-close toX.

Let µ andσ2 be the (unknown) mean and variance of distributionX and assume thatX is not ǫ-close
to any sparse form distribution inSǫ. Our analysis from Section2.2 shows that, with probability at least
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Locate-Binomial(µ̂, σ̂2, n)

(a) If σ̂2 ≤ n
4 , setσ2

1 = σ̂2; otherwise, setσ2
1 = n

4 .

(b) If µ̂2 ≤ n(µ̂− σ2
1), setσ2

2 = σ2
1; otherwise, setσ2

2 = nµ̂−µ̂2

n .

(c) Return the hypothesis distributionHB = Bin(n̂, p̂), where n̂ =
⌊
µ̂2/(µ̂ − σ2

2)
⌋

and p̂ =
(µ̂ − σ2

2)/µ̂.

Figure 9:Locate-Binomial(µ̂, σ̂2, n).

1 − δ, the output(µ̂, σ̂2) of Learn-PoissonX(n, ǫ, δ) satisfies thatdTV (X,TP (µ̂, σ̂2)) = O(ǫ) as
well as the bounds (1) and (2) of Section2.2 (with ǫ in place ofǫ′). We will call all these conditions our
“working assumptions.” We provide no guarantees when the working assumptions are not satisfied.

Locate-Binomial is presented in Figure9; we proceed to explain the algorithm and establish its
correctness. This routine has three steps. The first two eliminate corner-cases in the values ofµ̂ andσ̂2,
while the last step defines a Binomial distributionHB ≡ Bin(n̂, p̂) with n̂ ≤ n that isO(ǫ)-close to
HP ≡ TP (µ̂, σ̂2) and hence toX under our working assumptions. (We note that a significant portion
of the work below is to ensure thatn̂ ≤ n, which does not seem to follow from a more direct approach.
Getting n̂ ≤ n is necessary in order for our learning algorithm for order-n PBDs to be truly proper.)
Throughout (a), (b) and (c) below we assume that our working assumptions hold. In particular, our
assumptions are used every time we employ the bounds (1) and (2) of Section2.2.

(a) Tweaking σ̂2: If σ̂2 ≤ n
4 , we setσ2

1 = σ̂2; otherwise, we setσ2
1 = n

4 . (As intuition for this tweak,
observe that the largest possible variance of a Binomial distribution Bin(n, ·) is n/4.) We note for
future reference that in both cases (2) gives

(1− ǫ)σ2 ≤ σ2
1 ≤ (1 + ǫ)σ2, (5)

where the lower bound follows from (2) and the fact that any PBD satisfiesσ2 ≤ n
4 .

We prove next that our setting ofσ2
1 results indTV (TP (µ̂, σ̂2), TP (µ̂, σ2

1)) ≤ O(ǫ). Indeed, if
σ̂2 ≤ n

4 then this distance is zero and the claim certainly holds. Otherwise we have that(1 + ǫ)σ2 ≥
σ̂2 > σ2

1 = n
4 ≥ σ2, where we used (2). Hence, by Lemma2 we get:

dTV (TP (µ̂, σ̂2), TP (µ̂, σ2
1)) ≤ |σ̂2 − σ2

1 |+ 1

σ̂2

≤ ǫσ2 + 1

σ2
= O(ǫ), (6)

where we used the fact thatσ2 = Ω(1/ǫ2) from (1).

(b) Tweaking σ2
1: If µ̂2 ≤ n(µ̂ − σ2

1) (equivalently,σ2
1 ≤ nµ̂−µ̂2

n ), setσ2
2 = σ2

1 ; otherwise, setσ2
2 =

nµ̂−µ̂2

n . (As intuition for this tweak, observe that the variance of aBin(n, ·) distribution with mean

µ̂ cannot exceednµ̂−µ̂2

n .) We claim that this results indTV (TP (µ̂, σ2
1), TP (µ̂, σ2

2)) ≤ O(ǫ). Indeed,
if µ̂2 ≤ n(µ̂− σ2

1), then clearly the distance is zero and the claim holds. Otherwise

• Observe first thatσ2
1 > σ2

2 andσ2
2 ≥ 0, where the last assertion follows from the fact thatµ̂ ≤ n

by construction.
• Next, suppose thatX = PBD(p1, . . . , pn). Then from Cauchy-Schwarz we get that

µ2 =

(
n∑

i=1

pi

)2

≤ n

(
n∑

i=1

p2i

)
= n(µ− σ2).
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Rearranging this yields
µ(n− µ)

n
≥ σ2. (7)

We now have that

σ2
2 =

nµ̂− µ̂2

n
≥ n(µ− ǫσ)− (µ+ ǫσ)2

n

=
nµ− µ2 − ǫ2σ2 − ǫσ(n+ 2µ)

n

≥ σ2 − ǫ2

n
σ2 − 3ǫσ

≥ (1− ǫ2)σ2 − 3ǫσ ≥ (1−O(ǫ))σ2 (8)

where the first inequality follows from (2), the second inequality follows from (7) and the fact
that any PBD overn variables satisfiesµ ≤ n, and the last one from (1).

• Given the above, we get by Lemma2 that:

dTV (TP (µ̂, σ2
1), TP (µ̂, σ2

2)) ≤
σ2
1 − σ2

2 + 1

σ2
1

≤ (1 + ǫ)σ2 − (1−O(ǫ))σ2 + 1

(1− ǫ)σ2
= O(ǫ), (9)

where we used thatσ2 = Ω(1/ǫ2) from (1).

(c) Constructing a Binomial Distribution: We construct a Binomial distributionHB that isO(ǫ)-close
to TP (µ̂, σ2

2). If we do this then, by (6), (9), our working assumption thatdTV (HP ,X) = O(ǫ),
and the triangle inequality, we have thatdTV (HB,X) = O(ǫ) and we are done. The Binomial
distributionHB that we construct isBin(n̂, p̂), where

n̂ =
⌊
µ̂2/(µ̂ − σ2

2)
⌋

and p̂ = (µ̂− σ2
2)/µ̂.

Note that, from the way thatσ2
2 is set in Step (b) above, we have thatn̂ ≤ n and p̂ ∈ [0, 1], as

required forBin(n̂, p̂) to be a valid Binomial distribution and a valid output for Part 2 of Theorem1.

Let us bound the total variation distance betweenBin(n̂, p̂) andTP (µ̂, σ2
2). First, using Lemma1

we have:

dTV (Bin(n̂, p̂), TP (n̂p̂, n̂p̂(1− p̂))

≤ 1√
n̂p̂(1− p̂)

+
2

n̂p̂(1− p̂)
. (10)

Notice that

n̂p̂(1− p̂) ≥
(

µ̂2

µ̂− σ2
2

− 1

)(
µ̂− σ2

2

µ̂

)(
σ2
2

µ̂

)

= σ2
2 − p̂(1− p̂) ≥ (1−O(ǫ))σ2 − 1

≥ Ω(1/ǫ2),

where the second inequality uses (8) (or (5) depending on which case of Step (b) we fell into) and
the last one uses the fact thatσ2 = Ω(1/ǫ2) from (1). So plugging this into (10) we get:

dTV (Bin(n̂, p̂), TP (n̂p̂, n̂p̂(1− p̂)) = O(ǫ).
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The next step is to compareTP (n̂p̂, n̂p̂(1− p̂)) andTP (µ̂, σ2
2). Lemma2 gives:

dTV (TP (n̂p̂, n̂p̂(1− p̂)), TP (µ̂, σ2
2))

≤ |n̂p̂− µ̂|
min(

√
n̂p̂(1− p̂), σ2)

+
|n̂p̂(1− p̂)− σ2

2 |+ 1

min(n̂p̂(1− p̂), σ2
2)

≤ 1√
n̂p̂(1− p̂)

+
2

n̂p̂(1− p̂)

= O(ǫ).

By the triangle inequality we get

dTV (Bin(n̂, p̂), TP (µ̂, σ2
2) = O(ǫ),

which was our ultimate goal.

3. Proper-Learn-PBD: Given theProper-Learn-Sparse andLocate-Binomial routines de-
scribed above, we are ready to describe our proper learning algorithm. The algorithm is similar to our
non-proper learning one,Learn-PBD, with the following modifications: In the first step, insteadof
runningLearn-Sparse, we runProper-Learn-Sparse to get a sparse form PBDHS . In the
second step, we still runLearn-Poisson as we did before to get a translated Poisson distribution
HP . Then we runChoose-Hypothesis feeding itHS and HP as input. If the distribution re-
turned byChoose-Hypothesis is HS , we just outputHS. If it returns HP instead, then we run
Locate-Binomial to convert it to a Binomial distribution that is still close to the unknown distribu-
tion X. We tune the parametersǫ andδ based on the above analyses to guarantee that, with probability at
least1− δ, the distribution output by our overall algorithm isǫ-close to the unknown distributionX. The

number of samples we need is̃O(1/ǫ2) log(1/δ), and the running time is
(
1
ǫ

)O(log2 1/ǫ) · Õ(log n · log 1
δ ).

This concludes the proof of Part 2 of Theorem1, and thus of the entire theorem.

3 Learning weighted sums of independent Bernoullis

In this section we consider a generalization of the problem of learning an unknown PBD, by studying the
learnability of weighted sums of independent Bernoulli random variablesX =

∑n
i=1wiXi. (Throughout this

section we assume for simplicity that the weights are “known” to the learning algorithm.) In Section3.1we show
that if there are only constantly many different weights then such distributions can be learned by an algorithm
that usesO(log n) samples and runs in timepoly(n). In Section3.2we show that if there aren distinct weights
then even if those weights have an extremely simple structure – thei-th weight is simplyi – any algorithm must
useΩ(n) samples.

3.1 Learning sums of weighted independent Bernoulli randomvariables with few distinct weights

Recall Theorem2:

THEOREM 2. LetX =
∑n

i=1 aiXi be a weighted sum of unknown independent Bernoulli random variables such
that there are at mostk different values in the set{a1, . . . , an}. Then there is an algorithm with the following
properties: givenn, a1, . . . , an and access to independent draws fromX, it uses

Õ(k/ǫ2) · log(n) · log(1/δ)

samples from the target distributionX, runs in time

poly
(
nk · (k/ǫ)k log2(k/ǫ)

)
· log(1/δ),
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and with probability at least1−δ outputs a hypothesis vectorp̂ ∈ [0, 1]n defining independent Bernoulli random
variablesX̂i with E[X̂i] = pi such thatdTV (X̂,X) ≤ ǫ, whereX̂ =

∑n
i=1 aiX̂i.

Remark 13. A special case of a more general recent result [DDO+13] implies a highly efficient algorithm for
the special case of Theorem2 in which thek distinct values thata1, . . . , an can have are just{0, 1, . . . , k − 1}.
In this case, the algorithm of [DDO+13] draws poly(k, 1/ǫ) samples from the target distribution and, in the
bit complexity model of this paper, has running timepoly(k, 1/ǫ, log n); thus its running time and sample com-
plexity are both significantly better than Theorem2. However, even the most general version of the [DDO+13]
result cannot handle the full generality of Theorem2, which imposes no conditions of any sort on thek distinct
weights — they may be any real values. The [DDO+13] result leverages known central limit theorems for total
variation distance from probability theory that deal with sums of independent (small integer)-valued random
variables. We are not aware of such central limit theorems for the more general setting of arbitrary real values,
and thus we take a different approach to Theorem2, via covers for PBDs, as described below.

Given a vectora = (a1, . . . , an) of weights, we refer to a distributionX =
∑n

i=1 aiXi (whereX1, . . . ,Xn

are independent Bernoullis which may have arbitrary means)as ana-weighted sum of Bernoullis, and we write
Sa to denote the space of all such distributions.

To prove Theorem2 we first show thatSa has anǫ-cover that is not too large. We then show that by running
a “tournament” between all pairs of distributions in the cover, using the hypothesis testing subroutine from
Section2.3, it is possible to identify a distribution in the cover that is close to the targeta-weighted sum of
Bernoullis.

Lemma 14. There is anǫ-coverSa,ǫ ⊂ Sa of size|Sa,ǫ| ≤ (n/k)3k · (k/ǫ)k·O(log2(k/ǫ)) that can be constructed
in timepoly(|Sa,ǫ|).

Proof. Let {bj}kj=1 denote the set of distinct weights ina1, . . . , an, and letnj =
∣∣{i ∈ [n] | ai = bj}

∣∣. With

this notation, we can writeX =
∑k

j=1 bjSj = g(S), whereS = (S1, . . . , Sk) with eachSj a sum ofnj

many independent Bernoulli random variables andg(y1, . . . , yk) =
∑k

j=1 bjyj. Clearly we have
∑k

j=1 nj = n.

By Theorem4, for eachj ∈ {1, . . . , k} the space of all possibleSj ’s has an explicit(ǫ/k)-coverSj
ǫ/k of size

|Sj
ǫ/k| ≤ n2

j + n · (k/ǫ)O(log2(k/ǫ)). By independence acrossSj ’s, the productQ =
∏k

j=1 S
j
ǫ/k is anǫ-cover for

the space of all possibleS’s, and hence the set

{Q =
k∑

j=1
bjSj : (S1, . . . , Sk) ∈ Q}

is anǫ-cover forSa. SoSa has an explicitǫ-cover of size|Q| =∏k
j=1 |S

j
ǫ/k| ≤ (n/k)2k ·(k/ǫ)k·O(log2(k/ǫ)).

Proof of Theorem2: We claim that the algorithm of Lemma10 has the desired sample complexity and can be
implemented to run in the claimed time bound. The sample complexity bound follows directly from Lemma10.
It remains to argue about the time complexity. Note that the running time of the algorithm ispoly(|Sa,ǫ|) times
the running time of a competition. We will show that a competition betweenH1,H2 ∈ Sa,ǫ can be carried out by
an efficient algorithm. This amounts to efficiently computing the probabilitiesp1 = H1(W1) andq1 = H2(W1)
and efficiently computingH1(x) andH2(x) for each of them samplesx drawn in step (2) of the competition.
Note that each elementw ∈ W (the support ofX in the competitionChoose-Hypothesis) is a value
w =

∑k
j=1 bjn

′
j wheren′

j ∈ {0, . . . , nj}. Clearly, |W| ≤ ∏k
j=1(nj + 1) = O((n/k)k). It is thus easy to see

thatp1, q1 and each ofH1(x),H2(x) can be efficiently computed as long as there is an efficient algorithm for
the following problem: givenH =

∑k
j=1 bjSj ∈ Sa,ǫ andw ∈ W, computeH(w). Indeed, fix any suchH,w.

We have that

H(w) =
∑

m1,...,mk

k∏
j=1

Pr
H
[Sj = mj],
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where the sum is over allk-tuples(m1, . . . ,mk) such that0 ≤ mj ≤ nj for all j andb1m1 + · · · + bkmk = w
(as noted above there are at mostO((n/k)k) suchk-tuples). To complete the proof of Theorem2 we note that
PrH [Sj = mj ] can be computed inO(n2

j) time by standard dynamic programming. �

We close this subsection with the following remark: In [DDS12b] the authors have given apoly(ℓ, log(n),
1/ǫ)-time algorithm that learns anyℓ-modal distribution over[n] (i.e., a distribution whose pdf has at mostℓ
“peaks” and “valleys”) usingO(ℓ log(n)/ǫ3 + (ℓ/ǫ)3 log(ℓ/ǫ)) samples. It is natural to wonder whether this
algorithm could be used to efficiently learn a sum ofn weighted independent Bernoulli random variables withk
distinct weights, and thus give an alternate algorithm for Theorem2, perhaps with better asymptotic guarantees.
However, it is easy to construct a sumX =

∑n
i=1 aiXi of n weighted independent Bernoulli random variables

with k distinct weights such thatX is 2k-modal. Thus, a naive application of the [DDS12b] result would only
give an algorithm with sample complexity exponential ink, rather than the quasilinear sample complexity of
our current algorithm. If the2k-modality of the above-mentioned example is the worst case (which we do not
know), then the [DDS12b] algorithm would give apoly(2k, log(n), 1/ǫ)-time algorithm for our problem that
usesO(2k log(n)/ǫ3) + 2O(k) · Õ(1/ǫ3) examples (so comparing with Theorem2, exponentially worse sample
complexity as a function ofk, but exponentially better running time as a function ofn). Finally, in the context of
this question (how many modes can there be for a sum ofn weighted independent Bernoulli random variables
with k distinct weights), it is interesting to recall the result ofK.-I. Sato [Sat93] which shows that for anyN
there are two unimodal distributionsX,Y such thatX + Y has at leastN modes.

3.2 Sample complexity lower bound for learning sums of weighted independent Bernoulli ran-
dom variables

Recall Theorem3:

THEOREM 3. Let X =
∑n

i=1 i · Xi be a weighted sum of unknown independent Bernoulli random variables
(where thei-th weight is simplyi). LetL be any learning algorithm which, givenn and access to independent
draws fromX, outputs a hypothesis distribution̂X such thatdTV (X̂,X) ≤ 1/25 with probability at least
e−o(n). ThenL must useΩ(n) samples.

The intuition underlying this lower bound is straightforward: Suppose there aren/100 variablesXi, chosen
uniformly at random, which havepi = 100/n (call these the “relevant variables”), and the rest of thepi’s are
zero. Given at mostc · n draws fromX for a small constantc, with high probability some constant fraction
of the relevantXi’s will not have been “revealed” as relevant, and from this itis not difficult to show that any
hypothesis must have constant error. A detailed argument follows.
Proof of Theorem3: We define a probability distribution over possible target probability distributionsX as
follows: A subsetS ⊂ {n/2 + 1, . . . , n} of size|S| = n/100 is drawn uniformly at random from all

( n/2
n/100

)

possible outcomes.. The vectorp = (p1, . . . , pn) is defined as follows: for eachi ∈ S the valuepi equals
100/n = 1/|S|, and for all otheri the valuepi equals 0. Thei-th Bernoulli random variableXi hasE[Xi] = pi,
and the target distribution isX = Xp =

∑n
i=1 iXi.

We will need two easy lemmas:

Lemma 15. Fix anyS, p as described above. For anyj ∈ {n/2 + 1, . . . , n} we haveXp(j) 6= 0 if and only if
j ∈ S. For anyj ∈ S the valueXp(j) is exactly(100/n)(1 − 100/n)n/100−1 > 35/n (for n sufficiently large),
and henceXp({n/2 + 1, . . . , n}) > 0.35 (again forn sufficiently large).

The first claim of the lemma holds because any set ofc ≥ 2 numbers from{n/2 + 1, . . . , n} must sum to
more thann. The second claim holds because the only way a drawx from Xp can havex = j is if Xj = 1 and
all otherXi are 0 (here we are usinglimx→∞(1− 1/x)x = 1/e).

The next lemma is an easy consequence of Chernoff bounds:
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Lemma 16. Fix any p as defined above, and consider a sequence ofn/2000 independent draws fromXp =∑
i iXi. With probability1 − e−Ω(n) the total number of indicesj ∈ [n] such thatXj is ever 1 in any of the

n/2000 draws is at mostn/1000.

We are now ready to prove Theorem3. Let L be a learning algorithm that receivesn/2000 samples. Let
S ⊂ {n/2 + 1, . . . , n} andp be chosen randomly as defined above, and set the target toX = Xp.

We consider an augmented learnerL′ that is given “extra information.” For each point in the sample, instead
of receiving the value of that draw fromX the learnerL′ is given the entire vector(X1, . . . ,Xn) ∈ {0, 1}n. Let
T denote the set of elementsj ∈ {n/2 + 1, . . . , n} for which the learner is ever given a vector(X1, . . . ,Xn)
that hasXj = 1. By Lemma16 we have|T | ≤ n/1000 with probability at least1 − e−Ω(n); we condition on
the event|T | ≤ n/1000 going forth.

Fix any valueℓ ≤ n/1000. Conditioned on|T | = ℓ, the setT is equally likely to be anyℓ-element subset of
S, and all possible “completions” ofT with an additionaln/100−ℓ ≥ 9n/1000 elements of{n/2+1, . . . , n}\T
are equally likely to be the true setS.

Let H denote the hypothesis distribution over[n] that algorithmL outputs. LetR denote the set{n/2 +
1, . . . , n} \ T ; note that since|T | = ℓ ≤ n/1000, we have|R| ≥ 499n/1000. Let U denote the set{i ∈
R : H(i) ≥ 30/n}. SinceH is a distribution we must have|U | ≤ n/30. It is easy to verify that we have
dTV (X,H) ≥ 5

n |S\U |. SinceS is a uniform random extension ofT with at mostn/100−ℓ ∈ [9n/1000, n/100]
unknown elements ofR and |R| ≥ 499n/1000, an easy calculation shows thatPr[|S \ U | > 8n/1000] is
1 − e−Ω(n). This means that with probability1 − e−Ω(n) we havedTV (X,H) ≥ 8n

1000 · 5
n = 1/25, and the

theorem is proved. �

4 Conclusion and open problems

Since the initial conference publication of this work [DDS12a], some progress has been made on problems
related to learning Poisson Binomial Distributions. The initial conference version [DDS12a] asked whether log-
concave distributions over[n] (a generalization of Poisson Binomial Distributions) can be learned to accuracy
ǫ with poly(1/ǫ) samples independent ofn. An affirmative answer to this question was subsequently provided
in [CDSS13]. More recently, [DDO+13] studied a different generalization of Poisson Binomial Distributions
by considering random variables of the formX =

∑n
i=1 Xi where theXi’s are mutually independent (not

necessarily identical) distributions that are each supported on the integers{0, 1, . . . , k − 1} (so, thek = 2 case
corresponds to Poisson Binomial Distributions). [DDO+13] gave an algorithm for learning these distributions
to accuracyǫ usingpoly(k, 1/ǫ) samples (independent ofn).

While our results in this paper essentially settle the sample complexity of learning an unknown Poisson Bi-
nomial Distribution, several goals remain for future work.Our non-proper learning algorithm is computationally
more efficient than our proper learning algorithm, but uses afactor of1/ǫ more samples. An obvious goal is to
obtain “the best of both worlds” by coming up with anO(1/ǫ2)-sample algorithm which performs̃O(log(n)/ǫ2)
bit operations and learns an unknown PBD to accuracyǫ (ideally, such an algorithm would even be proper and
output a PBD as its hypothesis). Another goal is to sharpen the sample complexity bounds of [DDO+13] and
determine the correct polynomial dependence onk and1/ǫ for the generalized problem studied in that work.
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A Extension of the Cover Theorem: Proof of Theorem4

Theorem4 is restating the main cover theorem (Theorem 1) of [DP13], except that it claims an additional
property, namely what follows the word “finally” in the statement of the theorem. (We will sometimes refer
to this property as thelast part of Theorem4 in the following discussion.) Our goal is to show that the cover
of [DP13] already satisfies this property without any modifications,thereby establishing Theorem4. To avoid
reproducing the involved constructions of [DP13], we will assume that the reader has some familiarity with
them. Still, our proof here will be self-contained.

First, we note that theǫ-coverSǫ of Theorem 1 of [DP13] is a subset of a largerǫ2 -coverS ′
ǫ/2 of size

n2+n · (1/ǫ)O(1/ǫ2), which includes all thek-sparse and all thek-heavy Binomial PBDs (up to permutations of
the underlyingpi’s), for somek = O(1/ǫ). Let us callS ′

ǫ/2 the “large ǫ
2 -cover” to distinguish it fromSǫ, which

we will call the “smallǫ-cover.” The reader is referred to Theorem 2 in [DP13] (and the discussion following
that theorem) for a description of the largeǫ2 -cover, and to Section 3.2 of [DP13] for how this cover is used to
construct the smallǫ-cover. In particular, the smallǫ-cover is a subset of the largeǫ/2-cover, including only a
subset of the sparse form distributions in the largeǫ/2-cover. Moreover, for every sparse form distribution in the
largeǫ/2-cover, the smallǫ-cover includes at least one sparse form distribution that isǫ/2-close in total variation
distance. Hence, if the largeǫ/2-cover satisfies the last part of Theorem4 (with ǫ/2 instead ofǫ andS ′

ǫ/2 instead
of Sǫ), it follows that the smallǫ-cover also satisfies the last part of Theorem4.

So we proceed to argue that, for allǫ, the largeǫ-cover implied by Theorem 2 of [DP13] satisfies the last
part of Theorem4. Let us first review how the large cover is constructed. (See Section 4 of [DP13] for the
details.) For every collection of indicators{Xi}ni=1 with expectations{E[Xi] = pi}i, the collection is subjected
to two filters, called theStage 1andStage 2filters, and described respectively in Sections 4.1 and 4.2 of [DP13].
Using the same notation as [DP13], let us denote by{Zi}i the collection output by the Stage 1 filter and by
{Yi}i the collection output by the Stage 2 filter. The collection{Yi}i output by the Stage 2 filter satisfies
dTV (

∑
iXi,

∑
i Yi) ≤ ǫ, and is included in the cover (possibly after permuting theYi’s). Moreover, it is in

sparse or heavy Binomial form. This way, it is made sure that,for every{Xi}i, there exists some{Yi}i in the
cover that isǫ-close and is in sparse or heavy Binomial form. We proceed to show that the cover thus defined
satisfies the last part of Theorem4.

For {Xi}i, {Yi}i and{Zi}i as above, let(µ, σ2), (µZ , σ
2
Z) and (µY , σ

2
Y ) denote respectively the (mean,

variance) pairs of the variablesX =
∑

iXi, Z =
∑

i Zi andY =
∑

i Yi. We argue first that the pair(µZ , σ
2
Z)

satisfies|µ − µZ | = O(ǫ) and|σ2 − σ2
Z | = O(ǫ · (1 + σ2)). Next we argue that, if the collection{Yi}i output

by the Stage 2 filter is in heavy Binomial form, then(µY , σ
2
Y ) satisfies|µ − µY | = O(1) and |σ2 − σ2

Y | =
O(1 + ǫ · (1 + σ2)), concluding the proof.

• Proof for(µZ , σ
2
Z): The Stage 1 filter only modifies the indicatorsXi with pi ∈ (0, 1/k)∪(1−1/k, 1), for

some well-chosenk = O(1/ǫ). For convenience let us defineLk = {i pi ∈ (0, 1/k)} andHk = {i pi ∈
(1 − 1/k, 1)} as in [DP13]. The filter of Stage 1 rounds the expectations of the indicators indexed byLk

to some value in{0, 1/k} so that no single expectation is altered by more than an additive 1/k, and the
sum of these expectations is not modified by more than an additive 1/k. Similarly, the expectations of the
indicators indexed byHk are rounded to some value in{1− 1/k, 1}. See the details of how the rounding
is performed in Section 4.1 of [DP13]. Let us then denote by{p′i}i the expectations of the indicators{Zi}i
resulting from the rounding. We argue that the mean and variance ofZ =

∑
i Zi is close to the mean and
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variance ofX. Indeed,

|µ− µZ | =

∣∣∣∣∣
∑

i

pi −
∑

i

p′i

∣∣∣∣∣

=

∣∣∣∣∣∣
∑

i∈Lk∪Hk

pi −
∑

i∈Lk∪Hk

p′i

∣∣∣∣∣∣
≤ O(1/k) = O(ǫ). (11)

Similarly,

|σ2 − σ2
Z | =

∣∣∣∣∣
∑

i

pi(1− pi)−
∑

i

p′i(1− p′i)

∣∣∣∣∣

≤

∣∣∣∣∣∣
∑

i∈Lk

pi(1− pi)−
∑

i∈Lk

p′i(1− p′i)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

i∈Hk

pi(1− pi)−
∑

i∈Hk

p′i(1 − p′i)

∣∣∣∣∣∣
.

We proceed to bound the two terms of the RHS separately. Sincethe argument is symmetric forLk and
Hk we only doLk. We have

∣∣∣∣∣∣
∑

i∈Lk

pi(1− pi)−
∑

i∈Lk

p′i(1− p′i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈Lk

(pi − p′i)(1− (pi + p′i))

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

i∈Lk

(pi − p′i)−
∑

i∈Lk

(pi − p′i)(pi + p′i)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑

i∈Lk

(pi − p′i)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

i∈Lk

(pi − p′i)(pi + p′i)

∣∣∣∣∣∣

≤ 1

k
+
∑

i∈Lk

|pi − p′i|(pi + p′i)

≤ 1

k
+

1

k

∑

i∈Lk

(pi + p′i)

≤ 1

k
+

1

k


2

∑

i∈Lk

pi + 1/k




=
1

k
+

1

k


 2

1− 1/k

∑

i∈Lk

pi(1− 1/k) + 1/k




≤ 1

k
+

1

k


 2

1− 1/k

∑

i∈Lk

pi(1− pi) + 1/k




≤ 1

k
+

1

k2
+

2

k − 1

∑

i∈Lk

pi(1− pi).

Using the above (and a symmetric argument for index setHk) we obtain:

|σ2 − σ2
Z | ≤

2

k
+

2

k2
+

2

k − 1
σ2 = O(ǫ)(1 + σ2). (12)

28



• Proof for (µY , σ
2
Y ): After the Stage 1 filter is applied to the collection{Xi}i, the resulting collection of

random variables{Zi}i has expectationsp′i ∈ {0, 1} ∪ [1/k, 1 − 1/k], for all i. The Stage 2 filter has
different form depending on the cardinality of the setM = {i | p′i ∈ [1/k, 1 − 1/k]}. In particular, if
|M| > k3 the output of the Stage 2 filter is in heavy Binomial form, while if |M| ≤ k3 the output of the
Stage 2 filter is in sparse form. As we are only looking to provide guarantee for the distributions in heavy
Binomial form, it suffices to only consider the former case next.

– |M| > k3: Let {Yi}i be the collection produced by Stage 2 and letY =
∑

i Yi. Then Lemma 4
of [DP13] implies that

|µZ − µY | = O(1) and |σ2
Z − σ2

Y | = O(1).

Combining this with (11) and (12) gives

|µ − µY | = O(1) and |σ2 − σ2
Y | = O(1 + ǫ · (1 + σ2)).

This concludes the proof of Theorem4.

B Birgé’s theorem: Learning unimodal distributions

Here we briefly explain how Theorem5 follows from [Bir97]. We assume that the reader is moderately familiar
with the paper [Bir97].

Birgé (see his Theorem 1 and Corollary 1) upper bounds the expected variation distance between the target
distribution (which he denotesf ) and the hypothesis distribution that is constructed by hisalgorithm (which
he denoteŝfn; it should be noted, though, that his “n” parameter denotes the number of samples used by the
algorithm, while we will denote this by “m”, reserving “n” for the domain{1, . . . , n} of the distribution).
More precisely, [Bir97] shows that this expected variation distance is at most thatof the Grenander estimator
(applied to learn a unimodal distribution when the mode is known) plus a lower-order term. For our Theorem5
we take Birgé’s “η” parameter to beǫ. With this choice ofη, by the results of [Bir87a, Bir87b] bounding the
expected error of the Grenander estimator, ifm = O(log(n)/ǫ3) samples are used in Birgé’s algorithm then the
expected variation distance between the target distribution and his hypothesis distribution is at mostO(ǫ). To
go from expected errorO(ǫ) to anO(ǫ)-accurate hypothesis with probability at least1 − δ, we run the above-
described algorithmO(log(1/δ)) times so that with probability at least1− δ some hypothesis obtained isO(ǫ)-
accurate. Then we use our hypothesis testing procedure of Lemma8, or, more precisely, the extension provided
in Lemma10, to identify anO(ǫ)-accurate hypothesis from within this pool ofO(log(1/δ)) hypotheses. (The
use of Lemma10 is why the running time of Theorem5 depends quadratically onlog(1/δ) and why the sample
complexity contains the second1

ǫ2
log 1

δ log log
1
δ term.)

It remains only to argue that a single run of Birgé’s algorithm on a sample of sizem = O(log(n)/ǫ3) can be
carried out inÕ(log2(n)/ǫ3) bit operations (recall that each sample is alog(n)-bit string). His algorithm begins
by locating anr ∈ [n] that approximately minimizes the value of his functiond(r) (see Section 3 of [Bir97]) to
within an additiveη = ǫ (see Definition 3 of his paper); intuitively thisr represents his algorithm’s “guess” at
the true mode of the distribution. To locate such anr, following Birgé’s suggestion in Section 3 of his paper, we
begin by identifying two consecutive points in the sample such thatr lies between those two sample points. This
can be done usinglogm stages of binary search over the (sorted) points in the sample, where at each stage of the
binary search we compute the two functionsd− andd+ and proceed in the appropriate direction. To compute
the functiond−(j) at a given pointj (the computation ofd+ is analogous), we recall thatd−(j) is defined as
the maximum difference over[1, j] between the empirical cdf and its convex minorant over[1, j]. The convex
minorant of the empirical cdf (overm points) can be computed iñO((log n)m) bit-operations (where thelog n
comes from the fact that each sample point is an element of[n]), and then by enumerating over all points in the
sample that lie in[1, j] (in timeO((log n)m)) we can computed−(j). Thus it is possible to identify two adjacent
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points in the sample such thatr lies between them in timẽO((log n)m). Finally, as Birgé explains in the last
paragraph of Section 3 of his paper, once two such points havebeen identified it is possible to again use binary
search to find a pointr in that interval whered(r) is minimized to within an additiveη. Since the maximum
difference betweend− andd+ can never exceed 1, at mostlog(1/η) = log(1/ǫ) stages of binary search are
required here to find the desiredr.

Finally, once the desiredr has been obtained, it is straightforward to output the final hypothesis (which Birgé
denotesf̂n). As explained in Definition 3, this hypothesis is the derivative of F̃ r

n , which is essentially the convex
minorant of the empirical cdf to the left ofr and the convex majorant of the empirical cdf to the right ofr. As
described above, given a value ofr these convex majorants and minorants can be computed inÕ((log n)m)
time, and the derivative is simply a collection of uniform distributions as claimed. This concludes our sketch of
how Theorem5 follows from [Bir97].

C Efficient Evaluation of the Poisson Distribution

In this section we provide an efficient algorithm to compute an additive approximation to the Poisson probability
mass function. It seems that this should be a basic operationin numerical analysis, but we were not able to find
it explicitly in the literature. Our main result for this section is the following.

Theorem 6. There is an algorithm that, on input a rational numberλ > 0, and integersk ≥ 0 and t > 0,
produces an estimatêpk such that

|p̂k − pk| ≤
1

t
,

wherepk = λke−λ

k! is the probability that the Poisson distribution of parameter λ assigns to integerk. The
running time of the algorithm is̃O(〈t〉3 + 〈k〉 · 〈t〉+ 〈λ〉 · 〈t〉).

Proof. Clearly we cannot just computee−λ, λk and k! separately, as this will take time exponential in the
description complexity ofk andλ. We follow instead an indirect approach. We start by rewriting the target
probability as follows

pk = e−λ+k ln(λ)−ln(k!).

Motivated by this formula, let
Ek := −λ+ k ln(λ)− ln(k!).

Note thatEk ≤ 0. Our goal is to approximateEk to within high enough accuracy and then use this approxima-
tion to approximatepk.

In particular, the main part of the argument involves an efficient algorithm to compute an approximation̂̂Ek

toEk satisfying ∣∣∣̂̂Ek − Ek

∣∣∣ ≤ 1

4t
≤ 1

2t
− 1

8t2
. (13)

This approximation will have bit complexitỹO(〈k〉+〈λ〉+〈t〉) and be computable in timẽO(〈k〉·〈t〉+〈λ〉+〈t〉3).
We show that if we had such an approximation, then we would be able to complete the proof. For this,

we claim that it suffices to approximatee
̂̂
Ek to within an additive error12t . Indeed, ifp̂k were the result of this
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approximation, then we would have:

p̂k ≤ e
̂̂
Ek +

1

2t

≤ eEk+
1
2t
− 1

8t2 +
1

2t

≤ eEk+ln(1+ 1
2t
) +

1

2t

≤ eEk

(
1 +

1

2t

)
+

1

2t
≤ pk +

1

t
;

and similarly

p̂k ≥ e
̂̂
Ek − 1

2t

≥ eEk−( 1
2t
− 1

8t2
) − 1

2t

≥ eEk−ln(1+ 1
2t
) − 1

2t

≥ eEk

/(
1 +

1

2t

)
− 1

2t

≥ eEk

(
1− 1

2t

)
− 1

2t
≥ pk −

1

t
.

To approximatee
̂̂
Ek given

̂̂
Ek, we need the following lemma:

Lemma 17. Letα ≤ 0 be a rational number. There is an algorithm that computes an estimateêα such that
∣∣∣êα − eα

∣∣∣ ≤ 1

2t

and has running timẽO(〈α〉 · 〈t〉+ 〈t〉2).

Proof. Sinceeα ∈ [0, 1], the point of the additive grid{ i
4t}4ti=1 closest toeα achieves error at most1/(4t).

Equivalently, in a logarithmic scale, consider the grid{ln i
4t}4ti=1 and letj∗ := argminj

{∣∣∣α− ln( j
4t)
∣∣∣
}

. Then,

we have that ∣∣∣∣
j∗

(4t)
− eα

∣∣∣∣ ≤
1

4t
.

The idea of the algorithm is to approximately identify the point j∗, by computing approximations to the points of

the logarithmic grid combined with a binary search procedure. Indeed, consider the “rounded” grid{l̂n i
4t}4ti=1

where eacĥln( i
4t) is an approximation toln( i

4t ) that is accurate to within an additive116t . Notice that, for
i = 1, . . . , 4t:

ln

(
i+ 1

4t

)
− ln

(
i

4t

)
= ln

(
1 +

1

i

)
≥ ln

(
1 +

1

4t

)
> 1/8t.

Given that our approximations are accurate to within an additive1/16t, it follows that the rounded grid{l̂n i
4t}4ti=1

is monotonic ini.
The algorithm does not construct the points of this grid explicitly, but adaptively as it needs them. In

particular, it performs a binary search in the set{1, . . . , 4t} to find the pointi∗ := argmini

{∣∣∣α− l̂n( i
4t )
∣∣∣
}

. In

every iteration of the search, when the algorithm examines the pointj, it needs to compute the approximation

gj =
̂ln( j

4t) and evaluate the distance|α−gj|. It is known that the logarithm of a numberx with a binary fraction
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of L bits and an exponent ofo(L) bits can be computed to within a relative errorO(2−L) in time Õ(L) [Bre75].
It follows from this thatgj hasO(〈t〉) bits and can be computed in timẽO(〈t〉). The subtraction takes linear
time, i.e., it usesO(〈α〉 + 〈t〉) bit operations. Therefore, each step of the binary search can be done in time
O(〈α〉) + Õ(〈t〉) and thus the overall algorithm hasO(〈α〉 · 〈t〉) + Õ(〈t〉2) running time.

The algorithm outputsi
∗

4t as its final approximation toeα. We argue next that the achieved error is at most
an additive1

2t . Since the distance between two consecutive points of the grid {ln i
4t}4ti=1 is more than1/(8t) and

our approximations are accurate to within an additive1/16t, a little thought reveals thati∗ ∈ {j∗−1, j∗, j∗+1}.
This implies thati

∗

4t is within an additive1/2t of eα as desired, and the proof of the lemma is complete.

Given Lemma17, we describe how we could approximatee
̂̂
Ek given

̂̂
Ek. Recall that we want to output an

estimatep̂k such that|p̂k − e
̂̂
Ek | ≤ 1/(2t). We distinguish the following cases:

• If
̂̂
Ek ≥ 0, we outputp̂k := 1. Indeed, given that

∣∣∣̂̂Ek−Ek

∣∣∣ ≤ 1
4t andEk ≤ 0, if

̂̂
Ek ≥ 0 then

̂̂
Ek ∈ [0, 1

4t ].

Hence, becauset ≥ 1, e
̂̂
Ek ∈ [1, 1 + 1/2t], so1 is within an additive1/2t of the right answer.

• Otherwise,p̂k is defined to be the estimate obtained by applying Lemma17 for α :=
̂̂
Ek. Given the bit

complexity of
̂̂
Ek, the running time of this procedure will bẽO(〈k〉 · 〈t〉+ 〈λ〉 · 〈t〉+ 〈t〉2).

Hence, the overall running time is̃O(〈k〉 · 〈t〉+ 〈λ〉 · 〈t〉+ 〈t〉3).

In view of the above, we only need to show how to compute
̂̂
Ek. There are several steps to our approxima-

tion:

1. (Stirling’s Asymptotic Approximation): Recall Stirling’s asymptotic approximation (see e.g., [Whi80]
p.193), which says thatln k! equals

k ln(k)− k + (1/2) · ln(2π) +
m∑

j=2

Bj · (−1)j

j(j − 1) · kj−1
+O(1/km)

whereBk are the Bernoulli numbers. We define an approximation ofln k! as follows:

l̂n k! := k ln(k)− k + (1/2) · ln(2π) +
m0∑

j=2

Bj · (−1)j

j(j − 1) · kj−1

for m0 := O
(⌈

〈t〉
〈k〉

⌉
+ 1
)
.

2. (Definition of an approximate exponent̂Ek): Define Êk := −λ + k ln(λ) − l̂n(k!). Given the above
discussion, we can calculate the distance ofÊk to the true exponentEk as follows:

|Ek − Êk| ≤ | ln(k!)− l̂n(k!)| ≤ O(1/km0) (14)

≤ 1

10t
. (15)

So we can focus our attention to approximatinĝEk. Note thatÊk is the sum ofm0 + 2 = O( log tlog k ) terms.
To approximate it within error1/(10t), it suffices to approximate each summand within an additive error

of O(1/(t · log t)). Indeed, we so approximate each summand and our final approximation
̂̂
Ek will be the

sum of these approximations. We proceed with the analysis:
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3. (Estimating2π): Since2π shows up in the above expression, we should try to approximate it. It is known
that the firstℓ digits of π can be computed exactly in timeO(log ℓ · M(ℓ)), whereM(ℓ) is the time to
multiply two ℓ-bit integers [Sal76, Bre76]. For example, if we use the Schönhage-Strassen algorithmfor
multiplication [SS71], we getM(ℓ) = O(ℓ · log ℓ · log log ℓ). Hence, choosingℓ := ⌈log2(12t · log t)⌉,
we can obtain in timẽO(〈t〉) an approximation̂2π of 2π that has a binary fraction ofℓ bits and satisfies:

|2̂π − 2π| ≤ 2−ℓ ⇒ (1− 2−ℓ)2π ≤ 2̂π ≤ (1 + 2−ℓ)2π.

Note that, with this approximation, we have
∣∣∣ln(2π) − ln(2̂π)

∣∣∣ ≤ ln(1− 2−ℓ) ≤ 2−ℓ ≤ 1/(12t · log t).

4. (Floating-Point Representation): We will also need accurate approximations toln 2̂π, ln k andlnλ. We
think of 2̂π andk as multiple-precision floating point numbers base2. In particular,

• 2̂π can be described with a binary fraction ofℓ+ 3 bits and a constant size exponent; and

• k ≡ 2⌈log k⌉ · k
2⌈log k⌉ can be described with a binary fraction of⌈log k⌉, i.e.,〈k〉, bits and an exponent

of lengthO(log log k), i.e.,O(log 〈k〉).

Also, sinceλ is a positive rational number,λ = λ1

λ2
, whereλ1 andλ2 are positive integers of at most

〈λ〉 bits. Hence, fori = 1, 2, we can think ofλi as a multiple-precision floating point number base
2 with a binary fraction of〈λ〉 bits and an exponent of lengthO(log 〈λ〉). Hence, if we chooseL =
⌈log2(12(3k + 1)t2 · k · λ1 · λ2)⌉ = O(〈k〉 + 〈λ〉 + 〈t〉), we can represent all numberŝ2π, λ1, λ2, k as
multiple precision floating point numbers with a binary fraction of L bits and an exponent ofO(logL)
bits.

5. (Estimating the logs): It is known that the logarithm of a numberx with a binary fraction ofL bits and an
exponent ofo(L) bits can be computed to within a relative errorO(2−L) in time Õ(L) [Bre75]. Hence,

in time Õ(L) we can obtain approximationŝln 2̂π, l̂n k, l̂n λ1, l̂nλ2 such that:

• |l̂n k − ln k| ≤ 2−Lln k ≤ 1
12(3k+1)t2

; and similarly

• |l̂nλi − lnλi| ≤ 1
12(3k+1)t2

, for i = 1, 2;

• |̂ln 2̂π − ln 2̂π| ≤ 1
12(3k+1)t2

.

6. (Estimating the terms of the series): To complete the analysis, we also need to approximate each term of
the formcj =

Bj

j(j−1)·kj−1 up to an additive error ofO(1/(t · log t)). We do this as follows: We compute

the numbersBj andkj−1 exactly, and we perform the division approximately.

Clearly, the positive integerkj−1 has description complexityj · 〈k〉 = O(m0 · 〈k〉) = O(〈t〉+ 〈k〉), since
j = O(m0). We computekj−1 exactly using repeated squaring in timeÕ(j · 〈k〉) = Õ(〈t〉 + 〈k〉). It is
known [Fil92] that the rational numberBj hasÕ(j) bits and can be computed iñO(j2) = Õ(〈t〉2) time.
Hence, the approximate evaluation of the termcj (up to the desired additive error of1/(t log t)) can be
done inÕ(〈t〉2+〈k〉), by a rational division operation (see e.g., [Knu81]). The sum of all the approximate
terms takes linear time, hence the approximate evaluation of the entire truncated series (comprising at most
m0 ≤ 〈t〉 terms) can be done iñO(〈t〉3 + 〈k〉 · 〈t〉) time overall.

Let
̂̂
Ek be the approximation arising if we use all the aforementioned approximations. It follows from the

above computations that ∣∣∣̂̂Ek − Êk

∣∣∣ ≤ 1

10t
.

33



7. (Overall Error): Combining the above computations we get:

∣∣∣̂̂Ek − Ek

∣∣∣ ≤ 1

4t
.

The overall time needed to obtain̂̂Ek was Õ(〈k〉 · 〈t〉 + 〈λ〉 + 〈t〉3) and the proof of Theorem6 is
complete.
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