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Abstract

We proven!t(1/7) /pO0(1) Jower bounds for the space complexity;epass streaming algorithms solving
the following problems om-vertex graphs:

e testing if an undirected graph has a perfect matching (timidies lower bounds for computing a maximum
matching or even just the maximum matching size),

e testing if two specific vertices are at distance at n2¢gt+ 1) in an undirected graph,
e testing if there is a directed path frasrio ¢ for two specific vertices andt in a directed graph.

The lower bounds hold fop = O(logn/loglogn). Prior to our result, it was known that these problems
requireQ(n?) space in one pass, but nd**(") lower bound was known for any> 2.

These streaming results follow from a communication coxipidower bound for a communication game
in which the players hold two graphs on the same set of verti€he task of the players is to find out whether
the sets of vertices at distance exagtly- 1 from a specific vertex intersect. The game requires a sigmific
amount of communication only if the players are forced taagpe a specific difficult order. This is reminiscent
of lower bounds for communication problems such as indea&imd) pointer chasing. Among other things, our
line of attack requires proving an information cost loweubd for a decision version of the classic pointer
chasing problem and a direct sum type theorem for the dispmof several instances of this problem.

1 Introduction

Graph problems in the streaming model have attracted arfeouat of attention over the last 15 years. Formally,
a streaming algorithm is presented with a sequence of grdgéseand it can read them one by one in the order
in which they appear in the sequence. The main computatresalrce studied for this kind of algorithm is the
amount of space it can use, i.e., the amount of informatiautathe graph the algorithm remembers during its
execution.

Due to advances in the storage technology, it is feasibleadaws to collect large amounts of data. Com-
panies store more and more information for reasons thatdectlata mining applications and legal obligations.
Sequential access often maximizes readout efficiency icdle of external storage devices. Whenever a single-
pass streaming algorithm requires an infeasible amountairi memory, it is natural to ask whether there exists a
significantly more efficient algorithm that uses a very smalinber of passes over data.

At a more theoretical level, relations between nodes (hew they are connected in the graph and what
the distances between them are) are a fundamental progegiyghs that is worth studying. When it comes
to exploring the structure of graphs, allowing for multigjasses seems to greatly improve the capabilities of
streaming algorithms. For instance, the algorithm of Dasn@aGollapudi, and Panigrahy [11], which received
the best paper award at PODS 2008, uses multiple passesdioumtriong random walks in the graph in order to
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approximate PageRank for vertices. Also many strong lowents ofQ2(n?) space for one pass easily break if
more than one pass is allowed. This is for instance the cagbdaarly lower bounds of Henzinger, Raghavan,
Rajogopalan(]21] and also the lower bounds of Feigenbaurhn @5

On the other hand, constructing lower bounds for graph problis usually based on constructing obstacles
for local exploration, and our paper is not different in trespect. We show that finding out if two vertices are
at a specific small distangeessentially requires/2 passes to be accomplished in spéde). The main idea is
similar to what is done for pointer chasing. Namely, we pladges in the order opposite to the sequence which
enables easy exploration.

Our results. Let n be the number of vertices in the graph andddte the allowed number of passes. We show

. o nlt+l/(2p+2) . .
strongly superlinear lower bounds Bf , = (W) bits of space for three problems:

e testing if the graph has a perfect matching,
e testing if two prespecified verticesandv are at distance at mo(p + 1) for an undirected input graph,

e testing if there is a directed path fromto v, whereu andv are prespecified vertices and the input graph is
directed.

In general, lower bounds stronger thav) require embedding a difficult instance of a problem into theete of
edges” as opposed to the “space of vertices,” which turnsodo difficult in many cases. For instance, fhg?)
lower bounds ofi[21] and [15] do not hold for algorithms theg allowed more than one pass.

Communication complexity is a standard tool for provingeating lower bounds. We describe our hard
communication problem from which we reduce to the strearpiadplems in Sectionl2. We now overview related
work.

Matchings. In the maximum matching problem, the goal is to produce a mari-cardinality set of non-adjacent
edges. Streaming algorithms for this problem and its wejiversion have received a lot of attention in recent
years[[15[ 28, 13,11, 217, 17,125,/ 14] 34].

Our result compares most directly to the lower bound of Féigem et al.[[15], who show that even checking
if a given matching is of maximum size requir@$n?) space in one pass. Our result can be seen as an extension
of their lower bound to the case when multiple passes areetloEven whemp > 2 passes are allowed, we show
that still a superlinear amount of space, roughly (/) is required to find out if there is a perfect matching in
the graph. This of course implies that tasks such as congpatmaximum matching or even simply the size of the
maximum matching also require this amount of space.

For the approximate version of the maximum matching probl&foGregor [28] showed that &l — ¢)-
approximation can be computed ([h(n) spac@ with the number of passes that is a function of oaly The
only known superlinear lower bound for the approximate imatg size applies only to one-pass algorithms and
shows that the required amount of space’is¢2(1/leglogn) jf 5 constant approximation factor better than- ¢!
is desired([117, 25].

Shortest paths. We now move to the problem of computing distances betweelicgsrin an undirected graph.
Feigenbaum et al_[16] show théXn) space and one pass suffice to comput®éing n/ log log n)-spanner and
therefore approximate all distances up to a factap @bg n/ log log n). They also show a closely matching lower
bound ofQ(n!*+1/*) for computing a factot approximation to distances between all pairs of vertices.

In the result most closely related to ours, they show thatprdmg theset of vertices at distancg from a
prespecified vertex in less thar2 passes requires' T2(1/7) space. One can improve their lower bound to show
that it holds even when the number of allowed passpsisﬁ As a result, to compute the distanezaeighborhood
in O(n) space, essentially the best thing one can do is to simulatBFI$ exploration with one step per pass over
the input, which requireg passes. In this paper, we show a similar lower bound for tblkel@m of just checking if
two specific vertices are at distance exagtlyOur problem is algorithmically easier. If two vertices atalistance

"We use theD notation to suppress logarithmic factors. For instancewite O(f(n)) to denoteO (f(n) log®® (f(n))).
2This follows by replacing one of their proof components wétstronger pointer chasing result fram|[19].



p, [p/2] passes an@(n) space suffice, because one can simulate the BFS algorithm the radius offp/2]
from both vertices of interest. This is one of the reasons amyresult cannot be shown directly by applying their
lower bound.

A space lower bound dR(n?) for one pass algorithms to find whether a pair of nodes is #&ntie3 can be
found in [15].

Directed connectivity. Feigenbaum et al T15] show that the directed connectivity problem requireQ(n?)

bits of space to solve in one pass. However, their lower baloes not extend to more than one pass. Once again
our lower bound extends their result to show that a supedit@ver bound holds for multiple passes. (Note that
for undirected graphs, the problem of connectivity can easily be solveti wite pass and)(n) space, using for
instance the well known union-find algorithm.)

Optimality of our lower bound. We conjecture that our lower bounds can be improved ftom'+!/(2r+2))

to Q(n!*+1/®+1) for p = O(1). For the matching problem, our lower bound is based on shpitiat finding a
single augmenting path is difficult. It is an interesting sfien if a stronger lower bound can be proved in the case
where more augmenting paths have to be found. Currently(m®-space streaming algorithm is known for this
problem with a small number of passes.

Paper organization. We begin in Sectioh]2 with a description of the communicativoblems we study and

a high-level overview of our lower bound approach. We setapesuseful information-theoretic preliminaries
in Section[B. We state our main communication complexityelolwound (Theorernl4) and use it to show our
streaming lower bounds in Sectigh 4. Our communication tdweeind is proved in three steps, and we go into the
details of these steps in the next three sections. Finallgeictior[ 8 we put the steps together to give a proof of
Theoreni4.

2 Proof overview and techniques

Via simple reductions, our multipass streaming lower bguftdt matching and connectivity reduce to proving
communication complexity lower bounds for a certain decisiersion of “set pointer chasing.” The reductions
to streaming are described in Sectidn 4. In the current@eete give an overview of our communication com-
plexity results. We start with a quick review of informatiand communication complexity and then introduce
communication problems that are useful in our proof.

We assume private randomness in all communication problemsss otherwise stated. Furthermore, all
messages are public, i.e., can be seen by all players (tivegsedmetimes described as the blackboard model).

2.1 Information and Communication Complexity

Communication complexity and information complexity play important role in our proofs. We now provide
necessary definitions for completeness.

The communication complexity of a protocol is the function from the input size to the maximlength of
messages generated by the protocol on an input of a spee#icisor a problenit’ ando € [0, 1], the communi-
cation complexity of¥ with error is the function from the input size to the infimum communigatcomplexity
of private-randomness protocols that err with probab#itynosté on any input. We writeRs(X’) to denote this
quantity.

The information cosfd ICost,, (IT) of a protocolIl on input distributiony) equals the mutual information
I(X;1I(X)), whereX is the input distributed according toandII(X) is the transcript ofI on inputX.

Theinformation complexity IC,, s of a problem” on a distributiory) with error ¢ is the infimumICost,, (IT)
taken over all private-randomness protoddlghat err with probability at most for any input.

3Note that this is thexternal information cost following the terminology df][3]. For proct distributionsy, this also equals thieternal
information cost. As product distributions will be our exsive focus in this paper, this distinction is not relevants$, and we will simply
use the term information cost.



2.2 Communication Problems

Consider a communication problem wijtlplayersPy, ..., P,. Players speak in rounds and in each round they
speak in order”; throughF,. At the end of the last round, the playEs has to output the solution. We call any
such problem &p, r)-communication problem.

We define[n] as{1,...,n}. For any set4, we write2 to denote the power set df, i.e., the set of all subsets
of A. For any functionf : A — 25, we define a mappin&’ : 24 — 28 such thatf(S) = U,es f(5).

Pointer and Set Chasing.The pointer chasing communication probler®C,, ,, wheren andp are positive inte-
gers, is &p, p — 1)-communication problem in which theth playerP; has a functiory; : [n] — [n] and the goal
is to computef; (fa(... fp(1)...)). The complexity of different versions of this problem waglexed thoroughly
by a number of works [31, 12, 80,110,132/ 7] 18, 19].

Theset chasing communication probler8C,, ,,, for given positive integers andp, is a(p, p—1)-communication
problem in which the-th playerP; has a functiory; : [n] — 2/ and the goal is to compup_é(fg(. . ﬁ:({l}) o)
A two-player version of the problem was considered by Fdigem et al.[[16].

Operators on Problems. For a (p,r)-communication problent’, we write EQUAL(X’) to denote a2p,r)-
communication problem in which the firstplayersP;, ..., P, hold one instance ok, the nextp playersP, 1,
..., P2, hold another instance of, and the goal is to output one bit that equii§and only if the outputs for the
instances oft’ are equal. See Figuké 1 for an example.
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Figure 1: A sample instance BQUAL(PC- 4) with a negative solution. It consists of two instance®6¥, 4 held
by two different sets of players.

Analogously, for &p, r)-communication problenX” such that the output is a set, we wrildTERSECT(X)
to denote the2p, r)-communication problem in which the firstplayersP;, ..., P, hold one instance ok, the
nextp playersP, 1, ..., P, hold another instance of, and the goal is to output one bit that equiliéand only
if the sets that are solutions to the instanced’dhtersect. See Figufé 2 for an example.

For a(p, r)-communication problent’ with a Boolean output, we writ®R,(X"), wheret is a positive inte-
ger, to denote thép, r)-communication problem in which players havestances oft’ and want to output the
disjunction of their results.

Limited Pointer Chasing Equality. We say that a functiorf : A — B is t-colliding, wheret is a positive integer,
if there is and’ C A of sizet and ab € B such that for al € A’, f(a) = b.

We write LPCE,, ;. ; to denote a modified version &QUAL(PC,, ;). In LPCE, ;. the last player has to
output the same value asHQUAL(PC,, 1), unless one of the functions in one of the pointer chasingirtes is
t-colliding, in which case the last player has to outputThis is a technical extension to ensure that no element
has too many pre-images, which is necessary to make one oéductions work.
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Figure 2: A sample instance dNTERSECT(SCy 4), where two final sets intersect. The edges outgoing from
vertices that are not visited were omitted.

2.3 Lower bound for INTERSECT(SC,, )

Our multipass streaming lower bounds for matching and ottivity reduce to proving a communication com-
plexity lower bound for the set chasing intersection probIS TERSECT(SC,, ,,). Note that if the players spoke
in the orderP,,, P,_1, ..., P, then they would be able to solve both instanceS@f, ,, using at mos(n)
communication per player, which is enough to solve the satetion problem. If the players spoke in the desired
order P, P, ..., P, but were allowed a total of rounds then they would be able to solve the instances of
SC,,, with O(n) communication per message by simulating one step in theégrathasing instance per round.
Our main result is however that if the number of allowed rauisp — 1, then approximately,!+(1/p) pits of
communication are needed to solve the problem, even fooraimd protocols with constant error.

Our result is reminiscent of the clasgi{n) communication complexity lower bounds for problems such as
indexing and pointer chasiRC,, , [30,[19] when the players speak in the “wrong” order. GuhaMnoGregor [19]
adapt the proof of Nisan and Wigdersonl[30] to show that sgli#C,, ,, (in p— 1 passes) requir&3(n) /po(l) total
communication even if the protocol can be randomized andeoawith small constant probability. Increasing the
number of rounds t@ or letting the players speak in the opposite order (evenshgue round) would result in a
problem easily solvable with messages of len@tliog n).

Even more directly related is the construction of Feigenbatial. [16], who show that solvin§C,, ,, requires
n!T2(1/P) communication in less thep pass& Their proof follows by using a direct sum theorem of Jain,
Radhakrishnan and Sen [24] to show that solvirg n°(*/?) instances oPC,, ,, requires roughly times more
communication than solving a single instance. Then thewshat an efficient protocol for solvin§C,, ,, would
result in an efficient protocol for solvinginstances oPC,, ,, in parallel.

Compared t&C,, ,,, INTERSECT(SC,, ;) is a decision problem. In particular, there seems to be nacteuh
allowing one to reconstruct the sets reachedNTERSECT(SC,, ;). The only thing that we learn after an
execution of the protocol is whether these two sets inter3derefore, reducing our question to that/of [16] seems
unlikely.

Our proof of the above communication complexity lower bopnoceeds in three steps:

STEP A: Reduction to proving a communication lower bound @R;(EQUAL(PC,, ,,)).

STEPB: A direct sum style step lower bounding the communicatiomplexity of OR;(EQUAL(PC,, ,)) as
roughly ¢ times the information complexity QUAL(PC,, ).

STEP C: An information complexity lower bound f&QUAL(PC,, ;).

“In fact, they show this for roughly less than2 passes, but replacing the lower bound[ofl [30] with the loweurid of [19] and
extending some other complexity results to the setting witfftiple players yields the improved bound claimed here.



The technical body of the paper actually proves these stepg iopposite order (Steps A, B, and C are discussed in
Section$ 11,16, arld 5, respectively). But here we will expamthe steps in the above order. The actual proof works
with a variant ofEQUAL(PC,, ,,), namelyLPCE,, , ., which we defined earlier, in order to deal with functiofis
that may be highly colliding, and which may break the reducin Step A. For simplicity, we ignore this aspect
in the overview, but it is worth keeping in mind that this cdiogtes the execution of Step C on the information
complexity lower bound.

Step A: Reduction to proving a lower bound for OR;(EQUAL(PC,, ,,)). Our idea here is to use a communi-
cation protocol foINTERSECT(SC,, ;) to give a protocol that can answer if at least one ofttlrestances of
EQUAL(PC,,) has a Yes answer, whete= n®(/?). (Recall that in theEQUAL(PC,,,) problem, the input
consists of two instances &C,, , with functions{f, ¢; : [n] — [n]},_; and the goal is to output Yes iff we end
up at the same index in both instances, i.efiiff2(... fp(1)...)) = gi1(g2(...gp(1)...)).) Givent instances
of EQUAL(PC,, ,), for each instance independently, we randomly scrambledheections in every layer while
preserving the answer ®QUAL(PC,, ,,). We then overlay all these instances on top of each othemstieet an
instance oINTERSECT(SC,, ,,) (note that each node has exadtlyeighbors in the next layer).

By construction, given a Yes instance@R;(EQUAL(PC,, ,)), by following the mappings from the instance
of EQUAL(PC,, ;) which has a Yes answer, we also obtain an element that betorigs intersection of the two
resulting sets iINNTERSECT(SC,,,). Sincet = n®(1/P), we havet? < n, and we argue that the random
scramblings ensure that if nonetdhstances oEQUAL(PC,, ;) have a Yes answer, then it is unlikely that the two
resulting sets in the instance NNTERSECT(SC,, ;,) will intersect. This constraint ohis what limits our lower
bound to~ n!*+1/(2),

Step B: A direct sum style argument. In this step, our goal is to argue that the randomized comeation
complexity of OR;(EQUAL(PC,, ,,)) is asymptoticallyQ2(¢) times larger than that EQUAL(PC,, ;). This is
reminiscent of direct sum results of the flavor that commuanswers t@ instances of a problem requires asymp-
totically ¢ times the resources, but here we only have to compute the @Rstinces. Our approach is to use the
information complexity method that has emerged in the laside as a potent tool to tackle such direct sum like
guestions([9, 12, 24], and more recently [in[[3, 5] and follopvsorks. The introductions of [3, 22] contain more
detailed information and references on direct sum and dm@cluct theorems in communication complexity.

Our hard distribution will be the uniform distribution ovall inputs. Being a product distribution, the infor-
mation complexity will be at least the sum of the mutual infiation between théth input and the transcript, for
1 <4 < t. Using the fact that the probability of a Yes answer on a ramdtstance oEQUAL(PC,, ,,) is very
small (at mosO(1/n)), we prove that the mutual information between tHh input and the transcript cannot be
much smaller than the information costEQUAL(PC,, ,,) for protocols that err with probability(1/») under the
uniform distribution.

Step C: Lower bound for information cost of EQUAL(PC,, ;). This leaves us with the task of lower bounding
the information cost of low error protocols f&EQUAL(PC,, ;) under the uniform distribution. This is the most
technical of the three steps. We divide this step into twaspar

First we show that if there were a protocol with low infornastticostIC on the uniform distribution, then
there would exist a deterministic protocol that on the umifalistribution would send mostly short messages and
err with at most twice the probability. This is done by adagtthe proof of the message compression result of
[24] for bounded round communication protocols. We canrset tineir result as such since in order to limit the
increase in error probability tg, the protocol needs to communic&¢l /) bits. This is prohibitive for us as we
need to keep the error probability as small®d /»), and can thus only afford an additié®(1/n) increase. We
present a twist to the simulation obtaining a determinigtatocol with at most twice the original error probability.
The protocol may send a long message with some small prdigabiand in other cases communicates at most
O(IC /£?) bits. In our application, we setto be a polynomial irl /p.

The second part is a lower bound BQUAL(PC,, ,,) against such “typically concise” deterministic protocols
To prove this, we show that if the messages in the deterriumisbdtocol are too short, then with probability at least
1/2, the protocol will have little knowledge about whether tlmusions to two instances of pointer chasing are
identical and therefore, will still err with probabilitg(1/n), which is significant from our point of view. The proof
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extends the lower bound for pointer chasing due to Nisan aigdi®son([[30] and its adaptation due to Guha and
McGregor [19]. We have to overcome some technical hurdleseaseed a lower bound for the equality checking
version and not for the harder problem of computing the pomwalue. Further, we need to show thaioastant
fraction of the protocol leaves are highly uncertain abbatrtestimate of the pointers’ values, so that they would
err with probability2(1/n) (with 1/n being the collision probability for completely random amtiépendent
values).

Summarizing, Step C can be seen as a modification of techsmfy80,[19] to prove a communication lower
bound forEQUAL(PC,, ,) combined with techniques borrowed from [24] to imply a loweund for information
complexity. The relationship between information comgieand communication complexity has been a topic of
several papers, starting with [9,124] for protocols with fieunds, and more recently! [3,[5,/4/8[ 6] 26] for general
protocols.

3 Preliminaries

Constant C,. Let C, be a constant such that the probability that a funcfion[n] — [n] selected uniformly at
random isC,, (1 + log n)-colliding is bounded byt /(2n?). The existence of’, follows from a combination of the
Chernoff and union bounds.

3.1 Useful information-theoretic lemmas

Let us first recall a result that says that if a random varidiale large entropy, then it behaves almost like the
uniform random variable on large sets.

Fact 1 ([33], see alsd [30, Lemma 2.10]).et X be arandom variable on [n] with H(X) > logn —4§. Let S C [n]
andlet A =\ /4. 1f A < 1/10, then Pr[X € §] > Bl (1 ).

Using the above result, we show that it is hard to guess diyreih probability 1 — o(1/n) if two independent
random variables distributed dn] collide if they have large entropy.

Lemma 2. Let X and Y be two independent random variables distributed on [»] such that both H(X) and H(Y")
are at least log n — &, where § = 48~2. Then

e Pr[X =Y]>1/(8n), and
o ifn>4,PrlX #Y]>1/4.

Proof. We first prove that there is a s8k C [n] such thatSx| > 3n and for eachr € Sx, Pr[X = z] > 1/(2n).
Suppose that there is no such set. Then there is &saif size more tham /4 in which every element has

probability strictly less than/(2n), and thereforePr[X € Tx] < Zxl. Note that % < 1/12 < 1/10, which

implies that we can apply Fdct 1 #o¢. We obtainPr[X € Tx] > % : % which contradicts the size Gfy and
implies thatSx with the desired properties does exist.

Analogously, one can prove that there is a$etC [n] such thatSy| > 2n and for eachy € Sy, Pr[Y =
y] > 1/(2n). Note thatlSx N Sy| > n/2. For eachr € Sx N Sy, Pr[X =Y = x| > 1/(4n?). Hence

PriX =Y]> > PrX=Y=z]>1/(8n)

zeSxNSy

To prove the second claim, for > 4, observe that for every settingof X, |5, \ {z}| > % — 1 > n/2, and
therefore, the probability that # X is at leastS, \ {z}|-1/(2n) > 1/4. O

The following lemma gives a bound on the entropy of a varigtidé randomly selects out of two random values
based on anothér1 valued random variable. We present a simple proof suggésted anonymous reviewer.
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Lemma 3. Let X, X1, and Y beindependent discrete random variables, where X, and X are distributed on the
same set (2 and Y is distributed on {0, 1}. Then

1
H(Xy) <1+ Y Prly =i H(X;).
=0

Proof. It follows from basic properties of entropy that
H(Xy)<H(Y;Xy)=H(Y)+ H(Xyl|Y)
1

<1+ HXy|[Y)=1+) Pr[y =i H(X;).
=0

4 The Main Tool and Its Applications

The main tool in our paper is the following lower bound for tmmmunication complexity of set chasing inter-
section.

logn
loglogn’

nl+1/(2p)
pl6 . log?’/2 n)

Theorem 4. For n larger than some positive constant and p such that 1 < p <

Ry 10(INTERSECT(SC,,,))) = (

We now present relatively straightforward applicationghig theorem to three graph problems in the streaming
model.

Theorem 5. Solving the following problems with probability at least 9/10 in the streaming model with p =

logn . nlt+1/(2(p+1)) . :
@ (loglogn> passes requires at least 2 (W bits of space:

PrROBLEM 1: For two given vertices » and v in an undirected graph, check if the distance between them is at
most 2(p + 1).

PrROBLEM 2: For two given vertices v and v in a directed graph, check if there is a directed path from  to v.

PrROBLEM 3: Test if the input graph has a perfect matching.

Proof. Let us consider the problems one by one. For Problem 1, weatuinstance ofNTERSECT(SCy, ,11)

into a graph om = (2p + 3) - k vertices. We modify the graph in Figuré 2 as follows. Firsg mvake all edges
undirected. Second, we merge every pair of middle vertioesected with a horizontal line into a single vertex.
Any path between the top leftmost vertexand the top rightmost vertexis of length at leas2p + 2. The length

of the path is exactl2p + 2 if and only if it moves to the next layer in each step. Note tiég corresponds
to the case that the final sets for two instancesSGj; . intersect. We create the input stream by inserting
first the edges describing the function held By, then by P, and so on, untilP,, . If there is a streaming
algorithm for the problem that uses at md@sbits of space, then clearly there is a communication praotfmro
INTERSECT(SCy, ,+1) with total communicatior{2p + 2) - p - T' and the same error probability as the streaming
algorithm. The protocol can be obtained by the players bykiting the streaming algorithms on their parts of the

input and communicating its state. This implies that 2 (I% . %) = ("Hl/(Q(pH))),Where we
use the fact that!/2P+1) = O(1).
For Problem 2, the reduction is almost the same, with the diffigrence being that we make all edges directed

from left to right and we want to figure out if there is a diretpath from the top leftmost vertex to the top rightmost
vertex. Such a path exists if and only if the final sets in tistance oINTERSECT(SCy, ,41) intersect.

p19~10g3/2 n
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Figure 3: Reduction to the perfect matching problem.

For Problem 3, the reduction is slightly more complicatece $ilow how to modify the hard instan¢ethat
we have created for Problem 1. Let us first add a perfect nragdbefore and after every layer of edges of the
hard instance for Problem 1, except for the first and the &&r| in which we omit one edge. The omitted edges
are incident to the verticasandv corresponding to value 1, i.e., the vertices that we wanbtmect using a path
going directly from left to right in Problem 1. See Figlite 8 ém example. Note that the additional edges constitute
a matchingM in which all but two vertices are matched. Now the graph hasréept matching iff there exists an
augmenting path id/ betweeru andv, which are the unmatched vertices. Any augmenting pathdakdrnate
between matched and unmatched edges, which implies in et taat it has to go directly from left to right.
Therefore, any augmenting path i corresponds to a path going directly from left to rightdrand connecting
u andv. The only difference is that the augmenting path has additiedges coming from the matchings that
were inserted intd@>. Therefore the streaming algorithm for testing if a graps &aerfect matching can be used
to create a protocol fANTERSECT(SCy, ,,+1), which requires relabeling endpoints of some edges—inrdade
simulate splitting of vertices—and inserting additiondges at the end of the stream. O

5 Step 1: Information Complexity of Pointer Chasing Equality

To prove the main theorem of the paper, we first show a lowentdar the information complexity of Limited
Pointer Chasing Equality.

Lemma 6. Let n and p be positive integers such that n > 30p? and p > 1. Then

n [21log n]
Icuvl/(64n)(LPCEn,p,C*(lJrlogn)) = 229 . 35 . p16 ~ 913.32 - pB —2

n logn >
—o(2) -0 1),
<p16> ( p®

where p isthe uniform distribution on all possible inputs for the problem.

The proof consists of two smaller steps. First we show thdtéfe is a protocol with low information cost
on the uniform distribution, then there is a deterministiotpcol that on the uniform distribution sends mostly
short messages, and errs with at most twice the probabllitgn we show that the messages in the deterministic
protocol cannot be too short. Otherwise, with probabilityeast1/2, the protocol would have little knowledge
about whether the solutions to two instances of pointeriobeare identical. In this case the protocol would still
err with probabilityQ2(1/n).



5.1 Transformation to Deterministic Typically Concise Praocols

Let us first define concise protocols, which send short messagst of the time.

Definition 7. We say that a protocol P isan (m,e)-conciseprotocol for an input distribution 1 if for each i, the
probability that the i-th message in the protocol islonger then m isbounded by «.

The following three facts fromi [23, 24] are very useful in quoofs. They regard information theory and
random variables. For a distributid? on N, we write P(7) to denote the probability of selectingrom P. For
two distributionsP and@, we write Dk, (P||@) to denote the Kullback-Leibler divergence@ffrom P.

Fact 8(Chain Rule[[24, Fact 1])Let X, Y, and Z berandomvariables. Thefollowing identity holds: 7(X;Y, Z) =
I(X;Y)+1(X; Z]Y).

Fact 9([24, Fact 2]) Let X and Y bea pair of random variables. Let P bethedistribution of Y and let P, be the
distribution of Y given X = z. Then I(X;Y) = Ex[Dxkw(Px| P)].

Fact 10([23,[24, Substate Theorem]).et P and @ be probability distributions on N such that Dk1,(P||Q) = a.
Lete € (0,1) andlet Good= {i € N : P(i)-2-(@+1)/s < Q(i)}. If X isarandom variable distributed according
to P, then Pr[X € Good > 1 — .

We now show an auxiliary lemma that shows thabit, (P||@) is bounded then a relatively short sequence of
independent random variables distributed according suffices to generate a random value frémThe lemma
is an adaptation of a lemma froim [24].

Lemma 11. Let P and  be two probability distributions on N such that Dkp,(P||Q) < oo. Let (T',T5,T3,...)
be a sequence of independent random variables, each distributed according to Q. Let T’y = —1. Lete € (0,1).
Thereisa set GoodC N and a random variable R € N such that

® > icGoodP (i) =1 —¢,
e for all z € Good Pr[I'g = z| = P(z),
e E[R] < 20xr(PlQ)+1)/e,

Proof. Let the set Good be defined as in Fact 10, i.e., Geodi € N : P(i) - 2~ (¢+D/e < Q(i)}, where we

seta = Dk (P||Q). Following [24], we use rejection sampling to prove the lemanConsider the following
process. For consecutive positive integgrstarting froml, do the following. Look at the valug; taken byI';.

If v; € Good, toss a biased coin and with probability;) - 2~(@+1)/ /Q(j), setR = j and finish the process. If
v, € Good or the coin toss did not terminate the process, tosfi@nbiased coin and with probability

o—(a+1)/c (1 -3 icGood? (1)
(1—2-(t/E. 57 Good? (1)

setR = 0 and also terminate the process. Otherwise, continue jnithreased by 1. The process terminates with
probability 1.

Let us argue thak and Good have the desired three properties. The first pyoiseatconsequence of Fact 10.
To prove the other two, observe what happens when the proeasises a specific The process terminates with
R = j andI'p = z for a specificz € Good with probabilityP(x) - 2~(¢*1/ The probability that it terminates
with R = 0 equals exactlp~(@+D/c . (1 — 3°._5,94P(7)). Since these probabilities are independent,afhen
the process eventually terminates, the probability’gf= 2 for eachz € Good is exactlyP(z), which proves
the second property. Finally, the probability that the psscterminates for a specifiafter reaching it is exactly
2~(a+1)/z " Clearly, E[R] is bounded from above by the expectgdor which the process stops, which in turn
equals exactlp(@t1)/e. O

10



The following lemma allows for converting protocols withuraled information cost on a specific distribution
into deterministic protocols that mostly send short messam the same distribution. The proof of the lemma
is a modification of the message compression resulf_af [24h imAportant feature of our version is that the
error probability is only doubled, instead of an additivenstant increase which we cannot afford. A simple but
key concept we use to achieve this is to allow the protocoletudldong messages with some small (constant)
probability. We then handle such “typically concise” prits in our lower bound of Sectidn 5.2.

Lemma 12. Let IT be a private-randomness protocol for a (p, r)-communication problem P such that IT errs with
probability at most 6 > 0 on adistribution p. For any ¢ > 0, there isa protocol II’ for P such that

o IT' isdeterministic,
e II' errs with probability at most 25 on p,
e II' is (m, g)-concise, where m = 128 - (ICost,, (II) + 2) - (pr/q)>.

Proof. There arer —1 messages sentIh. We construct a series of intermediate protoddls_,, 1T, _,, ... I},
wherell/ is a modification of the protocdl in which, fori < j < pr — 1, the j-th message is likely to be short.
The firsti — 1 messages dff; are the same as the messageH ofn particular,IT; uses only private randomness
to generate the first— 1 messages. Later messages are generated using public rasonThe players in the
modified protocols will reveal as much about their inputsrethée original protocoll and therefore, the protocols
will err with the same probability, with the only differenteing a different encoding of messages and the use of
public randomness.

For convenience, ldil),. be the original protocoll. We now explain how we conveft;  , into IT;. Let M
be the random variable corresponding to the sequence ofrghé fi 1 messages ifil; ;. Let M; be the random
variable describing theth message il . Let M = (M, M;). Recall thatM is distributed in the same way
as its equivalent for the original protocl Let P; be the player sending thieth message (i.ej, = i (mod p)).
Let X be the combined inputs of the other players, and/ldie the input of thej-th player. We writeM{™ to
describe the distribution of/; whenMy = m. Moreover, we writeM;"¥""* to describe the distribution df/;
whenX = z,Y =y, andM, = my. The distribution)/;"¥""** does not depend an, because the protocol uses
only private randomness and to generateitiie message it only uses the previous messageg atie input of
the j-th player. It follows from Fadtl8 and Fddt 9 that

I(X,Y; M) = I(X,Y; Mo) + I(X,Y; My [ Mo)
=I1(X,Y; My) + Eng x,y [DKL (Mlx’Y’MO

MIMOH .

We definea; asEy, x,y [DKL (MleYvMo

M1M°>] for this specific setting of. Overall, it follows by induction

that the mutual information between the input and the patanscript, i.e.ICost,, (II), equalst’;1 a;. This
also implies thatDx, (M"Y || M]") < oo for any settingX = z, Y = y, andM, = m, that has nonzero
probability.

Recall that the firsi — 1 messages dfl; are generated in the same way adlin ;. We now describe how
P; generates théth message. Let, be the messages sent so far. The distribution of-ttemessage)/;™ is
known to all the players. L&t",I'2,I's, . . .) be an infinite sequence of independent random variablesevelaeh
I'; is drawn independently from the distributidd;"°. The sequence df;’s is generated using public randomness,
so it is known to all the players as well. We now use Lenima 1leretwe set) = M[™, P = M"¥"™, and
e = ¢/8pr. Recall that the distributiod/;"¥"** does not depend an, because the randomness is private in the
firsti messages ifl; . P; will reveal as much about its input i} as inII; ;. The playerP; fixes a set Good and
a random variablé? as in Lemmadl. If'r € Good, then the player sends a singletbiollowed by a prefix-free
encoding of the valu®. Due to the concavity of the logarithm, the expected lenfith@message can be bounded
by 1+ 16pr(Dkr, (M7Y ™| M) + 1) /q + 2 < 16pr(Dxr, (M7 || M{™) + 2) /q, where the additional factor
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of 2 and additive term of come from a prefix free encodi%Overall, the expected length of the message starting
with 0 equalsl6pr(a; + 2)/q.

If I'r ¢ Good, the player generates the message from the part dbdt&in //;¥"™ restricted taN \ Good
and transmits the selected value prefixing it with a singlé .bDverall, all players can decode a message generated
according taM¥"™ and then behave in the same way as in the protb¢o| .

After applying a sequence pf — 1 steps of the transformation, we obtain a randomized profid¢ahat still
errs with probability at most. We now show that there is a suitable setting of random bitisarprotocol to obtain
the desired deterministic protocdl. In the following, we writeR, to denote the sequence of random bits used by
the protocol. R, is a random variable selected from the uniform distributboninfinite binary sequences, which
we refer to ask. Let((R,) be the probability thall errs on random input from when the internal random bits
are set taR,. We haveEg, . z[((R,)] < 0. It follows from Markov’s inequality that

<
P [C(R) > 20 < 1/2,
i.e., the probability that fixing the random bits makes thetq@eol err with probability higher tha2é on p is at
most1/2. Consider now the-the message ifil}, wherel < i < pr — 1. Let (/(R,) be the probability that
the i-th message starts withfor the protocol’'s random bits fixed t&,. It follows from our construction that
Er,«r [C/(R))] < e = q/8pr. Applying Markov’s inequality, we obtain that

/
W1 (G (R > a/2] < 1/4pr,
i.e., if we fix the random bits of the protocol, the probajilihat thei-th message starts withwith probability
higher thany /2 is bounded byl /4pr. Finally, let(!(R,) be the probability that theth message ifil; starts with
0 and has length greater tha®s(a; +2)(pr/q)?, given that the random bits of the protocol are seto Consider
a random variabléV; that equals the length of thieth message if the message starts with 0 and O if it starts with
1. We know thatE[W;] < 16pr(a; + 2)/q, and therefore, by Markov’s inequalitf;r, . = [/ (R.)] < ¢/8pr.
Applying Markov’s inequality again, we obtain that

JPr [GiR) > a/2] < 1/apr.

Summarizing, by fixing the protocol’s random bits, with pabiity at leastl —1/2—1/(4pr)-(pr—1)—1/(4pr)-
(pr—1)=1/2—(pr—1)/(2pr) > 1/2—1/2 = 0, we obtain a deterministic protocol that errs with prohigpat
most26§, and whoseé-th message, for anyc {1,2,...,pr—1}, is longer thar 28(a; +2)(pr/q)? with probability
bounded by;. The final claim follows from the fact that all; are bounded byCost,, (1I). O

5.2 Lower Bound for Deterministic Typically Concise Proto®ls

In this section, we show that a deterministic concise puwttmr the Limited Pointer Chasing Equality cannot send
short messages very often, unless it errs with probalsility/»). The proof follows along the lines of the lower

bound for Pointer Chasing due to Nisan and Wigder5oh [30]isnadaptation due to Guha and McGredor| [19].
The main technical differences come from the fact that wetweashow a lower bound for Limited Pointer Chasing
Equality. First, this requires ruling out the impact of tlesy case when one of the functiong-isolliding for large

t. Second, this requires showing that with constant protbglithe last player is unlikely to know what the solutions
to the input instances are, and since they are indepentegtwill collide with probabilityQ(1/n).

Lemma 13. If n? > 30p?, then any deterministic (m, ¢)-concise protocol for LPCE,, , ., (1+10g 1), Where p > 1,
m < en/(4p®) — [2logn], ¢ = 5>, and e = (48p®)~?, errs with probability at least 1/(16n) on the uniform
distribution over all possible inputs.

®This bound can be achieved by unary encoding the length ahtiesage before sending it. If the length of the messabevig first
sendk zeros proceeded by a single one, which unambiguously faenthe length of the message.
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Proof. Recall thatin the PCE,, , ¢, (11105 n) Problem, there arp playersry, ..., P, with playersP; and P, ;,
1 <i < p, holding functionsf; : [n] — [n] andg; : [n] — [n], respectively. The goal of the problem is to output
“1” if one of the functions isC, (1 + log n)-colliding or fi(fa(... fp(1)...)) = g1(g2(. .. gp(1)...)). Otherwise,
“0” is the correct output. The players speak in ordrthrough P, and this repeats — 1 times.

Let ap+1 = 1 and by induction, letz; = fi(a;11) for eachi € [p]. Analogously, leth,;; = 1 and let
b; = gi(bi+1) for eachi € [p]. Unless one of the functions @, (1 + log n)-colliding, the goal of the problem is to
determine whethet; = b.

We make two modifications to the protocol:

1. We augment thémn, ¢)-concise protocol by simulating in parallel the followingtaral protocol. Initially, we
append the paifa,1, by+1) to each message until we reach the plagmwho can compute, = f,(ap+1).
Then we pass the pajr,, b,+1) until it reachesP,,, who can computé, = g¢,(b,+1) and pasga,, b,)
to the next player. In general, whenever a message,;) reachesP;_1, it is updated ta(a;_1,b;), and
whenever a message; 1, b;) reachesP,;_1, it is updated tda;_1, b;—1). This protocol finally computes
(a2, b2). Appending the information increases the length of eactsamsby[2 log n]. This way, we obtain
a deterministiqm + [2log n], ¢)-concise protocol.

2. The first time a player whose function@& (1 + log n)-colliding is reached in the protocol, we make the
player send a message longer than- [2log ] bits. This may require modifying other messages sent by
the player. We now describe how this can be done dependinigegorotocol’s behavior.

(a) If the player already sends a long messag®r some input and sequence of previous messages, we
make the player send the messagkinstead ofm When the input iC, (1 + log n)-colliding, we
make the player send the messade Recall that the player’s function &, (1 + log n)-colliding with
probability at mostl /(2n?). Hence, in this case, the probability of sending a long nugEsgacreases
by at mostl /(2n?).

(b) Likewise, if one of at least? prefixes of length{2 log n] is not used by the protocol at all, we can use
this prefix to transmit long messages. kebe such a prefix. Suppose first that no prefixnatan ever
be sent the player as a message. In this case, wheneverykepfanction isC, (1 + log n)-colliding,
we make the player send the messag@*t/2lesnl+1 \wheregm*[2logn]+1 denotes a sequence of
zeros of lengthm + [2logn] + 1. If there is a prefixm’ of m that can be sent by the player as a
message, we make the player serid instead ofm’ and we also point out that’1 is a short message
of length at mosf2logn]. In this case, we make the player send™*[21°s"1+1 when the function
is C(1 + log n)-colliding.

In either case, the modifications increase the probabifitylong message by at maist(2n?) as well.

(c) Finally, if the player does not send long messages amutefixes of length/2log n| are used by the
player, at least one of the prefixes occurs with probabilitynast1/»2. Letm be such a prefix. We
appendo™tI2legnl+1 tg every message that hasas a prefix and reduce this case to the first case in
which there are long messages. This modification incredqmeprobability of a long message by at
most1/n?.

Overall, the probability of long messages can increase byost1/(2n?) + 1/n? = %n‘2. As a result we
obtain a deterministi¢m + [2logn], ¢ + 2n~2)-concise protocol.

Letm' = m + [2logn] andg’ = ¢ + 3n~2.

From now on we think of our deterministic protocol as a decidree of depti2p(p — 1). Thei-th layer of
nodes,1 < i < 2p(p — 1), corresponds to the situation when the control is passeuetplayerP;, wherej = i
(mod 2p). Each leaf in the tree is labeled with either a “0” or a “1”, ilemponding to the decision made by the
algorithm. Each edge outgoing from nodes at layers 1 thr@wgh — 1) — 1 is labeled with the message that the

®m1 denotes here the concatenatiomoéind the message consisting of just a single one.
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corresponding player sends, given his input and the previoessages. Edges between the last two layers are not
labeled, because the last player does not send a message.
We now introduce a few definitions for each nodm the decision tree:

e ¢, We setc, to the total length of the messages sent on the path from ti¢ao.

o Ff x - x Iy xGf x...x Gy Let F be the set of all functions from to n. Since the protocol is
deterministic, for each node, the set of input functiongfi, ..., f,,91,...,gp) for which the protocol
reaches: can be described as a produgt x --- x F? x G x ... x G C F?. Note that if the node is
reached then the probability of each tuplefifi x - - x F x G x ... x G} is identical. This uses the fact
that the initial distribution was uniform.

e i, andj.: We makei, andj, be the indices of the last pdi;_, b;_) sent on the path from the root to For
the root we assume that the pair(ig,;1,b,+1) = (1,1), i.€.,ir00t = Jroot = p + 1. Recall that for allz,
i, > 2andj, > 2.

e (A.,B.): (A.,B,) is a pair of random variables. Its random value is generayestlecting two functions
fx € F7_yandg, € GZ _, independently and uniformly at random and applying thenfato, b;. ) to
obtain (f,(a;.),g«(b;.)). (A., B.) describes the possible values of the gair, b;) if we move one step
ahead in applying functiong andg;, compared to the trivial algorithm that we simulate in piatalSince
the protocol is deterministic, the inputs of the playersiadependent, and, and B, depend on inputs of
disjoint sets of players, the variablds and B, are independent.

We say that a nodeis confusing if it has the following properties:
1. All messages sent on the path:tbave length bounded by'.

2. zis aleaf or for alli € [p], both|F?| > 272¢|F| and|G?| > 272¢| F|, wherec, is the total length of the
messages on the path from the rootto

3. H(A,) >logn — 6 andH(B.) > logn — 6, wheres = /3,

It is easy to see that the root of the decision tree is confudivie now prove by induction that the probability
that for a random input, the protocol reaches a non-corgusatle in step is bounded bji—l)'(q+%n‘2+451/3).
Suppose that the claim is true for ste@nd let us prove it for step+ 1. We bound the probability that a specific
property is violated.

1. The probability that the first property is violated is bded byq’, because the protocol {8, ¢’)-concise.

2. Consider a confusing noden stepi. If i = 2p(p — 1), the children ofz are leaves, and the property holds.
So it suffices to focus on the case that 2p(p — 1). What is the probability that the second property is
violated for some childv of z? Let P; be the player in control of stejp Without loss of generality, let us
assume that < j < p. Note that for altt € [p], G}* = G} and for allt € [p] \ {j}, F}* = F{. The property
may only be violated forF;”. For each childw of z, let m,, = ¢, — ¢,. Let W be the random variable
representing the distribution of children af Then

Pr ’FJW‘ < 272w | < Pr
|| -

“FJW’ 2—2mw < 2—2mw
7 < <>
w

I~ 1
S DL
w

where the second to last inequality follows from the fact thg, > 2logn, and the last inequality follows
from Kraft's inequality. Therefore the probability that @afusing node loses the second property in the next
step is bounded by/n?.
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3. It remains to bound the probability that the third propastlost. Letz be a confusing node in stepand
let P; be the player in charge of this step. If neithee= i, — 1 norj — p = j. — 1, then for any childw
of z, ¥y = F7_, andG} _; = G5 __;. In this case the pairs of variabled., B.) and (A, B,,) have
the same distribution and therefore the respective emso@main the same. Consider now the case that
j =1, —1. P computes:; = f;(a;,) and we need to bound the entroffy( A4,,) of A,, for all childrenw of
z, which is essentially the entropy af_; given all the information communicated so far. The inforiorat
aboutf;_; at each childv can be expressed as a vecf¢t; = (f;2;(1), f;21(2),..., f;>1(n)) of random
variables inn]. We haveH (A,,) = H(f;",(a;)). Moreover,

> HUL 1) = H(fL)

te(n]
= log |F]?U_1|
= log [F}_4|
> log(27%|F])
= log | F| — 2¢,
> n(logn — ¢).

The first inequality above follows from subadditivity of empy. The second and third inequalities follow
from the fact that the function is uniformly distributed &if ; = F7_, of size bounded by the fact thais
confusing (Property 2). Finally the last inequality follefrom the fact that is confusing (Property 1), and
thereforegn/2 > 2p(p — 1) - m/ > ¢,.

Fort uniformly distributed orjn|, by Markov’s inequality, we have
Pr[H(f}"(t)) < logn — 6] < 2/6.

Unfortunately,a; may not be uniformly distributed. However, we can explait litigh entropy, at least
log n — 6. We apply Fadf]l. Let be the set of such thatfl (f1* ,(¢)) > logn — 6. We already know that
|S| > (1 — ¢/0)n. Note that we can apply Fddt 1, because

A= 45§ 458S\/S_zx/g-el/?’gx/g'48_1<1/10.
1S|/n L=35

The probability that:; belongs taS is at least

(0= m) = (-9 (155 ) 2 (-9 (- v83)

>1— (14 VR)e/3 >1—4e/3,

ST

This implies that
Pr{H (" (a;)) < logn — 6] < 4¢3,
aj

The case thatf — p = j, — 1 is analogous, and therefore, the probability that the thiogerty is lost in the
next step is bounded big!/3.

Summarizing, the probability that moving from stejpo stepi + 1, we move from a confusing node to a non-
confusing node is bounded ly/+ 1/n? + 4e/? = g + 3n=2 + 4%/3, which finishes the inductive proof.

Overall, it follows that the protocol finishes in a non-cagifig leaf with probability bounded Bp(p — 1) -
(q+3n2+41/3) < 2p2 . g+ 2 4 8p%. (48p2) "1 < 1/6+1/6+1/6 = 1/2.
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Consider now a confusing leaf Recall that we modified the protocol so that if one of the fioms is
C,(1 + logn)-colliding a message longer tham' is transmitted. By definition, in such a case, the simulatibn
the protocol leads to a leaf that is not confusing. Thergftite correct solution to an input instance that leads
to z is solely based on whethes = b;. We know that the random variables, and B, which modela; and
b1, respectively, are independent and both have entropy sitltegn — &, whereé < 48=2. Observe also that
n > +/18p% > 4. Hence it follows from Lemm@l2 that whatever solution thetpeol claims at, be it “0” or “1”,
the claim is incorrect with probability at least(8n). Overall, on all inputs the protocol has to err with probiapil

1 1 1
at Ieast§ % = Ton- O

5.3 Proof of Lemmal®
We now combine Lemmas 12 ahd 13 to prove Leriina 6, the mairt @fssibctior] b.

Proof of Lemmal@ Consider any protocol protocdl for LPCE,, ,, o, (1410¢ n) that errs with probability at most
1/(64n) on . By LemmdI2, there is a deterministie:, 1/(12p?))-concise protocoll’ for LPCE,, , ¢, (1+10g n)

2
that errs with probability at most/(32n) on x, wherem = 128 - (ICost,,(II) + 2) - (%) =213.32.p8.

(ICost, (IT) 4 2). It follows from Lemmd 1B thatn > @A [2logn| = 5555 — [2log n]. Therefore,
ICosty, (1) > sartb—rs — grgiek — 2. Since this bound holds for any protoddithat is correct with probability

1 —1/(64n), this is also a lower bound for the information complexityttoé problem. O

6 Step 2: Direct Sum Theorem for Pointer Chasing Equality

The following lemma is the main result of this section.

Lemma 14. Let n, p, and ¢ beintegers such that p > 1, n? > 30p?, and t < n/4. Letr = C, (1 + logn). Then

B tn 2
Ry/3(0OR(LPCE,, ) = Q <p16 logn> O (pt?).

Before we prove it, let us first recall two classic resultssEithe information complexity is a lower bound for
the randomized communication complexity of a protocol tras with the same probability.

Lemma 15 ([2, Proposition 4.3]) Let 6 € (0, 1). For any communication problem P and any distribution ) on
inputs, Rs(P) > ICy 5(P).

Second, if the input distribution is a product distributiom multiple instances of a subproblem, then the total
information revealed by the protocol transcript equal®ast the information revealed for each of the instances.

Lemma 16 (Follows from [2, Lemma 5.1]) Let P be a communication problem with Boolean output and let TI
be a private-randomness protocol for OR;(P) for a positive integer ¢. Let ¢» be a distribution on inputs of P. Let
X = (X1,...,X;) beavector of independent random variables with each distributed according to ). For any
input z, let TI(x) be the transcript of IT on . Then the following inequality holds:

[(XGINX)) 2 3o, T(X TI(X)).
Now we show the main ingredient, which is a proof that anyexirprotocol folOR,(LPCE,, ,, ) has to reveal

almost as much information about each coordinate as if itseparately solving the corresponding instances of
LPCE,, .

Lemma 17. Let IT be a private-randomness protocol for OR;(LPCE,, ,, ) that errs with probability at most §.
Let X = (Xy,...,X;) be arandom vector with each coordinate X; independently selected from the uniform
distribution 4, on all possible inputsto LPCE,, ,, . Let II(x) be the transcript of IT on input .

Ifr > Cy-(logn+1),t <n/4,and p < n, thenfor each: € [t],

I(X; (X)) > ICM,Q(;(LPCE,W,’T) — 6pt log n.
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Proof. Foreachy € [t], letY; € {0,1} be the solution td. PCE,, ,, on a specific coordinat& ;. The probability
thatY; = 1 is bounded byi/n + 2p - 1/(2n?) < 2/n, where the first term comes from the probability that the
equality of two instances d?C,, ,, holds and the other is a bound on the probability that one @fuhctions is
r-colliding.

Fix ¢ € [t]. By the union bound,

Pr\/Y; =1 < (t—1)-
J#i

(1)

3|l\3
l\)l»—\

If \/#in = 0, the solution t®OR,(LPCE,, ,, ) on the input instance equal$. Therefore II has to computé’;
with probability at least — 26, provided\/#i Y; = 0. If it erred with higher probability, it would overall err on
the input instance 0®R;(LPCE,, ,, ;) with probability greater than.

We now bound/ (X;; II(X)| V., Y; = 0) from below, usingIC,, »5(LPCE,, ;). To achieve this goal, we
construct grivate-randomness protocolIl’ for LPCE,, ,, , that obtains as input a uniformly selected instaGe
of LPCE, ,,, selectsX;’s, for j # ¢, uniformly from those with solution 0, and emulafidson the resulting full
input. For eacly € [t], X; is a set of functiong;; andg;;, [ € [p], with each function held by a different player.
We writea;; andb;;, wherej € [t] andl € [p + 1], to refer to intermediate pointer chasing values. Formédly
eachj € [t], aj 11 = bjp+1 = 1, and we recursively defing;; = f;;(a;41) andb;; = g;,1(bj41) for I € [p].
We want to ensure that for eagh# ¢, the players obtain their set of functiofis; andg;; uniformly from inputs
such that the solution t&; is 0. It suffices that the players collectively select valugs andb;;, 1 < [ < p,
uniformly at random from all configurations but those withy = b; 1, since all of them are equally likely due
to symmetry. Then the remaining values of functions can lect by each player independently, uniformly at
random from the set of those that do not result-colliding functions. In our protocdll’, we make the first player
select alla;;'s andb, ;'s (overall2p(t — 1) values) and send them at the beginning of the very first mesJdgen
the players emulatd. Therefore, the transcril’ (X;) of II' starts with a configuration af;;'s andb; ;’s, which
is followed by the transcript of the emulation Bf We write IT} (X;) andII,(X;) to denote the first and second
part of the transcript, respectively. Sint# solvesLPCE,, , , with probability at leastt — 26 on the uniform
distribution, I (X;; IT'(X;)) > IC,, 25(LPCE,, ;. ). We have

I(X3 I (X5)) = T(X; T (X5), Ty (X))
= H(H, (X4), TI5(X;)) — H (T (X), TT5(X3) | X;)
H(IT} (X;)) + H(IT(X;)) — H(T5(X;)]X5)
H(IT} (X3)) 4 (X5 (X))
< 2p(t — 1) logn + I(X;; 115(X;)),

where the first inequality follows from the basic propertiésntropy and the second from the fact thE{(X;)
consists of2p(t — 1) values in[n]. Sincell,(X;) has exactly the same distribution with respecftpasII(X)
with respect toX; (under the restriction ofy; for j # i), I(X;; I(X)|V, . Y; = 0) = I(X;115(X5)) >
I(X; I (X;) — 2p(t — 1) logn > ICH725(LPCEn,p,,ﬂ) —2p(t — 1) logn.

We now usd (X;; II(X)[ V,,; Y; = 0) to bound! (X;; II(X)) from below. By definition, we have(.X; II(X)) =
H(X;)— H(X;[II(X)). Note thatH (X;) = H(X;| V/,,; Y; = 0), because the coordinates.®f are independent.
Let us now upper bound (X;|II(X)). In order to boundd (X;|I1( X)), we split the probabilistic space based on
the value of\/#i Y;, which is either 0 or 1. We apply Lemrha 3 to this partition, etfhbounds the total entropy
using a convex combination of entropies for each of the ¢agésan extra additive term of 1.

H(X; | (X)) = Ex[H(X; | T(X) = 7)]

ng{l—kZl:Pr{\/Yj:z]H(X) ] (X]H —W\/Y—z)}

=0 j#i j#i
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For each transcript and eachx € {0, 1}, letp, » = Pr[Il(X) = n|\/,,; Y; = z]. After a few more straightfor-
ward transitions, we obtain

H(X; | (X))
1
<t (600 = V)
z=0 J#i
1
=V ] ety (0 = V=)
2=0 J#i J#i
—1—|—ZPr\/Y—z szw- (X|H —ﬂ\/Y—z)
z=0 J#i J#i
:1+ZPr[\/1fj:z]-H(XZ-|H(X),\/Y]-:,2).
2=0 i i

Note that the entropy ok;, and therefore also any conditional entropyof, is always bounded bgpn log n.
Hence
H(X; | (X)) < 14+ H(X: | T(X), \/ ¥ =0) + Pr[\/ ¥ = 1] - 2pn -logn
j#i j;«éz’

§1—|—H<XZ-|H \/Y—O) -2pnlogn
J#i

< 1+H<Xi | TI(X), \/ Y; :0) + 4ptlogn,
J#i

where the second inequality uses Equalibn 1. Thus we obtain
I(X; (X)) = H(X;) — H(X; [ TI(X))
> H(X,- VY= o) —H(X,- 1T1(X), \/ Y = o) —1—dptlogn

j#i i#i
> 1(Xa10(X) | \/¥; = 0) — 1~ 4ptlogn
J#i
> 1C,, 25(LPCE,, ) — 6pt log n. O

We can finally prove the main lemma of this section.
Proof of Lemma[l4 Let IT be a private-randomness protocol ©R,(LPCE,, ,,) that errs with probability at
most1/(128n). It follows from Lemma$ 16 arld 17 that
t
) = > I(XiI(X)) > t-1C, 1 /6an) (LPCEp ) — 6pt*log .

By definition, this quantity bounds ald@’,: 1 /(128,) (OR:(LPCE,, ;,)). Therefore, by Lemmia 15 and Lemina 6,
we get

tn
Rl/(128n) (ORt(LPCEn’p’r)) 2 Q <IR> — O (pt2 log TL) .

Via standard amplification bounds?;(12s,)(OR(LPCE,, ;,-)) < R;/3(ORy(LPCE, ;) - O(logn), which
gives us

. tn 2
Ry 3(OR¢(LPCE,, ;) = Q2 <p16 1ogn> O (pt?). O

18



7 Step 3: Reduction to Set Chasing Intersection

We give a reduction showing that under specific conditiongtagocol forINTERSECT(SC,, ,,) can be used to
create a communication protocol foR,(LPCE,, ).

Lemma 18. Let n, p, r, and ¢ be positive integers such that t?7r?~! < n/10. If there is a communication protocol
for INTERSECT(SC,, ;) that uses C' bits of communication and errs with probability at most 1/10, then there is
a public-randomness communication protocol for OR;(LPCE,, ,, ) that uses C' + 2p bits of communication and
errs with probability at most 2/10.

Proof. Consider an instance @R;(LPCE,, ,,). There ar&p players, who have instances of PCE,, ,, .. Each
instance olLPCE,, ,, , consists of two instances &C,, ,. Let f; ; andg; ;, wherel < i < pandl < j <, be
the functions that describe these two instances. For &aclp|, playeri knows f; ; and playep + i knowsg; ;.

If any of the functionsf; ; or g; ; is r-colliding, then the solution to the problemlis The players can check if this
is the case in one round of communication with each playemeonicating only one bit. It therefore suffices to
show a protocol that solve8R,(EQUAL(PC,, ,)), i.e., computes

t

\V (fl,j(fz,j(- o fpg(1) ) = 91925 (- gpi(1).20),

i=1

using C' bits communication, under the assumption thatfpp or g; ; is r-colliding. To this end, we show a
randomized reduction of this problemi®TERSECT(SC,, ,,).

First, using common randomness, the players select randomupationsr; ;, p; ; : [n] — [n] for1 <i <p
andl < j < t. Permutations are selected independently, exceptrthat= p; ; for all 1 < j < ¢. Furthermore
they are generated using public randomness, so they arenktwoall players. (For functiona : A — B and
7: B — C, we writeT o A to denote the function from to C' such that(r o \)(z) = 7(\(z)) for all z € A.) For
all1 <j<t,let

fz/a,j =Tp,; o fp; and 9;:,3' = Pp,j © 9p,j-

Foralll <i<p-—1landl <j<t,let
/ —1 / —1
fij=mijofijomy,; and g;;=pi;ogijopi -

It is easy to see that an instance@R;(EQUAL(PC,, ,,)) with f{,j andgl’.vj is equivalent to the original instance
with f; ; andg; ;. The permutations randomly relabel intermediate and fiakles with final values relabeled in
the same way on both sides.
We construct an instance i TERSECT(SC,, ;) by giving thei-th player,1 < i < p, a functionf} : [n] —
2l" such that for any: € [n),
fi@)={fi;(x):1<j <t}

and by giving they -+ i-th player,1 < i < p, a functiong; : [n] — 2["! such that for any: € [n],
g; () = {gi;(x) : 1< j <t}

The goal in this instance is to compute

(FEC FAD . D ng@e..gi..0) #0.

The instance oNTERSECT(SC,, ,,) that we have just defined can be seen as stacking mappingsliifem
ent instances dEQUAL(PC,, ;) on top of each other. Instead of following a single functy(;,rjm or gg,j for a given
instancej, we follow all of them simultaneously, obtaining subset$dfinstead of just single values [n].

Let us show a likely correspondence between the new inst@ind¢TERSECT(SC,, ;) and the original in-
stance ofOR;(EQUAL(PC,,,)). First, if the result of solving the instance OR,(EQUAL(PC,, ,)) is 1, then
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clearly, by following the mappings from the instanceEUAL (PC,, ,,) resulting in 1, we also obtain an element
that belongs to the intersection of two resulting settNiRERSECT(SC,, ).

Consider the case that the result of solving the instanc@R EQUAL(PC,, ;,)) is 0. We bound the proba-
bility that the sets appearing in the instancéNTERSECT(SC,, ) intersect. Each element of these two sets can
be expressed as

Flai(Foa, (o Fpay (1))
or
9161 (92, (- G, (1) -2)),

respectively, where the sequenags. . . ,a, andb, . ..,b, describe which of the instances the mapping is followed.
There are?? different pairs of such sequences. What is the probabiiiy we obtain the same value for a specific
pair of sequences? We want to show that this probability imted by-?~!/n. If a1 = ... =a, = by = ... = b,
then we obtain different values, because dheh instance iNOR;(EQUAL(PC,, ,,)) results in0. Suppose now
that it is not the case thaty = ... = a, = by = ... = b,. If a1 # by, then the probability that we obtain the
same value is exactly/n, because the final values are created by two independenbrmapdrmutationsr; .,
andpy,. If a; = by, let k be the lowest number greater tharsuch thata;, # a;—; or by, # by—1. Since the
functionsfi , o...of;_,, andgj, o...og; ,, arenot”~'-colliding and are applied to two values randomly
distributed by, ,, and py, , the probability of collision is at most?~! /n. By the linearity of expectation,
the expected size of the intersection between the two sé¢teimstance oiNTERSECT(SC,, ;) is bounded by
t2P.rP=1 /p < 1/10. By Markov's inequality, the probability that the intertiea is nonempty is bounded ly'10,

so the probability that the reduction fails is boundediby0. Therefore, if we have a communication protocol
for INTERSECT(SC,, ;) that errs with probability at most/10, we can use this protocol to obtain a public-
randomness protocol f@R,(EQUAL(PC,, ,)) that errs with probability at most/10, provided no function in
OR;(EQUAL(PC,, ;)) is r-colliding. O

8 Proof of Main Tool (Theorem[4)

We now combine the results of Steps 1, 2, and 3 to conclude air communication complexity lower bound
(Theoreni # from Sectidn 4).

ni/(2p)

Proof of Theoremid Letr = C,(1+logn) and lett = L Tior J Due to the result of Newmah [29], we know that

every protocol with public randomness can be simulatedyysiivate randomness if we allow for using additional
O(log(input-size-in-bitg) communication bits and for increasing the probability abeiby an arbitrarily small
constant. By combining this fact with Lemral 14 (which can pgli@d forn greater than some constant), we find
out that any public-randomness protocol @R, (LPCE,, ,, ;) that errs with probability at mogt/10 has to use at
least

tn

tn 2 _
Q0 (W) — O (pt?) — O(log(t - 2p - n - logn)) —Q<

) — O (pt* +1logn)
bits of communication. Note that fer greater than some positive constant, the first term donsrhtesecond, so
we can express the lower bound as sim&pl{pwﬂﬁ .

Note that for our setting of, t?’P~! < n/10. We can therefore apply Lemnial18. We learn that any
communication protocol fofINTERSECT(SC,, ,,) that errs with probability at most/10 has to use at least

Q (pwtlﬁ) — 2p bits of communication. As before, the first term dominates gacond for sufficiently large

n and the lower bound becomes
ni+1/(2p)
Q —— | O
pl6 - log®? n

p6logn
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