arXiv:1304.5625v1 [cs.DS] 20 Apr 2013

Online Makespan Minimization with Parallel Schedules

Susanne Albers and Matthias Hellwig

Department of Computer Science, Humboldt-UniversitaBetdin
{albers, mhellwig}@informatik.hu-berlin.de

Abstract. Online makespan minimization is a classical problem in Wlacse-
quence of jobsr = Ji,...,J, has to be scheduled on identical parallel ma-
chines so as to minimize the maximum completion time of aby ljo this paper
we investigate the problem with an essentially new modeksburce augmen-
tation. More specifically, an online algorithm is allowedbwild several sched-
ules in parallel while processing At the end of the scheduling process the best
schedule is selected. This model can be viewed as providirankne algorithm
with extra space, which is invested to maintain multiplesgohs. The setting is
of particular interest in parallel processing environnsemhere each processor
can maintain a single or a small set of solutions.

As a main result we develop @/3 + ¢)-competitive algorithm, for any) <

e < 1, that uses a constant number of schedules. The constaft3§'°s(1/<)).

We also give &1 + ¢)-competitive algorithm, for any < e < 1, that builds a
polynomial number of m /e)©(°5(1/=)/=) schedules. This value dependsn
but is independent of the input. The performance guarantees are nearly best
possible. We show that any algorithm that achieves a cotiyegtess smaller
than4/3 must construct2(m) schedules. Our algorithms make use of novel
guessing schemes that (1) predict the optimum makespanobfsepuence to
within a factor ofl +¢ and (2) guess the job processing times and their frequencies
in 0. In (2) we have to sparsify the universe of all guesses so asduace the
number of schedules to a constant.

The competitive ratios achieved using parallel schedutes@nsiderably smaller
than those in the standard problem without resource augtiemt Furthermore
they are at least as good and in most cases better than the oatiained with
other means of resource augmentation for makespan mirtioriza

1 Introduction

Makespan minimization is a fundamental and extensivelgistuproblem in schedul-
ing theory. Consider a sequence of jobs: Ji,...,J, that has to be scheduled on
m identical parallel machines. Each job is specified by a processing tinpe > 0,
1 < ¢ < n. Preemption of jobs is not allowed. The goal is to minimize thakespan,
i. e. the maximum completion time of any job in the constrdatehedule. We focus on
the online version of the problem where the jobs @frrive one by one. Each incoming
job J; has to be assigned immediately to one of the machines wikmmwtledge of any
future jobsJy, ¢t > t.

Online algorithms for makespan minimization have beenistiidince the 1960s.
In an early paper Graham [21] showed that the famlags scheduling algorithm is
(2 - 1/m)-competitive. The best online strategy currently knowniexss a competi-
tiveness of about 1.92. Makespan minimization has also steelied with various types

http://arxiv.org/abs/1304.5625v1

of resource augmentatigiving an online algorithm additional information or pawe
while processing. The following scenarios were considered. (1) An onlinedtgm
knows the optimum makespan or the sum of the processing tifnes(2) An online
strategy has a buffer that can be used to reard®¥henever a job arrives, it is inserted
into the buffer; then one job of the buffer is removed and @thio the current schedule.
(3) An online algorithm may migrate a certain number or votunfi jobs.

In this paper we investigate makespan minimization assgithiat an online algo-
rithm is allowed to build several schedules in parallel whitocessing a job sequence
o. Eachincomingjob is sequenced in each of the schedulekeAsttd of the scheduling
process the best schedule is selected. We believe thas thisatural form of resource
augmentation: In classical online makespan minimizatibudied in the literature so
far, an algorithm constructs a schedule while jobs arrivelmnone. Once all jobs have
arrived, the schedule may be executed. Hence in this stafidemework there is a pri-
ori no reason why an algorithm should not be able to constewtral solutions, the
best of which is finally chosen.

Our new proposed setting can be viewed as providing an ocalgogithm with extra
space, which is used to maintain several solutions. Vetg Ig known about the value
of extra space in the design of online algorithms. Makespamnization with parallel
schedules is of particular interest in parallel processimgronments where each pro-
cessor can take care of a single or a small set of scheduledeVééop algorithms that
require hardly any coordination or communication amongsttfeedules. Last not least
the proposed setting is interesting w. r. t. to the founategtiof scheduling theory, giving
insight into the value of multiple candidate solutions.

Makespan minimization with parallel schedules was alsaestad by Kellerer et
al. [27]. However, the paper focused on the restrictedregttiith m = 2 machines.
In this paper we explore the problem for a general numbeaf machines. As a main
result we show that a constant number of schedules sufficashieve a significantly
improved competitiveness, compared to the standard getithout resource augmen-
tation. The competitive ratios obtained are at least as goddn most cases better than
those attained in the other models of resource augmentaimtioned above.

The approach to grant an online algorithm extra space, ieglés maintain multiple
solutions, could be interesting in other problems as wdile Bpproach is viable in
applications where an online algorithm constructs a sofutiat is used when the entire
input has arrived. This is the case, for instance, in basimemyraph coloring and
matching problems [24,26,29]. The approach is also pramisi problems that can
be solved by a set of independent agents, each of which cetsta separate solution.
Good examples are online navigation and exploration probli@ robotics[[11,12,14].
Some results are known for graph search and exploratiore.gpg1(],19,28], but the
approach has not been studied for geometric environments.

Problem definition: We investigate the probleMakespan Minimization with Par-
allel Schedules (MPSAs always, the jobs of a sequentge: J4, ..., J, arrive one by
one and must be scheduled non-preemptivelyroientical parallel machines. Each
job J; has a processing timg > 0. In MPS, an online algorithrd may maintain a
setS = {51,...,5;} of schedules during the scheduling process while jobsafive.
Each jobJ; is sequenced in each scheddle 1 < k < [. At the end ofo, algorithm.A

selects a schedulg; € S having the smallest makespan and outputs this solution. The
other schedules & are deleted.

As we shall show MPS can be reduced to the problem varianteatheroptimum
makespan of the job sequence to the processed is known inaeJdence let MPg¢
denote the variant of MPS where, prior to the arrival of thstfiob, an algorithm4
is given the value of the optimum makespaT(o) for the incoming job sequenee
An algorithm A for MPS or MPS, is p-competitive if, for every job sequenes it
outputs a schedule whose makespan is at mtisiesoPT(o).

Our contribution: We present a comprehensive study of MPS. We deve{dp3a+
£)-competitive algorithm, for ang < ¢ < 1, using a constant number bfe©(1°s(1/=))
schedules. Furthermore, we givg B+ ¢)-competitive algorithm, for ang < ¢ < 1,
that uses a polynomial number of schedules. The numidenjs)©(°s(1/9)/¢) 'which
depends om but is independent of the job sequercé hese performance guarantees
are nearly best possible. The algorithms are obtained wee sotermediate results that
may be of independent interest.

First, in Sectio 2 we show that the original problem MPS camdtluced to the
variant MPS,; in which the optimum makespan is known. More specificallyegi
anyp-competitive algorithrod for MPS, ¢ we construct §p+¢)-competitive algorithm
A*(g), forany0 < € < 1. If Aused schedules, thed*(¢) used -[log(1+ %)/bg(l +
3ip)] schedules. The construction works for any algoritdrfor MPS,,¢. In particular
we could use a 1.6-competitive algorithm by Chen et[all [13} tassumes that the
optimum makespan is known and builds a single schedule. Wdvadbtain a(1.6 +¢)-
competitive algorithm that builds at mdsbg(1 + 10/¢)/log(1 + ¢/5)] schedules.

We proceed and develop algorithms for MRS In Sectior B we give &1 + ¢)-
competitive algorithm, for any < ¢ < 1, that useg|2m/e| + 1)o8(2/e)/log(1+2/2)]
schedules. In Sectidni 4 we devisédd3 + ¢)-competitive algorithm, forang < e <1,
that uses /e©(18(1/2)) schedules. Combining these algorithms with(<), we derive
the two algorithms for MPS mentioned in the above paragrapb;also Sectionl 5.
The number of schedules used by our strategies depenti&@nd exponentially on
log(1/e) or1/e. Such a dependence seems inherent if we wish to exploreltipefuer
of parallel schedules. The trade-offs resemble those &gHillby PTASes in offline
approximation. Recall that the PTAS by Hochbaum and Shma8§ for makespan
minimization achieves él + ¢)-approximation with a running time @((n/€)1/52)_

In Sectiorl 6 we present lower bounds. We show that any onlgwithm for MPS
that achieves a competitive ratio smaller than 4/3 must tcoctsmore thanm/3|
schedules. Hence the competitive ratio of 4/3 is best plesaiing a constant number
of schedules. We show a second lower bound that implieshibatimber of schedules
of our (1 + £)-competitive algorithm is nearly optimal, up to a polynohfétor.

Our algorithms make use of novel guessing schetdéés) works with guesses on
the optimum makespan. Guessing alwliblingthe value of the optimal solution is a
technique that has been applied in other load balancindgmrat) see e. d. [6]. However
here we design a refined scheme that carefully sets and stadjuesses so that the
resulting competitive ratio increases by a factoi efe only, for anye > 0. Moreover,
the readjustment and job assignment rules have to ensursctieduling errors, made
when guesses were to small, are not critical. QuB +¢)-competitive algorithm works

with guesses on the job processing times and their freqegiy. In order to achieve
a constant number of schedules, we have to sparsify the sditpifssible guesses. As
far as we know such an approach has not been used in thedietsfore.

All our algorithms have the property that the parallel saileslare constructed ba-
sically independently. The algorithms for MRS require no coordination at all among
the schedules. Iil*(¢) a schedule only has to report when it fails, i. e. when a guess
on the optimum makespan is too small.

The competitive ratios achieved with parallel schedulescamsiderably smaller
than the best ratios of about 1.92 known for the scenarioowithesource augmen-
tation. Our ratio of(4/3 +), for smalle, is lower than the competitiveness of about
1.46 obtained in the settings where a reordering buffer ze# 6i(m) is available or
O(m) jobs may be reassigned. Skutella et al.] [33] gave an onligerighm that is
(1 + €)-competitive if, before the assignment of any j@h jobs of processing volume
20((1/2)10g”(1/2))y,. may be migrated. Hence the total amount of extra resources us
while schedulingr depends on the input sequence.

Related work: Makespan minimization with parallel schedules was firstigtd by
Kellerer et al.[[27]. They assume that= 2 machines are available and two schedules
may be constructed. They show that in this case the optinmapetitive ratio is 4/3.

We summarize results known for online makespan miniminatidthout resource
augmentation. As mentioned befotést is (2 — 1/m)-competitive. Deterministic on-
line algorithms with a smaller competitive ratio were prese in [1.9,18,20,25]. The
best algorithm currently known is 1.9201-competitivel [1l8ywer bounds on the per-
formance of deterministic strategies were givenlin|[1,22@81,32]. The best bound
currently known is 1.88, se2 [B1]. No randomized online athm whose competitive
ratio is provably below the deterministic lower bound isremtly known for generah.

We next review the results for the various models of resoatggmentation. Arti-
cles [3,4.,5,7,13,27] study makespan minimization assgrttiat an online algorithm
knows the optimum makespan or the sum of the processing tifesChen et al.[[13]
developed a 1.6-competitive algorithm. Azar and Regev fiplxged that no online al-
gorithm can attain a competitive ratio smaller than 4/3. $é&tting in which an online
algorithm is given a reordering buffer was explored.in|[X7, Englert et al.[[15] pre-
sented an algorithm that, using a buffer of sizémn), achieves a competitive ratio of
W_1(=1/€?)/(1 + W_1(~1/e?)) ~ 1.46, whereW_; is the Lamberf¥ function. No
algorithm using a buffer of size(n) can beat this ratio.

Makespan minimization with job migration was addresse®iB83]. An algorithm
that achieves again a competitivenessiaf; (-1/e?)/(1 + W_1(-1/e?)) ~ 1.46 and
usesO(m) job reassignments was devised|in [2]. No algorithm usifwg) reassign-
ments can obtain a smaller competitiveness. Sanders é3jlIsfudy a scenario in
which before the assignment of each j§bjobs up to a total processing volumeg;
may be migrated, for some constahtFor 3 = 4/3, they present a 1.5-competitive
algorithm. They also show &l + ¢)-competitive algorithm, for any > 0, where
B = 90((1/¢) log?(1/¢))

As for memory in online algorithms, Sleator and Tarjan| [3djdésed the paging
problem assuming that an online algorithm has a larger fashony than an offline
strategy. Raghavan and Snir [30] traded memory for randsmineonline caching.

Notation: Throughout this paper it will be convenient to associateedales with
algorithms, i. e. a schedulg, is maintained by an algorithm,, that specifies how to
assign jobs to machines B).. Thus an algorithri for MPS or MPS,,; can be viewed
as a family{ Ay } xex of algorithms that maintain the various schedules. We wiltev
A = {Ai}rec. If A is an algorithm for MPS,, then the valuepT(o) is of course
given to all algorithms of Ay, } . Furthermore, thivad of a machine always denotes
the sum of the processing times of the jobs already assigniiét machine.

2 ReducingMPSto MPS§; ¢

In this section we will show that amycompetitive algorithn for MPS,,; can be used
to construct & p + £)-competitive algorithmA4* (<) for MPS, for any0 < ¢ < 1. The
main idea is to repeatedly executdor a set of guesses on the optimum makespan. The
initial guesses are small and are increased whenever atgues®ut to be smaller than
oPT(o). The increments are done in small steps so that, among thgtiasses, there
exists one that is upper bounded by approximately=)oPT(c). In the analysis of this
scheme we will have to bound machine loads caused by schgdelirors” made when
guesses were too small. Unfortunately the executiod,ajiven a guess # oPT(o),
can lead to undefined algorithmic behavior. As we shall siyngsses > opT(o) are
not critical. However, guesses< oPT(o) have to be handled carefully.

So letA = { A }rex be ap-competitive algorithm for MPS,, that, given guess,
is executed on a job sequengeUpon the arrival of a jobJ;, an algorithmA; € A
may fail because the scheduling rules4§ do not specify a machine where to place
Ji in the current schedul§;.. We define two further conditions when an algorithip
fails. The first one identifies situations where a makespapnab not preserved and
hencep-competitiveness may not be guaranteed. More precidglyould assign/; to
a machine\/; such that'(j) + p, > py, wherel(j) denotes\/;’s machine load before
the assignment. The second condition identifies situatidresey is not consistent with
lower bounds on the optimum makespan, 1 & smaller than the average machine load
or the processing time of,. Formally, an algorithny,, fails if a job J;, 1 < ¢ < n, has
to be scheduled and one of the following conditions holds.

(i) Ay does not specify a machine where to pldgén the current schedul§,.
(if) There holdst/(j) + p: > py, for the machinélZ; to which A;, would assignJ; in
Sk
(iii) There holdsy < Y4 < pr/m OF v < py.

We first show that guesses > OPT(o) are not problematic. If @-competitive
algorithm A = { Ay }rex for MPS,,, is given a guess > OPT(o), then there exists an
algorithmA,, € A that does not fail during the processingrodnd generates a schedule
whose makespan is at mgst. This is shown by the next lemma.

Lemmal. Let A = {Ax}rec be ap-competitive algorithm for MR, that, given
guessy, is executed on a job sequencevith v > OPT(o). Then there exists an algo-
rithm A; e A that does not fail during the processing @fand generates a schedule
whose makespan is at maqst.

Proof. Let S, be an optimal schedule for the job sequence
o=Ji,...,J,. Moreover, let/(j) denote the load of machin®; in Sqpe, 1 < j <m.

For any; with £(j) < ~, define a jobJ} of processing time’. = v - £(j). Leto’ be the
job sequence consisting offollowed by the new jobsg/}. These up ton jobs may be
appended te in any order. ObviouslyppPT(c’) = 7. Hence when4 using guess is
executed ow’, there must exist an algorithay. € A that generates a schedule with a
makespan of at mogty. Sinceo is a prefix ofs’, this algorithmA,+ does not fail and
generates a schedule with a makespan of at prgsthen.A given guess is executed
Oono. O

Algorithm for MPS: We describe our algorithtd* (e, h) for MPS, wherd) < e < 1
andh € N may be chosen arbitrarily. The construction takes as inppaggorithmA =
{Aj }rex for MPS,,,,. For a proper choice of, A* (e, h) will be (p + ¢)-competitive,
provided that4 is p-competitive.

Atany timeA* (e, h) works withh guesses; < ... <~ on the optimum makespan
for the incoming job sequenee These guesses may be adjusted during the processing
of o; the update procedure will be described in detail beloweaeh guess;, 1 <i < h,
A*(e,h) executesd. HenceA* (e, h) maintains a total of|K| schedules, which can
be partitioned into subses, . . . , S;,. SubsetS; contains those schedules generated by
A usingv;, 1 <i<h. LetS;, € S; denote the schedule generatedAyusing-y;.

A job sequence is processed as follows. Initially, upon the arrival of thrstfjob
J1, the guesses are initialized as= p; andy; = (1 +¢)~;-1,fori=2,... h. Eachjob
Jt, 1 <t < m, is handled in the following way. Of course each such job ¢aisaced in
every schedulé;;, 1 < i < h andl < k < |K|. Algorithm A* (e, k) checks ifA; using
~; fails when having to sequendgin S;;.. We remark that this check can be performed
easily by just verifying if one of the conditions (i—iii) haé. If A;, using~; does not fail
and has not failed since the last adjustment,othen inS;; job J; is assigned to the
machine specified byl; using~;. The initialization of a guess is also regarded as an
adjustment. IfA; using~; does fail, thenJ; and all future jobs are always assigned to
a least loaded machine #y; until ~; is adjusted the next time.

Suppose that after the sequencingJefall algorithms of A = {Aj}rex USINg a
particular guessy; have failed since the last adjustment of this guess.it.dte the
largest index with this property. Then the guesses ..., ~;+ are adjusted. Sef; =
(1 +) max{Vn,pt, i<t Pr/m} @nd~y; = (1 +&)v;—1, fori = 2,...,i*. For any
readjusted guess;, 1 < i < ¢*, algorithm.4 using~; ignores all jobsJ,, with ¢’ < ¢
when processing future jobs ef Specifically, when making scheduling decisions and
determining machine loads, algorithi, using~; ignores all jobJ,: with ¢ < ¢ in its
scheduleS;;.. These jobs are also ignored whdri(e, h) checks ifA; using guess;
fails on the arrival of a job. Furthermore, after the assigntof.J;, machines inS;
machines are renumbered so thiats located on a machine it would occupy if it were
the first job of an input sequence.

When guesses have been adjusted, they are renumberedetog@h the corre-
sponding schedule se;, such that again; < ... < 4,. Hence at any time; =
minj<;<p y; @andy; > (1 + €)vy-1, fori = 2,...,h. We also observe that whenever a
guess is adjusted, its value increases by a factor of at (¢ast)”. A summary of
A*(e,h) is given in FigurélL.

Algorithm A*(e, h)
1. Sety; =p1(1+¢)" ', fori=1,...,h.
2. Attimet execute the following steps.

(a) J: is sequenced as follows in eadh;. If Ax using~y; fails or has failed since
the last adjustment ofy;, then assignJ; to a least loaded machine. Otherwise
assign it to the machine specified By, ignoring jobs that arrived before the last
adjustment ofy;.

(b) If all algorithms {Ax}rec for some 4; have failed since the last read
justment of v;, then let:* be the largest index with this property. Set

vi = (1 + &) max{yn,pt, Lpe prr/m}, for i = 1,...,4*. Renumber the
guesses suchthat <... <.

Fig. 1. The algorithmA* (g, k)

We obtain the following theorem.

Theorem 1. Let A = {4 }rexc be ap-competitive algorithm for MPS,. Then for any
0<e<landh = [log(1+ %2)/log(1 + 5;)], algorithm A* (¢) = A*(¢/(3p),) for
MPS is(p + ¢)-competitive and us€gk’| schedules.

For the analysis ofd* (¢, h) we need the following lemma.

Lemma 2. After A*(e,h) has processed a job sequengethere holdsy; < (1 +
£)oPT(0o).

Proof. At any time A* (e, h) maintainsh guesses. We can view these guesses as be-
ing stored ink variables. A variable is updated whenever its current gisessreased.
Hence during the processing efa variable may take any position in the sorted se-
guence of guesses. We analyze the steps in whHidlz, #) adjusts guesses.

We first show that whem* (¢, k) adjusts a guessg, theny < oPT(o). So suppose
that after the arrival of a jol;, A*(e, h) adjust guesses,...,v+, wherei* is the
largest index such that all algorithm$ Ay } xexc using+y; have failed. We prove;- <
opPT(c), which implies the desired statement because guessesralzned in order of
increasing value. Let*, with t* < ¢, be the most recent time when the variable storing
~;+ was updated last. If the variable has never been updateg itsnaitialization, then
let¢* = 1. All the algorithms{ A } rexc USINg~y;» ignore the jobs having arrived before
Ji+ when making scheduling decisions féf, ..., J;. Let o* = Jg, ..., J;. There
holds,oPT(c*) < OPT(o). If 74+ > OPT(o) held true, then by Lemnid 1 there would
be an algorithmd- € { Ax }rex that, using guess;-, does not fail when handling™.
This contradicts the fact that at timeall algorithms{ Ay }xex using~;- fail or have
failed since the arrival of;-.

Let~¢ denote the value of the smallest guess wHé(z, 1) has finished processing
o. We distinguish two cases depending on whether or not thablarstoringy; has
ever been updated since its initialization. If the varidides never been updated, then
7¢ = p1(1 +¢) 1, for somei € {1,...,h}. If i = 1, there is nothing to show because

p1 < OPT(o). If i > 1, then the initial guess of valug_; = p; (1 +¢)*"2 must have been
adjusted. This implies, as shown aboyg; < oPT(o) and the lemma follows because
71 = (1+€)7yi-1.

In the remainder of the proof we assume that the varialst®ring~{ has been up-
dated. Consider the last updateydfefore the end of and suppose that it took place on
the arrival of jobJ;- . First assume thatstores the smallest guess, amongilyriesses,
before the update. Therf = (1 + &) max{vy*,pe, X 1<pr<p» Prv/m}, Wherev* is the
largest guess before the updateyfis also adjusted on the arrival df-, then we are
done because, as shown aboyeg oPT(¢) and thusmax{y*, pir, X1cpepr Drr/m} <
oPT(o). If * is not adjusted on the arrival o+, then+¢ is the smallest guess greater
than~* after the update. By the end e@fguessy* must be adjusted since otherwigge
cannot become the smallest guess. Agdir oPT(o) and we are done.

Finally assume that before the updatéoes not store the smallest guess. §/die
the variable that stores the largest guess smaller tharnthatAfter the update there
holds~{ = (1 + ¢)~, wherey is the guess stored igl after the update. Until the end
of o, v must be adjusted again since otherwijgecannot become the smallest guess.
Again~y < oPT(¢) and hences < (1 +¢)oPT(0). |

Proof (of Theoreni]1)Throughout the proof lek = [log(1 + %)/log(l + 3ip)] and

A*(e) = A*(e/(3p), h). Consider an arbitrary job sequence andyebe the smallest
of the h guesses maintained b§* (<) at the end ob. Let S; be the set of schedules
associated withy,, i.e. S; was generated byl = { A, }rex USing a series of guesses
ending withv,. Let~(0) < ... < ~v(s), with s > 0, be this series and be the variable
that stored these guesses. He(@) is one of the initial guesses ands) = 1.

A first observation is that at the end @fthere exists an algorithm,« € { Ax }rexc
that usingy; has not failed. This holds true jfwas set tay; = v(s) upon the arrival of
a job J; with ¢ < n because the failure of all algorithris!, } rcxc using~; would have
caused an adjustment f. This also holds true i was set toy; upon the arrival of
J,, because in this case none of the algoritms } .cx usingy; has failed at the end
of 0. So letAy« € { Ak }rec be an algorithm that using, has not failed and le$;-
be the associated schedule. We prove that the load of everlyinggin S, - is upper
bounded by(p + £)oPT(o). This establishes the theorem.

Let to = 1. If the variableg was updated during the processingmfthen let
t1,...,ts be these points in time, i. e. the arrival &f caused an update gfand the
variable was set tg(i), 1 < i < s. For any machiné/;, 1 < j < m, in Sy~ let £(j)
denote its final load at the end ef Moreover, let/;, () denote its load due to jobg
with ¢ > ¢;, fori =0, ..., s. Obviously

s—1

0(G) = e, (G) + 3 (b (5) = Loy (5)) - (1)

=0

We first show that,, (j) < py:. Immediately aftet;, has been scheduled;’s
load consisting of jobg,s with ¢ > ¢ is at mostp;,. Sinceg was set toy(s) = 11
on the arrival ofJ;_, the guess adjustment rule ensupes < ;. Until the end ofo
algorithm A« using~y; does not fail and hence condition (ii) specifying the fealuwf
algorithms implies that the assignment of each further jobsdnot create a machine
load greater thapy; in Syg-.

We next show, (5) —£¢,., (7) < max{p,2}~(i), foreach = 0,...,s—1. The latter
difference s the load on machiié; caused by jobs of the subsequedge. . ., J;,,, 1.
Hence it suffices to show that after the assignment of &nyvith ¢; <t < t;.1, M;'s
load due to jobsly, with ¢’ > ¢;, is at mostmax{p,2}~(i). After the assignment of
Ji, M;'s respective load,, (j) is at mostp,, and this value is upper bounded by:)
as ensured by the guess adjustment rule. At titnes;, while A+ using~(¢) has not
failed, M;’s load due to jobs/, with ¢’ > ¢; does not exceephy(i) as ensured by con-
dition (ii) specifying the failure of algorithms. Finallyoosider a timée, ¢; < ¢ < t;,1,
at which A, fails or has failed. The incoming jolf, is assigned to a least loaded ma-
chine. Hence if/; is placed on/;, then the resulting machine load due to jobswith
t' > t; is upper bounded bY ;. ;i pr/m + Py < X< Per/m + py. Observe that after
the arrival of J; there exists an algorithm,, € A that usingy(¢) has not yet failed,
since otherwisey(i) would be adjusted before timg,;. Condition (iii) defining the
failure of algorithms ensures th; ..., pr/m < (i) andp, < v(i). We obtain that
M;’s machine load is at mo&ty(i).

We conclude thaf{1) is upper bounded by

s—1
py1+ Z(:) max{p, 2}7(i). ()

By Lemmal2,7v1 = v(s) < (1 +¢/(3p))OPT(c). At the end of the description of
A*(e,h) we observed that whenever a guess is adjusted it increaseddayor of at
least(1+¢)". Hencey(i) > (1+¢/(3p))"y(i-1). It follows thaty(i) <
for every0 < i < s. Hencel[(R) is upper bounded by

e
(1+(g/3p))(s=i)h

€ T+ max{p,2}y(s)
Pl g)OPTEO)+ 2 i s/<3p>)h-<s-i>

2

<p(1+3—p)OPT(U)+p(1+ YOPT(0) z G (3)
2
<p(1+ —p)OPT(cr) (1 + Z e/ Go))
€ 2
:p(1+3—p)OPT(CT)(1+—(1+€/(3p))h_) 4
Sp(l-ki) oPT(c) < p(1+ p)OPT() = (p+)oPT(). (5)

Here [3) uses the fact thatax{p, 2} < 2p and, as mentioned above, is a consequence of
Lemmd2. Line[(®) follows from the Geometric Series and, fingh) is by the choice
of h and the assumptioh< ¢ < 1. O

3 A (1 +e)-competitive algorithm for MPS, ¢

We present an algorithtd, (¢) for MPS,,, that attains a competitive ratio of+ ¢, for
anye > 0. The number of parallel schedules will bg2m /e | + 1)[108(2/2)/log(1+e/2)],

The algorithms will yield &1 + ¢)-competitive strategy faxIPS and, furthermore, will
be useful in the next section where we develo@l8 + ¢)-competitive algorithm for
MPS,¢. ThereA; (¢) will be used as subroutine for a small, constant number of

Description of A; (¢): Lete > 0 be arbitrary. Recall that in MRS the optimum
makespampPT(c) for the incoming job sequeneeis initially known. Assume without
loss of generality thabPT(c) = 1. Then all job processing times are (0,1]. Set
e’ = ¢/2. First we partition the range of possible job processingesirnto intervals
Iy, ..., I; such, within each intervd}, with i > 1, the values differ by a factor of at most
1 +¢’. Such a partitioning is standard and has been used e. g. IRTAE for offline
makespan minimization [23]. Let = [log(1/e")/log(1+¢")]. Setl, = (0,¢'] and
I =((1+e) e (1+€")ie'], fori=1,...,1. Obviouslylyu...ul; = (0,(1+€")e’]
and(0,1] < (0, (1 +¢")'e’]. A job is smallif its processing time is at most and hence
contained inly; otherwise the job itarge.

Each job sequence with oPT(¢) = 1 contains at mostm/<’| large jobs. For
each possible distribution of large jobs over the procestine intervaldy, ..., I;, al-
gorithm A, (¢) prepares one algorithm/schedule. Lét= {(vy,...,v;) € N} | v; <
|m/e']}. There holdgV| = (|m/e’] + 1)!. Let Ay(e) = {A,}vev. For any vector
v = (v1,...,v,) € V, algorithm A,, works as follows. It assumes that the incoming
job sequence contains exactly; jobs with a processing time iy, fori = 1,...,1.
Moreover, it pessimistically assumes that each procegsimgyin I; takes the largest
possible valug1 + ¢")’e’. Hence, initially A, computes an optimal schedu#¢ for a
job sequence consisting of jobs with a processing time @ +¢')’<’, fori=1,...,1.
Small jobs are ignored. Since running time is not an issuéhéndesign of online
algorithms, such a schedul can be computed exactly. Alternatively, &h+ &')-
approximation to the optimal schedule can be computed ub§TAS by Hochbaum
and Shmoysl[[23]. Lek;(j) denote the number of jobs with a processing time of
(1+€")'e" € I; assigned to machink/; in S}, wherel < i <land1 < j < m. Moreover,
let£*(j) = XL, nf(5)(1 +€')’e’ be the load on machink; in S, 1< j <m.

When processing the actual job sequesm@ad constructing a real scheddlg, A,
usesS; as a guideline to make scheduling decisions. At any timendultie scheduling
process, let;(j) be the number of jobs with a processing timdjrthat have already
been assigned to machidé; in S, where againl < ¢ </ andl < j < m. Each
incoming jobJ;, 1 <t < n, is handled as follows. If, is large, then lef; with 1 <4 <
be the interval such thai € I;. Algorithm A, checks if there is a machind; such that
n:(j) —ni(j) > 0, i.e. there is a machine that can still accept a job with agssing
time in I; as suggested by the optimal schedtife If such a machiné/; exists, then
Jy is assigned to it; otherwisé, is scheduled on an arbitrary machineJjfis small,
thenJ, is assigned to a maching; with the smallest current valu&(j) + ¢,(j). Here
£5(j) denotes the current load on machii¥g caused by small jobs ifi,. A summary
of A;(¢) is given in Figuré P. Subsequently we show Theorém 2.

Theorem 2. For anye > 0, A;(¢) is (1 + £)-competitive and uses at mdgem/c| +
1)lMos(2/2)/1og(1+2/2)] schedules.

Proof. The bound on the number of schedules simply follows from #og thatA4; (¢)
maintaingV| = (|m/e’|+1)! schedules where = ¢/2 andi = [log(1/¢")/log(1 +¢")].

10

Algorithm A, (¢)
1. Ai(e) = {Ay}vev, whereV = {(v1,...,v;) e Ny |v; < [m/e’]}
with ¢’ = /2 andl = [log(1/¢")/log(1 +€")].
2. A, works as follows.
(@) Compute optimal schedulg] for input consisting ofv; jobs of processing time
(1+e)e,1<i<l
(b) InS, eachJ; is sequenced in the following way.
If p; > &', then determind; such thap; € I,. If 3 M; with n} (5) —n;(j) > 0, then
assignJ; to it; otherwise assig; to an arbitrary machine.
If p; < €', then assign; to M; with the smallest valué® (5) + £5(j).

Fig. 2. The algorithmA; (¢)

Leto be an arbitrary job sequence anddgbe the number of jobs with a processing
time in I;, fori = 1,...,1. Since anyy; is upper bounded bym/¢’|, the resulting
vectorv = (v1,...,v;) is in V. For this vectorw, consider the associated algorithm
A,. We prove that whenl,, has finished processing the resulting schedulg, has a
makespan of at mo¢t +¢) = (1+¢)oPT(o). Recall again that we assume without loss
of generality thabpPT(o) = 1.

We analyze the steps in which, assigns jobd;, 1 < t < n, to machines irb,,. If J;
is large withp, € I;, 1 <4 <, then there must exist a machimg in the current schedule
S, such that} (j) —n;(4) > 0. Algorithm A, will assign.J; to such a machine. Hence
after the processing ef, for anyM; in S,, the total load caused by large jobs is upper
bounded by* (). We next argue that this value is at m@$t+ ¢")orPT1(cs). Consider
an optimal schedul§, . for o. Modify this schedule by (a) deleting all small jobs and
(b) rounding each job processing timefinto (1 +¢’)%’, fori = ,1. The resulting
schedule schedul& , has a makespan of at mdst+<’)OPT(). FurthermoreS’ ot 1S @
schedule for an input sequence consisting;gbbs of processing timél +&’)?c’. Since
S, is an optimal schedule for this input, each machine 64d) is upper bounded by
(1+&")oprT(0).

We finally show that wher,, has to sequence a small jdh then there is a machine
M; such that?*(j) + ¢5(j) is upper bounded byl + ¢")oPT(c). This implies that
the assignment of; causes a machine load of at m@st+ ')oPT(o) + p; < (1 +
2¢")oPT(o) = (1 + €)oPT(0) in the final schedulé,.

So suppose that upon the arrival of a small jgbthere holdst* (j) + £5(j) >
(1 +¢")opPT(o) for all machinesM;, 1 < j < m. Recall that{;(j) is the load on
machine)M; caused by small jobs in the current schedsile Note thaty."”; £*(j) is
the total processing time of large jobsdrif processing times ifd; are rounded up to
(1+¢')e, fori=1,...,1. Hencel/(1+¢) X7, £*(j) is a lower bound on the total
processing time of large jobs in It follows that the total processing time of all jobs in
oisatleast/(1+e") Ty £5(j)+ 202 Lo(j) +pe 2 1/ (1+e') £ (5 () +:(5)) +pe-
The assumption that (]) +245(j5) > (1 +¢&")oPT(o) holds for all machined/; implies
that the total processing time of jobsdtis at leastn-oPT(o) +p; > m- OPT(o—) which
contradicts the fact thaip1(o) is the optimum makespan. O

11

4 A (4/3 + e)-competitive algorithm for MPS, ¢

We develop an algorithml, (¢) for MPS,,¢ that is(4/3 + €)-competitive, for any) <

e < 1, if the numberm of machines is not too small. We then combide(e) with
Ai(e), presented in the last section, and derive a stratégit) that is (4/3 + ¢)-
competitive, for arbitraryn. The number of required scheduleg js©(°e(1/2)) which

is a constant independentofandm. We firstly present a description of the algorithm;
the corresponding analysis is given thereafter.

Before describingds (¢) in detail, we explain the main ideas of the algorithm. One
conceptis identical to that used Bl (¢): Partition the range of possible job processing
times into intervals ojob classesnd consider distributions of jobs over these classes.
However, in order to achieve a constant number of scheduéehave to refine this
scheme and incorporate new ideas. First, the job classesthde chosen properly so
as to allow a compact packing of jobs on the machines. An itapgrew aspect in the
construction of4,(¢) is that we will not consider the entire sitof tuples specifying
how large jobs of an input sequengere distributed over the job classes. Instead we
will define a suitable sparsificatidri’ of V. Eachv € V' represents an estimate or guess
on the number of large jobs arisingdn More specifically, ifv = (v1,...,v;), thenitis
assumed that contains at least; jobs with a processing time of job class

Obviously, the job sequeneemay contain more large jobs, the exact number of
which is unknown. Furthermore, it is unknown which portidntlee total processing
time of o will arrive as small jobs. In order to cope with these undattes A;(¢)
has to construct robust schedules. To this end the numberohimes is partitioned
into two setsM . and M.,.. For the machines af1, the algorithm initially determines
a good assignment aonfigurationassuming that; jobs of job class will arrive.
The machines of\,. are reserve machines and will be assigned additional latge |
as they arise inr. Small jobs will always be placed on machinesi.. The initial
configuration determined for these machines has the proibet, no matter how many
small jobs arrive, a machine load never exceg@s+ ¢ times the optimum makespan.

We proceed to describé; (¢) in detail. Let0 < € < 1. Moreover, set’ = £/8. Again
we assume without loss of generality that, for an incominggequence, there holds
oPT(o) = 1. Hence the processing time of any job is upper bounded by 1.

Job classesA job J;, 1 <t < n,issmallif p; < 1/3 +2¢’; otherwiseJ, is large. We
divide the range of possible job processing times into jalss#s. Lef, = (0,1/3+2¢’]
be the interval containing the processing times of smalt jalet A = [log(g + @)]
andl = X + 2, where the logarithm is taken to base 2. Fer1,...,1, let

a; =max{z -2+ (&L + 2) g, 5 + 2} and b; = £ - 26"+ (55 + 3¢) i
It is easy to verify that; = 1/3 + 2¢’ anda; < b;, fori = 1,...,1. Furthermoreé;_, =
1/2+¢"andb; = 2/3 +4<’. Fori =1,...,l definel; = (a;,b;]. There hold$J,;; I; =
(1/3+2¢',2/3+4¢"]. Moreover, fori = 1,...,1-1, letI;,; = (2a;,2b;]. Intuitively, I;,;
contains the processing times that are twice as large asthds 1 < i <[- 1. There
holdsU <i<i—1 D1+ = (2/3 +4e’,1+2¢"]. Hencel; uT; U ... U Ty 1 = (0,1+2¢']. In
the following I; representgob classi, fori = 1,...,20 — 1. We say that/, is aclass4
jobif p, € I;, wherel <i <20 -1.

12

Definition of target configurations: As mentioned above, for any incoming job

sequencer, A, (e) works with estimates on the number of clagsbs arising ino,

1 <i < 2] -1. For each estimate, the algorithm initially determinesréusil schedule

or target configuratioron a subset of the machines, assuming that the estimatetl set o
large jobs will indeed arrive. Hence we patrtition themachines into two set$1. and

M,. Letp =[(1+¢")/(1+2¢") -m]. Moreover, letM, = {M,,...,M,} and M, =
{Ms1,...,M,}. SetM. contains the machines for which a target configuration will
be computedM,. contains the reserve machines. The proportiop\df.| to |M,| is
roughlyl:1+1/¢’.

A target configuration has the important property that anghire/; € M. con-
tains large jobs of only one job clagsl < i < 2] - 1. Therefore, a target configuration
is properly defined by a vecter= (ci,...,c,) € {0,...,2l - 1}*. If ¢; = 0, thenM;
does not contain any large jobs in the target configuration; < u. If ¢; = 4, where
i €{1,...,2l - 1}, thenM; contains clasg-jobs,1 < j < u. The vectorc implicitly
also specifies how many large jobs reside on a maching.4f: with 1 <4 < [, then
M; contains two class{jobs. Note that, for generale {1,...,l}, a third job cannot
be placed on the machine without exceeding a load boungd®f <. If ¢; = ¢ with
I+1<i<2]-1, thenM; contains one classjob. Again, the assignment of a second
job is not feasible in general. Given a configurationV/; is referred to as alass4
machinef ¢; = i, wherel <j < pandl <7 <27 -1.

With the above interpretation of target configurationsheactore = (ci,...,c,)
encodes inputs containii{c; € {ci,...c,} : ¢; = i}| classé jobs, fori = 1,...,1, as
well as|{c; € {c1,...¢c.} : ¢j = i}| classé jobs, fori =1+ 1,...,2] - 1. Hence, for an
incoming job sequence, instead of considering estimatelseonumber of classjobs,
foranyl <4 < 2/ -1, we can equivalently consider target configurations. Unfaately,
it will not be possible to work with all target configuratioas {0, ..., 2l - 1}* since
the resulting number of schedules to be constructed wou{@hé = (log(1/¢))*(™).
Therefore, we will work with a suitable sparsification of #et of all configurations.

Sparsification of the set of target configurationsietx = [2(2+1/¢")(2{-1)] and
U ={0....,x}*"1. We will show thatk| (m — u)/(2] - 1) | > m if m is not too small
(see Lemma@l4). This property in turn will ensure that any ipence can be mapped
to au € U. For any vector = (us,...,ug-1) € U, we define a target configuration
c(w) that containg;| (m — 1)/ (20 -1) | classs machines, foi = 1,...,2] -1, provided
that ¥77" w;[(m - p)/(2 - 1) does not exceeg. More specifically, for any =
(u1,...,u-1) € U, letmy = 0 andm; = ¥, uj|(m - p)/(20 - 1)], be the partial
sums of the first entries ofu, multiplied by| (m - p)/(20 -1)],fori=1,...,20 - 1.
Let u' = ma-1. First construct a vectar' (u) = (}, ..., c,,) of lengthy’ that contains
exactlyu;| (m — u)/(20 - 1) | classé machines. That is, for=1,...,20 - 1, letc} =i
forj=mi_1+1,...,m. We now truncate or extend(«) to obtain a vector of length.
If 1’ > u, thenc(u) is the vector consisting of the firgtentries of¢’(u). If 1’ < u, then
c(u) = (cis--.5¢,,0,...,0), i.e. the lasi — u” entries are set to 0. L&t = {c(u) |
u € U} be the set of all target configurations constructed fromorsete U.

The algorithm family: Let.A3(e) = {Ac}cec. FoOr anye € C, algorithmA. works
as follows. Initially, prior to the arrival of any job af, A, determines the target config-
uration specified by = (¢1,...,c,) and uses this virtual schedule for the machines of

13

M. to make scheduling decisions. Consider a machifyes M. and suppose; > 0,
i.e. M; is a class- machine for some > 1. Let ¢~ (j) and¢*(j) be the targeted min-
imal and maximal loads caused by large jobsidr, according to the target configu-
ration. More precisely, if € {1,...,1}, thenf=(j) = 2a; and¢*(j) = 2b;. Recall that
in a target configuration a classnachine contains two claggobs if 1 < ¢ < [. If
i€{l+1,...,21-1} and hence = [+ ' for somei’ € {1,...,1 -1}, thenl~(j) = 2a;
and{*(j) = 2by. If M; € M, is a machine witle; = 0, thenf™(5) = £*(j) = 0. While
the job sequence is processed, a machiné; ¢ M. may or may not beadmissible
Again assume thal/; is a classsmachine withi > 1. If ¢ € {1,...,}, then at any time
during the scheduling proceds; is admissible if it has received less than two class-
jobs so far. Analogously, ife {I+1,...,2]-1}, thenM; is admissible if it has received
no classt job so far. Finally, at any time during the scheduling precést/(;) be the
current load of machingZ; and let/,(j) be the load due to small jobs< j < m.
Algorithm A, schedules each incoming jolp, 1 < t < n, in the following way. First
assume that, is a large job and, in particular, a clas@b, 1 < i < 2/-1. The algorithm
checks if there is a clagsmachine inM. that is admissible. If sa/; is assigned to
such a machine. If there is no admissible classachine available, thed is placed
on a machine inM.,.. There jobs are scheduled according to Best-Fitpolicy. More
specifically,A. checks if there exists a machiné; e M, such that(j) +p; <4/3+e¢.
If this is the case, thed, is assigned to such a machine with the largest current load
£(7). If no such machine existgl; is assigned to an arbitrary machineM,.. Next
assume thaf, is small. The job is a assigned to a maching\ify, where preference is
given to machines that have already received small jobsoriglgm A, checks if there
is anM; € M. with £,(j) > 0 such that* (j) + ¢5(j) + p: < 4/3 + . If this is the case,
thenJ, is assigned to any such machine. Otherwiseconsiders the machines 8.
which have not yet received any small jobs. If there existd8gre M. with £,(j) =0
such that*(j) + p: < 4/3 + &, then among these machingsis assigned to one having
the smallest targeted lodd (). If again no such machine exist, is assigned to an
arbitrary machine in\.. A summary ofA5(¢), which focuses on the job assignment
rules, is given in Figurg]3. We obtain the following result.

Theorem 3. A (¢) is (4/3 + €)-competitive, for any) < ¢ < 1 andm > 21/(¢)?. The
algorithm used /£©(°e(1/2)) schedules.

As(e) is (4/3 + €)-competitive if, for the chosen, the number of machines is at
least21/(e")?. If the number of machines is smaller, we can simply applypalgm
A () with an accuracy of, = 1/3. Let.A3(¢) be the following combined algorithm.
If for the choser, m < 21/(e’)?, executed; (1/3). Otherwise executg,(¢).

Corollary 1. As(¢) is (4/3 +¢)-competitive, for ang < ¢ < 1, and used /€ (°e(1/))
schedules.

Proof. If A;(1/3) is executed for a machine number< 21/(¢’)?, then by Theorern]2
the number of schedules (&g (1/¢)/)°™M), which is1/°™), 0

In the remainder of this section we prove Theofém 3. Thedtatienber of sched-
ules follows from the fact thatl, () consists ofC| = (x + 1)%~! algorithms. Recall

14

Algorithm A (¢)
1. Azx(e) = {Ac}eec, WhereC = {c(u) |u e U}
U ={0,...,k}*"", wherex = [2(2 + 1/¢')(20 - 1)], 1 = [log(2 + 12-)] + 2 and
g'=¢/8
pw=[(1+e")/(1+2") -m]
2. A. works as follows.
(a) Determine target configuration specifiedddy (c1,. .., cu).
(b) EachJ; is sequenced as follows.
Jy is large: Let J; be a class-job. If there is an admissible clagsnachine inM.,
assignJ; to it. Otherwise check il M; € M,. such tha?(j) + p: < 4/3 + . If so,
assignJ; to such anM; with the highest(;); otherwise place/; on an arbitrary
M]‘ € MT.
Jy is small:If 3 M; € M. with £,(5) > 0 such that* (5) + £s(j) + pr < 4/3 +¢,
assign J; to it. Otherwise check ifd M; e M. with £,(j) = 0 such that
£H(j) + pe < 4/3 + €. If so, assignJ; to such anM; with the lowest¢™ (j);
otherwise place/; on an arbitraryM; € M..

Fig. 3. The algorithmA, (¢)

thatr = [2(2+1/¢")(21-1)]andl = A+2 = [log(2 + 125)]+2. Hencel = O(log(1/¢))
andk = O(1/elog(1/¢)), which gives thatC| is 1/ (os(1/)),

Hence it suffices to show that, for any job sequemcdl,(c) generates a schedule
whose makespan is at mast/3 +)oPT(o), which we will do in the remainder of
this section. More specifically we will prove that, for amythere exists a target con-
figurationc € C that accurately models the large jobs arisingsinwe will refer to
such a vector as a valid target configuration. Then we wilisti@at the corresponding
algorithm A, builds a schedule with a makespan of at mdg8 + ¢)oPT(o).

We introduce some notation. Consider any job sequen€er anyi, 1 <i <20 -1,
let n; (o) be the number of classjobs arising inc, i.e.n;(o) is the number of jobs
J¢ with p, € I;. Furthermore, for any target configuratios (c1,...,c,) € C' and any
iwith 1 <4 < 2] -1, letm; be the number of classmachines irz, i.e.m; = |{c; €

{c1,...,cu} 1 ¢5 =i}|. Letpy = Zﬁzl m; be the total number of clagsmachines with

ie{1,...,1}. Similarly, uo = 227}, m; is the total number of classmachines with
ie{l+1,...,2l-1}. Giveno, vectorc € C will be a valid target configuration if, for
anyi=1,...,2l -1, o contains as many claggebs as specified inand, moreover, if

all the additional large jobs can be feasibly scheduled emth- 1. reserve machines.
Recall that in a configuratiof) any class-machine withl < ¢ < [is supposed to contain
two classt jobs. Formallyc € C' is avalid target configurationf the following three
conditions hold.

(i) Fori=1,...,1, there hold2m; < n;(c).

(i) Fori=1+1,...,2l -1, there holdsn; < n;(o).
(i) [(Zie1 ni(o) =2)/21+ L nio) —pa <m—py
Conditions (i) and (ii) represent the constraint thatontains as many claggebs as
specified inc, 1 < ¢ < 2] — 1. Condition (iii) models the requirement that extra large

15

jobs can be feasibly packed on the reserve machines. B%;rleni(cr) - 2u7 is the
extra number of classjobs withi € {1,...,{} in 0. Any two of these can be packed
on one machine since the processing time of any of these gobpper bounded by
b; < 2/3 +4£'. Hence two jobs incur a machine load of at mégt + 8¢’ = 4/3 + <.
Analogouslyy 21, n;(o)—pus is the extra number of claggebs withi e {I+1,.. ., 2i-
1}, which cannot be combined together because their processias are greater than
2a1 > 2/3 +4¢’.

In order to prove that, for any, there exists a valid target configuration we need
two lemmas.

Lemma 3. For anyo, there hold§ !, n;(0)/2] + 2241 ni(o) < m.

Proof. Consider any optimal schedut¢ for o and recall that we assume without loss
of generality thatoPT(¢) = 1. In S* any machine containing a clasgeb with i ¢
{l+1,...,2l -1} cannot contain an additional large job: The clagsh causes a load
greater thar2a; > 2/3 + 4¢’ and any additional large job, having a processing time
greater thanl /3 + 2¢’, would generate a total load greater than 1. Furthermose, an
machine containing a claggeb withi € {1,...,1} can contain at most one additional
job of the job classed,...,! because two further jobs would generate a total load
greater tharda; > 3(1/3+2¢") > 1. m]

Lemma 4. For any0 < ¢’ < 1/8, there holds:| (m — 1)/ (21 - 1) | > m if m > 21/(")?.

Proof. There holds

Hl(m—u)/(%—l)Jz 202+)21 1) - [(m-p)/(20-1)]
>2(2+5)(20-1)- ((m-)/(21 1)-1)
- 2(2+ 1)(2-1)- (m —1)
(2+ 1)(2l (1+25’)
=2(2+ 5) (2 (if’izi}féi)

>m+m—(2/e")(1+2¢")

>m,

where the last line follows becausesf> 21/(<")? and2l/(¢")? > (2/&")(1 +2¢")2l,
foranye’ <1/8. i

The next lemma establishes the existence of valid targdigroations.

Lemma 5. For anyo, there exists a valid target configuratiere C'if m > 21/(¢’)2.

Proof. In this proof letmg = | (m - 1)/(2] - 1)|. Giveno, we first construct a vector
u € U. Lemmd3 implies that for any job classl < i <, there holdgn;(c)/2] < m.
For any job class, [+ 1 < i < 20 - 1, there holds:; (o) < m. By Lemmd& xmg > m,

16

which is equivalent ton/mg < k. For anyi with 1 < ¢ < [, setu; = |n;(c)/(2mo)].
For anyi with [+1 < ¢ < 21 -1, setu; = |n;(0)/mo]. Thenu; € {0,...,x}, for
i=1,...,2l -1, and the resulting vectar = (u1,....ug-1) is element of/. We next
show that the vectat(u) constructed byd,(¢) is a valid target configuration.

WhenA; () constructs:(u), it first builds a vector’(u) = (cy,...,c;,) of length
1 = 27" usmo containing exactlyu;mo entries withc; =i, fori = 1,...,20 - 1. If
w' > p, thene(u) contains the first: entries ofc’(u). If p’ < p, thenc(u) is obtained
from ¢/(u) by addingu — 11" entries of value 0. In either cag€u) contains at most
u;mo entries of values, fori = 1,..., 2l — 1. Hence for the target configuratiafu),
there holdsm; < u;mg, fori = 1,...,20 — 1, wherem; is again the total number of
classi: machines inc(u).

If i e {1,...,1}, thenm; < |n;(c)/(2mo)|mo < n;(0)/2, which is equivalent to
2m; < ni(c). Similarly, if i € {{+1,...,2l - 1}, thenm,; < |n;(c)/mo|mo < n; (o).
Therefore, conditions (i) and (ii) defining valid target fignrations are satisfied and
we are left to verify condition (iii).

First assume. > n. In this case the vectei(«) contains no entries of value 0 and
henceu = p1 +puo. Recall thafu;, = Zﬁzl m; IS the total number of classmachines with
i€{1,...,1} specified inc(u). Similarly, o = Y27}, m, is the total number of class-
machines with € {{+1,...,2/-1}. By Lemmd3B[¥}, ns(0)/2]+ 221 ni(o) < m.
Subtracting the equatigm, + po = 14, we obtain

{Zizl ni(0)/2] - p1 + 212531 ni(o) - pa <m - p.

There holdd X!, ni(0)/2] - 1 = [(ZL; ni(o) - 2u1)/2] because; is an integer.
Hence condition (iii) defining valid target configuratiosssatisfied.

It remains to study the cag€ < p. For any: with i € {{+1,...,2l - 1}, there
holdsu; = [n;(c)/mo| and hencew; > n;(c)/mo - 1, which is equivalent ta; (o) <
(u; + 1)mg. Hence

Yt ni(o) < SN (ui + 1)ymo = 351 wimo + (1= 1)m.

The sum¥?5 Y wimo = 271 wi| (m - 1)/(21 - 1) is the total number of entries
ciwith ¢ e {I+1,...,2 -1} in ¢'(u). Sincey’ < u1, none of these entries is deleted
whenc(u) is derived from’ (u). HenceX 2, !, uimo = p2 is the total number of class-

machines withi € {l + 1, ..., 2l - 1} specified inc(u). We conclude
Shini(o) < pg + (1= 1)my. (6)
For any: with ¢ € {1,...,1}, there holdsu; = |n;(c)/(2mo)] and henceu; >
n;(0)/(2mo) — 1. This impliesn;(0)/2 < (u; + 1)myg. Since(u; + 1)my is an integer
we obtainn;(c)/2 < (u; + 1)mg — 1. Thus
[mi(0)/2] € Ticy 1a(0)/2+ 1< Xiy (wi + 1)mo = pa + Im. (7)
Again ¥;_, usmg = 1 because’ (u) contains exacthy}_; u;mq entriesc; with ¢}

{1,...,1} and all of these entries are contained(n) representing classmachines for

17

i€ {1,...,1}. Inequalities[(b) and{7) together with the identity = | (m—-u)/(2-1)|
imply

(S ni(o)/2] = 1 + X35 ni(0) = pa < (2= 1) [(m - p) /(21 - 1) <m - p.

Since again Y}, ni(0)/2] - p1 = [(Z', ni(o) - 211)/2], condition (iii) defining
valid target configurations holds. O

We next analyze the scheduling steps4ef(¢).

Lemma 6. Let A, be any algorithm ofd, (¢) processing a job sequeneeAt any time
there exists at most one machimg € M. with £,(j) > 0and{=(5) +4:(j) <1+¢&"in
the schedule maintained by,..

Proof. Consider any point in time whilel. sequences. Suppose that there exists a
machineM,; € M. with £,(j) > 0 and ¢ (j) + £5(j) < 1 +¢’. We show that if a
small job J, arrives andA4, assigns it to a machin&/;, € M, with ¢,(j') = 0, then
£=(j") + pt > 1 + ¢’ so that no new machine with the property specified in the lemma
is generated. A first observation is thi; is not a class-machine because in this case
07(j) would be2a; = 2b;_1 = 1+2¢’. Also, if M is a class-machine, there is nothing
to show because, again, in this c&s¢;’) > 1 + 2¢'.

So assume that. assignsJ, to a machinel/;; € M., which is not a clas$ma-
chine, and/;(j') = 0 prior to the assignment. We first show tHat;’) > ¢~(j). Con-
sider the scheduling step in whieh. assigned the first small jol. to A;. Sincel;
is not a class-machinef*(j) = 2b;, for somei € {1,...,l - 1} and the assignment of
Jy to M;ledtoaload of at most™(j) +pr <1+2"+1/3+2e' =4/3+4e’ <4/3 +¢.
Since M. is not a class-machine either,J,; could have also been assignedif-
incurring a resulting load of at most (') + pi < 4/3 + € on this machine. Note that
when an algorithmi,. cannot assign a small job to a machiig € M. with £,(5) >0
and instead has to resort to machidds ¢ M, with /,(k) = 0, it chooses a machine
having the smallest (k) value. We concludé (5) < £~ (5').

Next consider the assignment &f. Algorithm A, would prefer to place/; on M;
as it already contains small jobs. Since this is impossib&e hold€™* () +¢5(j) +p: >
4/3 + ¢ and thusg; > 4/3 + 8¢’ - £*(j) — £5(4). Since by assumptiofr (5) + ¢5(j) <
1+ ¢ it follows p; > 1/3 + 7" = £*(j) + £~ (). Suppose that*(j) = 2b;, for some
ie{l,...,1-1}. Thenl=(j) = 2a,. Sincel~(j") > £~ (j) we obtain

CGY+pe 2 1/3+7 +07(5) -7 () + £ (5)
>1/3+7" +2(4 + 26) (b - 55)
+2/3 -4’ +2(L + L) ot
=1+3">1+¢€,

as desired. O

The following lemmas focus on algorithrak. such that is a valid target configu-
ration foro.

18

Lemma 7. Let o be any job sequence amtl. be an algorithm such that is a valid
target configuration foro. Letm > 21/(¢’)%. Consider any point in time during the
scheduling process. If the scheduledfcontains at most one machidé; € M. with
£=(j) +£4s(j) <1 +¢€', then no further small job can arrive.

Proof. Sincec is a valid target configuration far, the job sequence contains as many
classs jobs, for anyi € {1,...,l}, as indicated by. Hence the total processing time
of large jobs ino is lower bounded b)Z;.‘:l £~(j). Hence the total processing time of
jobs ing is at leasty_, (¢7(4) + £5(j)), where the machine loads due to small jobs
may be considered at an arbitrary point in time. Hence ifahetists a time such that
0s(j) + ¢ (j) <1+¢ forat most onel/; € M., we obtain

() + () 2 (L) (p-1) 2 (L+ &) (F55m - 1)

(CON
1427

=m+ m-(1+¢&)>m.
The last inequality holds because> 21/(")? > 2/(¢')? > (1 +&')(2¢’ +1)/(¢")?, for
anye’ < 1/8. Hence no further small job can arrive. O

Lemma 8. Let o be any job sequence amtl. be an algorithm such that is a valid
target configuration fowr. Letm > 21/(¢’)2. Then in the final schedule constructed by
A., each machine ioV. has a load of at most/3 + <.

Proof. We consider the scheduling steps in whi¢hassigns a joly; to a machine in
M. First suppose thalf; is large. LetJ; be a class-job, wherel < i < 2] - 1. If

J; is assigned to an{; € M., thenM; must be an admissible classnachine, i.e.
prior to the assignment of; it contains fewer class{jobs as specified by the target
configuration. This implies that for any machiné; ¢ M., its load due to large jobs

is always at most* (). The latter value is upper bounded By, < 2(2/3 + 4¢') =

4/3 + 8" = 4/3 + €. Hence, in order to establish the lemma it suffices to show tha
whenever a small job is assigned to a machlifies M., the resulting load* (j)+¢5(5)

on M; is at most4/3 + ¢.

Suppose on the contrary that a small jhlarrives andd,. schedules it on a machine
in M. such that the resulting load is greater thigf + . Algorithm A, first tries to
placeJ; on a machiné; € M. with £,(j) > 0, which has already received small jobs.
By Lemmd®, among these machines there exists at most oneghténé property that
£=(j) +£s(j) < 1 +¢'. Since an assignment to those machines is impossible vtithou
exceeding a load cf/3 +¢, A. tries to place/; on a machiné; e M, with £,(j) = 0.
Since this is also impossible without exceeding a load/8f+ ¢, any M; € M. with
£5(7) = 0 must be a classmachine. This holds true because for any clasgchine
with ¢ # [, there hold9* (j) < 2b;,_1 < 1 + 2¢’ and an assignment of a small job would
result in a total load of at modt+ 2¢’ + 1/3 + 22’ < 4/3 + . Observe that any clags-
machine has a targeted minimal load2af = 2b;_1 > 1 +2¢' > 1 +¢'.

We conclude that immediately before the assignmen? dlie schedule ofi. con-
tains at most one machine; € M, with ¢(j) + ¢5(j) < 1+¢’. LemmdY implies that
the incoming jobJ; cannot be small, and we obtain a contradiction. O

19

Lemma 9. Let o be any job sequence amtl. be an algorithm such that is a valid
target configuration for. Then in the final schedule constructedAy; each machine
in M, has a load of at most/3 + ¢.

Proof. Algorithm A, assigns only large jobs to machinesMi,.. A first observation
is that whenever there exists an; ¢ M, that contains only one clasgob with i ¢
{1,...,1} but no further jobs, then an incoming clasgeb with i’ ¢ {1,...,1} will
not be assigned to an empty machine. This holds true bechaswsvb jobs can be
combined, which results in a total load of at m@&t< 4/3 + 8’ = 4/3 + <.

The observation implies that at any time while. processes, the number of
machines ofM, containing at least one job is upper bounded/hy/2] + n2. Here
n, denotes the total number of clasgebs withi € {1,...,l} that have been as-
signed to machines of1,. so far. Analogouslyp, is the total number of classjobs
with ¢ € {l +1,...,2] — 1} currently residing on machines ... Sincec is a valid
target configuration foe conditions (i) and (ii) defining those configurations imply
0< Y ni(0) -2u and0 < X271 ni(o) — p2. Moreover, sinced, assigns large
jobs preferably to machines iM., there holdsn; < Y!_, ni(0) - 2u1 andny <
Y2 L ni(o)-ps. By condition (jii) defining valid target configuratiofg ., n;(o)-
201)/2]+ X241 ni(0) = o < m— . Hence, whileny < Y251 n; (o) - p2 there holds
[n1/2]+n2 < m—p and thus exists an empty machifg, to which an incoming class-
jobswithi € {{+1,...,20-1} can be assigned. Similarly, whitg < Zﬁzl ni(c)-2u1,
there must exist an empty machine or a machine containingam class? job with

i’ € {1,...,1} to which in incoming clasg4job with i € {1,...,l} can be assigned. In
either case, the assignment generates a load of at4f®st: on the selected machine.
]

TheoreniB now follows from Lemm&s[g, 8 dnd 9.

5 Algorithms for MPS

We derive our algorithms for MPS. The strategies are obtabesimply combining
A*(e), presented in Sectidd 2, wit; (¢) and.A3(e). In order to achieve a preci-
sion of ¢ in the competitive ratio, the strategies are combined wigiiezision ofs/2

in its parameters. For arfy < ¢ < 1, let A3 (¢) be the algorithm obtained by execut-
ing As(g/2) in A*(e/2). For any0 < € < 1, let Aj(¢) be the algorithm obtained by
executingA; (¢/2) in A*(g/2).

Corollary 2. A%(¢) is a (4/3 + £)-competitive algorithm for MPS and uses no more
than1/©(°s(1/2)) schedules, for ang < ¢ < 1.

Proof. Theoreni]l and Corollafyl 1 imply that;(¢) is (4/3 + €)-competitive, for any
0 < ¢ < 1, and that the total number of schedules is the producygf(°2(1/<)) and
[log(1+12p/e)/log(1+e/(6p))], wherep = 4/3+¢/2. By the Taylor series fdn (1+z),

-1 <z <1, weobtainn(1 +z) > z/2, forany0 < z < 1. Hence the second term of the
product is1 /™), o

20

Corollary 3. A (¢) is a(1 +¢)-competitive algorithm for MPS and uses no more than
(m/e)©@Uee(1/)/e) schedules, for an < e < 1.

Proof. By Theorem§&1l anld 2 algorithpt; (¢) is (1 +)-competitive, for any) < € < 1.

The total number of schedules is the product faffim /e | + 1)M1°&(4/e)/log(1+¢/9)] gngd
[log(1 + 12p/e)/log(1 + €/(6p))], wherep = 1 + ¢/2. Again, by the Taylor series,
In(1+z) > x/2, for any0 < = < 1. Hence both terms of the product are upper bounded
by (m/g)o(log(l/s)/s)_ O

6 Lower bounds

We develop lower bounds that apply to both MPS and MP.S

Theorem 4. Let A be a deterministic online algorithm for MPS or MRS If A attains
a competitive ratio smaller thaty3, then it must maintain at leagtn/3| +1 schedules.

Proof. Let A be any deterministic online algorithm for MPS or MBSthat maintains
at mostm/3| schedules. We show thalfs competitive ratio is at leadt/3. To this end
we construct an adversarial job sequenacguch that each schedule maintained Ay
has a makespan of at leag8 - orPT(o).

The job sequence is composed of two subsequenegsandos, i.e.o = o103.
Subsequence; consists ofn jobs of processing timé/3 each. Subsequeneg will
consist of jobs having a processing time of either 2/3 or e &kact number of these
jobs depends on the schedules constructed laynd will be determined later.

Consider the schedules thdt may have built after all jobs of; have been as-
signed. Each such schedule contaimgobs of processing time 1/3. For the moment
we concentrate on schedules in which each machine cont#ies 2ero, one or three
jobs, i. e. there exists no machine containing two or more theee jobs. Each such
scheduleS can be represented by a péin,ms), wherem; denotes the number of
machines containing exactly one job and is the number of machines containing
three jobs. Heren,; andmgs are non-negative integers such that + 3ms = m. Let
P = {(my,m3) | m1,ms € Ny andm, + 3mz = m} be the set of all these pairs. Set
P has|m/3] + 1 elements because; can take any value between 0 and/3]| and
m1 = m—-3mg. Let.S be an arbitrary schedule containingjobs of processing time 1/3
and(mq,ms) € P. We say thaiS is an(m;, m3)-scheduléf the number of machines
containing exactly one job equats; and the number of machines containing exactly
three jobs equalss.

Let S be the set of schedules constructeddwhen the entire subsequencehas
arrived. By assumptionl maintains at mostrn/3| schedules, i. €S| < |m/3]. Hence
there must exist a paifmy, m3) € P such that no schedule & is an (m},m3)-
schedule. On the other hand, 8t be an(mj,mj3)-schedule. InS* we number the
machines in order of non-decreasing load suchth@t) < ... < ¢*(m). ScheduleS*
containsm — mj; machines with a load smaller than 1 and, in particutar, mj — mj
empty machines.

Now the subsequeneg consists ofn—mj jobs, where thg-th job has a processing
time of 1 — ¢*(j), for j = 1,...,m — mj}. Henceo, containsm — mj — mj jobs of

21

processing time 1 followed by} jobs of processing timg/3. Obviously, the makespan
of an optimal schedule far is 1: The jobs ofr; are sequenced so that &my, m3)-
schedule is obtained. Again, after has arrived, the machines are numbered in order of
non-decreasing load. White, arrives, thej-th job is assigned to machiné;, having
aload of¢*(j),forj=1,...,m-mj.

In the remainder of this proof we consider any schedideS and show that after,
has been sequenced, the resulting makespan is at leashi@stablishes the theorem.
So letS € S be any schedule and recall thatontainsm jobs of processing time 1/3
each. If inS there exists a machine that contains at least four of thdse fben the
makespan is already 4/3 and there is nothing to show. Thexefe restrict ourselves
to the case that every machineShcontains at most three jobs. Again we number the
machines inS in order of non-decreasing load so tlft) < ... < ¢(m). Consider the
(m7, m3)-schedules™ in which the machines loads satigfy(1) < ... < £*(m). There
must exist a machin&f;,, 1 < jo < m, such that(jo) > £*(jo): For, if £(jo) < £*(jo)
held for allj = 1,...,m, thenf(jo) = £*(jo) forall j = 1,...,m becauseS and.S*
both contain jobs with a total processing timenaf3. ThusS would be an(m7,m})-
schedule and we obtain a contradiction. Theda$tmachines in5* have a load of 1. It
follows thatj, < m —m3 because otherwisk/;, in S contained at least four jobs. The
propertyl(jo) > £*(jo) implies£(jo) > £*(jo) + 1/3 becauses and.S* only contain
jobs of processing timg/3.

We finally show that sequencing ef, leads to a makespan of at ledg8 in S.
If A assigns two jobs of, to the same machine, then the resulting machine load is
at least 4/3 because each jobaaf has a processing time of at le2y8. So assume
that.A assigns the jobs af; to different machines. The firgg jobs of o, each have a
processing time of at least- £*(jo) because the jobs arrive in order of non-increasing
processing times. IS there exist at mosgi — 1 machines having a load strictly smaller
than/(jo). Hence, after the firgh jobs have been scheduledinthere exists a machine
having a load of at least(jo) + 1 — £*(jo) = ¢*(jo) + 1/3 + 1 - £*(jo) = 4/3. This
concludes the proof. O

The nexttheorem gives a lower bound on the number of schededgired by &1+
e)-competitive algorithm, wher@ < ¢ < 1/4. Itimplies that, for any fixed, the number
asymptotically depends on’(1/2) asm increases. For instance, any algorithm with a
competitive ratio smaller thah+ 1/12 requiresf2(m?) schedules. Any algorithm with
a competitive ratio smaller thain+ 1/16 needs2(m?) schedules.

Theorem 5. Let A be a deterministic online algorithm for MPS or MRS If A attains
a competitive ratio smaller thah+ ¢, where0 < £ < 1/4, then it must maintain at least

(m;j_"l‘l) schedules, wherex’ = |m/2] andh = |1/(4¢)|. The binomial coefficient

increases as decreases and is at leag((em)!1/(49)1=1/2/, /m).

Proof. We extend the proof of Theordm 4. L@k e < 1/4. Furthermore, letn” andh

be defined as in the theorem. There hdldsl. Lete’ = 1/(4h) and note that’ > €. We

will define a setM whose cardinality is at Ieaéi”hthl’l), and show that if4 maintains
less thajM | schedules, then its competitive ratio is at lelast=".

We specify a job sequeneeand first assume that is even. Later we will describe
how to adaptr if m is odd. Againo is composed of two partial sequences and

22

o4 S0 thato = 0109. Subsequence, consists ofmh jobs of processing time’ each.
Subsequence, depends on the schedules constructedaynd will be specified below.
Consider the possible schedules afigrhas been sequenced on themachines. We
restrict ourselves to schedules having the following priyp&ach machine has a load
of exactly 1 or a load that is at mosf2 — &’. Observe that each machine of load 1
containsl /e’ jobs. Each machine of load at mast2 — ¢’ contains up t®h - 1 jobs
becausd2h — 1)’ = 2h/(4h) — &’ = 1/2 - ¢'. Therefore any schedule with the stated
property can be described by a vector (my, ..., map), wheremsy, is the number of
machines having a load of 1 and is the number of machines containing exacilybs,
fori=0,...,2h—1. The vectorn satisfiesy. > m; = m and(1/&")yman + £ im; =
mh. The last equation specifies the constraint that the schaxuitaingnh jobs. Let
M be the set of all these vectors, i.e.

M = {(mg,...,map) € Ngh” | foomi =m and

(1/"Yman + X2 im,; = mh}.

We remark that each € M uniquely identifies one schedule with our desired prop-
erty. Let S be any schedule containing exactlyh jobs of processing time’ and

m = (mo,...,map) € M. We say thatS is anm-scheduleif in S there existmay,
machines of load 1 aneh; machines containing exactljobs, fori = 0,...,2h - 1.

Now suppose thatl maintains less thgd/| schedules. Lef be the set of schedules
constructed byA after all jobs ofo; have arrived. SincgS| < | M| there must exist an
m* = (mg,...,m3,) € M such that no schedule & is an/*-schedule. LefS* be
anm*-schedule in which machines are numbered in order of nonedsing load such
that/*(1) < ... < £*(m). Subsequence, consists ofn — m;, jobs, where jobj has
a processing time of - £*(j), for j = 1,...,m —mj,. Henceo, consists ofn; jobs
of processing timd - i¢’, fori = 0,...,2h — 1. These jobs arrive in order of non-
increasing processing time. Each job has a processing fimie@astl /2 + ¢’ because
1-(2h-1)e'=1-(2h/4h-€") =1/2 + £'. The makespan of an optimal schedule for
o is 1. The jobs ob; are sequenced so that aif-schedule is obtained. Machines are
again numbered in order of non-decreasing load. Then, wh@¢obs ofo, arrive, the
j-th job of the subsequence is assigned to machinén S*, 1 < j <m —-mJ,.

We next show that afted has sequenced,, each of its schedules has a makepan
of atleastl +¢&’. So consider ang € S and, as always, number the machines in order of
non-decreasing load such thifgt) < ... < ¢(m). If in S there exists a machine that has
aload of at least + <’ and hence contains at ledgt’ + 1 jobs, then there is nothing to
show. So assume that each machin# icontains at most/<’ jobs and thus has a load
of at most 1. We study the assignment of the jobspfo S. If A places two jobs of
o2 on the same machine, then we are done because each job hasssprg time of at
leastl/2 + £’. Therefore we focus on the case thassigns the jobs of, to different
machines.

SchedulesS and S* both contain jobs of total processing timehs’. SincesS is
not anm*-schedule there must existjg, 1 < jo < m, such that’(jo) > £*(jo) and
hencel(jo) > £*(jo) + €. Each machine irt has a load of at most 1 while the last
m —m3, machines inS* have a load of exactly 1. This impligs < m —mj3,,. The first
Jjo jobs ofo, each have a processing time of at lebst¢* (jo). However, there exist at

23

mostjy — 1 machines inS having a load strictly smaller thati(j,). Hence afterd has
sequenced the firgg jobs of o, there must exist a machine mwith a load of at least
g(jo) +1- é*(j()) > é*(j()) +e'+1 —g*(jo) =1+¢€.

So far we have assumed thatis even. Ifm is odd, we can easily modify. The
first job of o is a job of processing time 1. Then ando, follow. These subsequences
are defined as above, whereis replaced by the even number- 1. In this case

M = {(mq,...,map) e N2 | £2" m; =m -1 and
1/ Ymap + X2 Vi, = (m - 1)h}.

The analysis presented above carries over because thelfiig, having a processing
time of 1, must be scheduled on a separate machine and camnotrthined with any
job of o1 or o5 if a competitive ratio smaller thah+ ¢’ is to be attained.

We next lower bound the cardinality af . Again we first focus on the case that
is even. In the definition oM the critical constraint i§1/e")may, + 22" Lim; = mh,
which implies that not every vector ¢, ..., m}?"*! represents a schedule that can be
built of mh jobs. In particular, the vect((|0, ...,0,m) of length2h + 1 would require
m/e’ = 4h jobs. Therefore, we introduce a skf’ and show|M'| < |M|. Set M’
contains vectors of lengtbh + 1 in which the firsth + 1 entries as well as the last one
are equal to 0. The other entries sum to at mog, i. e.

M ={(0,...,0,m),\,...,mh, 1,0) e NZM | bt o <m/2}.

We show that each’ € M’ can be mapped tosa € M. The mapping has the property
that any two different vectors df/’ are mapped to different vectors bf. This implies
|M'| < |M]|.

Consider anyn’ = (O,...,O,mﬁwl,...,m’gh_l,o) e M'. Letm = (myg,...,map)
be defined as follows. Far= h + 1,...,2h, let m; = m}. Fori = 0,...,h -1, let
m; = moy_;. Finally, Ietmh =m-2%" 1 m;. Note thatmo = mgy, = 0. We next show
thatin € M. There hold$ 2" m; = 2 Shit mi = 2 ¥ m; +my, = m. Furthermore,

2h-1 2h-1 h-1
map /e + Z imy; = Z imy; = Z (i +2h —i)m; + hmy,
=0 i=1
h-1 h-1
=2h Y m;+h(m=-2Y m;)=mh.
i=1 i=1

It follows, as desiredin € M. Note that the last entries ofi are identical to the last
h entries of’. Hence no two vectors df/’ that differ in at least one entry are mapped
to the same vector af/. Hence|M'| < |M|. If the numbenn of machines is odd, then

in the definition ofM’ the entries of a vector sum to at m@st — 1)/2. The rest of the
construction and analysis is the same. Thus, for a genenabarn of machines

:{(07"'70’m;1+1""’mIQh—lv)lm eNp and Zz 1 th— Lm/2J}

This set contains exact m;j_hl‘l) elements, where again’ = |m/2]. In the remainder

of this proof we lower bound this binomial coefficient.

24

There holds,/2me(k/e)**1/2 < k! < 2v/2me(k/e)**1/2 for anyk € N by Stirling’s
approximation([1/7]. Hence

(m'+h—1) _(m'+h-1)! N (m' + h— 1) +h=1/2
h-1 A A2 (m!) 12 (- 1)h-1/2

1 h-1\" m' \"?
= (1 +) 1+
4/ 2tm/ m’ h-1
_ h-1/2
1 (1 .\ m/2 1/2) .

>
4/ 2m/! 1/(4e)

The last expression i€ ((em)Y/4)1=1/2/, /m). O

References

1. S. Albers. Better bounds for online scheduliS¢AM J. Comput.29:459-473, 1999.
. S. Albers and M. Hellwig. On the value of job migration inioe makespan minimization.
Proc. 20th Annual European Symposium on AlgorithBminger LNCS 7501, 84-95, 2012.

3. E. Angelelli, A.B. Nagy, M.G. Speranza and Z. Tuza. Thdina-multiprocessor scheduling
problem with known sum of the task¥ournal of Scheduling7:421-428, 2004.

4. E. Angelelli, M.G. Speranza and Z. Tuza. Semi-on-lineesiciing on two parallel processors
with an upper bound on the itema&lgorithmica 37:243-262, 2003.

5. E. Angelelli, M.G. Speranza and Z. Tuza. New bounds anatihgns for on-line scheduling:
two identical processors, known sum and upper bound on ¢e.faiscrete Mathematics &
Theoretical Computer Sciencg&1-16, 2006.

6. Y. Azar. On-line load balancing. I@nline Algorithms: The State of the AA. Fiat and G.

Woeginger, eds). Springer LNCS 1441, 178-195, 1998.

. Y. Azar and O. Regev. On-line bin-stretchifidieor. Comput. S¢i268:17-41, 2001.

8. Y. Bartal, H. Karloff and Y. Rabani. A better lower bound tm-line schedulinginfomation
Processing Letter$0:113-116, 1994.

9. Y. Bartal, A. Fiat, H. Karloff and R. Vohra. New algorithrfar an ancient scheduling prob-
lem. Journal of Computer and System Scienéds359-366, 1995.

10. M.A. Bender and D.K. Slonim. The Power of team exploratibvo robots can learn unla-
beled directed graph85th Annual Symp. on Foundations of Comput., 3&--85, 1994.

11. A. Blum and P. Chalasani. An online algorithm for imprayiperformance in navigation.
SIAM Journal on Computing9:1907-1938, 2000.

12. A. Blum, P. Raghavan and B. Schieber. Navigating in uilfangeometric terrainSIAM
Journal on Computing?26:110-137, 1997.

13. T.C.E. Cheng, H. Kellerer and V. Kotov. Semi-on-line tiptbcessor scheduling with given
total processing timélheor. Comput. Sgi337:134-146, 2005.

14. X. Deng, T. Kameda and C.H. Papadimitriou. How to learm@known environment I: the
rectilinear caselournal of the ACM45:215-245, 1998.

15. M. Englert, D.Ozmen and M. Westermann. The power of reordering for onlifrémum
makespan schedulingProc. 49th Annual IEEE Symposium on Foundations of Computer
Science603-612, 2008.

16. U. Faigle, W. Kern and G. Turan. On the performance ofima-hlgorithms for partition
problemsActa Cybernetica9:107-119, 1989.

17. W. Feller. An Introduction to Prob. Theory and its Applions. John Wiley& Sons, 1968.

N

~

25

18.
19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

R. Fleischer and M. Wahl. Online scheduling revisiteeaf Scheduling3:343-353, 2000.

P. Fraigniaud, L. Gasieniec, D.R. Kowalski and A. Pelollé€ctive tree explorationNet-
works 48:166-177, 2006.

G. Galambos and G. Woeginger. An on-line schedulingisuwith better worst case ratio
than Graham'’s list schedulin§lAM Journal on Computin@2:349-355, 1993.

R.L. Graham. Bounds for certain multi-processing ar@sdell System Technical Journal
45:1563-1581, 1966.

T. Gormley, N. Reingold, E. Torng and J. Westbrook. Gatireg adversaries for request-
answer game$roc. 11th ACM-SIAM Symposium on Discrete Algorithf@&l-565, 2000.
D.S. Hochbaum and D.B. Shmoys. Using dual approximatigorithms for scheduling
problems: Theoretical and practical resubsurnal of the ACM34:144-162, 1987.

S. Irani. Coloring inductive graphs on-lirigorithmica 11:53-72, 1994.

D.R. Karger, S.J. Phillips and E. Torng. A better aldomnifor an ancient scheduling problem.
Journal of Algorithms20:400-430, 1996.

R.M. Karp, U.V. Vazirani and V.V. Vazirani. An optimalgadrithm for on-line bipartite
matching.Proc. 22nd Annual ACM Symposium on Theory of Compu86g8-358, 1990.

H. Kellerer, V. Kotov, M.G. Speranza and Z. Tuza. Semlina-algorithms for the partition
problem.Operations Research Letteial:235-242, 1997.

A. Lopez-Ortiz, S. Schuierer. On-line parallel heticis processor scheduling and robot
searching under the competitive framewdFkeor. Comput. S¢i310:527-537, 2004.

L. Lovasz, M.E. Saks and W.A. Trotter. An on-line grajpiiocing algorithm with sublinear
performance ratioDiscrete Mathemati¢s/5:319-325, 1989.

P. Raghavan and M. Snir. Memory versus randomization-line algorithmsIBM Journal
of Research and Developme88:683—708, 1994.

J.F. Rudin Ill. Improved bounds for the on-line scheayifproblem. Ph.D. Thesis. The Uni-
versity of Texas at Dallas, May 2001.

J.F. Rudin lll and R. Chandrasekaran. Improved boundh&online scheduling problem.
SIAM Journal on Computing2:717-735, 2003.

P. Sanders, N. Sivadasan and M. Skutella. Online sangduith bounded migratiorMath-
ematics of Operations Resead4(2):481-498, 2009.

D.D. Sleator and R.E. Tarjan. Amortized efficiency df lipdate and paging rule€ommu-
nications of the ACM28:202—-208, 1985.

26

	Online Makespan Minimization with Parallel Schedules*-0.3cm

