
Max-min Fair Rate Allocation and Routing in Energy Harvesting

Networks: Algorithmic Analysis

Jelena Marašević1, Cliff Stein2, Gil Zussman1

1Department of Electrical Engineering,
2Department of Industrial Engineering and Operations Research

Columbia University
{jelena@ee, cliff@ieor, gil@ee}.columbia.edu

Abstract

This paper considers max-min fair rate allocation and routing in energy harvesting networks where
fairness is required among both the nodes and the time slots. Unlike most previous work on fairness, we
focus on multihop topologies and consider different routing methods. We assume a predictable energy
profile and focus on the design of efficient and optimal algorithms that can serve as benchmarks for
distributed and approximate algorithms. We first develop an algorithm that obtains a max-min fair rate
assignment for any given (time-variable or time-invariable) unsplittable routing or a routing tree. For
time-invariable unsplittable routing, we also develop an algorithm that finds routes that maximize the
minimum rate assigned to any node in any slot. For fractional routing, we study the joint routing and
rate assignment problem. We develop an algorithm for the time-invariable case with constant rates. We
show that the time-variable case is at least as hard as the 2-commodity feasible flow problem and design
an FPTAS to combat the high running time. Finally, we show that finding an unsplittable routing or
a routing tree that provides lexigographically maximum rate assignment (i.e., that is the best in the
max-min fairness terms) is NP-hard, even for a time horizon of a single slot. Our analysis provides
insights into the problem structure and can be applied to other related fairness problems.
Keywords: Energy Harvesting, Energy Adaptive Networking, Sensor networks, Routing, Fairness

1 Introduction

Figure 1: A simple energy harvesting net-
work: the nodes sense the environment and
forward the data to a sink s. Each node has
a battery of capacity B. At time t a node
i’s battery level is bi,t, it harvests ei,t units
of energy, and senses at data rate λi,t.

Recent advances in the development of ultra-low-power
transceivers and energy harvesting devices (e.g., solar cells)
will enable self-sustainable and perpetual wireless networks
[11, 14, 15]. In contrast to legacy wireless sensor networks,
where the available energy only decreases as the nodes sense
and forward data, in energy harvesting networks the available
energy can also increase through a replenishment process. This
results in significantly more complex variations of the available
energy, which pose challenges in the design of resource alloca-
tion and routing algorithms.

The problems of resource allocation, scheduling, and rout-
ing in energy harvesting networks have received considerable
attention [2, 4, 9, 12, 13, 16–18, 23, 24, 29, 32, 34]. Most existing
work considers simple networks consisting of a single node or a
link [2, 4,13,16,29,34]. Moreover, fair rate assignment has not
been thoroughly studied, and most of the work either focuses on maximizing the total (or average) through-
put [2,4,9,12,18,23,27,29,32,34], or considers fairness either only over nodes [24] or only over time [13,16].
An exception is [17], which requires fairness over both the nodes and the time, but is limited to two nodes.

In this paper, we study the max-min fair rate assignment and routing problems, requiring fairness over
both nodes and time slots, and with the goal of designing optimal and efficient algorithms.

1

ar
X

iv
:1

40
6.

36
71

v2
 [

cs
.N

I]
 9

 N
ov

 2
01

4

Following [9, 13, 16, 17, 23, 24], we assume that the harvested energy is known for each node over a finite
time horizon. Such a setting corresponds to a highly-predictable energy profile, and can also be used as
a benchmark for evaluating algorithms designed for unpredictable energy profiles. We consider an energy
harvesting sensor network with a single sink node, and network connectivity modeled by a directed graph
(Fig. 1). Each node senses some data from its surrounding (e.g., air pressure, temperature, radiation level),
and sends it to the sink. The nodes spend their energy on sensing, sending, and receiving data.

1.1 Fairness Motivation

Two natural conditions that a network should satisfy are:

(i) balanced data acquisition across the entire network, and

(ii) persistent operation (i.e., even when the environmental energy is not available for harvesting).

Figure 2: An example of a network in
which throughput maximization can result
in a very unfair rate allocation among the
nodes.

The condition (i) is commonly reinforced by requiring fair-
ness of the sensing rates over network nodes. We note that
in the network model we consider, due to these different en-
ergy costs for sending, sensing, and receiving data, throughput
maximization can be inherently unfair even in the static case.
Consider a simple network with two energy harvesting nodes
a and b and a sink s illustrated in Fig. 2. Assume that a has
one unit of energy available, and b has two units of energy. Let
cst denote the joint cost of sensing and sending a unit flow, crt
denote the joint cost for receiving and sending a unit flow. Let
λa and λb denote the sensing rates assigned to the nodes a and b, respectively. Suppose that the objective
is to maximize λa + λb. If cst = 1, crt = 2, then in the optimal solution λa = 1 and λb = 0. Conversely,
if cst = 2, crt = 1, then in the optimal solution λa = 0 and λb = 1. This example easily extends to more
general degenerate cases in which throughput-maximum solution assigns non-zero sensing rates only to one
part of the network, whereas the remaining nodes do not send any data to the sink.

One approach to achieving (ii) is by assigning constant sensing rates to the nodes. However, this approach
can result in underutilization of the available energy. As a simple example, consider a node that harvests
outdoor light energy over a 24-hour time horizon. If the battery capacity is small, then the sensing rate must
be low to prevent battery depletion during the nighttime. However, during the daytime, when the harvesting
rates are high, a low sensing rate prevents full utilization of the energy that can be harvested. Therefore, it
is advantageous to vary the sensing rates over time. However, fairness must be required over time slots to
prevent the rate assignment algorithm from assigning high rates during periods of high energy availability,
and zero rates when no energy is available for harvesting.

1.2 Routing Types

We consider different routing types, which are illustrated in Fig. 3.

(a) Routing tree. (b) Unsplittable routing. (c) Fractional routing.

Figure 3: Routing types: (a) a routing tree, (b) unsplittable routing: each node sends its data over one path,
(c) fractional routing: nodes can send their data over multiple paths. Paths are represented by dashed lines.

Each routing type incurs different trade-offs between the supported sensing rates1 and the required
amount of control information. Routing types with higher number of active links require more control

1A metric of performance can be the minimum sensing rate that gets assigned to any node in any time slot.

2

Figure 4: A network example in which unsplit-
table routing provides minimum sensing rate that
is Ω(n) higher than for any routing tree. Assume
cst = crt = 1 and T = 1. Available energies at
all the nodes ai, i ∈ {1, ..., k} are equal to 1,
as shown in the box next to the nodes. Other
nodes have energies that are high enough so that
they are not constraining. In any routing tree, b
has some ai as its parent, so λai = λb = λc1 =
... = λck−1

= 1/(k + 1) and λj = 1 for j 6= i. In
an unsplittable routing with paths pai = {ai, s},
pci = {ci, b, ai, s}, and pb = {b, ak, s}, all the rates
are equal to 1/2. As k = Θ(n), the minimum rate
improves by Ω((k + 1)/2) = Ω(n).

Figure 5: A network example in which time-variable
routing solution provides minimum sensing rate that
is Ω(n) higher than for any time-invariable routing.
The batteries of a1 and a2 are initially empty, and the
battery capacity at all the nodes is B = 1. Harvested
energies over time slots for nodes a1 and a2 are shown
in the box next to them. Other nodes are assumed
not to be energy constraining. In any time-invariable
routing, at least on of a1, a2 has Ω(k) = Ω(n) de-
scendants, forcing its rate to the value of 1/Ω(n) in
the slots in which the harvested energy is equal to 1.
In a routing in which b sends the data only through
a1 in odd slots and only through a2 in even slots:
λb = λc1 = ... = λck−1

= 1.

information to be exchanged between neighboring nodes (e.g., to maintain synchronization), and complicate
the transmission and/or sleep-wake scheduling implementation. Moreover, energy consumed by the control
messages can affect achievable rates significantly, due to limited energy budget, as confirmed via experiments
in [15]. Below we outline the main characteristics of the routing types we consider.

Routing Tree–the simplest form of routing, in which every node sends all of the data it senses and
receives to a single neighboring (parent) node. It requires minimum number of active links, yielding minimum
energy consumption due to control messages. However, in general, it provides the lowest sensing rates (see
more details below).

Unsplittable Routing–a single-path routing, in which every node sends all of its sensed data over a
single path to the sink (a routing tree is a special case of the unsplittable routing, in which all the paths
incoming into node i outgo via the same edge). There are simple cases in which unsplitttable routing provides
a rate assignment with the minimum sensing rate Ω(n) times higher than in a routing tree, where n is the
number of nodes (see Fig. 4 for an example). However, in general, it has higher number of active links than
the routing tree, yielding higher energy consumption for control information.

Fractional Routing–a multi-path routing, in which each node can split its data over multiple paths
to the sink (unsplittable routing is a special case of fractional routing in which every node has one path
to the sink). It is the most general routing that subsumes both routing trees and unsplittable routings,
and, therefore, provides the best sensing rates. However, it utilizes the highest number of links, yielding the
highest energy consumption due to control messages.

Time-invariable vs Time-variable Routing– A routing is time-invariable if every node uses the same
(set of) path(s) in each time slot to send its data to the sink. If the paths change over time, the routing
is time-variable.2 While there are cases in which time-variable routing provides a rate assignment with
the minimum sensing rate Ω(n) times higher than in the time-invariable case (see, e.g., Fig. 5), it requires
substantial control information exchange for routing reconfigurations, yielding high energy consumption.

1.3 Our Contributions

For the unsplittable routing and routing tree, we design a fully-combinatorial algorithm that solves the max-
min fair rate assignment problem, both in the time-variable and time-invariable settings, when the routing
is provided at the input. We then turn to fractional routing, considering two settings: time-variable and

2Whether the rates are constant or time-variable is independent of whether the routing is time-variable or not.

3

time-invariable. We demonstrate that in the time-variable setting verifying whether a given rate assignment
is feasible is at least as hard as solving a feasible 2-commodity flow. This result implies that, to our current
knowledge, it is unlikely that max-min fair time-variable fractional routing3 can be solved without the use
of linear programming. To combat the high running time induced by the linear programming, we develop
a fully polynomial time approximation scheme (FPTAS). For the time-invariable setting, we provide a
fully-combinatorial algorithm that determines a max-min fair routing with constant rates.

Our rate assignment algorithms rely on the well-known water-filling framework, which is described in
Section 4. It is important to note that water-filling is a framework–not an algorithm–and therefore it does
not specify how to solve the maximization nor fixing of the rates steps (see Section 4). Even though general
algorithms for implementing water-filling such as e.g., [8,24,31] can be adapted to solve the rate assignment
problems studied in this paper, their implementation would involve solving O(n2T 2) linear programs (LPs)
withO(mT) variables andO(nT) constraints, thus resulting in an unacceptably high running time. Moreover,
such algorithms do not provide insights into the problem structure. Our algorithms are devised relying on the
problem structure, and in most cases do not use linear programming. The only exception is the algorithm for
time-variable fractional routing (Section 6), which solves O(nT) LPs, and thus provides at least O(nT)-fold
improvement as compared to an adaptation of [8,24,31]. Furthermore, each LP in our solution searches over
much smaller space (in fact, only within the ε-region of the starting point, for any ε-approximation)

We show that determining an unsplittable routing or a routing tree that supports lexicographically
maximum rate assignment is NP-hard even for a single time slot. On the other hand, as a positive result, we
develop an algorithm that determines a time-invariable unsplittable routing that maximizes the minimum
sensing rate assigned to any node in any time slot.

The considered problems generalize classical max-min fair routing problems that have been studied
outside the area of energy harvesting networks, such as: max-min fair fractional routing [28], max-min
fair unsplittable routing [21], and bottleneck routing [3]. In contrast to the problems studied in [3, 21, 28],
our model allows different costs for flow generation and forwarding, and has time-variable node capacities
determined by the available energies at the nodes. We note that studying networks with node capacities is as
general as studying networks with capacitated edges, since there are standard methods for transforming one
of these two problems into another (see, e.g., [1]). Therefore, we believe that the results can find applications
in other related areas.

1.4 Organization of the paper

The rest of the paper is organized as follows. Section 2 provides the model and problem formulations, which
are placed in the context of related work in Section 3. Section 4 describes the connection between max-
min fairness and lexicographic maximization. Section 5 considers rate assignment in unsplittable routing,
while Sections 6 and 7 study fractional routing and rate assignment in time-variable and time-invariable
settings, respectively. Section 8 provides hardness results for determining unsplittable routing or a routing
tree. Section 9 provides conclusions and outlines possible future directions.

2 Model and Problem Formulation

We consider a network that consists of n energy harvesting nodes and one sink node (see Fig. 1). The sink
is the central point at which all the sensed data is collected, and is assumed not to be energy constrained.
In the rest of the paper, the term “sink” will be used for the sink node. The connectivity between the nodes
is modeled by a directed graph G = (V,E), where |V |= n + 1 (n nodes and the sink), and |E|= m. We
assume without loss of generality that every node has a directed path to the sink, because otherwise it can
be removed from the graph. The main notation is summarized in Table 1.

Each node is equipped with a rechargeable battery of finite capacity B. The time horizon is T time slots.
The duration of a time slot is assumed to be much longer than the duration of a single data packet, but
short enough so that the rate of energy harvesting does not change during a slot. For example, if outdoor
light energy is harvested, one time slot can be at the order of a minute. In a time slot t, a node i harvests ei,t

3We refer to a routing as max-min fair if it provides a lexicographically maximum rate assignment. The notions of max-min
fairness and lexicographical ordering of vectors are defined in Section 4.

4

Table 1: Nomenclature.

in
p
u
ts

n Number of energy harvesting nodes
T Time horizon
i Node index, i ∈ {1, 2, ...n}
t Time index, t ∈ {1, ..., T}
B Battery capacity
ei,t Harvested energy at node i in time slot t
cs Energy spent for sensing a unit flow
ctx Energy spent for transmitting a unit flow
crx Energy spent for receiving a unit flow

v
a
ri
a
b
le
s

λi,t Sensing rate of node i in time slot t
fij,t Flow on link (i, j) in time slot t
bi,t Battery level at node i at the beginning of time slot t

n
o
ta

ti
o
n

cst Energy spent for jointly sensing and transmitting a unit flow: cst = cs + ctx
crt Energy spent for jointly receiving and transmitting a unit flow: crt = crx + ctx

fΣ
i,t

Total flow entering node i in time slot t: fΣ
i,t =

∑
j:(j,i)∈E fji,t

units of energy. The battery level of a node i at the beginning of a time slot t is bi,t. We follow a predictable
energy profile [9, 13, 16, 17, 23, 24], and assume that all the values of harvested energy ei,t, i ∈ {1, ..., n},
t ∈ {1, ..., T}, battery capacity B, and all the initial battery levels bi,1, i ∈ {1, ..., n} are known and finite.

A node i in slot t senses data at rate λi,t. A node forwards all the data it senses and receives towards
the sink. The flow on a link (i, j) in slot t is denoted by fij,t. Each node spends cs energy units to sense a
unit flow, and ctx, respectively crx, energy units to transmit, respectively receive, a unit flow.

The feasible region R for the sensing rates and flows is determined by the following set of linear4 con-
straints:

∀i ∈ {1, ..., n},t ∈ {1, ..., T} :∑
(j,i)∈E

fji,t + λi,t =
∑

(i,j)∈E
fij,t (1)

bi,t+1 = min{B, bi,t+ei,t − (crtf
Σ
i,t + cstλi,t)} (2)

bi,t+1 ≥ 0, λi,t ≥ 0, fij,t ≥ 0,∀(i, j) ∈ E (3)

where fΣ
i,t ≡

∑
(j,i)∈E fji,t, cst ≡ cs + ctx, and crt ≡ crx + ctx. Eq. (1) is a classical flow conservation

constraint, while (2) models battery evolution over time slots.
Similar to the definition of max-min fairness in [3], define a rate assignment {λi,t}, i ∈ {1, ..., n}, t ∈

{1, ..., T}, to be max-min fair if no λi,t can be increased without either losing feasibility or decreasing some
other rate λj,τ ≤ λi,t. Max-min fairness is closely related to lexicographic maximization, as will be explained
in Section 4.

In some of the problems, the routing is provided at the input as a set of paths P = {pi,t}, for i ∈
{1, ..., n}, t ∈ {1, ..., T}. In such a case, R should be interpreted with respect to P, instead with respect to
the input graph G.

2.1 Considered problems

We examine different routing types, in time-variable and time-invariable settings, as described in the in-
troduction. For the unsplittable routing and routing trees, we examine the problems of determining a
rate assignment and determining a routing separately, as described below. Table 1 summarizes inputs and
variables.

4Note that we treat eq. (2) as a linear constraint, since the problems we are solving are maximizing λi,t’s (under the max-min
fairness criterion), and (2) can be replaced by bi,t+1 ≤ B and bi,t+1 ≤ bi,t + ei,t − (crtfΣ

i,t + cstλi,t) while leading to the same

solution for {λi,t}.

5

P-Unsplittable-Rates: For a given time-variable unsplittable routing P = {pi,t}, determine the max-
min fair assignment of the rates {λi,t}. Note that this setting subsumes time-invariable unsplittable routing,
time-invariable routing tree, and time-variable routing tree.

P-Unsplittable-Find: Associate with each (time-invariable or time-variable) unsplittable routing P, a
set of sensing rates {λPi,t} that optimally solves P-Unsplittable-Rates. Determine an unsplittable routing

P that provides the lexicographically maximum assignment of rates {λPi,t}.
P-Tree-Find: Let T denote a (time-invariable or time-variable) routing tree on the input graph G.

Associate with each T a set of sensing rates {λTi,t} that optimally solves P-Unsplittable-Rates. Determine

T that provides the lexicographically maximum assignment of rates {λTi,t}.
For the fractional routing, we study the following two variants of max-min fair routing, where the routing

and the rate assignment are determined jointly.
P-Fractional: Determine a time-variable fractional routing that provides the max-min fair rate as-

signment {λi,t}, together with the max-min fair rate assignment {λi,t}, considering all the (time-variable,
fractional) routings.

P-Fixed-Fractional: Determine a time-invariable fractional routing that provides the max-min fair
time-invariable rate assignment {λi,t} = {λi}, together with the max-min fair rate assignment {λi}, consid-
ering all the (time-invariable, fractional) routings with rates that are constant over time.

3 Related Work

Energy-harvesting Networks.Rate assignment in energy harvesting networks in the case of a single node
or a link was studied in [2, 4, 9, 13, 16, 29, 34]. In [9], the solution for one node is extended to the network
setting by (1) formulating a convex optimization problem, and solving it using the Lagrange duality theory,
and (2) using a heuristic algorithm. Both of these two solutions focus on maximizing the sum network
throughput, and do not consider fairness.

Resource allocation and scheduling for network-wide scenarios using the Lyapunov optimization technique
was studied in [12, 18, 27, 32]. While the work in [12, 18, 27, 32] can support unpredictable energy profiles,
it focuses on the (sum-utility of) time-average rates, which is, in general, time-unfair. The design of online
algorithms for resource allocation and routing was studied in [10,23].

Max-min time-fair rate assignment for a single node or a link was studied in [13,16], while max-min fair
energy allocation for single-hop and two-hop scenarios was studied in [17]. Similar to our work, [17] requires
fairness over both the nodes and the time slots, but considers only two energy harvesting nodes. The work
on max-min fairness in network-wide scenarios [24] is explained in more detail below.
Sensor Networks. Problems P-Fractional, P-Fixed-Fractional, and P-Unsplittable-Rates are
related to the maximum lifetime routing problems (see, e.g., [6,26] and the follow-up work) in the following
sense. In our model, maximization of the minimum sensing rate is equivalent to the network lifetime
maximization in sensor networks, but only if the system is observed for T = 1. Namely, the nodes have
the initial energy, and no harvesting happens over time.

Determining a maximum lifetime tree in sensor networks as in [5] is a special case of P-Tree-Find. We
extend the NP-hardness result from [5] and provide a lower bound of Ω(log n) for the approximation ratio
(for both [5] and P-Tree-Find), where n is the number of nodes in the network.
Max-min Fair Unsplittable Routing. Rate assignment in unsplittable routing was studied extensively
(see [3, 7] and references therein). P-Unsplittable-Rates reduces to the problem studied in [3, 7] for
cst = crt and T = 1. In the energy harvesting network setting, this problem has been studied in [24], for
rates that are constant over time and a time-invariable routing tree. We consider a more general case than
in [24], where the rates are time-variable, fairness is required over both network nodes and time slots, and
the routing can be time-variable and given in a form of an unsplittable routing or a routing tree.

Determining a max-min fair unsplittable routing as studied in [21] is a special case of P-Unsplittable-
Find for cst = crt and T = 1, and the NP-hardness results from [21] implies the NP-hardness of P-
Unsplittable-Find.
Max-min Fair Fractional Routing. Max-min fair fractional routing was first studied in [28]. The
algorithm from [28] relies on the property that the total values of a max-min fair flow and max flow are

6

equal, which does not hold even in simple instances of P-Fixed-Fractional and P-Fractional. P-
Fixed-Fractional and P-Fractional reduce to the problem of [28] for T = 1 and cst = crt.

Max-min fair fractional routing in energy harvesting networks has been considered in [24]. The distributed
algorithm from [24] solves P-Fixed-Fractional, but only as a heuristic. We provide a combinatorial
algorithm that solves P-Fixed-Fractional optimally in a centralized manner.

A general linear programming framework for max-min fair routing was provided in [31], and extended
to the setting of sensor and energy harvesting networks in [8] and [24], respectively. This framework, when
applied to P-Fractional, is highly inefficient. P-Fractional reduces to [8] for T = 1, and to [24] when
the rates are constant over time.

4 Max-min Fairness and Lexicographic Maximization

Recall that a rate assignment {λi,t}, i ∈ {1, ..., n}, t ∈ {1, ..., T}, is max-min fair if no rate λi,t can be
increased without either losing feasibility or decreasing some other rate λj,τ ≤ λi,t. Closely related to the
max-min fairness is the notion of lexicographic maximization. The lexicographic ordering of vectors, with

the relational operators denoted by
lex
= ,

lex
> , and

lex
< , is defined as follows:

Definition 4.1. Let u and v be two vectors of the same length l, and let us and vs denote the vectors

obtained from u and v respectively by sorting their elements in the non-decreasing order. Then: (i) u
lex
= v

if us = vs element-wise; (ii) u
lex
> v if there exists j ∈ {1, 2, ..., l}, such that us(j) > vs(j), and us(1) =

vs(1), ..., us(j − 1) = vs(j − 1) if j > 1; (iii) u
lex
< v if not u

lex
= v nor u

lex
> v.

It has been proved in [31] that a max-min fair allocation vector exists on any convex and compact set.
The results from [33] state that in a given optimization problem whenever a max-min fair vector exists, it is
unique and equal to the lexicographically maximum one.

In the problems P-Unsplittable-Find, P-Fractional, and P-Fixed-Fractional the feasible region
R is determined by linear constraints (1)-(3), and it is therefore convex. As we are assuming that all the
input values B, ei,t, and bi,1 are finite, it follows that the feasible region is also bounded, and therefore
compact. Therefore, for the aforementioned problems, lexicographic maximization produces the max-min
fair assignment of the sensing rates {λi,t}.

Lexicographic maximization can be implemented using the water-filling framework (see, e.g., [3]):

Algorithm 1 Water-filling-Framework(G, b, e)

1: Set λi,t = 0 ∀i, t, and mark all the rates as not fixed.
2: Increase all the rates λi,t that are not fixed by the same maximum amount, subject to the constraints

from R.
3: Fix all the λi,t’s that cannot be further increased.
4: If all the rates are fixed, terminate. Else, go to step 2.

To solve the problems P-Fractional, P-Fixed-Fractional, and P-Unsplittable-Rates, the chal-
lenge is to implement the Steps 2 and 3 efficiently, which we study in the following sections. We will refer to
the algorithm that implements Step 2 as Maximizing-the-Rates, and to the algorithm that implements
Step 3 as Fixing-the-Rates.
Note: A rate λi,t can in general get fixed in any iteration of the Water-filling-Framework; there is no
rule that relates an iteration k to a node i or a time slot t.

5 Rates in Unsplittable Routing

This section studies P-Unsplittable-Rates, the problem of rate assignment for an unsplittable routing
provided at the input. The analysis applies to any time-invariable or time-variable unsplittable routing or a
routing tree.

7

We assume that the routing over time t ∈ {1, ..., T} is provided as a set of routing paths P = {pi,t} from
a node i to the sink s, for each node i ∈ V \{s}. We say that a node j is a descendant of a node i in a time
slot t if i ∈ pj,t. 5

As observed in Section 4, to design an efficient rate assignment algorithm, we need to implement the
Steps 2 and 3 of Water-filling-Framework efficiently.

Before describing the algorithms in detail, we need to introduce some notation. Let F ki,t = 1 if the rate

λi,t is not fixed at the beginning of the kth iteration of Water-filling-Framework, F ki,t = 0 otherwise.

Initially, F 1
i,t = 1, ∀i, t. If a rate λi,t is not fixed, we will say that it is “active”. We will denote by Dk

i,t the

number of active descendants of the node i in the time slot t, where D1
i,t = |{j : i ∈ pj,t\{j}}|. Notice that

Dk
i,t =

∑
j:i∈pj,t\{j} F

k
j,t. Finally, let λki,t denote the value of λi,t in the kth iteration of Water-filling-

Framework, and let λ0
i,t = 0, ∀i, t. Under this notation, the rates can be expressed as λki,t =

∑k
l=1 F

l
i,tλ

l,

where λl denotes the common amount by which all the active rates get increased in the lth iteration.

5.1 Maximizing the Rates

Maximization of the common rate λk in kth iteration of Water-filling-Framework can be formulated
as follows:

max λk

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

λki,t = λk−1
i,t + F ki,t · λk

fΣ
i,t + λki,t =

∑
(i,j)∈E

fij,t

bi,t+1 = min{B, bi,t + ei,t − (crtf
Σ
i,t + cstλ

k
i,t)}

bi,t ≥ 0, λk ≥ 0, fij,t ≥ 0,∀(i, j) ∈ E

As in each slot t every node i sends all the flow it senses over a single path, we can compute the total
inflow into a node i as the sum of the flows coming from i’s descendants:

fΣ
i,t =

∑
j:i∈pj,t\{j}

k∑
l=1

F lj,t · λl =
k∑
l=1

λl
∑

j:i∈pj,t\{j}
F lj,t

=
k∑
l=1

Dl
i,t · λl

Denoting the battery levels in the iteration k as bki,t, the problem can now be written more compactly as:

max λk

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

bki,t+1 = min{B, bki,t + ei,t −
k∑
l=1

λl(crtD
l
i,t + cstF

l
i,t)}

bki,t ≥ 0, λk ≥ 0,

where ∀i∀k : bki,1 = bi,1.

Instead of using all of the λl’s from previous iterations in the expression for bki,t+1, we can define the

battery drop in the iteration k, for node i and time slot t as: ∆bki,t =
∑k
l=1 λ

l
(
crtD

l
i,t + cstF

l
i,t

)
and only

keep track of the battery drops from the previous iteration. The intuition is as follows: to determine the
battery levels in all the time slots, we only need to know the initial battery level and how much energy

5Notice that this is consistent with the definition of a descendant in a routing tree.

8

(∆bi,t) is spent per time slot. Setting ∆b0i,t = 0, the problem can be written as:

max λk

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

∆bki,t = ∆bk−1
i,t + λk(crtD

k
i,t + cstF

k
i,t)

bki,t+1 = min{B, bki,t + ei,t −∆bki,t}
bki,t ≥ 0, λk ≥ 0

Writing the problem for each node independently, we can solve the following subproblem:

max λki (4)

s.t. ∀t ∈ {1, ..., T} :

∆bki,t = ∆bk−1
i,t + λki (crtD

k
i,t + cstF

k
i,t) (5)

bki,t+1 = min{B, bki,t + ei,t −∆bki,t} (6)

bki,t ≥ 0, λki ≥ 0 (7)

for each i with
∑
i,t F

k
i,t > 0, and determine λk = mini λ

k
i . Notice that we can bound each λki by the interval

[0, λkmax,i], where λkmax,i is the rate for which node i spends all its available energy in the first slot τ in which
its rate is not fixed:

λkmax,i =
bk−1
i,τ + ei,τ

crtDk
i,τ + cst

, τ = min{t : F ki,t = 1}.

The subproblem of determining λki can now be solved by performing a binary search in the interval
[0, λkmax,i].

Let δ denote the precision of the input variables. Note that however small, δ can usually be expressed as
a constant.
Lemma 5.1. Maximizing-the-Rates in P-Unsplittable-Find can be implemented in time

O

(
T
∑
i

log
(
λkmax,i/δ

))
= O

(
nT log

(
B + max

i,t
ei,t/(δcst)

))
.

5.2 Fixing the rates

Recall that the elements of the matrix F k are such that F ki,t = 0 if the rate λi,t is fixed for the iteration k,

and F ki,t = 1 otherwise. At the end of iteration k ≥ 1, let F k+1 = F k, and consider the following set of rules
for fixing the rates:

(F1) For all (i, t) such that bki,t+1 = 0 set F k+1
i,t = 0.

(F2) For all (i, t) such that bki,t+1 = 0 determine the longest sequence (i, t), (i, t−1), (i, t−2), ..., (i, τ), τ ≥ 1,

with the property that bki,s + ei,s −∆bki,s ≤ B ∀s ∈ {t, t− 1, ..., τ}, and set F k+1
i,s = 0 ∀s.

(F3) For all (i, t) for which the rules (F1) and (F2) have set F k+1
i,t = 0, and for all j such that i ∈ pj,t, set

F k+1
j,t = 0.

We will need to prove that these rules are necessary and sufficient for fixing the rates. Here, “necessary”
means that no rate that gets fixed at the end of iteration k can get increased in iteration k + 1 without
violating at least one of the constraints. “Sufficient” means that all the rates λi,t with F k+1

i,t = 1 can be
increased by a positive amount in iteration k + 1 without violating feasibility.
Lemma 5.2. (Necessity) No rate fixed by the rules (F1), (F2) and (F3) can be increased in the next iteration
without violating feasibility constraints.

Proof. We will prove the lemma by induction.
The base case. Consider the first iteration and observe the pairs (i, t) for which F 1

i,t = 0.

9

Suppose that b1i,t+1 = 0. The first iteration starts with all the rates being active, so we get from the
constraint (6):

b1i,t+1 = min

{
B, b1i,t + ei,t −

(
crt

∑
i∈pj,t\{j}

λ1
j,t + cstλ

1
i,t

)}

= b1i,t + ei,t −

(
crt

∑
i∈pj,t\{j}

λ1
j,t + cstλ

1
i,t

)
= 0 (8)

as B > 0, where the third line comes from all the rates being equal in the first iteration and the fact that
all the i’s descendants must send their flow through i.

As every iteration only increases the rates, if we allow λi,t to be increased in the next iteration, then (from
(8)) we would get bi,t+1 < 0, which is a contradiction. Alternatively, if we increase λ1

i,t at the expense of

decreasing some λ1
j,t, i ∈ pj,t\{j}, to keep bi,t+1 ≥ 0, then the solution is not max-min fair, as λ1

j,t = λ1
i,t = λ1.

This proves the necessity of the rule (F1). By the same observation, if we increase the rate λ1
j,t of any of the

node i’s descendants j at time t, we will necessarily get bi,t+ < 0 (or would need to sacrifice the max-min
fairness). This proves the rule (F3) for all the descendants of node i, such that F 2

i,t is set to 0 by the rule
(F1).

Now let (i, t), (i, t− 1), (i, t− 2), ..., (i, τ), τ ≥ 1, be the longest sequence with the property that: bi,t = 0
and b1i,s + ei,s −∆b1i,s ≤ B ∀s ∈ {t, t− 1, ..., τ}. Observe that when this is the case, we have:

∀s ∈{τ, τ + 1, ..., t− 2, t− 1} :

b1i,s+1 = min
{
B, b1i,s + ei,s −∆b1i,s

}
= b1i,s + ei,s −∆b1i,s

= b1i,s + ei,s −

(
crt

∑
j:i∈pj,t\{j}

λ1
j,s + cstλ

1
i,s

)

This gives a recursive relation, so bi,t+1 can also be written as:

b1i,t+1 = b1i,τ +
t∑

s=τ
ei,s − crt

t∑
s=τ

∑
j:i∈pj,t\{j}

λ1
j,s − cst

t∑
s=τ

λ1
i,s.

If we increase λi,s or λj,s, for any j, s such that i ∈ pj,s\{j}, s ∈ {τ, τ + 1, ..., t− 2, t− 1}, then either bi,t+1

becomes negative, or we sacrifice the max-min fairness, as all the rates are equal to λ1 in the first iteration.
This proves both the rule (F2) and completes the proof for the necessity of the rule (F3).

The inductive step. Suppose that all the rules are necessary for the iterations 1, 2, ...k−1, and consider
the iteration k.

Observe that:

(o1) λj,t ≤ λi,t, ∀j : i ∈ pj,t, as all the rates, until they are fixed, get increased by the same amount in each
iteration, and once a rate gets fixed for some (i, t), by the rule (F3), it gets fixed for all the node i’s
descendants in the same time slot. Notice that the inequality is strict only if λj,t got fixed before λi,t;
otherwise these two rates get fixed to the same value.

(o2) Once fixed, a rate never becomes active again.

(o3) If a rate λi,t gets fixed in iteration k, then λi,t = λki,t =
∑k
p=1 λ

p = λli,t, ∀l > k.

Suppose that bki,t+1 = 0 for some i ∈ {1, .., n}, t ∈ {1, ..., T}. If F ki,t = 0, then by the inductive hypothesis

λi,t cannot be further increased in any of the iterations k, k + 1, Assume F ki,t = 1. Then:

bki,t+1 = min

{
B, bki,t + ei,t −

(
crt

∑
j:i∈pj,t\{j}

λkj,t + cstλ
k
i,t

)}

= bki,t + ei,t −

(
crt

∑
j:i∈pj,t\{j}

λkj,t + cstλ
k
i,t

)
= 0

10

By the observation (o1), λkj,t ≤ λki,t, ∀j such that i ∈ pj,t\{j}, where the inequality holds with equality if

F kj,t = 0. Therefore, if we increase λi,t in some of the future iterations, either bi,t+1 < 0, or we need to
decrease some λj,t ≤ λi,t, violating the max-min fairness condition. This proves the necessity of the rule
(F1). For the rule (F3), as for all (j, t) with F kj,t = 1, i ∈ pj,t\{j}, we have λj,t = λi,t, none of the i’s
descendants can further increase its rate in the slot t.

Now for (i, t) such that bki,t+1 = 0, let (i, t), (i, t − 1), (i, t − 2), ..., (i, τ), τ ≥ 1, be the longest sequence

with the property that: bki,s + ei,s −∆bki,s ≤ B ∀s ∈ {t, t− 1, ..., τ}. Similarly as for the base case:

∀s ∈{τ, τ + 1, ..., t− 2, t− 1} :

bki,s+1 = min
{
B, bki,s + ei,s −∆bki,s

}
= bki,s + ei,s −

(
crt

∑
j:i∈pj,t\{j}

λkj,s + cstλ
k
i,s

)

and we get that:

bki,t+1 = bki,τ +
t∑

s=τ
ei,s − crt

t∑
s=τ

∑
j:i∈pj,t\{j}

λkj,s − cst
t∑

s=τ
λki,s. (9)

If any of the rates appearing in (9), was fixed in some previous iteration, then it cannot be further increased
by the inductive hypothesis. By the observation (o1), all the rates that are active are equal, and all the
rates that are fixed are strictly lower than the active rates. Therefore, by increasing any of the active rates
from (9), we either violate battery nonnegativity constraint or the max-min fairness condition. Therefore,
rule (F2) holds, and rule (F3) holds for all the descendants of nodes whose rates got fixed by the rule (F2),
in the corresponding time slots.

Lemma 5.3. (Sufficiency) If F k+1
i,t = 1, then λi,t can be further increased by a positive amount in the

iteration k + 1, ∀i ∈ {1, ..., n}, ∀t ∈ {1, ..., T}.

Proof. Suppose that F k+1
i,t = 1. Notice that by increasing λi,t by some ∆λi,t node i spends additional

∆bi,t = cst∆λi,t energy only in the time slot t. As F k+1
i,t = 1, by the rules (F1) and (F2), either bi,t′ > 0

∀t′ > t, or there is a time slot t′′ > t such that bki,t′′ + ei,t′′ − ∆bki,t′′ > B and t′′ < t′′′, where t′′′ =
arg min {τ > t : bi,τ = 0}.

If bi,t′ > 0 ∀t′ > t, then the node i can spend ∆bi,t = mint+1≤t′≤T+1 b
k
i,t′ energy, and keep bi,t′ ≥ 0, ∀t′,

which follows from the battery evolution equation (6).
If there is a slot t′′′ > t in which bki,t′′′ = 0, then let t′′ be the minimum time slot between t and t′′′, such

that bki,t′′ + ei,t′′ − ∆bki,t′′ > B. Decreasing the battery level at t′′ by (bki,t′′ + ei,t′′ − ∆bki,t′′) − B does not
influence any other battery levels, as in either case bi,t′′+1 = B. As all the battery levels are positive in all
the time slots between t and t′′, i can spend at least min{(bki,t′′ + ei,t′′ − ∆bki,t′′) − B, mint+1≤t′≤t′′ b

k
i,t′}

energy at the time t and have bi,t′ ≥ 0 ∀t′.
By the rule (F3), ∀j such that j ∈ pi,t we have that bj,t > 0, and, furthermore, if ∃t′′′ > t with bj,t′′′ = 0

then ∃t′′ ∈ {t, t′′′} such that bki,t′′ + ei,t′′ − ∆bki,t′′ > B. By the same observations as for the node i, each
j ∈ pi,t can spend some extra energy ∆bj,t > 0 in the time slot t and keep all the battery levels nonnegative.
In other words, there is a directed path from the node i to the sink on which every node can spend some
extra energy in time slot t and keep its battery levels nonnegative. Therefore, if we keep all other rates fixed,
the rate λi,t can be increased by ∆λi,t = min{∆bi,t/cst,minj∈pi,t ∆bj,t/crt} > 0.

As each active rate λi,t can (alone) get increased in the iteration k+ 1 by some ∆λi,t > 0, it follows that
all the active rates can be increased simultaneously by at least
mini,t ∆λi,t/(T (cst + ncrt)) > 0.

Theorem 5.4. Fixing rules (F1), (F2) and (F3) provide necessary and sufficient conditions for fixing the
sensing rates in Water-filling-Framework.

Proof. Follows directly from Lemmas 5.2 and 5.3.

Lemma 5.5. The total running time of Fixing-the-Rates in P-Unsplittable-Find is O(mT).

11

Proof. Rules (F1) and (F2) can be implemented for each node independently in time O(T) by examining
the battery levels from slot T + 1 to slot 2.

For the rule (F3), in each time slot t ∈ {1, ..., T} enqueue all the nodes i whose rates got fixed in time
slot t by either of the rules (F1), (F2) and perform a breadth-first search. Fix the rates of all the nodes
discovered by a breadth-first search. This gives O(m) time per slot, for a total time of O(mT). Combining
with the time for rules (F1) and (F2), the result follows.

Combining Lemmas 5.1 and 5.5, we can compute the total running time of Water-filling-Framework
for P-Unsplittable-Find, as stated in the following lemma.
Lemma 5.6. Water-filling-Framework with Steps 2 Maximizing-the-Rates and 3 Fixing-the-
Rates implemented as described in Section 5 runs in time:

O(nT (mT + nT log(B + max
i,t

ei,t/(δcst)))).

Proof. To bound the running time of the overall algorithm that performs lexicographic maximization, we need
to first bound the number of iterations that the algorithm performs. As in each iteration at least one sensing
rate λi,t, i ∈ {1, ..., n}, t ∈ {1, ..., T}, gets fixed, and once fixed remains fixed, the total number of iterations is
O(nT). The running time of each iteration is determined by the running times of the steps 2 (Maximizing-
the-Rates) and 3 (Fixing-the-Rates) of the Water-filling-Framework. Maximizing-the-Rates

runs in O
(
nT log

(
B+maxi,t ei,t

δcst

))
(Lemma 5.1), whereas Fixing-the-Rates runs in O(mT) time (Lemma

5.5). Therefore, the total running time is: O
(
nmT 2 + n2T 2 log (B + maxi,t ei,t/(δcst))

)
.

6 Fractional Routing

The feasible region R for the rates and flows in P-Fractional can be described by the following constraints:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

fΣ
i,t + λi,t =

∑
(i,j)∈E

fij,t

bi,t+1 = min{B, bi,t + ei,t − (crtf
Σ
i,t + cstλi,t)}

bi,t ≥ 0, λi,t ≥ 0, fij,t ≥ 0,∀(i, j) ∈ E,

where fΣ
i,t ≡

∑
(j,i)∈E fji,t.

Observe that we can avoid computing the values of battery levels bi,t+1, and instead explicitly write the
non-negativity constraints for each of the terms inside the min. Reordering the terms, we get the following
formulation:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

fΣ
i,t + λi,t =

∑
(i,j)∈E

fij,t (10)

t∑
τ=1

(crtf
Σ
i,τ + cstλi,t) ≤ bi,1 +

t∑
τ=1

ei,τ (11)

t∑
τ=s

(crtf
Σ
i,τ + cstλi,t) ≤ B +

t∑
τ=s

ei,τ , 2 ≤ s ≤ t (12)

λi,t ≥ 0, fij,t ≥ 0,∀(i, j) ∈ E (13)

In the kth iteration of Water-filling-Framework we have that λki,t = λk−1
i,t +F ki,t ·λk =

∑k
l=1 F

l
i,t ·λl,

where λ0
i,t = 0. Let:

ubi,t = bi,1 +
t∑

τ=1
(ei,τ − cstλk−1

i,τ), uBi,t,s = B +
t∑

τ=s
(ei,τ − cstλk−1

i,τ)

12

Since in the iteration k all λk−1
i,t ’s are constants, the rate maximization subproblem can be written as:

max λk (14)

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

− fΣ
i,t − F ki,t · λk +

∑
(i,j)∈E

fij,t = λk−1
i,t (15)

t∑
τ=1

(crtf
Σ
i,τ + F ki,τ · cstλk) ≤ ubi,t (16)

t∑
τ=s

(crtf
Σ
i,τ + F ki,τ · cstλk) ≤ uBi,t,s, 2 ≤ s ≤ t (17)

λk ≥ 0, fij,t ≥ 0,∀(i, j) ∈ E (18)

Notice that in this formulation all the variables are on the left-hand side of the constraints, whereas all the
right-hand sides are constant.

6.1 Relation to Multi-commodity Flow

Let T = 2, and observe the constraints in (10)–(13). We claim that verifying whether any set of sensing rates
λi,t is feasible is at least as hard as solving a 2-commodity feasible flow problem with capacitated nodes and
a single sink. To prove the claim, we first rewrite the constraints in (10)–(13) as:∑

(j,i)∈E
fji,t + λi,t =

∑
(i,j)∈E

fij,t, t ∈ {1, 2}

crt
∑

(j,i)∈E
fji,1 ≤ bi,1 + ei,1 − cstλi,1

crt
2∑

τ=1

∑
(j,i)∈E

fji,τ ≤ bi,1 +
2∑

τ=1
(ei,τ − cstλi,τ)

crt
∑

(j,i)∈E
fji,2 ≤ B + ei,2 − cstλi,2

λi,t ≥ 0, fij,t ≥ 0, ∀i ∈ {1, ..., n}, (i, j) ∈ E, t ∈ {1, 2}

Suppose that we are given any 2-commodity flow problem with capacitated nodes, and let:

• λi,t denote the supply of commodity t at node i;

• ui,t denote the per-commodity capacity constraint at node i for commodity t;

• ui denote the bundle capacity constraint at node i.

Choose values of cs, crt, B, bi,1, bi,2, ei,1, ei,2 so that the following equalities are satisfied:

ui,1 =
1

crt
· (bi,1 + ei,1 − cstλi,1)

ui,2 =
1

crt
· (B + ei,2 − cstλi,2)

ui =
1

crt
(bi,1 +

2∑
τ=1

(ei,τ − cstλi,τ))

Then feasibility of the given 2-commodity flow problem is equivalent to the feasibility of (10)–(13). Therefore,
any 2-commodity feasible flow problem can be stated as an equivalent problem of verifying feasibility of
sensing rates λi,t in an energy harvesting network for T = 2.

For T > 2, (11) and (12) are general packing constraints. If a flow graph Gt in time slot t is observed
as a flow of a commodity indexed by t, then for each node i the constraints (11) and (12) define capacity
constraints for every sequence of consecutive commodities s, s+ 1, ..., t, 1 ≤ s ≤ t ≤ T .

Therefore, to our current knowledge, it is unlikely that the general rate assignment problem can be solved
exactly in polynomial time without the use of linear programming, as there have not been any combinatorial
algorithms that solve feasible 2-commodity flow exactly.

13

6.2 Fractional Packing Approach

The fractional packing problem is defined as follows [30]:
Packing: Given a convex set P for which Ax ≥ 0 ∀x ∈ P , is there a vector x such that Ax ≤ b? Here, A
is a p× q matrix, and x is a q-length vector.

A given vector x is an ε-approximate solution to the Packing problem if x ∈ P and Ax ≤ (1 + ε)b.
Alternatively, scaling all the constraints by 1

1+ε , we obtain a solution x′ = 1
1+εx ∈ (1

1+εxOPT, xOPT] ⊂
((1 − ε)xOPT, xOPT], for ε < 1, where xOPT is an optimal solution to the packing problem. The algorithm
in [30] either provides an ε-approximate solution to the Packing problem, or it proves that no such solution
exists. It’s running time depends on:

• The running time required to solve min{cx : x ∈ P}, where c = yTA, y is a given p-length vector, and
(.)T denotes the transpose of a vector.

• The width of P relative to Ax ≤ b, which is defined by ρ = maxi maxx∈P
aix
bi

, where ai is the ith row of

A, and bi is the ith element of b.

For a given error parameter ε > 0, a feasible solution to the problem min{β : Ax ≤ βb, x ∈ P}, its dual
solution y, and CP(y) = min{cx : c = yTA, x ∈ P}, [30] defines the following relaxed optimality conditions:

(1− ε)βyT b ≤ yTAx (P1)

yTAx− CP(y) ≤ ε(yTAx+ βyT b) (P2)

The packing algorithm [30] is implemented through subsequent calls to the procedure Improve-Packing:

Algorithm 2 Improve-Packing(x, ε) [30]

1: Initialize β0 = maxi aix/bi; α = 4β−1
0 ε−1 ln(2pε−1); σ = ε/(4αρ).

2: while maxi aix/bi ≥ β0/2 and x, y do not satisfy (P2) do
3: For each i = 1, 2, ..., p: set yi = (1/bi)e

αaix/bi .
4: Find a min-cost point x̃ ∈ P for costs c = yTA.
5: Update x = (1− σ)x+ σx̃.

6: return x.

The running time of the ε-approximation algorithm provided in [30], for ε ∈ (0, 1], equalsO(ε−2ρ log(mε−1))
multiplied by the time needed to solve min{cx : c = yTA, x ∈ P} and compute Ax (Theorem 2.5 in [30]).

6.2.1 Maximizing the Rates as Fractional Packing

We demonstrated at the beginning of this section that for the kth iteration Maximize-the-Rates can be
stated as (14)-(18). Observe the constraints (16) and (17). Since λk, fij,t and all the right-hand sides in (16)
and (17) are nonnegative, (16) and (17) imply the following inequalities:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

F ki,θ · cstλk ≤ ubi,t, 1 ≤ θ ≤ t
F ki,θ · cstλk ≤ uBi,t,s, 2 ≤ s ≤ t, s ≤ θ ≤ t

crt
∑

(j,i)∈E
fji,θ ≤ ubi,t − cst

t∑
τ=1

F ki,τλ
k, 1 ≤ θ ≤ t

crt
∑

(j,i)∈E
fji,θ ≤ uBi,t,s − cst

t∑
τ=s

F ki,τλ
k, 2 ≤ s ≤ t, s ≤ θ ≤ t

Therefore, we can yield an upper bound λkmax for λk:

λk ≤ λkmax ≡
1

cst
min
i,t,s≥2

{ubi,t :
t∑

τ=1
F ki,τ > 0, uBi,t,s :

t∑
τ=s

F ki,τ > 0} (19)

14

For a fixed λk, the flow entering a node i at time slot t can be bounded as:∑
(j,i)∈E

fji,t ≤ ui,t ≡

1

crt
min
i,t1≥t
s≥2

{ubi,t1 − cst
t1∑
τ=1

F ki,τλ
k, uBi,t,s − cst

t1∑
τ=s

F ki,τλ
k} (20)

We choose to keep only the flows fij,t as variables in the Packing problem. Given a λk ∈ [0, λkmax], we
define the convex set P 6 via the following set of constrains:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

−
∑

(j,i)∈E
fji,t +

∑
(i,j)∈E

fij,t = λk−1
i,t + F ki,t · λk (21)∑

(j,i)∈E
fji,t ≤ ui,t (22)

fij,t ≥ 0, ∀(i, j) ∈ E (23)

Proposition 6.1. For P described by (21)− (23) and a given vector y, problem min{cf : c = yTAf, f ∈ P}
reduces to T min-cost flow problems.

Proof. Constraint (21) is a standard flow balance constraint at a node i in a time slot t, whereas constraint
(22) corresponds to a node capacity constraint at the time t, given by (20). As there is no interdependence
of flows over time slots, we get that the problem can be decomposed into subproblems corresponding to
individual time slots. Therefore, to solve the problem min{cf : c = yTAf, f ∈ P} for a given vector y, it
suffices to solve T min-cost flow problems, one for each time slot t ∈ {1, 2, ..., T}.

The remaining packing constraints of the form Ax ≤ b are given by (16) and (17), where x ≡ f .
Proposition 6.2. Ax ≥ 0 ∀f ∈ P .

Proof. As fij,t ≥ 0 ∀(i, j) ∈ E, t ∈ {1, ..., T}, and all the coefficients multiplying fij,t’s in (16) and (17) are
nonnegative, the result follows immediately.

Lemma 6.3. One iteration of Improve-Packing for P-Fractional can be implemented in time

O
(
nT 2 + T ·MCF (n,m)

)
,

where MCF (n,m) denotes the running time of a min-cost flow algorithm on a graph with n nodes and m
edges.

Proof. Since the flows over edges appear in the packing constraints only as the sum-terms of the total
incoming flow of a node i in a time slot t, we can use the total incoming flow fΣ

i,t =
∑

(j,i)∈E fji,t for each

(i, t) as variables. Reordering the terms, the packing constraints can be stated as:

t∑
τ=1

fΣ
i,τ ≤

1

crt
(ubi,t − cst

t∑
τ=1

F ki,τλ
k), 1 ≤ t ≤ T (24)

t∑
τ=s

fΣ
i,τ ≤

1

crt
(uBi,t,s − cst

t∑
τ=s

F ki,τλ
k), 2 ≤ s ≤ t, 2 ≤ t ≤ T (25)

With this formulation on hand, the matrix A of the packing constraints AfΣ ≤ b is a 0− 1 matrix that can
be decomposed into blocks of triangular matrices. To see this, first notice that for each node i constraints
given by (24) correspond to a lower-triangular 0-1 matrix of size T . Each sequence of constraints of type
(25) for fixed i and fixed s ∈ {2, ..., T}, and t ∈ {s, s+ 1, ..., T} corresponds to a lower-triangular 0-1 matrix
of size T − s+ 1. This special structure of the packing constraints matrix allows an efficient computation of
the dual vector y and the corresponding cost vector c. Moreover, as constraints (24, 25) can be decomposed

6P is determined by linear equalities and inequalities, which implies that it is convex.

15

into independent blocks of constraints of the type Aif
Σ
i ≤ bi for nodes i ∈ {1, ..., n}, the dual vector y and

the corresponding cost vector c can be decomposed into vectors yi, ci for i ∈ {1, ..., n}. Cost ci,t can be
interpreted as the cost of sending 1 unit of flow through node i in time slot t.

Observe the block of constraints Aif
Σ
i ≤ bi corresponding to the node i. The structure of Ai is as follows:

T



1 0 0 · · · 0 0

1 1 0 · · · 0 0
...

...
...

. . .
...

...

1 1 1 · · · 1 1

T − 1



0 1 0 · · · 0 0

0 1 1 · · · 0 0
...

...
...

. . .
...

...

0 1 1 · · · 1 1

...

2

0 0 0 · · · 1 0

0 0 0 · · · 1 1

1
{

0 0 0 · · · 0 1

As Ai can be decomposed into blocks of triangular matrices, each yi,j in the Improve-Packing procedure

can be computed in constant time, yielding O
(
T (T−1)

2

)
= O

(
T 2
)

time for computing yi. This special

structure of Ai also allows a fast computation of the cost vector ci. Observe that each ci,t, t ∈ {1, ..., T}
can be computed by summing O(T) terms. For example, ci,1 =

∑T
j=1 yi,j , ci,2 = ci,1 − yi,1 +

∑2T−1
j=T+1 yi,j ,

ci,3 = ci,2 − yi,2 − yi,T+1 +
∑3T−2
j=2T yi,j , etc. Therefore, computing the costs for node i takes O(T 2) time.

This further implies that one iteration of Improve-Packing takes O
(
nT 2 + T ·MCF (n,m)

)
time, where

MCF (n,m) denotes the running time of a min-cost flow algorithm on a graph with n nodes and m edges.

Lemma 6.4. Width ρ of P relative to the packing constraints (16) and (17) is O(T).

Proof. As ui,t is determined by the tightest constraint in which
∑

(j,i)∈E fji,t ≡ fΣ
i,t appears, we have that

in every constraint given by (24, 25):

fΣ
i,θ ≤

1

crt
(ubi,t − cst

t∑
τ=1

F ki,τλ
k), 1 ≤ θ ≤ t

fΣ
i,θ ≤

1

crt
(uBi,t,s − cst

t∑
τ=s

F ki,τλ
k), 2 ≤ s ≤ t, s ≤ θ ≤ t

As the sum of fΣ
ij,θ over θ in any constraint from (24, 25) can include at most T terms, it follows that

ρ ≤ T ·bi
bi

= T .

Lemma 6.5. Maximizing-the-Rates that uses packing algorithm from [30] can be implemented in time:
Õ(T 2ε−2 · (nT +MCF (n,m))), where Õ-notation ignores poly-log terms.

16

Proof. We have from (19) that λk ∈ [0, λkmax], therefore, we can perform a binary search to find the maximum
λk for which both min{yTAf |f ∈ P} is feasible and Packing outputs an ε-approximate solution. Multiplying
the running time of the binary search by the running time of the packing algorithm [30], the total running
time becomes:

O

(
log

(
λkmax

δ

)
ε−2ρ log(mε−1)

(
nT 2 + T ·MCF (n,m)

))
= Õ

(
T 2

ε2
· (nT +MCF (n,m))

)
.

6.2.2 Fixing the Rates

As Maximizing-the-Rates described in previous subsection outputs an ε-approximate solution in each
iteration, the objective of the algorithm is not to output a max-min fair solution anymore, but an ε-
approximation. We consider the following notion of approximation, as in [21]:
Definition 6.6. For a problem of lexicographic maximization, say that a feasible solution given as a vector
v is an element-wise ε-approximate solution, if for vectors v and vOPT sorted in nondecreasing order v ≥
(1 − ε)vOPT component-wise, where vOPT is an optimal solution to the given lexicographic maximization
problem.

Let ∆ be the smallest real number that can be represented in a computer, and consider the algorithm
that implements Fixing-the-Rates as stated below.

Algorithm 3 Fixing-the-Rates

1: Solve the following linear program:
2: max

∑n
i=1 F

k
i,tλ

k
i,t

3: s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :
4: λki,t ≥ λ

k−1
i,t + F ki,t · λk

5: λki,t ≤ λ
k−1
i,t + F ki,t ·

(
ελk−1
i,t + (1 + ε)λk + ∆

)
6: fΣ

i,t + λki,t =
∑

(i,j)∈E fij,t

7: bi,t+1 = min
{
B, bi,t + ei,t −

(
crtf

Σ
i,t + cstλ

k
i,t

)}
8: bi,t ≥ 0, λki,t ≥ 0, fij,t ≥ 0

9: Let F k+1
i,t = F ki,t, ∀i, t.

10: If λki,t < (1 + ε)(λk−1
i,t + F ki,t · λk) + ∆, set F k+1

i,t = 0.

Assume that Fixing-the-Rates does not change any of the rates, but only determines what rates should
be fixed in the next iteration, i.e., it only makes (global) changes to F k+1

i,t . Then:
Lemma 6.7. If the Steps 2 and 3 in the Water-filling-Framework are implemented as Maximizing-
the-Rates and Fixing-the-Rates from this section, then the solution output by the algorithm is an
element-wise ε-approximate solution to the lexicographic maximization of λi,t ∈ R.

Proof. The proof is by induction.
The base case. Observe the first iteration of the algorithm. After rate maximization, ∀i, t : λi,t = λ1 ≥

1

1 + ε
λ1

OPT and F 1
i,t = 1.

Observe that in the output of the linear program of Fixing-the-Rates, all the rates must belong to
the interval [λ1, (1 + ε)λ1 + ∆]. Choose any (i, t) with λ1

i,t < (1 + ε)(λk−1
i,t + F 1

i,t · λ1) + ∆ = (1 + ε)λ1 + ∆.
There must be at least one such rate, otherwise the rate maximization did not return an ε-approximate
solution. As

∑n
i=1 F

1
i,tλ

1
i,t =

∑n
i=1 λ

1
i,t is maximum, if λ1

i,t is increased, then at least one other rate needs to

be decreased to maintain feasibility. To get a lexicographically greater solution λ1
i,t can only be increased

by lowering the rates with the value greater than λ1
i,t. Denote by S1

i,t the set of all the rates λ1
j,τ such that

λ1
j,τ > λ1

i,t. In the lexicographically maximum solution, the highest value to which λ1
i,t can be increased is

17

at most 1
|S1
i,t|

(
λ1
i,t +

∑
λj,τ∈S1

i,t
λ1
j,τ

)
< (1 + ε)λ1 + ∆, which implies λi,t,max ≤ (1 + ε)λ1. Therefore, if λi,t

is fixed to the value of λ1, it is guaranteed to be in the ε-range of its optimal value.
Now consider all the (i, t)’s with λ1

i,t = (1 + ε)λ1 + ∆. As all the rates that get fixed are fixed to a value

λi,t = λ1 ≤ λ1
i,t, it follows that in the next iteration all the rates that did not get fixed can be increased by

at least ελ1 + ∆, which Fixing-the-Rates properly determines.
The inductive step. Suppose that up to iteration k ≥ 2 all the rates that get fixed are in the ε-optimal

range, and observe the iteration k. All the rates that got fixed prior to iteration k satisfy:

λki,t ≥ λk−1
i,t + F ki,t · λk = λk−1

i,t , and

λki,t ≤ λk−1
i,t + F ki,t ·

(
ελk−1
i,t + (1 + ε)λk + ∆

)
= λk−1

i,t

and, therefore, they remain fixed for the next iteration, as λki,t = λk−1
i,t < (1 + ε)λk−1

i,t .

Now consider all the (i, t)’s with F ki,t = 1. We have that:

λki,t ≥ λk−1 + 1 · λk =
k∑
l=1

λl

λki,t ≤ (1 + ε)
(
λk−1 + 1 · λk

)
+ ∆ = (1 + ε)

k∑
l=1

λl + ∆

Similarly as in the base case, if λki,t < (1 + ε)
∑k
l=1 λ

l + ∆, let Ski,t = {λkj,τ : λkj,τ > λki,t}. There must be
at least one such (i, t), otherwise the rate maximization did not output an ε-approximate solution. In any
lexicographically greater solution:

λki,t,max ≤
1

|Ski,t|

λki,t +
∑

λkj,τ∈Ski,t

λj,τ


<(1 + ε)

k∑
l=1

λl + ∆,

which implies λki,t,max ≤ (1 + ε)
∑k
l=1 λ

l. Therefore, if we fix λi,t to the value
∑k
l=1 λ

l, it is guaranteed to be
at least as high as (1− ε) times the value it gets in the lexicographically maximum solution.

Finally, all the (i, t)’s with λki,t = (1 + ε)
∑k
l=1 λ

l + ∆ can simultaneously increase their rates by at least

ε
∑k
l=1 λ

l + ∆ in the next iteration, so it should be F k+1
i,t = 1, which agrees with Fixing-the-Rates.

Lemma 6.8. An FPTAS for P-Fractional can be implemented in time:

Õ(nT (T 2ε−2 · (nT +MCF (n,m) + LP (mT, nT))),

where LP (mT, nT) denotes the running time of a linear program with mT variables and nT constraints,
and MCF (n,m) denotes the running time of a min-cost flow algorithm run on a graph with n nodes and m
edges.

Proof. It was demonstrated in the proof of Lemma 6.7 that in every iteration at least one rate gets fixed.
Therefore, there can be at most O(nT) iterations. From Lemma 6.5, Maximizing-the-Rates can be
implemented in time Õ(T 2ε−2 · (nT +MCF (n,m))). The time required for running Fixing-the-Rates is
LP (mT, nT), where LP (mT, nT) denotes the running time of a linear program with mT variables and nT
constraints.

Note: A linear programming framework as in [8, 24, 31] when applied to P-Fractional would yield a
running time equal to O(n2T 2 · LP (mT, nT)). As the running time of an iteration in our approach is
dominated by LP (mT, nT), the improvement in running time is at least O(nT)-fold, at the expense of
providing an ε-approximation.

18

7 Fixed Fractional Routing

Suppose that we want to solve lexicographic maximization of the rates keeping both the routing and the
rates constant over time. Observe that, as both the routing and the rates do not change over time, the energy
consumption per time slot of each node i is also constant over time and equal to ∆bi = cstλi+crt

∑
(j,i)∈E fji.

Proposition 7.1. Maximum constant energy consumption ∆bi can be determined in time O(T log(
bi,1+ei,1

δ))

for each node i ∈ V \{s}, for the total time of O(nT log(
bi,1+ei,1

δ)).

Proof. Since the battery evolution can be stated as:

bi,t+1 = min {B, bi,t + ei,t −∆bi} ,

maximum ∆bi for which bi,t+1 ≥ 0 ∀t ∈ {1, ..., T} can be determined via a binary search from the interval
[0, bi,1 + ei,1], for each node i.

Similarly as in previous sections, let F ki = 0 if the rate i is fixed at the beginning of iteration k, and
F ki = 1 if it is not. Initially: F 1

i = 1, ∀i. Rate maximization can then be implemented as follows:

Algorithm 4 Maximizing-the-Rates(G,F k, b, e, k)

1: λkmax = 1
cst

mini{∆bi − cstλk−1
i : F ki = 1}

2: repeat for λk ∈ [0, λkmax], via binary search
3: Set the supply of node i to di = λk−1 + F ki λ

k, capacity of node i to ui = 1
crt

(∆bi − cstλk), for each i

4: Set the demand of the sink to
∑
i di

5: Solve feasible flow problem on G
6: until λk takes maximum value for which the flow problem is feasible on G

The remaining part of the algorithm is to determine which rates should be fixed at the end of iteration
k. We note that in each iteration k, the maximization of the rates produces a flow f in the graph Gk with
the supply rates λki . Instead of having capacitated nodes, we can modify the input graph by a standard
procedure of splitting each node i into two nodes i′ and i′′, and assigning the capacity of i to the edge (i′, i′′).
This allows us to obtain a residual graph Gr,k for the given flow. We claim the following:
Lemma 7.2. The rate λi of a node i ∈ G can be further increased in the iteration k+ 1 if and only if there
is a directed path from i to the sink node in Gr,k.

Proof. First, observe that the only capacitated edges in Gk are those corresponding to the nodes that were
split. The capacity of an edge (i′, i′′) corresponds to the maximum per-slot energy the node i can spend
without violating the battery non-negativity constraint. If an edge (i′, i′′) has residual capacity of ur(i′,i′′) > 0,
then the node i can spend additional crtu

r
(i′,i′′) amount of energy keeping the battery level non-negative in

all the time slots. If (i′, i′′) has no residual capacity (ur(i′,i′′) = 0), then the battery level of node i reaches
zero in at least one time slot, and increasing the energy consumption per time slot leads to bi,t < 0 for some
t, which is infeasible.

(⇐) Suppose that the residual graph contains no directed path from the node i to the sink. By the flow
augmentation theorem [1], the flow from the node i cannot be increased even when the flows from all the
remaining nodes are kept constant. As the capacities correspond to the battery levels at the nodes, sending
more flow from i causes at least one node’s battery level to become negative.

(⇒) Suppose that there is a directed path from i to the sink, and let uri > 0 denote the minimum residual
capacity of the edges (split nodes) on that path. Then each node on the path can spend at least crtu

r
i

amount of energy maintaining feasibility. Let U denote the set of all the nodes that have a directed path

to the sink in Gr,k. Then increasing the rate of each node i ∈ U by ∆λ =
mini u

r
i crt

cst + ncrt
> 0 and augmenting

the flows of i ∈ U over their augmenting paths in Gr,k each node on any augmenting path spends at most
mini u

r
i crt amount of energy, which is at most equal to the energy the node is allowed to spend maintaining

feasibility.

19

Lemma 7.3. Water-filling-Framework for P-Fixed-Fractional can be implemented in time

O(n log(
bi,1 + ei,1

δ
)(T +MF (n,m))),

where MF (n,m) denotes the running time of a max-flow algorithm for a graph with n nodes and m edges.

Proof. From Proposition 7.1, determining the values of ∆bi for i ∈ V \{s} can be implemented in time

O(nT log(
bi,1+ei,1

δ)).
Running time of an iteration of Water-filling-Framework is determined by the running times of

Maximizing-the-Rates and Fixing-the-Rates. Each iteration of the binary search in Maximizing-the-
Rates constructs and solves a feasible flow problem, which is dominated by the time required for running a
max-flow algorithm that solves feasible flow problem on the graph G. Therefore, Maximizing-the-Rates
can be implemented in time O(log(

bi,1+ei,1
δ)MF (n,m)), where MF (n,m) denotes the running time of a

max-flow algorithm.
Fixing-the-Rates constructs a residual graph Gr,k and runs a breadth-first search on this graph, which

can be implemented in time O(n+m) (= O(MF (n,m)) for all the existing max-flow algorithms).
Every iteration of Water-filling-Framework fixes at least one of the rates λi, i ∈ V \{s}, which

implies that there can be at most n iterations.
Therefore, the total running time is

O(n log(
bi,1 + ei,1

δ
)(T +MF (n,m))).

8 Determining a Routing

In this section we demonstrate that solving P-Unsplittable-Find and P-Tree-Find is NP-hard for both
problems. Moreover, we show that it is NP-hard to obtain an approximation ratio better than Ω(log n) for
P-Tree-Find. For P-Unsplittable-Find, we design an efficient combinatorial algorithm for a relaxed
version of this problem–it determines a time-invariable unsplittable routing that maximizes the minimum
rate.

8.1 Unsplittable Routing

Lemma 8.1. P-Unsplittable-Find is NP-hard.

Proof. The proof of NP-hardness for P-Unsplittable-Find is a simple extension of the proof of NP-
hardness for max-min fair unsplittable routing provided in [21]. We use the same reduction as in [21],
derived from the non-uniform load balancing problem [22]. From [21,22], the following problem is NP-hard:
P-Non-uniform-Load-Balancing: Let J = {J1, ..., Jk} be a set of jobs, and M = {M1, ...,Mn} be a set
of machines. Each job Ji has a time requirement ri ∈ {1/2, 1}, and the sum of all the job requirements is

equal to n:
∑k
i=1 ri = n. Each job Ji ∈ J can be run only on a subset of the machines Si ⊂M . Is there an

assignment of jobs to machines, such that the sum requirement of jobs assigned to each machine Mj equals
1?

For a given instance of P-Non-uniform-Load-Balancing we construct an instance of P-Unsplittable-
Find as follows (Fig. 6). Let T = 1, and cst = crt = 1. Create a node Ji for each job Ji ∈ J , a node Mj for
each machine Mj ∈ M , and add an edge (Ji,Mj) if Mj ∈ Si. Connect all the nodes Mj ∈ M to the sink.
Let available energies at the nodes be bJi = ri, bMj

= 2.
Suppose that the instance of P-Non-uniform-Load-Balancing is a ”yes” instance, i.e., there is an

assignment of jobs to machines such that the sum requirement of jobs assigned to each machine equals
1. Observe the following rate assignment: λ∗ = {λJi = ri, λMj = 1}. This rate assignment is feasible
only for the unsplittable routing in which Mj ’s descendants are the jobs assigned to Mj in the solution
for P-Non-uniform-Load-Balancing. Moreover, as in this rate assignment all the nodes spend all their
available energies and since

∑k
i=1 bJi =

∑k
i=1 ri = n, it is not hard to see that this is the lexicographically

20

Figure 6: A reduction from P-Non-uniform-Load-Balancing for proving NP-hardness of P-
Unsplittable-Find. Jobs are represented by nodes Ji, machines by nodes Mj , and there is an edge
from Ji to Mj if job Ji can be executed on machine Mj . Each job Ji has time requirement ri ∈ {1/2, 1}, and∑k
i=1 Ji = n. Available energies at the nodes are shown in the boxes next to the nodes. If at the optimum

of P-Unsplittable-Find λJi = ri and λMj
= 1, then there is an assignment of jobs to the machines such

that the sum requirement of jobs assigned to each machine equals 1.

maximum rate assignment that can be achieved for any instance of P-Non-uniform-Load-Balancing. If
the instance of P-Non-uniform-Load-Balancing is a ”no” instance, then P-Unsplittable-Find at the
optimum necessarily produces a rate assignment that is lexicographically smaller than λ∗.

Therefore, if P-Unsplittable-Find can be solved in polynomial time, then P-Non-uniform-Load-
Balancing can also be solved in polynomial time.

As the proof of Lemma 8.1 is constructed for T = 1, it follows that P-Unsplittable-Find is NP-hard
for general T , in either time-variable or time-invariable setting.

On the other hand, determining a time-invariable unsplittable routing that guarantees the maximum
value of the minimum sensing rate over all time-invariable unsplittable routings is solvable in polynomial
time, and we provide a combinatorial algorithm that solves it below.

We first observe that in any time-invariable unsplittable routing, if all the nodes are assigned the same
sensing rate λ, then every node i spends a fixed amount of energy ∆bi per time slot equal to the energy
spent for sensing and sending own flow and for forwarding the flow coming from the descendant nodes:
∆bi = λ (cst + crtDi,t).

The next property we use follows from the integrality of the max flow problem with integral capacities
(see, e.g., [1]). This property was stated as a theorem in [20] for single-source unsplittable flows, and we
repeat it here for the equivalent single-sink unsplittable flow problem:
Theorem 8.2. [20] Let G = (N,E) be a given graph with the predetermined sink node s. If the supplies
of all the nodes in the network are from the set {0, λ}, λ > 0, and the capacities of all the edges/nodes are
integral multiples of λ, then: if there is a fractional flow of value f , there is an unsplittable flow of value at
least f . Moreover, this unsplittable flow can be found in polynomial time.

Note: For the setting of Theorem 8.2, any augmenting-path or push-relabel based max flow algorithm
produces a flow that is unsplittable, as a consequence of the integrality of the solution produced by these
algorithms. We will assume that the used max-flow algorithm has this property.

The last property we need is that our problem can be formulated in the setting of Theorem 8.2. We
observe that for a given sensing rate λ, each node spends cstλ units of energy for sensing, whereas the
remaining energy can be used for routing the flow originating at other nodes. Therefore, for a given λ,
we can set the supply of each node i to λ, set its capacity to ui = (∆bi − cstλ)/crt (making sure that
∆bi − cstλ ≥ 0), and observe the problem as the feasible flow problem. For any feasible unsplittable flow
solution with all the supplies equal to λ, we have that flow through every edge/node equals the sum flow of
all the routing paths that contain that edge/node. As every path carries a flow of value λ, the flow through
every edge/node is an integral multiple of λ. Therefore, to verify whether it is feasible to have a sensing
rate of λ at each node, it is enough to down-round all the nodes’ capacities to the nearest multiple of λ:
ui = λ · b(∆bi − cstλ)/(crtλ)c, and apply the Theorem 8.2.

21

An easy upper bound for λ is λmax = mini ∆bi/cst, which follows from the battery nonnegativity con-
straint. The algorithm becomes clear now:

Algorithm 5 Maxmin-Unsplittable-Routing(G, b, e)

1: Perform a binary search for λ ∈ [0, λmax].
2: For each λ chosen by the binary search set node supplies to λ and node capacities to ui = λ ·
b(∆bi − cstλ)/(crtλ)c. Solve feasible flow problem.

3: Return the maximum feasible λ.

Lemma 8.3. The running time of Maxmin-Unsplittable-Routing is O(log(mini(bi,1 + ei,1)/(cstδ))(MF (n+
1,m))), where MF (n,m) is the running time of a max-flow algorithm on an input graph with n nodes and
m edges.

8.2 Routing Tree

If it was possible to find the (either time variable or time-invariable) max-min fair routing tree in polynomial
time for any time horizon T , then the same result would follow for T = 1. It follows that if P-Tree-Find
NP-hard for T = 1, it is also NP-hard for any T > 1. Therefore, we restrict our attention to T = 1.

Assume w.l.o.g. ei,1 = 0 ∀i ∈ V \{s}. Let T denote a routing tree on the given graph G, and DTi denote
the number of descendants of a node i in the routing tree T . Maximization of the common rate λi = λ over
all routing trees can be stated as:

max
T

min
i∈N

bi/(cst + crtD
T
i) (26)

This problem is equivalent to maximizing the network lifetime for λi = 1 ∀i ∈ V \{s} as studied in [5]. This
problem, which we call P-Maximum-Lifetime-Tree, was proved to be NP-hard in [5] using a reduction
from the Set-Cover problem [19]. The instance used in [5] for showing the NP-hardness of the problem
has the property that the equivalent problem of finding a tree with the lexicographically maximum rate
assignment, P-Tree-Find, is such that at the optimum λ1 = λ2 = ... = λn = λ. Therefore, P-Tree-Find
is also NP-hard.

We will strengthen the hardness result here and show that the lower bound on the approximation ratio
for the P-Tree-Find problem is Ω(log n). Notice that because we are using the instance for which at the
optimum λi = λ ∀i, the meaning of the approximation ratio is clear. In general, the optimal routing tree
can have a rate assignment with distinct values of the rates, in which case we would need to consider an ap-
proximation to a vector {λi}i∈{1,...,n}. However, we note that for any reasonable definition of approximation
(e.g., element-wise or prefix-sum as in [21]) our result for the lower bound is still valid. As for the instance
we use P-Tree-Find is equivalent to the P-Maximum-Lifetime-Tree problem, the lower bound applies
to both problems.

We extend the reduction from the Set-Cover problem used in [5] to prove the lower bound on the
approximation ratio. In the Set-Cover problem, we are given elements 1, 2, ..., n∗ and sets S1, S2, ..., Sm ⊂
{1, 2, ..., n∗}. The goal is to determine the minimum number of sets from S1, ..., Sm that cover all the elements
{1, ..., n∗}. Alternatively, the problem can be recast as a decision problem that determines whether there is
a set cover of size k or not. Then the minimum set cover can be determined by finding the smallest k for
which the answer is ”yes”.

Suppose that there exists an approximation algorithm that solves P-Tree-Find (or P-Maximum-
Lifetime-Tree) with the approximation ratio r. For a given instance of Set-Cover, construct an in-
stance of P-Tree-Find as in Fig. 7 and denote it by G. This reduction is similar to the reduction used
in [5], with modifications being made by adding line-topology graphs, and by modifying the node capacities
appropriately to limit the size of the solution to the corresponding Set-Cover problem. Let lx denote a
directed graph with line topology of size x. Assume that all the nodes in any lx have capacities that are
non-constraining. By the same observations as in the proof of NP-completeness of P-Maximum-Lifetime-
Tree [5], if there is a routing tree that achieves λ = 1, then there is a set cover of size k for the given input
instance of Set-Cover.

Now observe a solution that an approximation algorithm with the ratio r would produce, that is, an
algorithm for which 1

r ≤ λ ≤ 1 when λOPT = 1.

22

Figure 7: A lower bound on the approximation ratio for P-Tree-Find. Nodes 1, 2, ..., n∗ correspond to the
elements, whereas nodes S1, S2, ..., Sm correspond to the sets in the Set-Cover problem. An element node
i is connected to a set node Sj if in the Set-Cover problem i ∈ Sj . If there is a set cover of size k, then at
λ = 1 all the non-set-cover nodes are connected to the tree rooted at the node l, whereas all the set cover
nodes and all the element nodes are in the tree rooted at sc. The line-topology graphs represented by crossed
circles are added to limit the size of an approximate solution to the Set-Cover problem.

Lemma 8.4. In any routing tree for which 1
r ≤ λ ≤ 1, each node Cj can have at most one descendant.

Proof. Suppose that there is some routing tree T in which some Cj , j = {1, ...,m} has more than 1 descen-
dants. Then Cj must have at least one element node as its descendant. But if Cj has an element node as its
descendant, then the line-topology graph connected to that element node must also be in Cj ’s descendant
list, because T must contain all the nodes, and a line-topology graph connected to the element node has no
other neighbors. Therefore, Cj has at least 2r + 1 descendants. If λ ≥ 1

r , then the energy consumption at
node Cj is 2r+2

r > 2. But the capacity of the node Cj is 2, which is strictly less than the energy consumption;
therefore, a contradiction.

Lemma 8.4 implies that if there is a routing tree that achieves 1
r ≤ λ ≤ 1, then all the element nodes will

be connected to the tree rooted at sc through the set nodes they belong to. Therefore, the subtree rooted
at sc will correspond to a set cover. The next question to be asked is how large can this set cover be (as
compared to k)? The next lemma deals with this question.
Lemma 8.5. If there is a routing tree T that achieves 1

r ≤ λ ≤ 1, then the subtree rooted at sc in T contains
at most p ≤ 3rk nodes.

Proof. Let T be a routing tree that achieves 1
r ≤ λ ≤ 1.

The capacity of the node sc determines the number of the set nodes that can be connected to sc. As all
the element nodes (and line-topology graphs connected to them) are in the subtree rooted at sc, when there
are p set nodes connected to sc, sc has 2n∗r + pn∗r descendants. As each node has 1

r ≤ λ ≤ 1 sensing rate,
the energy consumption at the node sc is esc = (2n∗r + pn∗r + 1)λ. For the solution to be feasible, it must
be esc ≤ bsc. Therefore:

(2n∗r + pn∗r + 1)λ ≤ 2n∗r + kn∗r + 1

⇔ p ≤ 1

λ
· 2n∗r + kn∗r + 1

n∗r
− 2n∗r + 1

n∗r

=
1

λ

(
2 + k +

1

n∗r

)
− 2− 1

n∗r

As λ ≥ 1
r : p ≤ (2 + k)r + 1

n∗ − 2− 1
n∗r ≤ (2 + k)r ≤ k · 3r, where the last inequality comes from k ≥ 1.

The last lemma implies that if we knew how to solve P-Tree-Find in polynomial time with the approx-
imation ratio r, then for an instance of Set-Cover we could run this algorithm for k = {1, 2, ...,m − 1}

23

Table 2: Running times of the algorithms for the Water-filling-Framework implementation.

Maximizing-the-Rates Fixing-the-Rates Total

P-Unsplittable-Find O(nT log(
B+maxi,t ei,t

δcst
)) O(mT) O(nT (nT log(

B+maxi,t ei,t
(δcst)

) +mT))

P-Fixed-Fractional O(n log(
bi,1+ei,1

δ
)(T +MF (n,m))) O(m) O(n log(

bi,1+ei,1
δ

)(T +MF (n,m)))

P-Fractional Õ(T 2ε−2 · (nT +MCF (n,m))) LP (mT, nT)
Õ(nT (T 2ε−2 · (nT +MCF (n,m) +
LP (mT, nT)))

(verifying whether k = m is a set cover is trivial) and find a 3r-approximation for the minimum set cover,
which is stated in the following lemma.
Lemma 8.6. If there is a polynomial-time r-approximation algorithm for P-Tree-Find, then there is a
polynomial-time 3r-approximation algorithm for Set-Cover.

Proof. Suppose that there was an algorithm that solves P-Tree-Find in polynomial time with some ap-
proximation ratio r. For a given instance of Set-Cover construct an instance of P-Tree-Find as in Fig. 7.
Solve (approximately) P-Tree-Find for k ∈ {1, ...,m − 1}. In all the solutions, it must be λ ≤ 1. Let km
denote the minimum k ∈ {1, ...,m − 1} for which λ ≥ 1

r . Then the minimum set cover size for the input
instance of Set-Cover is k∗ ≥ km, otherwise there would be some other k′m < km for which λ ≥ 1

r . From
Lemmas 8.4 and 8.5, the solution to the constructed instance of P-Tree-Find corresponds to a set cover
of size p ≤ 3r · km for the input instance. But this implies p ≤ 3r · k∗, and, therefore, the algorithm provides
a 3r-approximation to the Set-Cover.

Theorem 8.7. The lower bound on the approximation ratio of P-Tree-Find is Ω(log n).

Proof. The lower bound on the approximation ratio of Set-Cover was shown to be Ω(log n) in [25].
The proof for the lower bound on the approximation ratio given in [25] was derived assuming a polynomial

relation between n∗ and m. Therefore, the lower bound of Ω(log n∗) holds for m = n∗c
∗
, where c∗ ∈ R is

some positive constant. Assume that n∗ ≥ 3. The graph given for an instance of Set-Cover (as in Fig. 7)

contains n = 2rn∗ + mrn∗ + 3 ≤ rn∗c
′

nodes, for some other constant c′ > 1. Therefore: n∗ ≥ c′

√
n

r
. As

r ≥ 1

3
c log n∗, it follows that:

r ≥ 1

3
c log c′

√
n

r
=

c

3c′
(log n− log r)

⇔ c

3c′
log r + r ≥ c

3c′
log n⇒ r ≥ c′′ log n,

for some c′′ ∈ R.

9 Conclusions and Future Work

This paper presents a comprehensive algorithmic study of the max-min fair rate assignment and routing
problems in energy harvesting networks with predictable energy profile. We develop algorithms for the
Water-filling-Framework implementation under various routing types. The running times of the devel-
oped algorithms are summarized in Table 2. The algorithms provide important insights into the structure of
the problems, and can serve as benchmarks for evaluating distributed and approximate algorithms possibly
designed for unpredictable energy profiles.

The results reveal interesting trade-offs between different routing types. While we provide an efficient al-
gorithm that solves the rate assignment problem in any time variable or time-invariable unsplittable routing
or a routing tree, we also show that determining a routing with the lexicographically maximum rate assign-
ment for any of these settings is NP-hard. On the positive side, we are able to construct a combinatorial

24

algorithm that determines a time-invariable unsplittable routing which maximizes the minimum sensing rate
assigned to any node in any time slot.

Fractional time-variable routing provides the best rate assignment (in terms of lexicographical maximiza-
tion), and both the routing and the rate assignment are determined jointly by one algorithm. However, as
demonstrated in Section 6, the problem is unlikely to be solved optimally without the use of linear program-
ming, incurring a high running time. While we provide an FPTAS for this problem, reducing the algorithm
running time by a factor of O(nT) (as compared to the framework of [8,24,31]), the proposed algorithm still
requires solving O(nT) linear programs.

If fractional routing is restricted to be time-invariable and with constant rates, the problem can be solved
by a combinatorial algorithm, which we provide in Section 7. However, as discussed in the introduction,
constant sensing rates often result in the underutilization of the available energy.

There are several directions for future work. For example, extending the model to incorporate the energy
consumption due to the control messages exchange would provide a more realistic setting. Moreover, design-
ing algorithms for unpredictable energy profiles that can be implemented in an online and/or distributed
manner is of high practical significance.

10 Acknowledgements

This research was supported in part by NSF grants CCF-1349602, CCF-09-64497, and CNS-10-54856. The
authors are grateful to Prof. Mihalis Yannakakis for useful discussions.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms, and applications.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[2] B. Bacinoglu and E. Uysal-Biyikoglu. Finite-horizon Online Transmission Rate and Power Adaptation
on a Communication Link with Markovian Energy Harvesting. CoRR, abs/1305.4558, 2013.

[3] D. Bertsekas and R. Gallager. Data networks (2nd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1992.

[4] P. Blasco, D. Gunduz, and M. Dohler. A learning theoretic approach to energy harvesting communica-
tion system optimization. In Proc. IEEE Globecom Workshops’12, 2012.

[5] C. Buragohain, D. Agrawal, and S. Suri. Power aware routing for sensor databases. In Proc. IEEE
INFOCOM’05, 2005.

[6] J.-H. Chang and L. Tassiulas. Maximum lifetime routing in wireless sensor networks. IEEE/ACM
Trans. Netw., 12(4):609–619, 2004.

[7] A. Charny, D. D. Clark, and R. Jain. Congestion control with explicit rate indication. In Proc. IEEE
ICC’95, 1995.

[8] S. Chen, Y. Fang, and Y. Xia. Lexicographic maxmin fairness for data collection in wireless sensor
networks. IEEE Trans. Mobile Comput., 6(7):762–776, July 2007.

[9] S. Chen, P. Sinha, N. Shroff, and C. Joo. Finite-horizon energy allocation and routing scheme in
rechargeable sensor networks. In Proc. IEEE INFOCOM’11, 2011.

[10] S. Chen, P. Sinha, N. Shroff, and C. Joo. A simple asymptotically optimal energy allocation and routing
scheme in rechargeable sensor networks. In Proc. IEEE INFOCOM’12, 2012.

[11] S. DeBruin, B. Campbell, and P. Dutta. Monjolo: an energy-harvesting energy meter architecture. In
ACM SenSys’13, 2013.

[12] M. Gatzianas, L. Georgiadis, and L. Tassiulas. Control of wireless networks with rechargeable batteries.
IEEE Trans. Wireless Commun., 9(2):581–593, 2010.

25

[13] M. Gorlatova, A. Bernstein, and G. Zussman. Performance evaluation of resource allocation policies for
energy harvesting devices. In Proc. WiOpt’11, 2011.

[14] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and G. Zussman. Challenge: ultra-low-
power energy-harvesting active networked tags (EnHANTs). In Proc. ACM MobiCom’09, 2009.

[15] M. Gorlatova, R. Margolies, J. Sarik, G. Stanje, J. Zhu, B. Vigraham, M. Szczodrak, L. Carloni,
P. Kinget, I. Kymissis, and G. Zussman. Energy harvesting active networked tags (EnHANTs): Proto-
typing and experimentation. Technical Report 2012-07-27, Columbia University, July 2012.

[16] M. Gorlatova, A. Wallwater, and G. Zussman. Networking low-power energy harvesting devices: Mea-
surements and algorithms. IEEE Trans. Mobile Comput., 12(9):1853–1865, 2013.

[17] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus. Energy cooperation in energy harvesting two-way
communications. In Proc. IEEE ICC’13, 2013.

[18] L. Huang and M. Neely. Utility optimal scheduling in energy-harvesting networks. IEEE/ACM Trans.
Netw., 21(4):1117–1130, 2013.

[19] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity
of Computer Computations, pages 85–103. Plenum Press, 1972.

[20] J. Kleinberg. Single-source unsplittable flow. In Proc. IEEE FOCS’96, 1996.

[21] J. Kleinberg, Y. Rabani, and E. Tardos. Fairness in routing and load balancing. In Proc. IEEE FOCS’99,
1999.

[22] J. Lenstra, D. Shmoys, and E. Tardos. Approximation algorithms for scheduling unrelated parallel
machines. Mathematical programming, 46(1-3):259–271, 1990.

[23] L. Lin, N. Shroff, and R. Srikant. Asymptotically optimal energy-aware routing for multihop wireless
networks with renewable energy sources. IEEE/ACM Trans. Netw., 15(5):1021–1034, 2007.

[24] R.-S. Liu, K.-W. Fan, Z. Zheng, and P. Sinha. Perpetual and fair data collection for environmental
energy harvesting sensor networks. IEEE/ACM Trans. Netw., 19(4):947–960, Aug. 2011.

[25] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. J. ACM,
41(5):960–981, Sept. 1994.

[26] R. Madan and S. Lall. Distributed algorithms for maximum lifetime routing in wireless sensor networks.
IEEE Trans. Wireless Commun., 5(8):2185–2193, 2006.

[27] Z. Mao, C. Koksal, and N. Shroff. Near optimal power and rate control of multi-hop sensor networks
with energy replenishment: Basic limitations with finite energy and data storage. IEEE Trans. Autom.
Control, 57(4):815–829, 2012.

[28] N. Megiddo. Optimal flows in networks with multiple sources and sinks. Mathematical Programming,
7(1):97–107, 1974.

[29] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener. Transmission with energy harvesting nodes
in fading wireless channels: Optimal policies. IEEE J. Sel. Areas Commun., 29(8):1732–1743, 2011.

[30] S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms for fractional packing and covering
problems. Math. of O.R., 20(2):257–301, 1995.

[31] B. Radunović and J.-Y. L. Boudec. A unified framework for max-min and min-max fairness with
applications. IEEE/ACM Trans. Netw., 15(5):1073–1083, Oct. 2007.

[32] S. Sarkar, M. Khouzani, and K. Kar. Optimal routing and scheduling in multihop wireless renewable
energy networks. IEEE Trans. Autom. Control, 58(7):1792–1798, 2013.

26

[33] S. Sarkar and L. Tassiulas. Fair allocation of discrete bandwidth layers in multicast networks. In Proc.
IEEE INFOCOM’00, 2000.

[34] R. Srivastava and C. Koksal. Basic performance limits and tradeoffs in energy-harvesting sensor nodes
with finite data and energy storage. IEEE/ACM Trans. Netw., 21(4):1049–1062, 2013.

27

	1 Introduction
	1.1 Fairness Motivation
	1.2 Routing Types
	1.3 Our Contributions
	1.4 Organization of the paper

	2 Model and Problem Formulation
	2.1 Considered problems

	3 Related Work
	4 Max-min Fairness and Lexicographic Maximization
	5 Rates in Unsplittable Routing
	5.1 Maximizing the Rates
	5.2 Fixing the rates

	6 Fractional Routing
	6.1 Relation to Multi-commodity Flow
	6.2 Fractional Packing Approach
	6.2.1 Maximizing the Rates as Fractional Packing
	6.2.2 Fixing the Rates

	7 Fixed Fractional Routing
	8 Determining a Routing
	8.1 Unsplittable Routing
	8.2 Routing Tree

	9 Conclusions and Future Work
	10 Acknowledgements

