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Two Terminals With Demands∗
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Guy Kortsarz¶ Saeed Seddighin‡

June 25, 2017

Abstract

Given an edge-weighted directed graph G = (V,E) on n vertices and a set T = {t1, t2, . . . , tp} of p
terminals, the objective of the STRONGLY CONNECTED STEINER SUBGRAPH (p-SCSS) problem is to
find an edge set H ⊆E of minimum weight such that G[H] contains an ti→ t j path for each 1≤ i 6= j≤ p.
The p-SCSS problem is NP-hard, but Feldman and Ruhl [FOCS ’99; SICOMP ’06] gave a novel nO(p)

algorithm.
In this paper, we investigate the computational complexity of a variant of 2-SCSS where we have

demands for the number of paths between each terminal pair. Formally, the 2-SCSS-(k1,k2) problem is
defined as follows: given an edge-weighted directed graph G=(V,E) with weight function ω : E→R≥0,
two terminal vertices s, t, and integers k1,k2 ; the objective is to find a set of k1 paths F1,F2, . . . ,Fk1
from s ; t and k2 paths B1,B2, . . . ,Bk2 from t ; s such that ∑e∈E ω(e) · φ(e) is minimized, where

φ(e) = max
{
|{i ∈ [k1] : e ∈ Fi}| , |{ j ∈ [k2] : e ∈ B j}|

}
. For each k ≥ 1, we show the following:

• The 2-SCSS-(k,1) problem can be solved in nO(k) time.
• A matching lower bound for our algorithm: the 2-SCSS-(k,1) problem does not have an f (k) ·no(k)

algorithm for any computable function f , unless the Exponential Time Hypothesis (ETH) fails.

Our algorithm for 2-SCSS-(k,1) relies on a structural result regarding an optimal solution followed by
using the idea of a “token game” similar to that of Feldman and Ruhl. We show with an example that
the structural result does not hold for the 2-SCSS-(k1,k2) problem if min{k1,k2} ≥ 2. Therefore 2-
SCSS-(k,1) is the most general problem one can attempt to solve with our techniques. To obtain the
lower bound matching the algorithm, we reduce from a special variant of the GRID TILING problem
introduced by Marx [FOCS ’07; ICALP ’12].
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1 Introduction

The STEINER TREE (ST) problem is one of the earliest and most fundamental problems in combinatorial
optimization: given an undirected edge-weighted graph G = (V,E) with edge weights ω : E → R≥0 and a
set T ⊆V of terminals, the objective is to find a tree S of minimum weight ω(S) := ∑e∈S ω(e) which spans
all the terminals. The STEINER TREE problem is believed to have been first formally defined by Gauss
in a letter in 1836. In the directed version, called the DIRECTED STEINER TREE (DST) problem, we are
also given a root vertex r and the objective is to find a minimum size arborescence in the directed graph
which connects the root r to each terminal from T . An easy reduction from SET COVER shows that the DST
problem is also NP-complete.

Steiner-type of problems arise in the design of networks. Since many networks are symmetric, the di-
rected versions of Steiner type of problems were mostly of theoretical interest. However in recent years, it
has been observed [16] that the connection cost in various networks such as satellite or radio networks are
not symmetric. Therefore, directed graphs are the most suitable model for such networks. In addition, Ra-
manathan [16] also used the DST problem to find low-cost multicast trees, which have applications in point-
to-multipoint communication in high bandwidth networks. If we require two-way connectivity, then we
obtain a generalization of the DST problem known as the STRONGLY CONNECTED STEINER SUBGRAPH

(SCSS) problem. In the p-SCSS problem, given a directed graph G = (V,E) and a set T = {t1, t2, . . . , tp} of
p terminals the objective is to find a set H ⊆ E of minimum size such that G[H] contains an ti→ t j path for
each 1≤ i 6= j≤ p. The SCSS problem is also NP-hard. The best known approximation ratio in polynomial
time for SCSS is |T |ε for any ε > 0 due to Charikar et al. [2]. A result of Halperin and Krauthgamer [9]
implies SCSS has no Ω(log2−ε n)-approximation for any ε > 0, unless NP has quasi-polynomial Las Vegas
algorithms. Regarding exact algorithms, Feldman and Ruhl [6] gave a novel nO(p) algorithm for p-SCSS.
Chitnis et al. [5] showed that this algorithm is almost tight by the following result: for any computable
function f , the p-SCSS problem has no f (p) · no(p/ log p) algorithm unless the Exponential Time Hypothe-
sis (ETH) fails. Chitnis et al. [5] showed that on certain special graph classes such as planar graphs (and
more generally H-minor-free graphs) one can obtain faster algorithms than that of Feldman and Ruhl: more
specifically, if the underlying undirected graph is planar, then p-SCSS can be solved in 2O(p log p) · nO(

√
p)

time. In addition, Chitnis et al. [5] also showed that this algorithm is optimal: for any computable function
f , the existence of a f (p) ·no(

√
p) algorithm for p-SCSS on planar graphs implies ETH fails.

The 2-SCSS-(k1,k2) Problem: We now define the following generalization of the 2-SCSS problem:

2-SCSS-(k1,k2)
Input : An edge-weighted digraph G = (V,E) with weight function ω : E → R≥0, two terminal
vertices s, t, and integers k1,k2
Question: Find a set of k1 paths F1,F2, . . . ,Fk1 from s; t and k2 paths B1,B2, . . . ,Bk2 from t ; s such

that ∑e∈E ω(e) ·φ(e) is minimized where φ(e) = max
{
|{i ∈ [k1] : e ∈ Fi}| , |{ j ∈ [k2] : e ∈ B j}|

}
.

Observe that 2-SCSS-(1,1) is the same as the 2-SCSS problem. The definition of the 2-SCSS-(k1,k2)
problem allows us to potentially choose the same edge multiple times, but we have to pay for each time we
use it in a path between a given terminal pair. This can be thought of as “buying disjointness” by adding
parallel edges. In large real-world networks, it might be more feasible to modify the network by adding
some parallel edges to create disjoint paths than finding disjoint paths in the existing network. Teixeira
et al. [17, 18] model path diversity in Internet Service Provider (ISP) networks and the Sprint network by
disjoint paths between two hosts. There have been several patents [8, 15] attempting to design multiple paths
between the components of Google Data Centers.

The 2-SCSS-(k1,k2) problem is a special case of the DIRECTED SURVIVABLE NETWORK DESIGN
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(DIR-CAP-SNDP) problem [7] in which we are given an directed multigraph with weights and capaci-
ties on the edges, and the question is to find a minimum weight subset of edges that satisfies all pairwise
minimum-cut requirements. In the 2-SCSS-(k1,k2) problem, we do not require disjoint paths. As observed
in Chakrabarty et al. [1] and Goemans et al. [7], the DIR-CAP-SNDP problem becomes much easier to
approximate if we allow taking multiple copies of each edge.

1.1 Our Results and Techniques:

In this paper, we consider the 2-SCSS-(k,1) problem parameterized by k. Note that the sum of demands is
O(k). To the best of our knowledge, we are unaware of any non-trivial exact algorithms for a version of the
SCSS problem with demands between the terminal pairs. Our main algorithmic result is the following:

Theorem 1.1. The 2-SCSS-(k,1) problem can be solved in nO(k) time, where n is the number of vertices in
the input graph.

Our algorithm proceeds as follows: In Section 2.1 we first show that there is an optimal solution for the
2-SCSS-(k,1) problem which satisfies a structural property which we call as reverse-compatibility. Then
in Section 2.2 we introduce a “Token Game” (similar to that of Feldman and Ruhl [6]), and show that the
SOLVING-TOKEN-GAME problem can be solved in nO(k) time. Finally in Section 2.3, using the existence of
an optimal solution satisfying reverse-compatibility, we give a reduction from the 2-SCSS-(k,1) problem to
the SOLVING-TOKEN -GAME problem which gives an nO(k) time algorithm for the 2-SCSS-(k,1) problem.
This algorithm also generalizes the result of Feldman and Ruhl [6] for 2-SCSS, since 2-SCSS is equivalent
to 2-SCSS-(1,1). In Section 2.4, we show with an example (see Figure 3) that the structural result does
not hold for the 2-SCSS-(k1,k2) problem if min{k1,k2} ≥ 2. Therefore, 2-SCSS-(k,1) is the most general
problem that one can attempt to solve with our techniques.

Theorem 1.1 does not rule out the possibility that the 2-SCSS-(k,1) problem is actually solvable in
polynomial time. Our main hardness result rules out this possibility by showing that our algorithm is tight
in the sense that the exponent of O(k) is best possible.

Theorem 1.2. The 2-SCSS-(k,1) problem is W[1]-hard parameterized by k. Moreover, under the Exponen-
tial Time Hypothesis (ETH) of Impagliazzo and Paturi [10], the 2-SCSS-(k,1) problem cannot be solved in
f (k) ·no(k) time for any computable function f where n is the number of vertices in the graph.

To prove Theorem 1.2, we reduce from the GRID TILING problem formulated in the pioneering work of
Marx [11]:

k× k GRID TILING
Input : Integers k,n, and k2 non-empty sets Si, j ⊆ [n]× [n] where i, j ∈ [k]
Question: For each 1≤ i, j ≤ k does there exist a value si, j ∈ Si, j such that

• If si, j = (x,y) and si, j+1 = (x′,y′) then x = x′.
• If si, j = (x,y) and si+1, j = (x′,y′) then y = y′.

The GRID TILING problem has turned to be a convenient starting point for parameterized reductions for
planar problems, and has been used recently in various W[1]-hardness proofs on planar graphs [5, 12,
13, 14]. Under the ETH, Chen et al. [3] showed that k-CLIQUE1 does not admit an algorithm running in
time f (k) · no(k) for any function f . Marx [11] gave a reduction from k-CLIQUE to k× k GRID TILING.
In Section 3, we give a reduction from k× k GRID TILING to 2-SCSS-(2k− 1,1). Since the parameter
blowup is linear, the f (k) · no(k) lower bound for GRID TILING from [11] transfers to 2-SCSS-(k,1). In

1The k-CLIQUE problem asks whether there is a clique of size ≥ k?
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fact, the reduction in [11] from k-CLIQUE to k× k GRID TILING actually shows the hardness of a special
case of the GRID TILING problem where the sets are constructed as follows: given a graph G = (V,E)
for the k-CLIQUE problem with V = {v1,v2, . . . ,vn} we set Si,i = {( j, j) : 1 ≤ j ≤ n} for each i ∈ [k] and
Si, f = {( j, `) : 1≤ j 6= `≤ n,(v j,v`)∈E} for each 1≤ i 6= f ≤ k. We call this as the GRID TILING* problem,
and actually give a reduction from this problem to 2-SCSS-(k,1). To the best of our knowledge, this is the
first use of the special structure of GRID TILING* in a W[1]-hardness proof.

Before proceeding further, we show that the edge-weighted and the vertex-weighted variants of 2-SCSS-
(k1,k2) are computationally equivalent. First we define the vertex-weighted variant of 2-SCSS-(k1,k2).

Vertex-weighted 2-SCSS-(k1,k2)
Input : A vertex-weighted digraph G = (V,E) with weight function ω ′ : V → R≥0, two terminal
vertices s, t, and integers k1,k2
Question: Find a set of k1 paths F1,F2, . . . ,Fk1 from s ; t and k2 paths B1,B2, . . . ,Bk2 from t ; s

such that ∑v∈V\{s,t}ω ′(v) ·φ ′(v) is minimized where φ ′(v) = max
{
|{i ∈ [k1] : v ∈ Fi}| , |{ j ∈ [k2] :

v ∈ B j}|
}

.

Lemma 1.3. The edge-weighted 2-SCSS-(k1,k2) and the vertex-weighted 2-SCSS-(k1,k2) are equivalent.

Proof. First, we show that the edge-weighted version can be solved using the vertex-weighted version.
Let G = (V,E) be an edge-weighted graph with weight function ω . We create a vertex-weighted graph
G′ = (V ′,E ′) with weight function ω ′ as follows: subdivide each edge (u,v) of G by adding a new vertex
βu,v to get a path u→ βu,v→ v of length two. Let V ′ =V ∪{βu,v : (u,v) ∈ E}. Set ω ′(v) = 0 for each v ∈V
and ω ′(βu,v) = ω(u,v) for each edge (u,v) ∈ E. Consider any solution H ⊆ E of edge-weighted 2-SCSS-
(k1,k2). Consider the solution H ′ obtained by including (the subdivision) of each edge in H. The weights
of all vertices from V is zero in G′. Also, for any edge e = (u,v) it is easy to see that φ(e) = φ ′(βu,v), and
hence both solutions H and H ′ have same cost.

Next, we show that the vertex-weighted version can be solved using the edge-weighted version. Let
G′ = (V ′,E ′) be a vertex-weighted graph with weight function ω ′. We create an edge-weighted graph
G = (V,E) with weight function ω as follows: Replace each vertex v ∈ V \ {s, t} with a pair of vertices
(vin,vout). Let sin = s = sout and tin = t = tout. Make all in-neighbors, out-neighbors of v in G incident to
vin,vout respectively and add an edge (vin,vout). Set ω(vin,vout) = ω ′(v) for all v ∈ V ′ \ {s, t}, and weight
of all other edges to be zero. Consider any solution H ′ ⊆ V ′ of vertex-weighted 2-SCSS-(k1,k2). Consider
the solution H obtained as follows: for each s ; t path in H ′ say s = x1→ x2→ x3→ . . .→ xr−1→ xr = t
we add the path x1→ x2,in→ x2,out→ x3,in→ x3,out→ . . .→ xr−1,in→ xr−1,out→ xr. Similarly for the t ; s
path. Also it is easy to see that for any v ∈V ′ \{s, t} we have φ(vin,vout) = φ ′(v), and hence both solutions
H and H ′ have same cost.

Henceforth we consider only the edge-weighted version of 2-SCSS-(k1,k2).

1.2 Notation

The set {1,2, . . . ,n} is denoted by [n]. We denote a directed edge from u to v by (u,v) or u → v. A
directed path from u to v is denoted by u ; v. Given a directed graph G = (V,E) the in-degree of v is
the number of in-neighbors of v and is denoted by d−G (v) = |{w : (w,v) ∈ E}|. Similarly, the out-degree
of v is the number of out-neighbors of v and is denoted by d+

G (v) = |{x : (v,x) ∈ E}|. Given a set S and
an integer r, the set Sr denotes the set of all r-element vectors which have each coordinate from S, i.e.,
Sr = {(s1,s2, . . . ,sr) : si ∈ S ∀i ∈ [r]}. Similarly, for s ∈ S we use sr to denote the vector (s1,s2, . . . ,sr) where
si = s for each i ∈ [r].
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Figure 1: Let F be an s ; t path given by s→ u→ v→ w→ y→ z→ t and B be an t ; s path given
by t → y→ z→ u→ v→ s. The two paths P1 and P2 shown in blue are the maximal common sub-paths
between F and B. From Definition 2.2, it follows that F and B are path-reverse-compatible since B first sees
P2 and then P1.

2 An nO(k)nO(k)nO(k) algorithm for 2-SCSS-(k,1)2-SCSS-(k,1)2-SCSS-(k,1)

In this section we describe an algorithm for the 2-SCSS-(k,1) problem running in nO(k) time where n is
the number of vertices in the graph. First in Section 2.1 we present a structural property called as reverse
compatibility for some optimal solution of this problem. Next we define a Token Game in Section 2.2 and
describe an nO(k) time algorithm for the SOLVING-TOKEN-GAME problem. Finally, in Subsection 2.3 we
present an algorithm that finds the optimum solution of 2-SCSS-(k,1) in time nO(k) via a reduction to the
SOLVING-TOKEN GAME problem.

2.1 Structural Lemma for Some Optimal Solution of 2-SCSS-(k,1)2-SCSS-(k,1)2-SCSS-(k,1)

Remark 2.1. For simplicity, we replace each edge e of the input graph G with k copies e1,e2, . . . ,ek, each
having the same weight as that of e. Let the new graph constructed in this way be G′. In G, different s ; t
paths must pay each time they use different copies of the same edge. We can alternately view this as the
s ; t paths in G′ being edge-disjoint.

Definition 2.2. (path-reverse-compatible) Let F be a s ; t path and B be a t ; s path. Let {P1,P2, . . . ,Pd}
be the set of maximal sub-paths that F and B share and for all j ∈ [d], Pj is the j-th sub-path as seen
while traversing F. We say the pair (F,B) is path-reverse-compatible if for all j ∈ [d], Pj is the (d− j+1)-th
sub-path that is seen while traversing B, i.e., Pj is the j-th sub-path that is seen while traversing B backward.

See Figure 1 for an illustration of path-reverse-compatibility.

Definition 2.3. (reverse-compatible) Let F = {F1,F2, . . . ,Fr} be a set of s ; t paths and b be an t ; s
path. We say (F,B) is reverse-compatible, if for all 1≤ i≤ r the pair (Fi,B) is path-reverse-compatible.

The next lemma shows that there exists an optimum solution for 2-SCSS-(k,1) which is reverse-compatible.

Lemma 2.4. (structural lemma) There exists an optimum solution for 2-SCSS-(k,1) which is reverse-
compatible.

Proof. In order to prove this lemma, we first introduce the notion of rank of a solution for 2-SCSS-(k,1).
Later, we show that an optimum solution of 2-SCSS-(k,1) with the minimum rank is reverse-compatible.

Definition 2.5. (rank) Let F = {F1,F2, . . . ,Fk} be a set of paths from s ; t, and B be a path from t ; s. For
each i ∈ [k], let di be the number of maximal sub-paths that B and Fi share. The rank of (F,B) is given by

R(F,B) =
k

∑
i=1

di

5
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Figure 2: Let the u ; y sub-path of Fi be a u ; v ; w ; z ; x ; y and the u ; y sub-path of B be
u ; v ; q ; r ; x ; y. From Definition 2.2, it follows that Fi and B are not path-reverse-compatible since
they both first see u ; v and then see x ; y.

Let (F,B) be an optimum solution of 2-SCSS-(k,1) with the minimum rank. Assume for the sake of
contradiction that (F,B) is not reverse-compatible, i.e., there exists some Fi ∈ F such that (Fi,B) is not path-
reverse-compatible. From Definition 2.2, this means that Fi and B share two maximal sub-paths u→ v and
x→ y, and at the same time Fi and B both contain u→ y sub-paths (see Figure 2).

We replace the u→ y sub-path of B by the u→ y sub-path of Fi. On one hand, B shares all of the
u→ y sub-path with Fi. Thus, this change does not increase the weight of the network, therefore it remains
an optimum solution. On the other hand, by this change, the sub-paths u→ v and x→ y join. Hence, di

decreases by 1. Also, since the forward paths are edge-disjoint, after the change all other d j’s remain same
(for i 6= j) since B shares the whole u→ y sub-path with only Fi. Therefore, this change strictly decreases
the rank of the solution. Existence of an optimum solution with a smaller rank contradicts the selection of
(F,B) and completes the proof.

2.2 The Token Game

A Token Game is given by 〈H,h1,h2,T ,M,Ĉ〉 where

• H = (VH ,EH) is a graph
• h1,h2 are two special vertices in VH

• T is a set of tokens
• M⊆V |T |H ×V |T |H is a set of moves
• Ĉ :M→ R≥0 is a cost function

We now define a state of the Token Game:

Definition 2.6. A state of the Token Game is an element from the set V |T |H , i.e., it is a vector of size |T | where
each coordinate comes from H. It gives the location of each token from T .

A state of the Token Game gives the current location of each token (which vertex of H it is currently
on). The start state is h|T |1 , i.e., when all the tokens are the vertex h1. The end state is h|T |2 , i.e., when all
the tokens are at the vertex h2. The cost function Ĉ gives the cost of going from one state to another. The
goal is to transport all tokens from the start state to the end state with minimum cost. Formally, we have the
following problem:

SOLVING-TOKEN-GAME
Input : A token game 〈H,h1,h2,T ,M,Ĉ〉
Question: Find a set of moves of minimum cost to go from the start state h|T |1 to the end state h|T |2

6



Now we present an algorithm to solve an instance 〈H,h1,h2,T ,M,Ĉ〉 of the Token game in time
O(|M|+n|T | log(n|T |)) where n is the number of the vertices of H.

Lemma 2.7. (algorithm for Token Game) There exists an algorithm for SOLVING-TOKEN-GAME which
runs in time O(|M|+n|T | log(n|T |)) time.

Proof. We build a game graph Ĥ = (V̂ , Ê) from H as follows: let V̂ =V |T |H . Recall thatM⊆V |T |H ×V |T |H .
For each move M = (x̄, ȳ) ∈M we add an edge x̄→ ȳ in Ĥ of cost equal to Ĉ(M).

Note that the starting state h|T |1 and the end state h|T |2 are both vertices in Ĥ. By the choice of the edges
in Ĥ, it is easy to see that finding a shortest h|T |1 ; h|T |2 path in Ĥ gives a solution to SOLVING-TOKEN-
GAME. We can do this by running Dijkstra’s algorithm which takes O(|E|+ |V | log |V |) time on a graph
G = (V,E). In our case |V̂ | = n|T | and |Ê| = |M|. Therefore, we can solve SOLVE-TOKEN-GAME in
O(|M|+n|T | log(n|T |)) time.

2.3 Reduction from 2-SCSS-(k,1) to SOLVING-TOKEN-GAME

Here, we provide a reduction from the 2-SCSS-(k,1) problem to SOLVING-TOKEN-GAME. As a conse-
quence, we show that one can use the algorithm presented in Subsection 2.2 to solve 2-SCSS-(k,1) in time
nO(k).

Let I = 〈G = (V,E),s, t,ω〉 be an instance of 2-SCSS-(k,1). We now build a Token Game give by
I′ = 〈H,h1,h2,T ,M,Ĉ〉 where H = G, h1 = s, h2 = t and T = {b, f1, f2, . . . , fk}. Note that |T | = k + 1.
We now describe the set of moves M and the associated cost function Ĉ. Fix a state v̄ ∈ V k+1, say v̄ =
(v0,v1,v2, . . . ,vk).

1. Backward Move: For every edge (w,v1) ∈ E(G), we add a move (v̄, w̄) of cost ω(w,v1) where

• w̄ = (w0,w1,w2, . . . ,wk)
• w0 = w
• wi = vi for each i ∈ [k]

2. Forward Moves: For every i∈ [k] and every edge (vi,x)∈ E(G), we add a move (v̄, x̄) of cost ω(vi,x)
where

• x̄ = (x0,x1,x2, . . . ,xk)
• xi = x
• x j = v j for each 0≤ j ≤ k, j 6= i

3. Flip Move: For each i ∈ [k] we add a move (v̄, ȳ) of cost equal to that of the shortest vi ; v0 path in
G where

• ȳ = (y0,y1,y2, . . . ,yk)
• y0 = vi
• yi = v0
• y j = v j for each 0≤ j ≤ k, j /∈ {0, i}

As in Lemma 2.7, we build a game graph Ĝ = (V̂ , Ê) from G = (V,E) as follows: let Ĝ =V k+1. Recall
thatM⊆V k+1×V k+1. For each move M = (x̄, ȳ) ∈M we add an edge x̄→ ȳ in Ĥ of cost equal to Ĉ(M).

We now bound the number of moves inM, which is also equal to the number of edges in Ĝ.

Lemma 2.8. The number of moves inM (or equivalently the number of edges in Ĝ) is nO(k),
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Proof. Fix a state v̄ ∈ V k+1, say v̄ = (v0,v1,v2, . . . ,vk). The number of Backward moves from v̄ is d−G (v0)
since we add a backward move for each incoming edge into v0. The number of Forward moves from v̄
is ∑

k
i=1 d+

G (vi) since we add a forward move for each outgoing edge from v j where j ∈ [k]. The number
of Flip moves is exactly k since we add a flip move for each i ∈ [k]. Therefore, the degree of v̄ in Ĝ is
d−G (v0)+

(
∑

k
i=1 d+

G (vi)
)
+ k ≤ |E|+ |E|+ n since k ≤ n and ∑v∈V d+

G (v) = |E| = ∑v∈V d−G (v). Hence, the

max degree of Ĝ is 2|E|+ n. Since |V̂ | = nk+1 it follows that |M| = |Ê| ≤ nk+1 · (2|E|+ n) = nO(k) as
|E|= O(n2)

Next we show that OPT(I) = OPT(I′), where OPT(I) and OPT(I′) denote for the optimum solutions of
I and I′ respectively. We do this by the following two lemmas:

Lemma 2.9. OPT(I)≤ OPT(I′).

Proof. Let S ′ be a solution of I′ of cost OPT(I′). Then S ′ is a shortest sk+1 ; tk+1 path in Ĝ. Each edge in
Ĝ corresponds to a move fromM. Let the moves corresponding to the path S ′ be M1,M2, . . . ,Mr. Consider
a move M ∈ {M1.M2. . . . ,Mr} and say M = (v̄, w̄) where v̄ = (v0,v1,v2, . . . ,vk) and w̄ = (w0,w1,w2, . . . ,wk).
We now build a solution S for 2-SCSS-(k,1) as follows: there are three cases to consider depending on the
type of the move M

• M is a Backward Move: Then we add the edge (w0,v0) to S. Note that Ĉ(M) = ω(w0,v0).
• M is a Forward Move, say for token fi: Then we add the edge (vi,wi) to S. Note that Ĉ(M) =

ω(vi,wi).
• M is a Flip Move, say between token fi and b: Let P be the shortest vi ; v0 path. Then we add the

path P to S . Note that Ĉ(M) = ∑e∈P ω(e).

Since S ′ is a solution of I′ it follows that S is indeed a solution of I. Also the cost of S ′ is equal to
∑

r
i=1 Ĉ(Mi). As we have seen above, we were able to construct a solution S for I from S ′. Note that for each

edge e, its contribution to cost of S′ is ω(e) which is greater equal to its contribution to cost of S, since there
might be some savings due to sharing of edges between the t ; s path and some s ; t path2. Thus the cost
of S is at most the cost of S ′. Given any solution S ′ for I′, we were able to construct a solution S for I of
cost less equal that of S ′. Therefore, it follows that OPT(I)≤ OPT(I′).

Lemma 2.10. OPT(I)≥ OPT(I′) .

Proof. In order to prove this lemma we use Lemma 2.4 which states there exists an optimal solution, say S
, for I which is reverse-compatible. We now build a solution S ′ for I′ which has the same cost as that of S .
This is sufficient to prove the lemma.

As observed in Remark 2.1, we can assume that the s ; t paths are pairwise edge-disjoint. Let the t ; s
path in S be Q and the k paths from s ; t be P1,P2, . . . ,Pk. For i ∈ [k], let Pi,1,Pi,2, . . . ,Pi,ri be the maximal
sub-paths shared between Pi and Q as seen in order from Pi. The reverse-compatibility of S implies that if
we traverse Q backwards then we again see the paths in the same order, namely Pi,1,Pi,2 . . . ,Pi,ri . Let us call
these paths which are shared between Q and an s ; t path as common-paths.

We build S ′ by adding moves as follows: for each i ∈ [k], add Forward moves (by selecting shortest
paths) to transport each fi from s to the starting point of Pi,1. Follow Q in backwards direction as it travels

2Consider a path x→ y→ z. Let e1 = (x,y) and e2 = (y,z). Suppose token f1 is at x and token b is at z and they want to exchange
positions. A flip move would result in cost equal to ω(e1)+ω(e2). However, we can have a move sequence of higher cost which
results in same final positions for f1 and b as follows: first f1 makes a forward move and reaches y with cost ω(e1). Then there is a
flip move of cost ω(e2) which brings b to y and takes f1 to z. Finally b makes a backward move of cost ω(e1) to reach x. The total
cost of this move sequence is 2ω(e1)+ω(e2), which is greater than the original cost of ω(e1)+ω(e2)

8



s t 
𝑢1 𝑢3 𝑢2 𝑢5 𝑢4 𝑢6 

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 

𝑢7 

𝑣7 

𝑢8 

𝑣8 

𝑢9 

𝑣9 

𝑢10  

𝑣10  

Figure 3: Each black edge has weight 1, each red edge and each blue edge has weight 0.

from s to t. We move b backwards along Q until it reaches end-point y of some common-path say x ; y.
Since we only require one t ; s path it follows that there exists unique j ∈ [k] such that Pj,1 = x ; y. Then
we add a Flip move between f j (which is located at x) and b (which is located at y). Continue to follow
Q backwards and move b along it by Backward moves until either b reaches t or b reaches end-point of
another common path. If b reaches end-point of another common path then we again do a Flip move as
above. Otherwise if b reaches t, then each forward token fi is at the end-point of Pi,ri . Add Forward moves
(by selecting shortest paths) to transport the forward tokens from their current locations to t. Let the final
set of moves be the solution S ′.
S is a valid solution for I implies that we have k paths from s ; t and one path from t ; s. So, the

moves we add indeed take all the (k+ 1) tokens from the start state sk+1 to the end state tk+1, i.e., S ′ is a
valid solution for I′. We now show that the cost S ′ is exactly equal to that of S. Let e be any edge in S. If
e is not part of a common-path, then in S ′ we only pay for it once in either a Backward move or a Forward
move. On the other hand, if e is part of a common path then in S ′ again we also pay for it only once in a
Flip move. Therefore, cost of S ′ is equal to cost of S which implies that OPT(I)≥ OPT(I′).

Theorem 2.11. There exists an algorithm that solves the 2-SCSS-(k,1) in time nO(k), where n is the number
of vertices of the input graph.

Proof. Let I = 〈G,s, t,ω〉 be an instance of the 2-SCSS-(k,1). As described in Section 2.3, we build an
instance I′ = 〈G,s, t,T = (b, f1, f2, . . . , fk),M,Ĉ〉 of SOLVING-TOKEN-GAME. Lemmas 2.9 and 2.10 imply
that I can be solved by instead solving the instance I′. By Lemma 2.8, the number of moves in I′ is |M|=
nO(k). By Lemma 2.7 we can solve I′ in time O(|M|+n|T | log(n|T |)=O(nO(k)+nk+1 log(nk+1))= nO(k)

2.4 Structural Lemma fails for 2-SCSS-(k1,k2)2-SCSS-(k1,k2)2-SCSS-(k1,k2) when min{k1,k2} ≥ 2min{k1,k2} ≥ 2min{k1,k2} ≥ 2

Recall that in the 2-SCSS-(k1,k2) problem we want k1 paths from s ; t and k2 paths from t ; s. So, we
define a natural extension of Definition 2.2 to reverse-compatibility of a set of forward paths and a set of
backward paths as follows.

Definition 2.12. (general-reverse-compatible) Let F = {F1,F2, . . . ,Fk1} be a set of s ; t paths and B =
{B1,B2, . . . ,Bk2} be a set of t ; s paths. We say (F,B) is general-reverse-compatible, if for all 1 ≤ i ≤ k2,
(F,Bi) is reverse-compatible.

The following theorem shows that Lemma 2.4 does not hold for the 2-SCSS-(k1,k2) problem when
min{k1,k2} ≥ 2, i.e., Lemma 2.4 is in its most general form.

Theorem 2.13. There exists an instance of 2-SCSS-(2,2) in which no optimum solution is general-reverse-
compatible.
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Proof. Figure 3 illustrates an example of the 2-SSS(2,2) problem in which no optimal solution satisfies the
reverse compatibility condition. Let the weight of the black edges be 1, and weight of all the other edges be
0. Since we have edges of weight 0, we will henceforth only consider the paths which do not have vertices
repeating.

Let P1 be the path s→ u1→ u2→ . . .→ u9→ u10→ t and P2 be the path s→ v1→ v2→ . . .→ v9→ v10→
t. Note that P1 and P2 are edge-disjoint and have weight 11 each. We now give a solution of total weight 22:
take P1 and P2 as the two s ; t paths. For the two t ; s paths take P3 := t → v7→ v8→ u3→ u4→ s and
P4 := t → v9→ v10→ u1→ u2→ v1→ v2→ v3→ v4→ v5→ v6→ u5→ u6→ s. Since every black edge
is used exactly once in the outgoing path and incoming path, it is easy to verify that the total weight of this
solution is 22. Moreover, this solution is not general-reverse-compatible since the paths P1 and P3 do not
satisfy the path-reverse-compatibility condition (recall Definition 2.2).

Therefore, to prove the theorem, it is now enough to show that all other solutions have a weight at least
23. A simple observation is that any solution has weight at least 22 since the shortest path from s to t has
weight 11. Moreover, there are exactly two such s ; t paths of weight 11, viz. P1 and P2. Hence suppose
to the contrary that there is a solution, say S, of weight exactly 22. We now show that S must exactly be the
solution described in above paragraph. We first show the following lemma:

Lemma 2.14. Any t ; s path uses at least one black edge from each of P1 and P2.

Proof. Note that there are only two edges outgoing from t: a blue edge and a red edge. Suppose the first
edge on t ; s path is the red edge t→ v9. Then we must reach v10 since the only outgoing edge from v9 is
v9→ v10. From v10, we can either go back to t (and start the argument again) or the other option is to go to
u1 which forces the use of edge u1→ u2. So we have used v9→ v10 from P2 and u1→ u2 from P1.

Suppose the first edge on t ; s path is the blue edge t → v7. This forces the use of the edge v7 → v8
from P2 since it is the only outgoing edge from v7. From v8, we can either reach v9 (and the same argument
applies as in previous case) or u3. Reaching u3 forces the use of the edge u3 → u4 from P1 since it is the
only outgoing edge from u3.

Hence, in order to obtain a solution of weight exactly 22 we cannot take either P1 twice or P2 twice for
the choice of the two s ; t paths: since this itself gives a weight of 22, and the above claim implies a weight
of at least 1 from the “other” path. This shows the correctness of the following lemma:

Lemma 2.15. The two s ; t paths in S are exactly P1 and P2. Hence, to maintain a weight of exactly 22 it
follows that we cannot use any black edge twice in the t ; s paths in S.

Observe that we still need to choose two t ; s paths, say Q1 and Q2, in S. The following lemma shows
that S needs to use both the red edge and blue edge outgoing from t:

Lemma 2.16. Without loss of generality, the first edges of Q1 and Q2 are t→ v7 and t→ v9

Proof. Suppose not. Since the only two outgoing edges from t are the blue edge t → v7 and the red edge
t→ v9, it follows that the first edge of both Q1 and Q2 is the same (and is either t→ v7 or t→ v9). Suppose
the first edge of both Q1 and Q2 is t → v7 (the argument for the first edge being t → v9 is similar). Since
v7→ v8 is the only outgoing edge from v7, this implies that we must choose this edge in both Q1 and Q2.
Since the two s ; t paths in S are P1 and P2, this shows that the weight of S is at least 23.

Let us now consider the path Q1: it starts with the edge t→ v7. Since the only outgoing edges from v7,u3
are v7 → v8,u3 → u4 respectively it follows that Q1 contains the sub-path Q′1 := t → v7 → v8 → u3 → u4.
Similarly for Q2, the first edge being t → v9 implies that it contains the sub-path Q′2 := t → v9 → v10 →
u1 → u2. After this, Q2 cannot contain the edge u2 → u3 (since this would force it to also use the edge
u3→ u4, which was already used by Q1). Hence after Q′2, the path Q2 must follow the sub-path u2→ v1→
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v2 → v3 → v4 → v5 → v6. After reaching v6, the path Q2 has two choices: either use the edge v6 → v7
or v6 → v5. But it cannot use the edge v6 → v7 since that would force it to use the edge v7 → v8, which
was already used by Q1. Therefore, from v6 the path Q2 reaches u5 and is then forced to reach u6. At this
point Q2 has two choices: either continue from u6 to t (in which case we again apply the whole argument
starting from Lemma 2.16), or use the edge u6→ s of weight 0. Therefore we have that Q2 is exactly the
path P4 := t→ v9→ v10→ u1→ u2→ v1→ v2→ v3→ v4→ v5→ v6→ u5→ u6→ s. It remains to show
that the path Q1 is exactly P3. We know that Q1 contains the sub-path Q′1 := t→ v7→ v8→ u3→ u4. From
u4, there are two choices: either use the edge u4 → s of weight 0, or use the edge u4 → u5. However, in
the second choice, the next edge on Q2 must be u5 → u6. But this edge was already used by Q2 which
contradicts Lemma 2.16. This shows that Q1 is exactly the path P3 = t → v7→ v8→ u3→ u4→ s, which
completes the proof of the theorem.

3 f (k) ·no(k)f (k) ·no(k)f (k) ·no(k) Hardness for 2-SCSS-(k,1)2-SCSS-(k,1)2-SCSS-(k,1)

In this section we prove Theorem 1.2. We reduce from the GRID TILING problem (see Section 1.1 for
definition). Chen et al. [3] showed that for any computable function f , the existence of an f (k) · no(k)

algorithm for k-CLIQUE implies ETH fails. Marx [11] gave the following reduction which transforms the
problem of finding a k-CLIQUE into an instance of k× k GRID TILING as follows: For a graph G = (V,E)
with V = {v1,v2, . . . ,vn} we build an instance IG of GRID TILING

• For each 1≤ i≤ k, we have ( j, `) ∈ Si,i if and only if j = `.
• For any 1≤ i 6= j ≤ k, we have (`,r) ∈ Si, j if and only if {v`,vr} ∈ E.

It is easy to show that G has a clique of size k if and only if the instance IG of GRID TILING has a solution.
Therefore, assuming ETH, the following special case of k× k GRID TILING also cannot be solved in time
f (k) ·no(k) for any computable function f .

k× k GRID TILING*
Input : Integers k,n, and k2 non-empty sets Si, j ⊆ [n]× [n] where 1 ≤ i, j ≤ k
such that for each 1≤ i≤ k, we have ( j, `) ∈ Si,i if and only if j = `
Question: For each 1≤ i, j ≤ k does there exist a value γi, j ∈ Si, j such that

• If γi, j = (x,y) and γi, j+1 = (x′,y′) then x = x′.
• If γi, j = (x,y) and γi+1, j = (x′,y′) then y = y′.

Consider an instance of GRID TILING*. We now build an instance of edge-weighted 2-SCSS-(2k−1,1)
as shown in Figure 4. We consider 4k special vertices: (ai,bi,ci,di) for each i ∈ [k]. We introduce k2 red
gadgets where each gadget is an n×n grid. Let weight of each black edge be 4.

Definition 3.1. For each 1≤ i≤ k, an ai ; bi canonical path is a path from ai to bi which starts with a blue
edge coming out of ai, then follows a horizontal path of black edges and finally ends with a blue edge going
into bi. Similarly an c j ; d j canonical path is a path from c j to d j which starts with a blue edge coming out
of c j, then follows a vertically downward path of black edges and finally ends with a blue edge going into
d j.

For each 1 ≤ i ≤ k, there are n edge-disjoint ai ; bi canonical paths: let us call them P1
i ,P

2
i , . . . ,P

n
i

as viewed from top to bottom. They are named using magenta color in Figure 4. Similarly we call the
canonical paths from c j to d j as Q1

j ,Q
2
j , . . . ,Q

n
j when viewed from left to right. For each i ∈ [k] and ` ∈ [n]
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Figure 4: The instance of 2-SCSS-(2k−1,1) created from an instance of Grid Tiling*.

we assign a weight of ∆(nk−ni+n+1−`),∆(ni−n+`) to the first, last edges of P`
i (which are colored blue)

respectively. Similarly for each j ∈ [k] and `∈ [n] we assign a weight of ∆(nk−n j+n+1−`),∆(n j−n+`)
to the first, last edges of Q`

j (which are colored blue) respectively. Thus the total weight of first and last blue
edges on any canonical path is exactly ∆(nk+ 1). The idea is to choose ∆ large enough such that in any
optimum solution the paths between the terminals will be exactly the canonical paths. We will see that
∆ = 7n6 will suffice for our reduction. Any canonical path uses two blue edges (which sum up to ∆(nk+1)),
(k+1) black edges not inside the red gadgets and (n−1) black edges inside each gadget. Since the number
of gadgets that each canonical path visits is k and the weight of each black edge is 4, it follows that the total
weight of any canonical path is

α = ∆(nk+1)+4(k+1)+4k(n−1) (1)

Intuitively the k2 red gadgets correspond to the k2 sets in the GRID TILING* instance. Let us denote the
gadget which is the intersection of the ai ; bi paths and c j ; d j paths by Gi, j. If i = j, then we call Gi, j

as a symmetric gadget; else we call it as an asymmetric gadget. We perform the following modifications on
the edges inside the gadget: (see Figure 4)

• Symmetric Gadgets: For each i ∈ [k],x ∈ [n] we color green the vertex in the gadget Gi,i which is the
unique intersection of the canonical paths Px

i and Qx
i . Then we add a shortcut as shown in Figure 5.
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Figure 5: Let u,r be two consecutive vertices on the canonical path say P`
i . Let r be on the canonical path

Q`′
j and let p be the vertex preceding it on this path. If r is a green (respectively orange) vertex then we

subdivide the edge (p,r) by introducing a new vertex q and adding two edges (p,q) and (q,r) of weight
2. We also add an edge (u,q) of weight 2 (respectively 3). The idea is if both the edges (p,r) and (u,r)
were being used initially then now we can save a weight of 2 (respectively 1) by making the horizontal path
choose (u,q) and then we get (q,r) for free, as it is already being used by the vertical canonical path.

The idea is that we will enforce that the ai ; bi path is used as part of the t ; s path and the ci ; di

path is used as part of one of the (2k− 1) s ; t paths. Hence, if both the ai ; bi path and ci ; di

path pass through the green vertex then the ai ; bi path can save a weight of 2 by using the green
edge (which has weight 2) and a vertical downward edge (which is free since already being used by
c j ; d j canonical path) to reach the green vertex, instead of paying a weight of 4 to use the horizontal
edge reaching the green vertex.
• Asymmetric Gadgets: For each i 6= j ∈ [k], if (x,y) ∈ Si, j then we color orange the vertex in the

gadget Gi, j which is the unique intersection of the canonical paths Px
i and Qy

j. Then we add a shortcut
as shown in Figure 5. Similar to above, the idea is if both the ai ; bi path and c j ; d j path pass
through the green vertex then the ai ; bi path can save a weight of 1 by using the orange edge of
weight 3 followed by a vertical downward edge (which is free since already being used by the c j ; d j

canonical path) to reach the orange vertex, instead of paying a weight of 4 to use the horizontal edge
reaching the orange vertex.

From Figure 4, it is easy to see that each canonical path has weight equal to α .

3.1 Vertices and Edges not shown in Figure 4

The following vertices and edges are not shown in Figure 4 for sake of presentation:

• Add two vertices s and t.
• For each 1≤ i≤ k, add an edge (s,ci) of weight 0.
• For each 1≤ i≤ k, add an edge (di, t) of weight 0
• Add edges (t,ak) and (b1,s) of weight 0.
• For each 2≤ i≤ k, introduce two new vertices ei and fi.
• For each 2≤ i≤ k, add edges s→ ei and fi→ t of weight 0.
• For each 2≤ i≤ k, add a path bi→ ei→ fi→ ai−1. Set the weights of (bi,ei) and ( fi,ai−1) to be 0.
• For each 2≤ i≤ k, set the weight of the edge (ei, fi) to be W . We call these edges as connector edges.

The idea is that we will choose W large enough so that each connector edge is used exactly once in an
optimum solution for 2-SCSS-(2k−1,1). We will see later that W = 53n9 suffices for our reduction.
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Remark 3.2. We need a small technical modification: add one dummy row and column to the GRID

TILING* instance. Essentially, we now have a dummy index 1. So neither the first row nor the first column
of any Si, j has any elements in the GRID TILING* instance. That is, no green vertex or orange vertex can be
in the first row or first column of any gadget.

We now prove two theorems which together give a reduction from GRID TILING* to 2-SCSS-(2k−1,1).
Let

β = 2k ·α +W (k−1)− (k2 + k) (2)

3.2 GRID TILING* has a solution⇒⇒⇒ 2-SCSS-(2k−1,1)2-SCSS-(2k−1,1)2-SCSS-(2k−1,1) has a solution of weight≤ β≤ β≤ β

First we show the easy direction.

Theorem 3.3. GRID TILING* has a solution implies 2-SCSS-(2k−1,1) has a solution of weight at most β .

Proof. For each 1 ≤ i, j ≤ k let si, j ∈ Si, j be the vertex in the solution of the GRID TILING* instance.
Therefore, there exist k numbers δ1,δ2, . . . ,δk such that si, j = (δi,δ j) for each 1 ≤ i, j ≤ k. We use the
following path for the t ; s path in our solution:

• First use the edge (t,ak). This incurs weight 0.

• For each k≥ i≥ 2, use the canonical ai ; bi path Pδi
i followed by the path bi→ ei→ fi→ ai−1. This

way we reach a1. Finally use the canonical path Pδ1
1 to reach b1. The total weight of these edges is

α · k+W (k−1) since we have used k canonical paths and (k−1) connector edges.
• Finally use the edge (b1,s) of weight 0.

Therefore, with a total weight of α · k+W (k− 1) we have obtained an t ; s path. Since we have used all
the k− 1 connector edges in the t ; s path, we can now use them for free in (different) s ; t paths. In
particular, we get (k−1) s ; t paths given by s→ ei→ fi→ t for each 2≤ i≤ k. Note that the total weight
of these (k−1) s ; t paths is 0, since for each 2≤ i≤ k the edge (ei, fi) is obtained for free (as it was used
in the t ; s path) and both the edges (s,ei) and ( fi, t) have weight 0.

Note that we still need k more s ; t paths. For each j ∈ [k], we add the canonical c j ; d j path Qδ j
j .

For each j ∈ [k], note that the edges (s,c j) and (d j, t) have weight 0. Hence, for each j ∈ [k] we get a s ; t
path whose weight is exactly equal to α . However, now the canonical paths will encounter exactly one
vertex in each gadget: either green or orange depending on whether the gadget is symmetric or asymmetric
respectively. As shown in Figure 5, we can save 2 in every symmetric gadget and 1 in every asymmetric
gadget. Since number of symmetric gadgets is k and number of asymmetric gadgets is k(k−1), we save a
total weight of 2k+ k(k−1) = (k2 + k).

Hence, the total weight of the solution is equal to
(

α · k+W (k− 1)
)
+
(

α · k− (k2 + k)
)
= β , from

Equation 2.

3.3 2-SCSS-(2k−1,1)2-SCSS-(2k−1,1)2-SCSS-(2k−1,1) has a solution of weight≤ β ⇒≤ β ⇒≤ β ⇒ GRID TILING* has a solution

We now prove the other direction which is more involved. Fix a solution X of 2-SCSS-(2k− 1,1) which
has cost ≤ β . First we show some preliminary lemmas:

Definition 3.4. For each i ∈ [k], let us call the set of gadgets {Gi,1,Gi,2, . . . ,Gi,k} as the gadgets of level i.

Lemma 3.5. The t ; s path in X

• Must use all the k−1 connector edges
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• Contains an ai ; bi path (for each i ∈ [k]) which does not include any connector edge

Proof. The only outgoing edge from t is (t,ak) and the only incoming edge into s is (b1,s). Hence, the t ; s
is essentially a path from ak ; b1. Since the edges in the gadgets are oriented downwards and rightwards,
the only way to reach a gadget of level i−1 from a gadget of level i is to go to the vertex bi and then use the
path bi→ ei→ fi→ ai−1. That is, we must use all the (k− 1) connector edges which are given by (ei, fi)
for each 2≤ i≤ k.

Now we show the second part of the lemma. First observe that the above argument also implies that X
contains an ai ; bi path for each 2 ≤ i ≤ k. Since the only incoming edge into s is (b1,s), we must also
have an a1 ; b1 path in X . Therefore, the t ; s path contains an ai ; bi path for each i ∈ [k]. Clearly, the
ak ; bk path cannot use any connector edge due to orientation of the edges. For 1 ≤ i ≤ k− 1 consider a
ai ; bi path P in X . If it uses any connector edge, say (e j, f j), then it follows from the orientation of the
edges that j > i. Hence this path P reaches the vertex b j which is at level j. Recall that the only way to
climb a level above in the graph (that is, one with a smaller index) is through connector edges. Therefore,
the next time that the path P reaches level i (which it has to in order to reach vertex bi) it must do so at vertex
ai. Hence, the ai ; bi sub-path of P which starts at the last occurrence of ai on P satisfies the condition of
not using any connector edge.

Lemma 3.6. For each i ∈ [k], the sum of weights of blue edges incident on ai and bi on the ai ; bi path in
X is at least ∆(nk+1).

Proof. From Lemma 3.5, for each i ∈ [k] we know that X contains an ai ; bi path which does not include
any connector edge, i.e., the edges of this ai ; bi path are contained among the gadgets of level i. We must
use at least one blue edge incident on ai and one blue edge incident on bi. Let the blue edges incident on
ai,bi be from the canonical paths P`

i ,P
`′
i . Since the edges in gadgets are oriented downwards and rightwards,

it follows that `′ ≥ `. Hence the sum of weights of the blue edges is given by ∆(nk−ni+n+1−`)+∆(ni−
n+ `′) = ∆(nk+1)+(`′− `)≥ ∆(nk+1).

Lemma 3.7. At least k of the s ; t paths in X cannot use any connector edge.

Proof. If less than k of the s ; t paths in X do not use connector edges, then this implies that at least k
of the s ; t paths in X use a connector edge, since we require (2k− 1) paths from s ; t. Since there are
exactly (k−1) connector edges, some connector edge is used by two different s ; t paths. As we have seen
in Lemma 3.5, the t ; s path in X must use all the (k− 1) connector edges. Hence, the weight of X is
≥W (k−1)+W =Wk. We show below that this is greater than β , which gives a contradiction.

β =W (k−1)+2k
(

∆(nk+1)+4(k+1)+4k(n−1)
)
− (k2 + k)

≤W (k−1)+2k
(

∆(nk+1)+4(k+1)+4k(n−1)
)

=W (k−1)+2k
(

7n6(nk+1)+4(k+1)+4k(n−1)
)

[Since ∆ = 7n6]

≤W (k−1)+2n
(

7n6(2n2)+4(2n)+4n2
)

[Since k ≤ n]

≤W (k−1)+2n
(

14n8 +8n8 +4n8
)

=W (k−1)+52n9

<W (k−1)+53n9

=W (k−1)+W [Since W = 53n9]
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We call the s ; t paths described in Lemma 3.7 as expensive paths. Since these paths do not use a
connector edge, it follows that the only outgoing edges from s to be considered are to {c1,c2, . . . ,ck} and
the only incoming edges into t to be considered are from {d1,d2, . . . ,dk}. So, we can think of the expensive
paths as actually k paths from {c1,c2, . . . ,ck} to {d1,d2, . . . ,dk}. Since expensive edges do not use any
connector edge, the existence of a c j ; d` path implies `≥ j.

Definition 3.8. For each i ∈ [k], let λi denote the number of ci ; di expensive paths and µi denote the
number of ci ; {di+1,di+2, . . . ,dk} expensive paths respectively in X .

From Lemma 3.7, it follows that
k

∑
i=1

(λi +µi)≥ k (3)

Lemma 3.9. Let c j ; d` be an expensive path in X . Then the sum of weights of the blue edges in this path
is exactly ∆(nk+1) if the path is canonical, and at least ∆(nk+1)+∆ otherwise.

Proof. Since expensive paths do not use connector edges, we have ` ≥ j. We consider two cases: either
`= j or ` > j.

If ` = j, then let the blue edges incident on c j,d j be from the canonical paths Qr
j,Q

r′
j . Since expensive

paths do not use connector edges, we have r′ ≥ r. The weight of blue edges incident on c j from canonical
path Qr

j is ∆(nk− n j + n+ 1− r) and the weight of the blue edge incident on d j from the canonical path
Qr′

j is ∆(n j−n+ r′). Hence, the sum of weights of these edges is ∆(nk−n j+n+1− r)+∆(n j−n+ r′) =
∆(nk+1)+∆(r′− r)) ≥ ∆(nk+1). Note that if the path is canonical then r′ = r and the weight is exactly
∆(nk+1). Otherwise, if the path is not canonical then r′ > r and then the weight is ∆(nk+1)+∆(r′− r))≥
∆(nk+1)+∆

In the last case suppose ` > j: so clearly the path is not canonical. The minimum weights of any blue
edges incident on c j,d` are ∆(nk− n j+ 1),∆(n`− n+ 1) respectively. Hence, the sum of weights of these
edges is ∆(nk−n j+1)+∆(n`−n+1) = ∆(nk+1)+∆+∆(n(`− j−1))≥ ∆(nk+1)+∆.

Lemma 3.10. The weight of blue edges in X is at least 2k ·∆(nk+1).

Proof. From Lemma 3.6, we know that the sum of weights of blue edges incident on ai and bi on the ai ; bi

path in X is at least ∆(nk+ 1) for each i ∈ [k]. From Lemma 3.9, we know that the sum of weights of the
blue edges in any expensive path is at least ∆(nk+1). Moreover, Lemma 3.7 implies that there are at least
k expensive paths. Since all these edges are clearly disjoint, it follows that the total weight of blue edges is
at least 2k ·∆(nk+1).

Lemma 3.11. The weight of black edges in X is at least 2k
(

4(k+1)+4k(n−1)
)

, without considering the
savings via orange and green edges (see Figure 5).

Proof. From Lemma 3.5, we know that for each i ∈ [k] there is an ai ; bi path in X which does not include
any connector edge. Hence, the edges of this ai ; bi paths are contained in the gadgets of level i. Hence, we
need to at least buy the set of horizontally right black edges which take us from ai to bi. These black edges
have weight 4(k+1)+4k(n−1). Since the edges of the ai ; bi paths are contained in the gadgets of level
i and the sets of horizontally right black edges in gadgets of different levels are disjoint, the total weight of
horizontally right black edges is at least k

(
4(k+1)+4k(n−1)

)
.

Similarly, let c j ; d` be an expensive path for some ` ≥ j. Again, we need to at least buy at least
the set of vertically downward black edges which take us from c j to d`. These vertically downward black
edges have total weight 4(k+1)+4k(n−1). Even though two expensive paths may use the same vertically
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downward edges, they are both to be used in s ; t paths and hence we must pay for them each time. By
Lemma 3.7, there are at least k expensive paths and hence the total weight of the vertically downward black
edges is at least k

(
4(k+1)+4k(n−1)

)
.

Combining the two observations above, it follows that the total weight of black edges (horizontally right
and vertically downward) in X is at least 2k

(
4(k + 1)+ 4k(n− 1)

)
, without considering the savings via

orange and green edges (see Figure 5).

Lemma 3.12. Every expensive path in X is canonical, i.e., µ j = 0 for all j ∈ [k].

Proof. Suppose an expensive path is not canonical. Lemma 3.9 implies that the contribution of the blue
edges of this expensive path is ≥ ∆(nk+1)+∆. By an argument exactly similar to that of Lemma 3.10, it
follows that the contribution of the blue edges to weight of X is at least 2k ·∆(nk+1)+∆.

Refer to Figure 5. Note that we can use each shortcut at most
(2k

2

)
times, once for each pair of paths that

will meet at the orange or green vertex (note that there are total 2k paths ). There are k · n green edges (n
in each of the k symmetric gadgets). Since each green shortcut can save a weight of 2, we can save at most
2k ·n from the green edges. Note that in the asymmetric gadgets, there are no shortcuts along the diagonal.
Hence, an asymmetric gadget can have at most (n2−n) orange edges. There are (k2−k) asymmetric gadgets
and we can save a weight of 1 from each orange edge. So, we can save at most (n2− n)(k2− k) from the
orange edges. Hence, total maximum saving is at most(

2k
2

)(
2k ·n+(n2−n)(k2− k)

)
= k(2k−1)

(
2k ·n+(n2−n)(k2− k)

)
≤ 2n2 · (2n2 +n4) [Since k ≤ n]

≤ 6n6

We now claim that the weight of our solution already exceeds β , even if we allow this maximum possible
saving. Recall that we have weight of W (k−1) from the connector edges. Hence, the weight of X is at least

weight of X ≥W (k−1)+
(

2k ·∆(nk+1)+∆

)
+2k

(
4(k+1)+4k(n−1)

)
−6n6

=W (k−1)+2k ·∆(nk+1)+2k
(

4(k+1)+4k(n−1)
)
+
(

∆−6n6
)

=W (k−1)+2k ·∆(nk+1)+2k
(

4(k+1)+4k(n−1)
)
+n6 [Since ∆ = 7n6]

>W (k−1)+2k ·∆(nk+1)+2k
(

4(k+1)+4k(n−1)
)

>W (k−1)+2k ·∆(nk+1)+2k(4(k+1)+4k(n−1))− (k2− k)
= β [From Equation 2]

Contradiction.

Lemma 3.13. ∑
k
i=1 λi = k

Proof. From Equation 3 and Lemma 3.12, it follows that ∑
k
i=1 λi ≥ k. Suppose ∑

k
i=1 λi > k, i.e., there are at

least k+1 expensive paths. We follow a line of argument similar to that in proof of Lemma 3.10. Note that
the blue edges incident used in an expensive path are not used in the t ; s path inX , and hence it follows that
the total cost of the blue edges from expensive paths is at least (k+1) ·∆(nk+1). Hence the total weight of
the blue edges is at least k ·∆(nk+1)+(k+1) ·∆(nk+1) = 2k ·∆(nk+1)+∆(nk+1)≥ 2k ·∆(nk+1)+∆.
Now an argument exactly similar to that of Lemma 3.12 shows that weight of X exceeds β , which is a
contradiction.
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Note the shortcuts described in Figure 5 again bring the ai ; bi path back to the same horizontal canon-
ical path.

Definition 3.14. We call an ai ; bi path as an almost-canonical path if it is basically a canonical path, but
can additionally take the small detour given by the green or orange edges in Figure 5. An almost-canonical
path must however end on the same horizontal level on which it began.

Lemma 3.15. X contains exactly one ai ; bi path for each i ∈ [k]. Moreover, this path is almost-canonical.

Proof. Fix some i ∈ [k]. From Lemma 3.5, we know that X contains an ai ; bi path which does not include
any connector edge, i.e., this path is completely contained in the gadgets of level i. Suppose to the contrary
that the ai ; bi path in X is not almost-canonical. From the orientation of the edges in the gadgets of level
i (rightwards and downwards), we know that there is a ai ; bi path in X that starts with the blue edge
from P`

i and ends with a blue edge from P`′
i for some `′ > `. Hence, the contribution of these blue edges is

∆(nk−ni+n+1− `)+∆(ni−n+ `′) = ∆(nk+1)+∆(`′− `)≥ ∆(nk+1)+∆. Now, a similar argument as
in Lemma 3.12 can be applied to show that the weight of X is greater than β . Contradiction.

The above paragraph shows that each ai ; bi path in X is almost-canonical. Suppose there are at least
two ai ; bi paths in X . Then the blue edges incident on ai,bi must be different (otherwise we get the same
almost-canonical path). Therefore, the sum of blue edges incident on ai and bi is ≥ 2∆(nk+ 1). A similar
argument to Lemma 3.12 can be applied to show that the weight of X is greater than β . Contradiction.

Theorem 3.16. OPT for 2-SCSS-(k,1) is at most β implies the GRID TILING* instance has a solution.

Proof. By Lemma 3.13, we know that ∑
k
i=1 λi = k and λi ≥ 0 for each i ∈ [k]. We now claim that λi = 1 for

each i ∈ [k]. By Lemma 3.12 and Lemma 3.15, we know that X contains

• (Property 1): Exactly one ai ; bi (almost-canonical) path for every i ∈ [k].
• (Property 2): Exactly k canonical expensive paths.

In addition, X contains (k− 1) connector edges. For the moment let us forget the shortcuts we added
in Figure 5. The weight of X , without considering the shortcuts from Figure 5, is equal to W (k− 1) +
2k
(

∆(nk+ 1)+ 4(k+ 1)+ 4k(n− 1)
)
= β +(k2 + k). Therefore, we must have at a saving of ≥ (k2 + k)

from the orange and green shortcuts.
By Lemma 3.15, we know that for each i∈ [k] there is exactly one ai ; bi path in X . Moreover, this path

is almost-canonical. Recall that only the horizontal edges can save some weight (see Figure 5). Therefore,
we can use at most k green edges (one f or each symmetric gadget). Each canonical expensive path can use
at most (k− 1) orange edges; once for each of the (k− 1) asymmetric gadget that it encounters along the
way. Suppose we use δ green edges. Then Property 1 and Property 2 above imply that δ ≤ k. Then the
total saving is at most (k−1)

(
∑

k
i=1 λi)+2δ = k(k−1)+2δ . Since we want the total saving to be at least

k(k−1)+2k, this forces δ ≥ k. But, we already know that δ ≤ k, and hence δ = k. This forces that λi = 1
for each i ∈ [k] as follows: If any λi = 0, then we cannot use the green edge in the symmetric gadget Gi,i

which contradicts δ = k. If any λi ≥ 2, then some other λ j = 0 (since ∑
k
i=1 λi = k) and we return to previous

case. Therefore, the total saving is exactly k(k−1)+2k
So, we have that for each j ∈ [k], there is a canonical c j ; d j path in X , say Qγ j

j . Further, X also
contains an ai ; bi almost-canonical path for any i ∈ [k], say Pαi

i . The fact that we have a saving of at least
k(k− 1)+ 2k implies we have exactly one intersection in each symmetric gadget and each non-symmetric
gadget. By construction of the gadgets, it follows that

• γi = αi for each i ∈ [k]
• For each 1≤ i 6= j ≤ k we have (αi,α j) ∈ Si, j.

That is, the set of values (αi,α j) ∈ Si, j for each 1≤ i, j ≤ k form a solution for the GRID TILING* instance.
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3.4 Proof of Theorem 1.2

Finally, we are now ready to prove Theorem 1.2 which is restated below:

Theorem 1.2 . The 2-SCSS-(k,1) problem is W[1]-hard parameterized by k. Moroever, under the ETH,
the 2-SCSS-(k,1) problem cannot be solved in f (k) ·no(k) time for any function f where n is the number of
vertices in the graph.

Proof. Theorem 3.3 implies the W[1]-hardness by giving a reduction which transforms the problem of k×k
GRID TILING* into an instance of 2-SCSS-(2k− 1,1) where we want to find 2k− 1 paths from s ; t and
one path from t ; s.

Chen et al. [3] showed for any computable function f , the existence of an f (k) · no(k) time algorithm
for CLIQUE implies ETH fails. Composing the reduction of [11] from CLIQUE to GRID TILING*, along
with our reduction from GRID TILING* to 2-SCSS-(2k−1,1), we obtain under ETH there is no f (k) ·no(k)

algorithm for 2-SCSS-(k,1) for any computable function f since the parameter blowup is linear. This shows
that the nO(k) algorithm for 2-SCSS-(k,1) given in Section 2 is asymptotically optimal.

4 Conclusions

In this paper, for any k≥ 1 we studied the 2-SCSS-(k,1) problem and presented an algorithm which finds an
optimum solution in nO(k) time. Moreover, we showed our algorithms is asymptotically optimal: under the
ETH, the 2-SCSS-(k,1) problem does not admit an f (k) ·no(k) time algorithm for any computable function
f . This algorithm crucially used the fact that there always exists an optimal solution for 2-SCSS-(k,1) that
has the reverse-compatibility property. However, we showed in Section 2.4 that the 2-SCSS-(k1,k2) problem
need not always have an optimal solution which satisfies the general-reverse-compatibility property when
min{k1,k2} ≥ 2. Therefore, 2-SCSS-(k,1) is the most general problem that one can attempt to solve with
our techniques. It remains an important challenging problem to find a similar structure and generalize our
method to solve the 2-SCSS-(k1,k2) problem.

Acknowledgements: We would like to thank DIMACS for its hospitality where a subset of the authors had
fruitful discussions on this problem.
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