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LINEAR RANK-WIDTH OF DISTANCE-HEREDITARY GRAPHS
I. A POLYNOMIAL-TIME ALGORITHM

ISOLDE ADLER, MAMADOU MOUSTAPHA KANTE, AND O-JOUNG KWON

ABSTRACT. Linear rank-width is a linearized variation of rank-width, and it is
deeply related to matroid path-width. In this paper, we show that the linear
rank-width of every m-vertex distance-hereditary graph, equivalently a graph
of rank-width at most 1, can be computed in time O(n? -logy n), and a linear
layout witnessing the linear rank-width can be computed with the same time
complexity. As a corollary, we show that the path-width of every n-element
matroid of branch-width at most 2 can be computed in time O(n? - log, n),
provided that the matroid is given by its binary representation.

To establish this result, we present a characterization of the linear rank-
width of distance-hereditary graphs in terms of their canonical split decom-
positions. This characterization is similar to the known characterization of
the path-width of forests given by Ellis, Sudborough, and Turner [The vertex
separation and search number of a graph. Inf. Comput., 113(1):50-79, 1994].
However, different from forests, it is non-trivial to relate substructures of the
canonical split decomposition of a graph with some substructures of the given
graph. We introduce a notion of ‘limbs’ of canonical split decompositions,
which correspond to certain vertex-minors of the original graph, for the right
characterization.

1. INTRODUCTION

Rank-width [28] is a graph parameter introduced by Oum and Seymour with the
goal of efficient approximation of the clique-width [7] of a graph. Linear rank-width
can be seen as the linearized variant of rank-width, and it is similar to path-width,
which can be seen as the linearized variant of tree-width. While path-width is a
well-studied notion, much less is known about linear rank-width. Vertex-minor is a
graph containment relation where rank-width and linear rank-width do not increase
when taking this operation.

Rank-width is related to matroid branch-width, which has an important role in
structural theory on matroids. We refer to the series of papers by Geelen, Gerards,
and Whittle on the Matroid Minors Project [16], [18] and Rota’s Conjecture [19] for
more information on matroid branch-width. It is known that the matroid branch-
width (matroid path-width) of a binary matroid is equal to the rank-width (linear
rank-width) of its fundamental graph plus one [27]. This equality can be further
generalized to matroids over a fixed finite field with the finite field version of rank-
width [22] 23]. Hence new results on (linear) rank-width will immediately yield
new results on matroid branch-width or on matroid path-width. In this paper,
we will derive a complexity result for computing matroid path-width from linear
rank-width.

Kashyap [24] showed that it is NP-hard to compute matroid path-width on binary
matroids. By reducing from matroid path-width, we can show that computing
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2 I. ADLER, M.M. KANTE, AND O. KWON

linear rank-width is NP-hard in general. But, fixed parameter tractable algorithms,
parametrized by the linear rank-width, for testing whether the linear rank-width
of a graph is at most k exist. First, as the class of graphs of linear rank-width
at most k, for fixed k, is closed under taking vertex-minors, from the well-quasi-
ordering theorem by Oum [27], the class of graphs of linear rank-width at most
k is characterized by a finite set of forbidden vertex-minors. Since one can check
in time O(f(£,h) - n®) whether a fixed graph H on h vertices is isomorphic to a
vertex-minor of a given graph of rank-width at most ¢ [§], we can deduce that, for
any fixed k, one can check whether a given graph has linear rank-width at most & in
time O(g(k) - n3). But, as we need to construct the set of forbidden vertex-minors
and we do not know a bound on their size, the above algorithm is non-constructive.
Recently, Jeong, Kim, and Oum [21] showed that, for fixed k, there is a constructive
algorithm to test whether a given graph has linear rank-width at most k£ in time
O(f(k) - n?).

It is natural to ask which graph classes allow for an efficient computation. Adler
and Kanté [I] first showed that it is possible to compute the linear rank-width of
forests in linear time. As Bodlaender and Kloks [5] showed that it is possible to
compute the path-width of graphs of bounded tree-width in polynomial time, one
can ask whether it is also possible to compute the linear rank-width of graphs of
bounded rank-width in polynomial time. This question was very recently settled
by Jeong, Kim, and Oum [2I], but the exponent on n in the running time is not
realistic and depends on the rank-width. To the best of our knowledge, the existence
of such an algorithm that runs in time O(n?) or even better is an open questiorﬂ

Our main result is an O(n? - log, n)-time algorithm to compute the linear rank-
width of a distance-hereditary graph, and a linear layout witnessing its linear rank-
width. A graph G is distance-hereditary if for every pair of two vertices u and v of
G, the distance between v and v in any connected induced subgraph of G containing
both u and v, is the same as the distance between u and v in G. Distance-hereditary
graphs are exactly graphs of rank-width at most 1 [27], and include all forests and
cographs.

Theorem [6.1L The linear rank-width of every n-vertex distance-hereditary graph
can be computed in time O(n? -logyn). Moreover, a linear layout of the graph
witnessing the linear rank-width can be computed with the same time complexity.

In contrast, computing the path-width of distance-hereditary graphs is known to
be NP-hard [25].

A direct consequence of Theorem [6.1]is the possibility to compute the path-width
of matroids with branch-width at most 2 in polynomial time. It is known that every
matroid of branch-width at most 2 is a binary matroid [30, BT}, [I1].

Corollary The path-width of every n-element matroid of branch-width at most
2 can be computed in time O(n? - logy n), provided that the matroid is given by its
binary representation. Moreover, a linear layout of the matroid witnessing the path-
width can be computed with the same time complexity.

The main ingredient of our algorithm is a new characterization of the linear rank-
width of distance-hereditary graphs (Theorem . Our characterization makes use
of the special structure of canonical split decompositions [9] of distance-hereditary
graphs. Roughly, a canonical split decomposition decomposes a distance-hereditary
graph in a tree-like fashion into complete graphs and stars, and our characterization
is recursive along the sub-decompositions of the split decomposition.

While a similar idea has been exploited in [I}, 13} 26] for other parameters, here
we encounter a new problem. When we take a subgraph of a given split decom-
position, the obtained split decomposition may have vertices that do not represent

LAt the time this paper was submitted, the algorithm in [2I] was not even known.
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vertices of the original graph. It is not at all obvious how to deal with these vertices
in the recursive step. We handle this by introducing limbs of canonical split de-
compositions, that correspond to certain vertex-minors of the original graphs, and
have the desired properties to allow our characterization. We think that the notion
of limbs may be useful in other contexts, too, and hopefully, it can be extended to
other graph classes and allow for further new efficient algorithms.

The paper is structured as follows. Section [2| introduces the basic notions, in
particular linear rank-width, vertex-minors, and split decompositions. In Section 3]
we define limbs and its canonical decompositions, called canonical limbs, and show
some basic properties. We use them in Section [4] for our characterization of the
linear rank-width of distance-hereditary graphs. In Section [f] we establish essential
properties of canonical limbs, which will be used to obtain the running time of
our algorithm. Section |§| presents the O(n? - log, n)-time algorithm for computing
the linear rank-width of distance-hereditary graphs, and in Section [} we obtain
an algorithm for computing the path-width of matroids of branch-width at most 2
as a corollary. To obtain the running time, we need the fact that every n-vertex
distance-hereditary graph G has linear rank-width at most logy n. Generally, we
prove in Section [§| that every graph of rank-width &k has linear rank-width at most
k|logs .

2. PRELIMINARIES

In this paper, graphs are finite, simple and undirected, unless stated otherwise.
Our graph terminology is standard, see for instance [I2]. Let G be a graph. We
denote the vertex set of G by V(G) and the edge set by E(G). An edge between
x and y is written xy (equivalently yx). For X < V(G), we denote by G[X] the
subgraph of G induced by X, and let G\X := G[V(G)\X]. For shortcut we write
G\z for G\{z}. For a vertex x of G, let Ng(z) be the set of neighbors of z in G
and we call |[Ng(z)| the degree of x in G. An edge e of G is called a cut-edge if its
removal increases the number of connected components of G.

A tree is a connected acyclic graph. A leaf of a tree is a vertex of degree one.
A path is a tree where every vertex has degree at most two. The length of a path
is the number of its edges. A star is a tree with a distinguished vertex, called its
center, adjacent to all other vertices. A complete graph is a graph with all possible
edges. A graph G is called distance-hereditary if for every pair of two vertices x and
y of G the distance of x and y in G equals the distance of  and y in any connected
induced subgraph containing both z and y [3].

2.1. Linear rank-width and vertex-minors. For sets R and C, an (R, C)-matriz
is a matrix whose rows and columns are indexed by R and C, respectively. For an
(R,C)-matrix M, X € R, and Y < C, let M[X,Y] be the submatrix of M whose
rows and columns are indexed by X and Y, respectively.

Linear rank-width. Let G be a graph. We denote by Ag the adjacency matriz of
G over the binary field. The cut-rank function of G is a function cutrkg : 2V(¢) — 7
where for each X € V(G),

cutrkg(X) := rank(Ag[X, V(G)\X]).

A sequence (x1,...,x,) of the vertex set V(G) is called a linear layout of G. If
|[V(G)| = 2, then the width of a linear layout (z1,...,z,) of G is defined as

1gr?gay}f_1{cutrkG({xh S xi))

The linear rank-width of G, denoted by lrw(G), is defined as the minimum width

over all linear layouts of G if |V(G)| = 2, and otherwise, let lrw(G) := 0.
Caterpillars and complete graphs have linear rank-width at most 1. Ganian [14]

characterized the graphs of linear rank-width at most 1, and called them thread
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a b b a

FIGURE 1. Pivoting an edge ab.

graphs. Adler and Kanté [I] showed that linear rank-width and path-width coincide
on forests, and therefore, there is a linear-time algorithm to compute the linear
rank-width of forests. It is easy to see that the linear rank-width of a graph is the
maximum over the linear rank-widths of its connected components.

To obtain the bound presented in Theorem [6.1] we will need the fact that the
linear rank-width of an n-vertex distance-hereditary graph G is at most log, n. In
fact, we generally show that the linear rank-width of a graph with rank-width k is
at most k|log, n]|. The proof scheme is similar to the one for path-width [4].

A tree is subcubic if it has at least two vertices and every internal vertex has
degree 3. A rank-decomposition of a graph G is a pair (T, L), where T is a subcubic
tree and L is a bijection from the vertices of G to the leaves of T. For an edge
e in T, T\e induces a partition (X,,Y.) of the leaves of T. The width of an edge
e is defined as cutrkg(L~1(X,)). The width of a rank-decomposition (T, L) is the
maximum width over all edges of T'. The rank-width of G, denoted by rw(G), is the
minimum width over all rank-decompositions of G if |V(G)| = 2, and otherwise, let

rw(G) = 0.

Theorem 2.1 (Oum [27]). A graph is distance-hereditary if and only if it has
rank-width at most 1.

Lemma 2.2. Let k be a positive integer and let G be a graph of rank-width k. Then
Irw(G) < kllog,|[V(G)].

Lemma, [2.2] will be proved in Section

Vertex-minors. For a graph G and a vertex x of G, the local complementation at
x of G is an operation to replace the subgraph induced by the neighbors of x with
its complement. The resulting graph is denoted by G # z. If H can be obtained
from G by applying a sequence of local complementations, then G and H are called
locally equivalent. A graph H is called a vertex-minor of a graph G if H can be
obtained from G by applying a sequence of local complementations and deletions
of vertices.

Lemma 2.3 (Oum [27)). Let G be a graph and let x be a vertex of G. Then for
every subset X of V(G), we have cutrkg(X) = cutrkgy.(X). Therefore, every
vertex-minor H of G satisfies that lrw(H) < Irw(G).

For an edge @y of G, let Wi i= No(z) 0 Na(y), Wa = (Na(@)\Na()\{y},
and Ws := (Ng(y)\Ng(x))\{x}. The pivoting on xy of G, denoted by G A zy, is
the operation to complement the adjacencies between distinct sets W; and W, and
swap the vertices = and y. It is known that G Azy =G+xxysx =Gryxx*y
[27]. See Figure [1| for an example.

We introduce some basic lemmas on local complementations, which will be used
in several places.

Lemma 2.4. Let G be a graph and z,y € V(G) such that xy ¢ E(G). Then
Grxsxy=G*y=*x.
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Proof. Tt is straightforward as applying a local complementation at x or y does not
change the neighbor sets of x and y. O

Lemma 2.5. Let G be a graph and z,y,z € V(G) such that zy,xz ¢ E(G) and
yz€ E(G). Then Gxx Ayz=G A yz = .

Proof. By the definition of pivoting, G # x A yz = G = x =y * z = y. Note that
xy ¢ E(G), xz ¢ E(G+vy), and zy ¢ E(G # y * z). Therefore, by Lemma
Grxryszry = (Gry)sxrzxy = (Gryxz)sxry = (Gryxzxy)sx = Garyzrz. O

Lemma 2.6 (Oum [27]). Let G be a graph and x,y,z € V(G) such that xy,yz €
E(G). Then G A xy A xz = G A yz.

2.2. Split decompositions and local complementations. We will follow the
definition of split decompositions in [6]. We notice that split decompositions are
usually defined on connected graphs. For computing the linear rank-width of a
distance-hereditary graph, it is enough to compute the linear rank-width of its con-
nected components and take the maximum over all those values. Thus we will
mostly assume that the given graph is connected in this paper, and use split de-
compositions in usual sense.

Let G be a connected graph. A split in G is a vertex partition (X,Y") of G such
that | X1],|Y] > 2 and rank(Ag[X,Y]) = 1. In other words, (X,Y) is a split in
G if |X|,|Y| = 2 and there exist non-empty sets X’ € X and Y’ < Y such that
{rye E(G) |ze X,yeY} ={zy |z € X',y € Y'}. Notice that not all connected
graphs have a split, and those that do not have a split are called prime graphs.

A marked graph D is a connected graph D with a set of edges M (D), called
marked edges, that form a matching such that every edge in M (D) is a cut-edge.
The ends of the marked edges are called marked vertices, and the components of
(V(D), E(D)\M (D)) are called bags of D. The edges in E(D)\M (D) are called
unmarked edges, and the vertices that are not marked vertices are called unmarked
vertices. If (X,Y) is a split in G, then we construct a marked graph D that consists
of the vertex set V(G) u {2’,y'} for two distinct new vertices 2,y ¢ V(G) and the
edge set E(G[X]) v E(G[Y]) v {2'y'} u E' where we define z’y’ as marked and

E':= {2’z | z € X and there exists y € Y such that zy € E(G)}u
{v/y | y € Y and there exists x € X such that zy € E(G)}.

The marked graph D is called a simple decomposition of G.

A split decomposition of a connected graph G is a marked graph D defined in-
ductively to be either G or a marked graph defined from a split decomposition D’
of G by replacing a component H of (V(D’), E(D")\M (D’)) with a simple decom-
position of H. For a marked edge xy in a split decomposition D, the recomposition
of D along xy is the split decomposition D’ := (D A zy)\{z,y}. For a split decom-
position D, let G[D] denote the graph obtained from D by recomposing all marked
edges. By definition, if D is a split decomposition of G, then G[D] = G. Since each
marked edge of a split decomposition D is a cut-edge and all marked edges form a
matching, if we contract all unmarked edges in D, then we obtain a tree. We call it
the decomposition tree of G associated with D and denote it by Tp. To distinguish
the vertices of Tp from the vertices of G or D, the vertices of Tp will be called
nodes. Obviously, the nodes of Tp are in bijection with the bags of D. Two bags
of D are called neighbor bags if their corresponding nodes in Tp are adjacent. A
subgraph of a split decomposition is called a sub-decomposition.

A split decomposition D of G is called a canonical split decomposition (or canon-
ical decomposition for short) if each bag of D is either a prime graph, a star, or
a complete graph, and D is not the refinement of a decomposition with the same
property. The following is due to Cunningham and Edmonds [9], and Dahlhaus
[10].
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Theorem 2.7 (Cunningham and Edmonds [9]; Dahlhaus [I0]). Every connected
graph G has a unique canonical decomposition, up to isomorphism, and it can be
computed in time O(|V(Q)| + |E(G))).

From Theorem we can talk about only one canonical decomposition of a
connected graph G because all canonical decompositions of G' are isomorphic.

Let D be a split decomposition of a connected graph G with bags that are
either prime graphs, complete graphs or stars (it is not necessarily a canonical
decomposition). The type of a bag of D is either P, K, or S depending on whether
it is a prime graph, a complete graph, or a star. The type of a marked edge uv is
AB where A and B are the types of the bags containing u and v respectively. If
A= S or B=_S, then we can replace S by S, or S. depending on whether the end
of the marked edge is a leaf or the center of the star.

Theorem 2.8 (Bouchet [6]). Let D be a split decomposition of a connected graph
with bags that are either complete graphs or stars. Then D is a canonical decompo-
sition if and only if it has no marked edge of type KK or SpS..

We will use the following characterization of distance-hereditary graphs.

Theorem 2.9 (Bouchet [6]). A connected graph is distance-hereditary if and only
if each bag of its canonical decomposition is of type K or S.

We now relate the split decompositions of a graph and the ones of its locally
equivalent graphs. Let D be a split decomposition of a connected graph. A vertex
v of D represents an unmarked vertex x (or is a representative of x) if either v = x
or there is a path of even length from v to z in D starting with a marked edge
such that marked edges and unmarked edges appear alternately in the path. Two
unmarked vertices x and y are linked in D if there is a path from z to y in D such
that unmarked edges and marked edges appear alternately in the path.

Lemma 2.10. Let D be a split decomposition of a connected graph. Let v’ and w'
be two vertices in a same bag of D, and let v and w be two unmarked vertices of D
represented by v’ and w’, respectively. The following are equivalent.

(1) v and w are linked in D.
(2) vw e E(G[D]).
(8) v'w' € E(D).

Proof. Tt is not hard to show that v’ and w’ are adjacent in D if and only if there
is an alternating path from v to w in D from the definition of representativity.
Note that recomposing a marked edge in a split decomposition does not change the
property that two unmarked vertices are linked, and the adjacency of two vertices
in G[D]. It implies that v and w are linked in D if and only if vw € E(G[D]). O

A local complementation at an unmarked vertex z in a split decomposition D,
denoted by D *x, is the operation to replace each bag B containing a representative
w of & with B = w. Observe that D * x is a split decomposition of G[D] * x, and
M(D) = M(D = z). Two split decompositions D and D’ are locally equivalent if
D can be obtained from D’ by applying a sequence of local complementations at
unmarked vertices.

Lemma 2.11 (Bouchet [0]). Let D be the canonical decomposition of a connected
graph. If x is an unmarked vertex of D, then D % x is the canonical decomposition

of G| D] = x.
Remark. If D is a canonical decomposition and D’ = D # z for some unmarked
vertex v of D, then Tp and Tp are isomorphic because M (D) = M(D’). Thus, for

every node v of Tp associated with a bag B of D, its corresponding node v’ in T
is associated in D’ with either
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FIGURE 2. The split decomposition D v *w % v, which is the same
as D A vw.

(1) B if « has no representative in B, or
(2) B =w if B has a representative w of v.

For easier arguments in several places, if T is given for D, then we assume that
Tp = Tp for every split decomposition D’ locally equivalent to D. For a canonical
decomposition D and a node v of its decomposition tree, we write bp(v) to denote
the bag of D with which it is in correspondence.

Let z and y be linked unmarked vertices in a split decomposition D, and let P
be the alternating path in D linking = and y. Observe that each bag contains at
most one unmarked edge in P. Notice also that if B is a bag of type S containing
an unmarked edge of P, then the center of B is a representative of either = or y.
The pivoting on xy of D, denoted by D A xy, is the split decomposition obtained as
follows: for each bag B containing an unmarked edge of P, if v, w € V(B) represent
respectively « and y in D, then we replace B with B A vw. (It is worth noticing
that by Lemma [2.10, we have vw € E(B), hence B A vw is well-defined. )

Lemma 2.12. Let D be a split decomposition of a connected graph. If xy €
E(G[D]), then D A xy = D %z %y * x.

Proof. Since xy € E(G[D]), by Lemma x and y are linked in D. Tt is easy to
see that by the operation D # x % y * x, only the bags in the path from z to y are
modified, and they are modified according to the definition of D A xy. See Figure
for an example of this procedure. O

As a corollary of Lemmas and we get the following.

Corollary 2.13. Let D be the canonical decomposition of a connected graph. If
xy € E(G[D]), then D A xy is the canonical decomposition of G[D] A xy.

The following are split decomposition versions of Lemmas and they
can be easily verified in a same way.

Lemma 2.14. Let D be the canonical decomposition of a connected graph. The
following are satisfied.
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e
)
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FI1GURE 3. A graph of linear rank-width 2 and its canonical decom-
position. If we regard the marked vertices incident with vertices in
the middle bag B as vertices not contained in sub-decompositions

after removing B, then each sub-decomposition corresponds to a
graph without edges, which has linear rank-width 0.

NS
e
o

Z2S

>« B
» D

FIGURE 4. The canonical decomposition of a graph of linear rank-
width 2. If we regard the marked vertices incident with vertices in
the middle bag B as vertices of sub-decompositions after removing
B, then each sub-decomposition corresponds to a graph of linear
rank-width 2.

(1) If x,y are unmarked vertices of D that are not linked, then Dxxxy = Dxys*x.

(2) If x,y, z are unmarked vertices of D such that x is linked to neither y nor
z, and y and z are linked, then D «x A yz = D A yz % x.

(8) If x,y, z are unmarked vertices of D such that y is linked to both x and z,
then D A xy A xz = D A yz.

For a bag B of D and a component T of D\V (B), let us denote by (D, B,T) and
¢.(D, B,T) the adjacent marked vertices of D that are in B and in T respectively.
The subscripts b and ¢ stand for ‘bag’ and ‘component’, respectively. Observe that
¢(D, B,T) is not incident with any marked edge in T. So, when we take a sub-
decomposition T' from D, we regard (.(D, B,T) as an unmarked vertex of T'.

3. LIMBS IN CANONICAL DECOMPOSITIONS

We define the notion of limb that is the key ingredient in our characterization.
The linear-time algorithm for computing the path-width of trees (and hence their
linear rank-width by [I]) is based on the following characterization.
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Proposition 3.1 (Ellis, Sudborough, and Turner [I3]). A tree T has path-width at
most k if and only if for every vertex v of T at most two components of T\v have
path-width at most k, and all the other components have path-width at most k — 1.

We want to have a similar characterization for distance-hereditary graphs using
their canonical split decompositions, and the notion of limbs is intended to satisfy
the following property.

A distance-hereditary graph has linear rank-width at most k if and
only if for every bag B of its canonical decomposition, among the
limbs obtained by removing B, there are at most two limbs whose
corresponding graphs have linear rank-width at most k, and for
other limbs, the corresponding graphs have linear rank-width at
most k — 1.

Limbs of a canonical decomposition are roughly some of its proper vertex-minors.
Before defining it, let us first explain why taking sub-decompositions is not sufficient.

Let B be a bag of a canonical decomposition D. When defining sub-decompositions
of components of D\V(B) as limbs we have to deal with the marked vertices having
a neighbor in B. If limbs are decompositions obtained by removing these vertices
from the components of D\V(B), then we may lose the adjacency information be-
tween sub-decompositions, and we cannot get such a characterization indeed; see
Figure [3] for an example. On the other hand, if we regard these marked vertices as
new vertices in the sub-decompositions, then we still cannot obtain such a charac-
terization. We give an example in Figure 4| where three sub-decompositions induce
graphs of linear rank-width 2, but the original graph also has linear rank-width 2.

It turns out that by applying local complementations on the marked vertices
having a neighbor in B, in the right way depending on the type of B, we can avoid
the difficulties showed in Figures [8]and [d] and indeed obtain the wanted character-
ization. We now define the notion of limb and prove some technical lemmas that
will be used in the subsequent sections. In this section let us fix D the canonical
decomposition of a connected distance-hereditary graph G. We recall from Theo-
rems [2.8] and that each bag of D is of type K or S, and marked edges of types
KK or S,S. do not occur.

For an unmarked vertex y in D and a bag B of D containing a marked vertex
that represents y, let T' be the component of D\V(B) containing y, and let v :=
¢(D,B,T) and w := {,(D, B,T) be adjacent marked vertices of D. (Recall that
ve V(T) and w € V(B).) We define the limb L := Lp[B,y] with respect to B and
y as follows:

(1) if B is of type K, then £ := T = v\v,
(2) if B is of type S and w is a leaf, then £ := T\v,
(3) if B is of type S and w is the center, then £ :=T A vy\v.

Since v becomes an unmarked vertex in T, the limb is well-defined and it is a split
decomposition. While T is a canonical decomposition, £ may not be a canonical
decomposition at all, because deleting v may create a bag of size 2. We analyze the
cases when such a bag appears, and describe how to transform it into a canonical
decomposition.

Suppose that a bag B’ of size 2 appears in £ by deleting v. If B’ has no adjacent
bags in £, then B’ itself is a canonical decomposition. Otherwise we have two cases.

(1) (B’ has one neighbor bag Bj.)
If v1 € V(By) is the marked vertex adjacent to a vertex of B’ and r is the
unmarked vertex of B’ in £, then we can transform the limb into a canonical
decomposition by removing the bag B’ and replacing v; with r. In other
words, we recompose along the marked edge connecting B’ and Bj.
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FIGURE 5. In (a), we have a canonical decomposition D of a
distance-hereditary graph with a bag B. The dashed edges are
marked edges of D. In (b), we have limbs associated with the com-
ponents of D\V(B). The canonical limbs associated with limbs are
shown in (c¢).

(2) (B’ has two neighbor bags By and Bs.)
If v1 € V(By) and vy € V(B3) are the two marked vertices that are adjacent
to the two marked vertices of B’, then we can first transform the limb into
another decomposition by removing B’ and adding a marked edge vivs. If
the new marked edge vivs is of type KK or 5,5, then by recomposing
along vyve, we finally transform the limb into a canonical decomposition.

Let LCp[B,y] be the canonical decomposition obtained from Lp[B,y], and we
call it the canonical limb. Let LGp[B,y] be the graph obtained from Lp[B,y]| by
recomposing all marked edges. See Figure [5|for an example of canonical limbs.

Lemma 3.2. Let B be a bag of D. If an unmarked vertex y of D is represented by
a marked vertex of B, then Lp[B,y] is connected.

Proof. Let T be the component of D\V(B) containing y, and v := (.(D, B, T),
and B’ be the bag of D containing v. Since local complementations maintain
connectedness, it suffices to verify that V(B’)\{v} induces a connected subgraph
in Lp[B,y]. This is not hard to see for each of the three cases. O

Lemma 3.3. Let B be a bag of D. If two unmarked vertices x and y are represented
by a marked vertex w in B, then Lp[B,x] is locally equivalent to Lp[B,y].

Proof. Since x and y are represented by the same vertex w of B, they are contained
in the same component of D\V(B), say T. Let v := (.(D, B, T).

If B is a complete bag or a star bag having w as a leaf, then by the definition of
limbs, Lp[B,z] = Lp[B,y]. So, we may assume that B is a star bag and w is its
center. Since v is linked to both z and y in T, by LemmaR.14] T Avz Azy = T Avy.
So, we obtain that (T A va\v) Axy = T Ave Axzy\v = T Avy\v. Therefore Lp[B, z]
is locally equivalent to Lp[B,y]. O

For a bag B of D and a component T of D\V(B), we define fp(B,T) as the lin-
ear rank-width of LGp[B,y] for some unmarked vertex y € V(T'). By Lemma
fp(B,T) does not depend on the choice of y. Furthermore, by the following propo-
sition, it does not change when we replace D with some decomposition locally
equivalent to D.

Proposition 3.4. Let B be a bag of D and let y be an unmarked vertex of D repre-
sented by a vertex w in B. Let x € V(G[D]). If an unmarked vertexy' is represented
by w in D = x, then LGp[B,y] is locally equivalent to LG px[(D * x)[V(B)],y'].
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Therefore, fp(B,T) = fpsz((D*x)[V(B)],Ty) where T and T, are the components
of D\V(B) and (D = 2)\V(B) containing y, respectively. Moreover, LCp[B,y]| and
LCpyx[(D # 2)[V(B)],y'] are locally equivalent as canonical decompositions.

Before proving it, let us recall the following by Geelen and Oum.

Lemma 3.5 (Geelen and Oum [I7, Lemma 3.1]). Let G be a graph and xz,y be two
distinct vertices in G. Let zw € E(G #y) and 2z € E(G).
(1) If vy ¢ E(G), then (G +y)\z, (G*y=x)\z, and (G *y) A zw\x are locally
equivalent to G\z, G = x\x, and G A xz\z, respectively.
(2) If xy € E(G), then (G = y)\z, (G =y *x)\x, and (G *y) A zw\z are locally
equivalent to G\z, G A x2\z, and (G = x)\z, respectively.

Proof of Proposition[3.} Let v := (.(D,B,T) and B’ := (D=*xz)[V(B)]. Let T and
T, be the components of D\V(B) and (D * 2)\V(B’) containing y, respectively.
Note that V(T) = V(Ty).

We claim that £Gp[B,y] is locally equivalent to LG p4.[B’,y’] for some un-
marked vertex y’ represented by w in D 2. We divide into cases depending on the
type of the bag B and whether z € V(7).

Case 1. x € V(T) and x is not linked to v in T.
Since z is not linked to v in T, applying a local complementation at x does not
change the bag B. Thus, B’ = B and vz ¢ E(G[T]). In this case, let ¢/ :=y.

(1) (B is of type S and w is a leaf of B.) Lp[B,y] = T\v and Lp«.[B',y'] =
T + x\v. Since (T\v) *x = T * 2\v, Lp[B,y] and Lps.[B’,y’'] are locally
equivalent, and thus LGp[B,y] and LG p4.[B’,y’] are locally equivalent.

(2) (B is of type S and w is the center of B.) Lp[B,y] = T A vy\v and
Lpwz[B',y'] = (T = 2) A vy\v, and we have

LGp[B,y] = G[T nvy\v] = G[T] A vy\v.
Since vx ¢ F(G[T]), by Lemma LGp[B,y] is locally equivalent to
LG psa| By = G(T = z) A vy\v] = G[T] =z A vy\v.

(3) (B is of type K.) Lp[B,y] = T = v\v and Lpy,[B’,y'] = T = z = v\v, and
we have

LGp[B,y] = G[T * v\v] = G[T] * v\v.
Since vx ¢ E(G[T]), by Lemma LGp[B,y] is locally equivalent to

LG psa[B',y'] = G[T =z« v\v] = G[T] * z = v\v.

Case 2. x € V(T) and z is linked to v in T.
Since z is linked to v in T, va € E(G[T]). Let y' := x for this case.

(1) (B is of type S and w is a leaf of B.) Applying a local complementa-
tion at x does not change the type of the bag B. So, Lp[B,y] = T\v
and Lpsz[B',y'] = T = x\v. Since (T\v) *xz = T = 2\v, LGp[B,y] and
LG pxz[B’,y'] are locally equivalent.

(2) (Bisof type S and w is the center of B.) Applying a local complementation
at x changes the bag B into a bag of type K, and the component T into
T« x. Thus, Lp[B,y] =T Avy\v and Lpy.[B',y'] = (T = x) = v\v, and

LGp[B,y] = G[T A vy\v] = G[T] A vy\v.
Since va € E(G[T]), by Lemma LGp[B,y] is locally equivalent to
LGpsa| B Y] = G[(T x z) x v\v] = G[T] » z » v\w.
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(3) (B is of type K.) Applying a local complementation at = changes the
bag B into a bag of type S whose center is w. Lp[B,y] = T * v\v and
Lpwz[B',y'] =T * 2 A vz\v, and we have

LGp[B,y] = G[T = v\v] = G[T] * v\v.
Since vx € E(G[T]), by Lemma LGp[B,y] is locally equivalent to
LGpwa[B' Y] = G[T  x A va\v] = G[T] * x A va\v.

Case 3. z ¢ V(T).

If = has no representative in the bag B, then applying a local complementation
at x does not change the bag B and the component 7. Therefore, we may assume
that z is represented by some vertex in B, that is adjacent to w. In this case, v is
still a representative of y in D = z. Let ¢y := y.

(1) (B is of type S and w is a leaf of B.) If the representative of z in B is a
leaf of B, then it is not adjacent to w. Thus, the representative of x in B
is a center of B, and applying a local complementation at x changes B into
a bag of type K, and T into T * v. We have Lpy.[B’,y'] = (T *v) xv\v =
T\v = Lp[B,y].

(2) (B is of type S and w is the center of B.) Since w is the center of B, z
is represented by a leaf of the bag B. Applying a local complementation
at x does not change the bag B, but it changes T into T * v. So we have
Lp[B,yl =T Avy\v and Lpy[B,y'] = (T *v) A vy\v =T * y = v\v, and
we have

LGp[B,y] = G[T A vy\v] = G[T] A vy\v.
Since vy € E(G[T]), by Lemma LG p|B,y] is locally equivalent to

LGpsa[B', Y] = G[T # y x v\v] = G[T] x y » v\v.

(3) (B is of type K.) After applying a local complementation at z in D, B
becomes a star with a leaf w, and T becomes T # v. Therefore, we have
Lpswz|B,y'] =T =v\v = Lp|B,y].

We conclude that LGp[B,y] and LG p4.[B’,y’] are locally equivalent, and by
Lemma we have fp(B,T) = fps(B’,T:). Also, by construction LCp[B,y]
and LCpy.[B’,y'] are canonical decompositions of LGp[B,y] and LG py.[B’,y'],
respectively. By Lemma we can conclude that LCp[B,y] and LCpy.[B’, Y]
are locally equivalent as canonical decompositions. O

The following lemma is useful to reduce cases in several proofs.

Lemma 3.6. Let By and Bs be two distinct bags of D and for each i € {1,2}, let
T; be the components of D\V (B;) such that T contains the bag B and Ty contains
the bag By. Then there exists a canonical decomposition D’ locally equivalent to
D such that for each i € {1,2}, D'[V(B;)] is a star and (,(D, B;,T;) is a leaf of
D[V (B)).

Proof. Let v; := ((D, B;,T;) for i = 1,2. It is easy to make B; into a star bag
having v; as a leaf by applying local complementations. We may assume that v; is
a leaf of By in D. If vs is a leaf of By, then we are done. If By is a complete bag,
then choose an unmarked vertex ws of D that is represented by a vertex of By other
than vo. Then applying a local complementation at ws makes Bs into a star bag
having vo as a leaf without changing B;. Therefore, we may assume that vy is the
center of the star bag Bs. If By and By are neighbor bags in D, then the marked
edge connecting B; and B is of type S,S., contradicting to the assumption that
D is a canonical decomposition. Thus, B; and By are not neighbor bags in D.

Let T := D[V(Ty) n V(T»)] and we := ((D, B, T3). By the definition of a
canonical decomposition, ws is not a leaf of a star bag in D. Therefore, there exists
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an unmarked vertex y € V(T') of D such that y is linked to wy in T. Choose an
unmarked vertex 3’ of D represented by ws in D. Since y is linked to ¥’ and the
alternating path from y to 3’ in D passes through By but not Bj, pivoting yy’ in
D makes B into a star bag having vy as a leaf without changing B;. Thus, each
v; is a leaf of (D A yy')[V(B;)] in D A yy', as required. O

We conclude the section with the following.

Proposition 3.7. Let By and By be two distinct bags of D, and Ty be a component
of D\V (B1) not containing Bz, and Ty be the component of D\V (Bsz) containing By .
If y1 € V(Th) and yo € V(T3) are two unmarked vertices of D that are represented
by some vertices in By and Ba, respectively, then LGp[B1,y1] is a vertex-minor of

LGp[B2,y2]. Therefore fp(B1,T1) < fp(B2,Tz).

Proof. Let ug := (.(D, B, T3) and vg := (p(D, B2, T»). By Lemma there exists
a canonical decomposition D’ locally equivalent to D such that Bs is a star bag in
D’ with a leaf vy. For each i € {1,2}, let T/ := D'[V(T})], B, := D'[V(B;)] and let
y; be an unmarked vertex of D’ represented by (,(D’, B, T7}).

Since vq is a leaf of By in D', we have Lp/[Bj,y4] = T5\ve. Because 17 is
a subgraph of T4\vs, we can easily observe that £Gp/[Bf,y}] is a vertex-minor of
LG [ B, yh]. Since Lp[B;,y;] is locally equivalent to £p/[ By, yi] for each i € {1,2},
LGp[B1,y1] is a vertex-minor of LGp[Bs,y2]. We conclude that fp(Bi,T1) <
Ip(B2,T). O

4. CHARACTERIZING THE LINEAR RANK-WIDTH OF DISTANCE-HEREDITARY
GRAPHS

In this section, we prove the main structural result of this paper, which charac-
terizes the linear rank-width of distance-hereditary graphs.

Theorem 4.1. Let k be a positive integer and let D be the canonical decomposition
of a connected distance-hereditary graph G. Then lrw(G) < k if and only if for each
bag B of D, D has at most two components T of D\V(B) such that fp(B,T) =k,
and every other component T' of D\V(B) satisfies that fp(B,T') < k — 1.

Let D be the canonical decomposition of a connected distance-hereditary graph
G, and we fix a positive integer k. For simpler arguments, we remove D from the
notation fp(B,T) in this section. We first prove the forward direction.

Proof of the forward direction of Theorem[].1 Suppose that there exists a bag B
of D such that D\V(B) has at least three components T" which induce limbs L
where G[L] has linear rank-width k.

We claim that lrw(G) = k + 1. We may assume that D\V(B) has exactly three
components Ty, To and T3, where each component 7T; satisfies f(B,T;) = k. Since
removing a vertex from a graph does not increase the linear rank-width, we may
further assume that V(B) = {((D,B,T;) | 1 < i < 3}. Now, every unmarked
vertex of D is contained in one of T3, T5, and T3. For each 1 < ¢ < 3, let w; =
¢(D, B,T;), and let N; be the set of the unmarked vertices of T; that are linked
to w; in T;. Choose a vertex u; in N; and let D; := Lp[B,u;] and G; := G[D;].
We remark that NN; is exactly the set of the vertices in G; that have a neighbor
in V(G)\V(G;). By Proposition [3.4 and Lemmas [2.3] and for any canonical
decomposition D’ locally equivalent to D, we have Irw(G[D]) = lrw(G[D']) and
f(B,T;) does not change. So, we may assume that B is a complete bag of D.

We first claim that Dy = (D # up)[V(T2)\ws]. Since B is a complete bag, by the
definition of limbs, Dy = T * wy\ws. Since uy is linked to wy in T} and there is an
alternating path from w; to ws in D, by concatenating alternating paths it is easy
to see that (D = up)[V(To)\wa] = T = wo\ws = Dy, as claimed.
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Towards a contradiction, suppose that G has a linear layout L of width k. Let
a and b be the first and last vertices of L, respectively. Since B has no unmarked
vertices, without loss of generality, we may assume that a,b € V(G1) UV (G3). With
this assumption, we claim that G5 has linear rank-width at most k — 1.

Let v e V(G2) and S, := {zx € V(G) | x < v} and T, := V(G)\S,. Since v is
arbitrary, it is sufficient to show that cutrkeg, (S, N V(G2)) < k — 1.

We divide into three cases. We first check two cases that are (1) (N1 n S, # &
and N3 nT, # &), and (2) (N1 n T, # & and N3 n S, # ). If both of them are
not satisfied, then we can easily deduce that Ny U N3 € S, or Ny u N3 € T,.

Case 1. Ny n S, # & and N3 n'T, # (.
Let 21 € N1 n S, and 23 € N3 n'T,,. We claim that

cutrkg, (S, N V(G2)) = cutrkgv (as)ofar,zs)1 (S 0 V(G2)) U {z1}) — 1.

Because cutrkgv (a,)ofar a1 ((Se 0 V(G2)) U {21}) < cutrkg(S,) < k, the claim
implies that cutrke, (S, N V(G2)) <k — 1.

Note that 21 and x5 have the same neighbors in G[V(G2) u{z1, x3}] because B is
a complete bag. Since z; is adjacent to z3 in G[V(G2) u{x1,z3}], 3 becomes a leaf
in G[V(G2) v {z1,x3}] * £1 whose neighbor is 1. Since (D # z1)[V (T2)\wz] = Da,

we have

GV (G2) U {z1, z3}] * 21\v1\v3 = (G * 21)[V(G2)] = Ga.

Therefore,
kG v (Ga) ot 53] (S0 N V(G2)) U {21})
= CUtrkG[V(Gg)U{xl,fEB}]*xl((SU N V(GQ)) o {xl})
T3 T’U M V(GQ)
— rank @ 1 <)
T s, A V() (0 )
T3 Tv M V(GQ)
— rank o (L o)
ran S,U A V(GQ) \0 * }
= CUtrkG[V(Gz)U{Il713}]*51’1\931\13(SU NV(Gz)) +1
= cutrk(g,) (S, N V(G2)) + 1,
as claimed.

Case 2. NynT, # J and N3 n S, # .
In the same way as Case 1, we can prove cutrkg, (S, N V(G2)) < k — 1.

Case 3. NyuN3< S, or NyuN3 € T,.

We can assume without loss of generality that Ny U N3 < S, because the case
when Ny U N3 € T, is similar. Since a,b € V(G1) vV (G3) and the graph G[V (G1) v
V(G3)] is connected, there exist vertices s € S, N (V(G1) v V(Gs)) and t € T, n
(V(G1) v V(G3)) such that

(1) ste E(G),
(2) t has no neighbors in No.
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We have
t T,nV(Gsy)
cutrkg (S, ) = rank S, f/(Gg) ((1) : )
t T,nV(Gs)
srank oo f/(GQ) \é 2 )

= cutrkg, (S, N V(Ga2)) + 1.

Therefore, we conclude cutrkg, (S, N V(G2)) < k — 1.
Thus, G5 has linear rank-width at most & — 1, which yields a contradiction. [J

The proof of the converse direction can be summarized as follows.

(1) There is a path P in T such that for each node v in P and each component
T of D\V(bp(v)) not containing a bag bp(w) with w € V(P), f(B,T) <
k — 1 (Lemmas [4.4] and [£.F).

(2) We then follow the linear order induced by the path P to construct a linear
layout of width k by concatenating the linear layouts of the graphs induced
by the limbs associated with the nodes of P (Lemmas and .

For two linear layouts (z1,...,zy), (Y1,.-.,Ym), we define
(xlv"'axn)®(y1a-~-aym) = ($17~-~733my17~-~7ym)~

Lemma 4.2. Let B be a bag of D of type S with two unmarked vertices x and y
such that x is the center and y is a leaf of B. If for every component T of D\V (B),
f(B,T) < k—1, then the graph G[D] has a linear layout of width at most k whose
first and last vertices are x and y, respectively.

Proof. Let Ty, T5, ..., Ty be the components of D\V(B) and for each 1 < i < ¢, let
w; = ((D, B,T;) and let y; be a vertex in T; represented by a vertex of B. Since
each w; is adjacent to a leaf of B, T;\w; is the limb of D with respect to B and y;.
Let A:=V(B\(U,<j< {G(D, B, T;)})\{z,y}, and let L4 be a sequence of A.

Suppose that for every component T of D\V(B), f(B,T) < k — 1. For each
1 <4 <Y, let L; be a linear layout of G[T;\w;] of width at most £ — 1. We claim
that

L=(z)®L1®L® - ®L®LAD(y)

is a linear layout of G[D] of width at most k. It is sufficient to prove that for every
we V(GID)\ [y}, cutrkgpy({o | v <z w}) < k.

Let w € V(G[D)\(Au{z,y}), and let Sy, := {v : v <g w}and Ty, := V(G[D])\Sw.
Let j be the integer such that L; contains w. Then

cutrkg[p)(Sw)
11/ ff Tw 0 VGIT;])  Tw\yN\A\V(G[T;])
= rank SwnV(G[T;]) (0]0 * 0 \)
S\ \V(G[T5]) \O [ O 0 0 /

y A T,nV(G[T]) Tu\{yNA\V(G[T;])
x /110 0 0
—rank | 5, AV(G[T3]) (0]0 . 0 )
Su\z\V(G[T5]) N0 | 0 0 0 /

= Cutrkg[T].\wj](Sw N V(Q[T]])) +1< (k — 1) +1=k.
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If w e A, then it is easy to show that cutrkgipj({v | v <¢ w}) < 1. Therefore,
L is a linear layout of G[D] of width k whose first and last vertices are x and y,
respectively. O

We can remove the assumption on the shape of B in Lemma [{.2]

Lemma 4.3. Let B be a bag of D with two unmarked vertices x and y. If for every
component T of D\V(B), f(B,T) < k—1, then the graph G[D] has a linear layout
of width at most k whose first and last vertices are x and y, respectively.

Proof. Suppose that f(B,T) < k—1 for every component T of D\V(B). We obtain
a decomposition D’ from D as follows:
e If B is a complete graph, then let D’ := D * x.
e If B is a star whose center is z, then let D’ := D.
o Otherwise let D' := D A xz where z is an unmarked vertex represented by
the center of B.

It is clear that D'[V(B)] is a star whose center is x. By Proposition for
each component T of D\V(B), f(B,T) = fp/(D'[V(B)],D'[V(T)]). Thus, by
Lemma G[D'] has a linear layout of width at most k whose first and last
vertices are x and y, respectively. Since G[D’] is locally equivalent to G[D], we
conclude that G[D] also has such a linear layout. O

Lemma 4.4. If

(1) for each bag B of D, there are at most two components T of D\V(B) sat-
isfying f(B,T) =k, and
(2) for every other component T' of D\V(B), f(B,T") <k —1, and
(8) P is the set of nodes v in Tp such that exactly two components T of
D\V(bp(v)) satisfy f(bp(v),T) = ,
then either P = & or Tp[P] is a path.

Proof. Suppose that P # ¢&. If P has two distinct nodes v; and vo, then there exists
a component 71 of D\V'(bp (v1)) not containing V' (bp (v2)) such that f(bp(v1),T1) =
k, and there exists a component T of D\V (bp(v2)) not containing V(bp(v1)) such
that f(bp(ve),T2) = k. By Proposition for every node v on the path from v,
to v in Tp, v must be contained in P. So P induces a tree in Tp.

Suppose now that P contains a node v having three neighbor bags vy, v2, and v3 in
P. Then, again by Proposition[3.7, D must have three components T of D\V (bp (v))
such that f(bp(v),T) = k, which contradicts the assumption. Therefore, P induces
a path in Tp. O

Lemma 4.5. If

(1) for each bag B of D, there are at most two components T of D\V(B) sat-
isfying f(B,T) =k, and
(2) f(B,T") < k—1 for all the other components T' of D\V(B),
then Tp has a path P such that for each mode v in P and each component T of
D\V (bp(v)) not containing a bag bp(w) with w € V(P), f(bp(v),T) <k — 1.

Proof. Let P’ be the set of nodes v in T such that exactly two components T' of
D\V (bp(v)) satisfy f(bp(v),T) = k. By Lemma[d.4] either P’ = ¥ or Tp[P'] is a
path.

We first assume that P’ # . Let Tp[P’] = vivg - - - vy, and for each 1 < i < n,
let B; := bp(v;). By the definition, there exists a component T} of D\V(B;) such
that T} does not contain a bag bp(w) with w € V(P’) and f(By,T1) = k. Let v
be the node of Tp such that bp(vg) is the bag of T} that is the neighbor bag of By
in D. Similarly, there exists a component T,, of D\V(B,,) such that T;, does not
contain a bag bp(w) with w € V(P’) and f(B,,T,,) = k. Let v,41 be the node of
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Tp such that bp(v,+1) is the bag of T;, that is the neighbor bag of B, in D. Then
P := vgu1vg - - - v,Un 41 is the required path.
Now we assume that P’ = @f. We choose a node vy in Tp and let By := bp(vp).
If D has no component T' of D\V (By) such that f(By,T) = k, then P := v satisfies
the condition. If not, we take a maximal path P := vyvy -+ v,41 in Tp such that
(with B; := bp(v;))
— for each 0 < ¢ < n, D\V(B;) has one component T; such that f(B;,T;) = k,
and B,y is the bag of T; that is the neighbor bag of B; in D.
By the maximality of P, P is a path in Tp such that for each node v of P
and a component T of D\V(bp(v)) not containing a bag bp(w) with w € V(P),
flbp(v), T) <k —1. O

We are now ready to prove the converse direction of the proof of Theorem [4.1

Proof of the backward direction of Theorem [[.1. Suppose that for each bag B of D,
at most two components T of D\V(B) induce limbs L where G[L] has linear rank-
width exactly k, and all other component 77 of D\V(B) induce limbs L’ where
G[L'] has linear rank-width at most k — 1. We claim that Irw(G) < k.

Let P := vguy - - - vV, 1 be the path in Tp such that

e for each node v in P and a component T' of D\V(bp(v)) not containing
a bag bp(w) with w € V(P), f(bp(v),T) < k — 1 (such a path exists by
Lemma .
For each 0 < i < n+ 1, let B; := bp(v;). If P consists of one node, then by
Lemma [£.3] Irw(G) = Irw(G[D]) < k. Thus, we may assume that n > 0.

By adding unmarked vertices in By and B, if necessary, we assume that By
and B,y have unmarked vertices ag and b, 1 in D, respectively.

For each 0 < ¢ < n, let b; be a marked vertex of B; and let a;.1 be a marked
vertex B;;1 such that b;a;11 is the marked edge connecting B; and B;,1. Let Dy
be the component of D\V(B;) containing the bag By. Let D,, 1 be the component
of D\V(B,,) containing the bag B,,+1. For each 1 < i < n, let D; be the component
of D\(V(B;-1) v V(B;+1)) containing the bag B;. Notice that the vertices a; and
b; are unmarked vertices in D;.

Since every component T of D\V(B;) satisfies that fp,(B;,T) < k — 1, by
Lemma G; has a linear layout L} of width & whose first and last vertices are a;
and b;, respectively. For each 1 < i < n, let L; be the linear layout obtained from L/
by removing a; and b;. Let Lo and L, 1 be obtained from L{ and L/, , ; by removing
bo and a, 11, respectively. Then we can easily check that L := Lo@ L1 ® - @ L,11
is a linear layout of G[D] having width at most k. Therefore Irw(G[D]) < k. O

5. CANONICAL LIMBS

The objective now is to design an algorithm to compute the linear rank-width
of distance-hereditary graphs based on our characterization in Theorem The
scheme of this algorithm is actually the same as the algorithm for computing the lin-
ear rank-width (or path-width) of trees. Since our algorithm for distance-hereditary
graphs needs more notations, before describing it, we briefly describe, for easier un-
derstanding, the algorithm for trees [13].

Let F be a rooted tree. The algorithm from [I3] computes the linear rank-width
of F' bottom-up, i.e., it computes for each internal node u the linear rank-width
of the subtree F(u) rooted at u. Let k := max{lrw(F(v)) | v is a child of u}. If
there is a descendant v of u, called a k-critical node, that has two children v; and
vy such that lrw(F(v)) = Irw(F(v1)) = lrw(F(v2)) = k, then by Proposition
in order to decide the linear rank-width of F'(u) we need to know the linear rank-
width of F(u)\V(F(v)). We can recursively call the algorithm on F(u)\V (F(v)),
but this would not give a linear-time algorithm, and similar situations can happen
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in F(u)\V(F(v)). The idea introduced in [I3] to cope with this difficulty was to
keep in u the linear rank-width of the subtrees that may cause a recursive call to
the algorithm because of the presence of ¢-critical nodes for ¢ < k. For instance, in
Fy := F(u)\V(F(v)) we may have a kq-critical node w with kg := max{lrw(Fy(v)) |
v is a child of w in Fp}, and then we may need the linear rank-width of Fo\V (Fp(w))
to answer, and so on.

Similar to trees, in the case of a distance-hereditary graph G, we will start by
rooting the canonical decomposition D of G, and for each bag B with the parent
bag B’ and the component T of D\V(B’) containing B, we compute fp(B’,T). For
this, we define a k-critical bag in the same fashion. Let D’ be the canonical limb
with respect to B’ and an unmarked vertex y € V(T') where y is represented by some
vertex in B’. Now, if B” is a k-critical bag in D’, as in the case of trees we need to
compute fp/ (B”,T') where T” is the component of D'\V (B") containing the parent
of B”. However, contrary to the case of trees, the canonical limb LC[D’, B”,y'], for
some unmarked vertex y’ in V(T”), is not necessarily an induced subgraph of D.
We overcome this difficulty by showing that the order in which we can recursively
compute canonical limbs is not important, which enables us to store information
similar to the cases of trees.

As we explained above, we investigate useful properties of canonical limbs which
are related to the orders from which canonical limbs are taken. Note that for
recursively taking limbs, we need to transform an obtained limb into a canonical
limb because limbs are only defined on canonical decompositions. Let D be the
canonical decomposition of a connected distance-hereditary graph.

Proposition 5.1. Let By and Bs be two distinct bags of D and for each i € {1,2},
let T; be the component of D\V(B;), w; := (D, B;,T;) and y; be an unmarked
vertex of D represented by w; such that

e T} contains the bag By and Ty contains the bag B, and

e V(By) induces a bag in LC p[Ba, y2], and V (Bsg) induces a bag in LCp[B1,y1]-
We define that
By = (LCp[B2,y2]) [V (B1)],
By = (LCp[B1,y1])[V(B2)],
Yy is an unmarked vertex of LCp[Ba,ya] represented by wy, and
yh is an unmarked vertex of LCp[By,y1] represented by ws.

Then £CLCD[Bhy1][B§,y/2] is locally equivalent to ECLCD[Bz,yz][B’hy’l].

Proof. For each i € {1,2}, let v; := (.(D, B;,T;). By Lemma there exists a
canonical decomposition D’ locally equivalent to D such that for each i € {1, 2}, w; is
aleaf of D'[V(B;)] in D'. For each i € {1,2}, let P, := D'[V(B;)], T} := D'[V(T})],
and z; be an unmarked vertex of D’ represented by w;. We define that

T":= D'[V(T{) n V(T3)],

Pp = (LCp/ [Py, z2])[V (1)),

Py = (LCp/ [P, z1])[V (P2)],

z} is an unmarked vertex of LC p/[ Py, 23] represented by w1,

24 is an unmarked vertex of LC p/[Py, z1] represented by ws.

Since D is locally equivalent to D', by Proposition LCp[B1,y1] is locally
equivalent to LC p/[ Py, z1]. Again, since LC p[B1,y1] is locally equivalent to £LC p/[ Py, 1],
by Proposition [3-4]

LCre By ] [B5, y5] is locally equivalent to EC’H;D,[pth][PQ/7 25].

Similarly, we obtain that

LC e [Bs,ys] [B},4}] is locally equivalent to ECLCD,[PQ,ZZ][P{7 21].
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Since each v; is a leaf of P; in D', LC ¢ ,[p,,211[Pa, 23] and LC e, 1,21 P, 21] are
canonical decompositions obtained from T"\v;\vo by recomposing if neceesary. From
the assumption that V' (B;) induces a bag in LCp[Bs, y2], and V(Bsz) induces a bag
in LCp[B1,y1], V(B1) and V(Bz) also induce bags in LC p/[Pa, 23] and LCp/ [Py, 21],
respectively. Thus the order of taking canonical limbs with respect to P, and P»
does not affect on the resulting decompositions, and it implies that

LCrc Py, [P2: 25] = LC ey [Py, 2] [P 21])-
Therefore, LC ¢ 18, 4,11 B3, ¥5] is locally equivalent to LCzc,[B,,y4.][B1, V1] O

Proposition 5.2. Let By and By be two distinct bags of D. Let Ty be a component
of D\V(B1) that does not contain Bg, and Ty be the component of D\V(Bz) con-
taining the bag By. For i € {1,2}, let w; := (D, B;,T;), and y; be an unmarked
vertex of D represented by w;. If V(B1) induces a bag B} of LCp[Ba,ya], then
LCp[B1,y1] is locally equivalent to LCrc B,y B1, Y1), where yy is an unmarked
vertex of LCp[Bs,ya] represented by w;.

Proof. Suppose V(B;) induces a bag B] of LCp[Bsz,y2] and y; is an unmarked
vertex represented in £Cp[Bsg,y2] by wi. By Lemma there exists a canoni-
cal decomposition D’ locally equivalent to D such that ws is a leaf of a star bag
D'[V(B3)]. We define

Pl = D,[V(Bl)],

P2 = D,[V(BQ)],

for each i € {1,2}, z; is an unmarked vertex of D’ represented by w;,

Pll = ([,CD/[PQ,ZQ])[V(Bl)], and

z} is an unmarked vertex of LC p/[ Py, 22] represented by wy.

Since D is locally equivalent to D’, by Proposition LCp[B1,y1] is locally
equivalent to LCp/[Py, z1]. Similarly, we obtain that £Cp[Ba,ys] is locally equiv-
alent to LCp/[Ps, 22]. Since LCp[Ba,yz] is locally equivalent to LCp/[Pa, z2], by
Proposition [3.4]

LC ¢ [Bs,y1[B1, 1] s locally equivalent to ECLCD,[p2722][P1/7 211

Since wy is a leaf of Py in D', LCp/[Py,21] = LCe [Py, [ P15 #1]; and therefore,
LCp[B1,y1] is locally equivalent to LC ¢, [B,,y4,][B1,¥1], as required. O

6. COMPUTING THE LINEAR RANK-WIDTH OF DISTANCE-HEREDITARY GRAPHS

We describe an algorithm to compute the linear rank-width of distance-hereditary
graphs. Since the linear rank-width of a graph is the maximum linear rank-width
over all its connected components, we will focus on connected distance-hereditary
graphs.

Theorem 6.1. The linear rank-width of every connected distance-hereditary graph
with n vertices can be computed in time O(n? - logyn). Moreover, a linear layout
of the graph witnessing the linear rank-width can be computed with the same time
complezity.

As explained in Section ] the main idea consists of rooting the canonical decom-
position D of a connected distance-hereditary graph and associating each bag B of
D with a canonical limb £Cp[B’,y] where B’ is the parent of B and y is an un-
marked vertex in some descendant bag of B, and computing the linear rank-width
of LGp[B',y]. Following Theorem in order to compute the linear rank-width
of LGp[B’,y], we need to check the linear rank-width of proper limbs obtained
from LCp[B’,y] by removing some bags of LCp[B’,y]. Basically, we need to take
canonical limbs recursively from this reason. In contrast to the case of forests for
computing linear rank-width, the associated canonical limbs here are not necessarily
sub-decompositions of the original decomposition, and thus, it is not at all trivial
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how to store values to use in the next steps. The crucial point of achieving our
running time is to overcome this problem using the results in Section

Rooted decomposition trees. We define the notion of rooted decomposition trees.
A decomposition tree is rooted if we distinguish either a node or an edge and call
it the root of the tree. Let T be a rooted decomposition tree with the root r. A
node v is a descendant of a node v’ if v’ is in the unique path from the root to v,
and when r is an edge, this path contains both end nodes of r. If v is a descendant
of v/ and v and v’ are adjacent, then we call v a child of v' and v’ the parent of v.
Observe from the definition of descendants that if » = vv’, then v is the parent of
v’ and also v’ is the parent of v. We allow this tricky part for a technical reason. A
node in T is called a non-root node if it is not the root node.

Two nodes v and v’ are called comparable if one node is a descendant of the
other one. Otherwise, they are called incomparable. Recall that for each node v of
T and each canonical decomposition D with T as its decomposition tree we write
bp(v) to denote the bag of D with which it is in correspondence. For convenience,
let pby(v) := bp(v') with v' the parent of v.

Let D be the canonical decomposition of a connected distance-hereditary graph
G and let T be its decomposition tree rooted at r. Let B := bp(v) for some non-root
node v of T, and let y be an unmarked vertex of D that is represented by a vertex
of B. We define the root of the decomposition tree T of LCp [B,y] as follows. We
assume that 7' is obtained from T by removing v, and possibly adding an edge or
identifying two nodes following the definition of canonical limbs. If two comparable
nodes w and w’ with w the parent of w’ are identified, then let w be the identified
node. Otherwise, we give a new label for the identified node.

(1) If r exists in 7', then we assign r as the root of 7. In the other cases, we
can observe that either
e 7 is the root node and bp(r) is removed when taking the canonical
limb or
e 7 is the root edge, and a bag bp(r’) is removed where ' is a node
incident with the root edge, when taking the canonical limb.
(2) If the removed node has one neighbor in T'\r, then we assign this neighbor
as the root of 7.
(3) If the removed node has two neighbors in T\r and they are linked by a new
edge in i then we assign the new edge as the root of T.
(4) If the removed node has two neighbors in T\r and they are identified in T,
then we assign the new node as the root of T.

The following observation is easy to check from the definition of rooted decom-
position trees of canonical limbs.

Fact 6.2. If w is a non-root node of the rooted decomposition tree T of a canon-
ical limb LCp[B,y], then w is also a non-root node of T with the property that

V(bp(w)) = V(bzep B,y (w))-

For a non-root node v, we will frequently take two types of canonical limbs; one is
with respect to pbp(v) and the component of D\V (pbp(v)) containing bp(v), and
the other is with respect to bp(v) and the component of D\V (bp(v)) containing
pbp(v). For convenience, we define the following notations. For every non-root
node v of T' with the parent node v’, we define that
T1[D,v] is the component of D\V (bp(v')) containing bp(v),

T2[D,v] is the component of D\V (bp(v)) containing bp (v'),
fl(Dav) : fD(pr(v)’ﬂ[D7U])7

fa(D,v) := fp(bp(v), T2[ D, v]),

¢1(D,v) := (D, bp(v'), T1[D, v]), and

7
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i CQ(va) = Cb(Dv bD(v)>7—2[Dav])'

k-critical nodes. A node v of T is called k-critical if fi(D,v) =k and v has two
children vy and v such that fi(D,v1) = f1(D,vs) = k.

From now on, we define some sequences of canonical limbs, which will be taken
sequentially in our algorithm. We recall that Irw(G) < log,|V(G)| by Theorem
and Lemma [2.2] For convenience, let

1 := [logy| V(G)]]-
For each non-root node v of T, we define recursively the following. We first choose
an unmarked vertex y of D represented by (;1(D,v), and
e let Dy be any canonical limb LCp[pbp(v),y], and let T} be the rooted
decomposition tree of D,.
For each 1 < j <7, let af := max{f1(D},w) | w is a non-root node of 77}, and we
define D7_; and T}, as follows:
(1) If af # j, then let D}_; := D} and T}, := T}
(2) If af = j and one of the following is satisfied, then let D} ; := DY and
Tj?’_1 = T;’.
e T} has a node with at least 3 children w such that f1(D},w) = j.
. Tj’f has two incomparable nodes v; and ve where v; is a j-critical node
v and fi(Df,va) = j.
e T7 has no j-critical nodes.
(3) Otherwise, T} has the unique j-critical node v.. In this case, we choose
an unmarked vertex y of D represented by (2(Dj,v.) and let D7 _; :=
LCpy[bpy(ve),y] and let T}, be the rooted decomposition tree of DJ_;.

Lastly for each 0 < j <, let 8} := lrw(G[DJ]).

Roughly, for a non-root node v with parent v’, and wy,ws,...,w, as children,
we define a sequence of 4-tuples (D}, T}, a?, 8}), for each 1 < j < n = [log, |V (G)|]

where D7 is some rooted decomposition, T7 is its rooted decomposition tree, 37
is the linear rank-width of G[DY], and @} is the maximum over {8} [ 1 < i <
p}. These 4-tuples are the information needed to avoid the recursive calls to the
algorithm (as already explained in Section . Dy is any limb of D\V(bp(v'))
associated with 71[D,v]. These 4-tuples are motivated by the following. Let k be
the maximum over the linear rank-width of the G[D}’]’s. If any of the conditions in
(2) above is verified by 7, then we can decide easily the linear rank-width of G[ Dy} ].
Otherwise, there is exactly one critical node v, in one of the T7""’s. By Theorem
we need to compute the linear rank-width of G[D’] where D’ is defined as one
limb of Dy\V/(bpy (vc)) associated with To[Dj), vc]. We define D _; as this D', and
D7 as Dy for all k < j < n— 1, as we do not know whether we will need some
of these DJs in the future. Indeed, for instance the same situation can happen in

Dy _, with some other (-critical node w with ¢ := max{/)’}fil | w" a child of the root
of D}_,}, hence we need again to compute the linear rank-width of G[D"] with D”
defined as one limb of D} _;\V(bpy_ (w)) associated with To[Df_;,w], and this D"
is denoted as DY for k —2<j </{—1.

The existence of the unique j-critical node in (3) is verified in the next proposi-
tion.

Proposition 6.3. Let 0 < j <7 and let v be a non-root node of T' such that o < j
and T} contains neither

e a node having at least 3 children w with fl(D;’,w) = aj, nor
e two incomparable nodes vi and vy having the property that vi is an «

critical node and f1(D},v2) = af.

U-

J
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Let w be an of-critical node of T. Then w is the unique of -critical vertex of T7 .
Moreover, lrw(G[D}]) = a¥ + 1 if and only if rw(G[DY_,]) = f2(D},w) = af.

Proof. Let k := aj. We first show that w is the unique k-critical node of T} Let w’
be a k-critical node of T} that is distinct from w. From the second assumption, w
and w’ must be comparable in T7. Without loss of generality, we may assume that
w is a descendant of w’ in T7. Then by the definition of k-criticality, w’ has a child
w” such that f1(DY,w") =k and w is not a descendant of w” in T}, contradicting
to the second assumption.

Now we claim that rw(G[D}]) = k + 1 if and only if fo(D},w) = k. By the
assumption on k and by Theorem Irw(G[DY]) < k + 1. Let w; and wa be the
two children of w such that fi1(D},w1) = fi(D},w2) = k. By assumption, every
other child w’ of w satisfies that fi(D},w') <k — 1.

If fo(DY,w) = k, then clearly we have Irw(G[D}]) = k + 1 by Theorem
For the forward direction, suppose that Irw(G[DY]) > k + 1. Since T} contains no
node having at least three children w such that fi(D},w) = k, by Theorem
there should exist a k-critical node v, of Ty such that fQ(D;?,vC) = k. Since w is
the unique k-critical node of 77, w = v. and fo(Dj,w) = rw(G[Dj_,]) = k, as
required. (Il

Let v be a non-root node of T'. From Theorem [4.1] we can easily observe that
ay, < Irw(G[Dy)]) < a;p + 1. By Proposition if 7)) has no unique critical node,
then it is easy to determine ), and otherwise the computation of 3; can be reduced
to the computation of fo(Dy, v.) where v, is the unique ay-critical node of 7). In
order to compute it, we can recursively call the algorithm on G [Dg%,l]. However,
we will prove that these recursive calls are not needed if we store the values 3.

Lemma 6.4. Let v be a non-root node of T'. Let i be an integer such that 0 < i <.
If of <, then o < i+ 1.

Proof. Suppose that o ; > i+2. By the definition of D}, D} = Dy, ;| and therefore,

3
aj =i+ 2, which yields a contradiction. 0

Our algorithm. Now we are ready to present and analyze our algorithm. We
describe the algorithm explicitly in Algorithm [2} First, we modify the given decom-
position as follows. For the canonical decomposition D’ of a connected distance-
hereditary graph G, we modify D’ into a canonical decomposition D by adding a
root bag R and making it adjacent to a bag R’ of D’ so that fi(D,v) = Irw(G),
where v is the node corresponding to the bag R'. We call (D, R) a modified canon-
ical decomposition of G. Let T be the decomposition tree of the new canonical
decomposition D. Algorithm [2] computes 8¢ = Irw(G[D?]) for all non-root nodes v
of T and all integers ¢ such that o < i. We recall that n = |log,|V(G)||. We refer
to the correctness proof for the exact description of the algorithm.

We present the subroutine Limb which computes a canonical limb associated
with 7;[D,w] for i € {1,2} in Algorithm

Correctness of the algorithm. The following proposition has a key role in the
algorithm. It mainly uses the results in Section

Proposition 6.5. Let v be a non-root node of T' and let 0 < i < 1 such that o < 1.
If w is a non-root node of TY, then, B = f1[DY,w].

Proof. Let w be a non-root node of 7. By Fact [6.2] for each i + 1 < j < 7,
w e V(T}) and hence w € V(T'). Moreover, since o < i, by Lemma of < j for

all i +1 < j <n. For each i < j <1, we define that

e y; is an unmarked vertex of D} represented by the marked vertex (1 (D7, w).
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Algorithm 1: Limb(D, T, {y(v) | ve V(T\r)},w € V(T\r),i € {1,2}).
Input: A canonical decomposition D of a connected distance-hereditary graph, its
rooted decomposition tree T with the root 7, {y(v) e N|v e V(T\r)}, a
non-root node w of T, and i € {1, 2}.
Output: A canonical decomposition D’ of D associated with 7;[D,w], its rooted
decomposition tree T with the root r’, {y(v) | ve V(T'\r')}, and a.
1 Let w’ be the parent of w;

2 if ¢ = 1 then choose an unmarked vertex y of D represented by (1 (D, w) and
v « w'; else choose an unmarked vertex y of D represented by (2(D,w) and v « w;
D' < LCp[bp(v),y] and obtain T” from T and assign the root r’ of T”;

3 a «— max{y(v) | ve V(T'\r')};

4 return (D', T, {y(v) | ve V(T'\r'")}, a);

Algorithm 2: COMPUTE LINEAR RANK-WIDTH OF CONNECTED DISTANCE-
HEREDITARY GRAPHS
Input: A connected distance-hereditary graph G.
Output: The linear rank-width of G.
1 Compute a modified canonical decomposition (D, R) of G, and the decomposition
tree T' of D with the root node r;

2 Let 87 < 0 for each non-root node v and each 0 < i < n;

3 For each non-root leaf node v in T" and each 0 < i < n, let 5] « 1 ;

4 T {8 |ve V(T\),0 <i < n};

5 while T' has a non-root node v where 3, is not computed do

6 Let v be a non-root node in 7" where 3; = 0, but ﬁ}]’/ # 0 for each child v’ of v;
/* Compute canonical limbs necessary to compute fi(D,v) */

7 | (D, TY,TY ) «— Limb(D,T,T,v,1);

8 Let S be a stack; i< ay; k<« ap;

while (true) do

10 if (T7 has a node having at least 3 children v' with Bf/ =1) or (TY has two
incomparable nodes vi and va2 having the property that vi is an i-critical node
and B{? = i) or (I} has no i-critical nodes) then

11 L Stop this loop

12 Find the unique i-critical node v. of T}’;

13 ( "Lyfl? 'vah F;Ll)fla affl) < Limb(D":}7 Tiva Ffa Ve, 2)7
14 push(S,i) and i «— of_q;

/* Recursively compute (i for all i with o < i */

15 if (TY has a node having at least 3 children v’ with ﬂ}’/ =1) or (T has two
incomparable nodes vi and ve with the property that vi is an i-critical node and
B7? =1i) then By <« i+ 1;else B < i; while (S # &) do

16 j < pull(S);

17 if 8/ = j then 8] «— j+1;else 3] < j;for {«<—i+1toj—1do
18 | By < By

19 1< J;

20 for j — k+1 tondo
21 | By < B

22 Let v’ be the unique neighbor of the root and return ﬂf]/;

Now, we claim that for each ¢ < j <7,
. ECD}J [pbpe (w),y;] is locally equivalent to Dy.
J
If it is true, then we obtain that LCpv[pbpw(w),y;] is locally equivalent to D},
which implies that 8 = fi1[D?,w]. We prove it by induction on n — j.
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If j = n, then both D, and D;’ are canonical limbs of D. Since w is a non-root
node of TY, V(bp(w)) induces a bag in D}, and hence by Proposition DY is
locally equivalent to LCpy [pry, (w), Y]

Now let us assume that ¢ < j < 7. By induction hypothesis D}’ is locally
equivalent to ECD;+1[PbD_g+1(w)7yj+1]~ Assume first that af ; < j. Then, by
Proposition we have that o}’ ; < j. In that case, by the definition, we have
D} = D7,y and D} = D¥,,, and we conclude the statement.

Assume now that ajiq =j+1. Since of ; = j+1and of <j, T}, should have
a unique (j + 1)-critical node ve such that D = LCpv  [bpy,  (ve),yc] for some
unmarked vertex y. of D7, represented by (o (D}’ +1,Vc). We distinguish two cases:
either v, is incomparable with w in T}, ;, or v. is a descendant of w in T}, ;. Since

w is a node of T}, w cannot be a descendant of v..

Case 1. v, is incomparable with w in T}, ;.

Since v, is incomparable with w in T}, ; and v, is the unique (j + 1)-critical node
in 77,4, there is no (j + 1)-critical node in 7}%,. Hence, D¥ = DY, by definition.
Also, by Proposition

* LCpy [pr}J (w),y;] is locally equivalent to LCpy, | [pr;+1 (W), yj4+1]-

Hence, we can conclude that D}’ is locally equivalent to £C DY [pbpe (w), y;] because
J

Dy, is locally equivalent to LCpy, | [prjv_+1 (w), yj41].

Case 2. v, is a descendant of w in T}, ;.

If vc is a child of w in T}, and the bag bpy,  (w) has size 3, then T} cannot
contain w as a node, and this contradicts the assumption that w is a node of 7.
Therefore, we may assume that either

(1) |bp, ., (w)| =4, or
(2) |bp,,, (w)| =3 and v, is not a child of w in T}, ;.
This implies that v, is a node of the decomposition tree of LCpv  [pb b, (W), yj+1]-
J
Let D" := LCpy, | [pr;H(w), Yj+1]. By induction hypothesis, we know that DY,
is locally equivalent to D’. Note that, by definition v, is also the unique critical

node of T}, and

o DY = LCpyw, [bpw,, (vc), 2] for some unmarked vertex z of D}, | represented
by CQ(D;}+1a UC)'
Also, by Proposition [5.1
* LCpy [pr; (w),y;] is locally equivalent to LCp/[bpr(ve), 2'] where 2’ is an
unmarked vertex of D’ represented by (o(D’, v.).
Since D' is locally equivalent to DY, ;, £C DY [pb Dy (w),y,] is locally equivalent to
D7}, and this concludes the proof. O

Proof of Theorem[6.1 We first show that Algorithm [2]correctly computes the linear
rank-width of G. If |V(G)| < 1, then Irw(G) = 0 from the definition. We may
assume that |[V(G)| = 2. Let (D, R) be a modified canonical decomposition of G
and let T' be the canonical decomposition tree of D and let r’ be the unique neighbor
of the root of T. As we observed, we have that Irw(G) = ITW(Q[D;,]) = ]7“/7 and
want to prove that Algorithm |2[correctly outputs ﬁ;'. We claim that for each non-
root node v of T" and 0 < ¢ < 7 such that af < 4, Algorithm [2| correctly computes
8y,

Suppose v is a non-root leaf node of T'. Since every canonical limb is connected
by Lemma and |V(G)| = 2, Dy is isomorphic to either a complete graph or a
star with at least two vertices. Thus, Irw(G[D;]) = 1, and by construction for each
0<i<mn, Dy =Dy, and Line |§| correctly puts these values.
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We assume that v is a non-root node in T that is not a leaf, and for all its
descendants v' and integers 0 < £ < n with oz}/ </, @?l is computed (i.e. B;’/ # 0).
We claim that Line recursively computes D} for each ¢ where o] < ¢. We first
remark that for computing o of T}”, we use the fact that for each non-root node w
of TP, B = f1[D?,w] from Proposition[6.5] So, af = max{3 | w a non-root node
w of TV},

Let i € {0,1,...,n} such that o} <i. If &y < 4, then by the definition, T ; = T}
and thus, we take DY_; = D?. We may assume that o] = 4. If either 7 has a node
with at least 3 children v’ such that ﬁf/ =14, or T}” has two incomparable nodes vy
and vy with v1 an é-critical node and §;? = ¢, then from the definition of D}, we
have that D} ; = Dy and forall 0 < ¢ <i—1, o =¢ > {. Since we do not need
to evaluate 3] when aj > ¢, we stop the loop. If T has no i-critical node, then
By = af =1, that is, the 87 value cannot be increased by one. In this case, we also
stop the loop. These 3 cases are the conditions in Line

Suppose neither of the conditions in Line|10|occur. Then by Proposition Ty
has a unique i-critical bag v, and D}, is equal to a canonical limb LCp»[bpr (vc), y]
where y is some unmarked vertex of DY represented by (2(DY,v.). So, we compute
D? | from Dy, the rooted decomposition tree T ; of D} ; and compute subse-
quently aj_ ;. Notice that for all o | < £ < i —1, D} = Dj_; and thus it is
sufficient in the next iteration to deal with Dg. —directly. Thus, Line cor-
rectly computes canonical decompositions D} for each ¢ where o = i.

Now we verify the procedure of computing ;] in Line Let 0 < £ < 1 be the
minimum integer such that o = ¢. If £ = 0, then 8y = 1. Suppose £ > 1. Then
since af_; > ¢ — 1, by Theorem Fi;fl, we have that

(1) BY = £+1if either T} has a node having at least 3 children v’ with 8¢’ = ¢, or
two incomparable nodes v; and vy with the property that vy is an i-critical
node and f;? = 1,

(2) By = ¢ if otherwise.

Thus, Line [15] correctly computes it.
In the loop in Line @, we use a stack to pile up the integers ¢ such that 7} has
the unique ¢-critical node. When T}V has the unique ¢-critical node, by Proposition

6.3}

(1) By =i+ 1if B¢, =i, and

(2) By =uif By, <i—1.
So, from the lower value in the stack we can compute 37 recursively. From Line @
to Line Algorithm [2| computes all 8] correctly where o < ¢, and in particular,
it computes f;. Therefore, at the end of the algorithm, it computes 6}7”/ that is
equal to the linear rank-width of G.

The running time of the algorithm. Let us now analyze its running time. Let
n and m be the number of vertices and edges of GG. Its canonical decomposition can
be computed in time O(n + m) by Theorem and one can compute a modified
canonical decomposition (D, R) in constant time. Note that the number of bags in
D is bounded by O(n) (see [I5, Lemma 2.2]).

We first remark that Algorithm[I]runs in time O(n). This is because when we take
a limb from a canonical decomposition, we need to take a local complementation or
a pivoting on a sub-decomposition, and in the worst case, we may visit each bag to
apply these operations. The decomposition tree and «, § values can be obtained in
linear time.

Now we observe the running time of Algorithm |2} The number of iterations of
the whole loop from Line [6] to Line 21]is at most O(n) because it runs in as many
as the number of bags in D. Lines can be implemented in time O(n). The loop
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in Line [9] runs log,(n) times because Irw(G) < log,(n), and all the steps in Line [J]
can be implemented in time O(n). Also, Lines can be done in time O(n). We
conclude that this algorithm runs in time O(n? - logy n).

Finding an optimal linear layout. We finally establish how to find a linear
layout witnessing lrw(G). We may assume that G has at least 3 vertices. We can
assume that for each non-root node v of T" and 0 < i < 7 with o] < ¢, T and 5/
are computed. We inductively obtain optimal linear layouts of G[DY] using those
values. If v is a non-root leaf node of T, then G[DY] is either a complete graph or
a star for all 4, and thus, any ordering of V(G[D}]) is a linear layout of width 1.
We may assume that v is a not a leaf node.

We will search for the path depicted in Lemma to apply the same technique
used in the proof of Theorem What we have shown in Theorem is that for
a canonical decomposition D of a distance-hereditary graph with its decomposition
tree Tp, if Tp has a path P := vgvy - - - v,V,4+1 such that

e for each node v in P and a component T' of D\V(bp(v)) not containing a
bag bp(w) with we P, f(bp((v),T) <k —1,

then we can generate a linear layout of G[ D] having width at most k. But it assumed
that we have linear layouts of graphs corresponding to pending limbs. So, for our
purpose, it is necessary to find such a path with & = 87 such that

e for each node v in P and a component T' of D\V (bp(v)) not containing a
bag bp(w) with w € P, a linear layout of LGp[bp(v),T] with an optimal
width is already computed.

Let us assume that k& = (7. There are two cases; either T}” has the k-critical
node or not.

Case 1. T} has no k-critical node.

In this case, we take a path P from the root node of T} (or both end nodes of the
root edge) to a node w where 8 = k but for every descendant w’ of w, ﬁg"l < k.
Since T}’ has no k-critical node, every node outside of this path has 5 value less than
k. Thus, the graphs corresponding to limbs pending to this path have linear rank-
width at most &k — 1, and moreover, by induction hypothesis, we already obtained
an optimal linear layout for each graph. This path can be computed in linear time.

Case 2. T} has a k-critical node.

First note that 7}’ cannot have two k-critical nodes, otherwise, 87 = k+ 1, which
contradicts to our assumption. Let x be the unique k-critical node of TV, and let
x1, 73 be two children of z where 3;? = k for each j € {1,2}. For each j € {1,2},
we choose a descendant w; of z; where BZU 7 = k but for every descendant wé of wj,
B;”j < k. Let P be the path from w; to wsy in TY. This path can be computed in
linear time.

Since x is the unique k-critical node of T”, every node below of this path has 3
value less than k, and the graphs corresponding to subtrees pending to the path are
computed in advance. Moreover, since this case is exactly when o = k and 8} = k
and T has a unique critical node, the canonical decomposition corresponding to
the subtree of T\ containing the parent of x is exactly Dy_,, and G[D}_,] should
have linear rank-width at most £ — 1 as 87 = k. By the induction hypothesis, the
optimal linear layout of G[D}_,] is also computed before, as required.

We conclude that we can compute an optimal layout of G in time O(n? -log, n).
]
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7. PATH-WIDTH OF MATROIDS WITH BRANCH-WIDTH 2

As a corollary of Theorem we can compute the path-width of matroids of
branch-width at most 2. We first recall the necessary materials about matroids.
We refer to the book written by Oxley [29] for our matroid notations.

Matroids. A pair (E(M),Z(M)) is called a matroid M if E(M), called the ground
set of M, is a finite set and Z(M), called the set of independent sets of M, is a
nonempty collection of subsets of E(M) satisfying the following conditions:

(M) if Te Z(M) and J < I, then J € Z(M),

(12) if I,J € Z(M) and |I| < |J|, then I U {z} € Z(M) for some z € J\I.

A maximal independent set in M is called a base of M. It is known that, if By and
By are bases of M, then |B;| = |Ba].

For a matroid M and a subset X of E(M), we let (X,{I € X : [ € Z(M)}) be
the matroid denoted by M|x. The size of a base of M |x is called the rank of X
in M and the rank function of M is the function ry; : 26(M) — N that maps every
X < E(M) to its rank. The rank of E(M) is called the rank of M.

If M is a matroid, then we define Ay, called the connectivity function of M, such
that for every subset X of E(M),

)\M(X) = TM(X) + ’I"M(E(M)\X) — ’I"M(E(M)) + 1.

It is known that the function Aj; is symmetric and submodular.

Let A be a binary matrix and let E be the column labels of A. Let Z be the
collection of all those subsets I of E such that the columns of A with index in [
are linearly independent. Then (F,Z) is a matroid. We denote it by M(A). Every
matroid isomorphic to M(A) for some matrix A is called a binary matroid and A
is called a representation of M over the binary field.

We now define fundamental graphs of binary matroids. Let G be a bipartite graph
with a bipartition (A, B). We define M (G, A, B) as the binary matroid represented
by the (A x V)-matrix (Ia Ag[A, B]) where I is the (A x A) identity matrix; and
we call G a fundamental graph of M (G, A, B). We remark that |[E(M)| = |[V(G)|.

Branch-width and path-width of matroids. A branch-decomposition of a ma-
troid M is a pair (T, L), where T is a subcubic tree and L is a bijection from the
elements of E(M) to the leaves of T'. For an edge e in T, T\e induces a partition
(X.,Y.) of the leaves of T. The width of an edge e is defined as Ay (L71(X,)). The
width of a branch-decomposition (T, L) is the maximum width over all edges of T
The branch-width of M, denoted by bw(M), is the minimum width over all branch-
decompositions of M. If |[E(M)| < 1, then M admits no branch-decomposition and

bw(M) = 0.
A sequence e, ..., e, of the ground set E(M) is called a linear layout of M. The
width of a linear layout eq,...,e, of M is
1<I?sa§—1{)\M({el’ e}

The path-width of M, denoted by pw(M), is defined as the minimum width over all
linear layouts of M.
The following relation is established by Oum [27].

Proposition 7.1 (Oum [27]). Let G be a bipartite graph with a bipartition (A, B)
and let M := M (G, A, B). For every X € V(G), cutrkg(X) = Ay (X) — 1. Thus,
rw(G) =bw(M) — 1 and lrw(G) = pw(M) — 1.

Here, we observe that every matroid of branch-width at most 2 is binary. This
can be observed from the known minor characterizations for binary matroids and
matroids of branch-width at most 2. For the definition of matroid minors, we refer
to [29].
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Theorem 7.2 (Tutte [30, BI]). A matroid is binary if and only if it has no minor
1somorphic to Us 4.

Theorem 7.3 (Dharmatilake [I1]). A matroid has branch-width at most 2 if and
only if it has no minor isomorphic to Us 4 and M (Ky).

Corollary 7.4. The path-width of every n-element matroid of branch-width at most
2 can be computed in time O(n? -logy n), provided that the matroid is given by its
binary representation. Moreover, a linear layout of the matroid witnessing the path-
width can be computed with the same time complexity.

Proof. Let M be a matroid of branch-width at most 2 and assume that a binary
representation A of M is given. We first run a greedy algorithm to find a base B of
M [29, Section 1.8] in time O(|E(M)|?). After choosing one base B, for each e € B
and e’ € E(M)\B, we test whether (B\{e}) u {¢'} is again a base using the binary
representation, which can be done in time O(|E(M)|) if we first pre-compute the
sums of vectors in B\{e} for each e € B. The fundamental graph G with respect
to M is then the bipartite graph with bipartition (B, E(M)\B) and ee’ is an edge
if (B\{e}) u {€'} is a base [29]. From what precedes G can be constructed in time
O(|E(M)|?). Since M has branch-width at most 2, by Proposition the rank-
width of G is at most 1. Using Theorem we can compute the linear rank-width
of G in time O(|E(M)|?-logy| E(M)]), which is the same as pw(M)—1. Moreover, we
can compute a linear layout witnessing lrw(G) in the same time, that corresponds
to the linear layout of M witnessing pw(M). |

8. AN UPPER BOUND ON LINEAR RANK-WIDTH

As we promised, we prove the following lemma here. We remark that Bodlaender,
Gilbert, Hafsteinsson, and Kloks [4] proved a similar relation between tree-width
and path-width.

Lemma 8.1. Let k be a positive integer and let G be a graph of rank-width k. Then
Irw(G) < kllogy |V (G)]].

Proof. Since k is a positive integer, we have |V(G)| = 2. Let (T, L) be a rank-
decomposition of G having width k. For convenience, we choose an edge e of T and
subdivide it with introducing a new vertex x, and regard x as the root of T. For
each internal vertex ¢ of T with two subtrees T; and T of T\t not containing z, let
0(t) := Ty and r(t) := Ty if the number of leaves of T in T is at least the number
of leaves of T'in T. Let S be a linear layout of G satisfying that

e for each vy, vy € V(G) with the first common ancestor w of v; and vy in T,
V1 <5 V2 if L(’Ul) € V(Z(w))

We can construct such a linear layout inductively.

We show that S has width at most k|log,|V(G)||. Let w be a vertex of G that
is not the first vertex of S and let S,, := {v : v <g w}. Let P, be the path from
L(w) to the root = in T. Note that for each ¢t € V(P,)\{L(w)} and the subtree T”
of T\t not containing x and L(w),

e if r(t) =T, then all leaves of T in T" are not contained in S,,, and
o if £(t) = T", then all leaves of T'in T” are contained in S,,.

Let @ be the set of all vertices ¢ in P,, such that the subtree £(t) does not contain
L(w).

Let q1,42, - -, gmn be the sequence of all vertices in @ such that for each 1 < j <
m—1, g; is a descendant of g; ;1 in 7. For 1 < j < m, let Q; be the set of all leaves
of T contained in £(g;). Clearly, Sy = Q1 U Qa2 U -+ U @y, and V(G)\Sw # .
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Therefore, we have
>1+24+4+---2" 141
=2™m.

Thus, m < |log,|V(G)]].
Note that for each 1 < j < m, rank(A¢[Qi, V(G)\Sw]) < k. Therefore, we have
that

cutrkg(Sy) = rank(Ag[(Q1 U -+ U Qum, V(G)\Sw)]) < km < kllog,|V(G)|].
Since w was arbitrarily chosen, it implies that Irw(G) < k|log,|V (G)]]. O

9. CONCLUDING REMARKS

We have provided a characterization of the linear rank-width of distance-hereditary
graphs in terms of their canonical decompositions, and use this characterization to
derive a polynomial-time algorithm to compute their linear rank-width. An easy
consequence of this is also a polynomial-time algorithm for computing the path-
width of matroids of branch-width at most 2, which was not addressed in the past.

In the second part of this work [2], we will discuss structural properties of
distance-hereditary graphs related to linear rank-width. Note that Jeong, Kwon,
and Oum [20] provided a lower bound on the size of the vertex-minor obstruction
set for graphs with bounded linear rank-width, by providing a set of pairwise locally
non-equivalent vertex-minor obstructions for graphs of linear rank-width at most k
for each k. Their graphs are indeed distance-hereditary graphs, and we will give
a more general way to generate all distance-hereditary vertex-minor obstructions
using the characterization given in this paper. Also, we prove that for a fixed tree
T, every distance-hereditary graph of sufficiently large linear rank-width contains
T as a vertex-minor.
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