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Abstract. Online makespan minimization is a classical problem in which a se-
quence of jobsσ = J1, . . . , Jn has to be scheduled onm identical parallel ma-
chines so as to minimize the maximum completion time of any job. In this paper
we investigate the problem with an essentially new model of resource augmen-
tation. More specifically, an online algorithm is allowed tobuild several sched-
ules in parallel while processingσ. At the end of the scheduling process the best
schedule is selected. This model can be viewed as providing an online algorithm
with extra space, which is invested to maintain multiple solutions. The setting is
of particular interest in parallel processing environments where each processor
can maintain a single or a small set of solutions.
As a main result we develop a(4/3 + ε)-competitive algorithm, for any0 <
ε ≤ 1, that uses a constant number of schedules. The constant is1/εO(log(1/ε)).
We also give a(1 + ε)-competitive algorithm, for any0 < ε ≤ 1, that builds a
polynomial number of(m/ε)O(log(1/ε)/ε) schedules. This value depends onm

but is independent of the inputσ. The performance guarantees are nearly best
possible. We show that any algorithm that achieves a competitiveness smaller
than 4/3 must constructΩ(m) schedules. Our algorithms make use of novel
guessing schemes that (1) predict the optimum makespan of a job sequenceσ to
within a factor of1+ε and (2) guess the job processing times and their frequencies
in σ. In (2) we have to sparsify the universe of all guesses so as toreduce the
number of schedules to a constant.
The competitive ratios achieved using parallel schedules are considerably smaller
than those in the standard problem without resource augmentation. Furthermore
they are at least as good and in most cases better than the ratios obtained with
other means of resource augmentation for makespan minimization.

1 Introduction

Makespan minimization is a fundamental and extensively studied problem in schedul-
ing theory. Consider a sequence of jobsσ = J1, . . . , Jn that has to be scheduled on
m identical parallel machines. Each jobJt is specified by a processing timept > 0,
1 ≤ t ≤ n. Preemption of jobs is not allowed. The goal is to minimize the makespan,
i. e. the maximum completion time of any job in the constructed schedule. We focus on
the online version of the problem where the jobs ofσ arrive one by one. Each incoming
jobJt has to be assigned immediately to one of the machines withoutknowledge of any
future jobsJt′ , t′ > t.

Online algorithms for makespan minimization have been studied since the 1960s.
In an early paper Graham [21] showed that the famousList scheduling algorithm is(2 − 1/m)-competitive. The best online strategy currently known achieves a competi-
tiveness of about 1.92. Makespan minimization has also beenstudied with various types
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of resource augmentation, giving an online algorithm additional information or power
while processingσ. The following scenarios were considered. (1) An online algorithm
knows the optimum makespan or the sum of the processing timesof σ. (2) An online
strategy has a buffer that can be used to reorderσ. Whenever a job arrives, it is inserted
into the buffer; then one job of the buffer is removed and placed in the current schedule.
(3) An online algorithm may migrate a certain number or volume of jobs.

In this paper we investigate makespan minimization assuming that an online algo-
rithm is allowed to build several schedules in parallel while processing a job sequence
σ. Each incoming job is sequenced in each of the schedules. At the end of the scheduling
process the best schedule is selected. We believe that this is a natural form of resource
augmentation: In classical online makespan minimization,studied in the literature so
far, an algorithm constructs a schedule while jobs arrive one by one. Once all jobs have
arrived, the schedule may be executed. Hence in this standard framework there is a pri-
ori no reason why an algorithm should not be able to constructseveral solutions, the
best of which is finally chosen.

Our new proposed setting can be viewed as providing an onlinealgorithm with extra
space, which is used to maintain several solutions. Very little is known about the value
of extra space in the design of online algorithms. Makespan minimization with parallel
schedules is of particular interest in parallel processingenvironments where each pro-
cessor can take care of a single or a small set of schedules. Wedevelop algorithms that
require hardly any coordination or communication among theschedules. Last not least
the proposed setting is interesting w. r. t. to the foundations of scheduling theory, giving
insight into the value of multiple candidate solutions.

Makespan minimization with parallel schedules was also addressed by Kellerer et
al. [27]. However, the paper focused on the restricted setting with m = 2 machines.
In this paper we explore the problem for a general numberm of machines. As a main
result we show that a constant number of schedules suffices toachieve a significantly
improved competitiveness, compared to the standard setting without resource augmen-
tation. The competitive ratios obtained are at least as goodand in most cases better than
those attained in the other models of resource augmentationmentioned above.

The approach to grant an online algorithm extra space, invested to maintain multiple
solutions, could be interesting in other problems as well. The approach is viable in
applications where an online algorithm constructs a solution that is used when the entire
input has arrived. This is the case, for instance, in basic online graph coloring and
matching problems [24,26,29]. The approach is also promising in problems that can
be solved by a set of independent agents, each of which constructs a separate solution.
Good examples are online navigation and exploration problems in robotics [11,12,14].
Some results are known for graph search and exploration, seee. g. [10,19,28], but the
approach has not been studied for geometric environments.

Problem definition: We investigate the problemMakespan Minimization with Par-
allel Schedules (MPS). As always, the jobs of a sequenceσ = J1, . . . , Jn arrive one by
one and must be scheduled non-preemptively onm identical parallel machines. Each
job Jt has a processing timept > 0. In MPS, an online algorithmA may maintain a
setS = {S1, . . . , Sl} of schedules during the scheduling process while jobs ofσ arrive.
Each jobJt is sequenced in each scheduleSk, 1 ≤ k ≤ l. At the end ofσ, algorithmA
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selects a scheduleSk ∈ S having the smallest makespan and outputs this solution. The
other schedules ofS are deleted.

As we shall show MPS can be reduced to the problem variant where the optimum
makespan of the job sequence to the processed is known in advance. Hence let MPSopt
denote the variant of MPS where, prior to the arrival of the first job, an algorithmA
is given the value of the optimum makespanOPT(σ) for the incoming job sequenceσ.
An algorithmA for MPS or MPSopt is ρ-competitive if, for every job sequenceσ, it
outputs a schedule whose makespan is at mostρ timesOPT(σ).

Our contribution: We present a comprehensive study of MPS. We develop a(4/3+
ε)-competitive algorithm, for any0 < ε ≤ 1, using a constant number of1/εO(log(1/ε))
schedules. Furthermore, we give a(1 + ε)-competitive algorithm, for any0 < ε ≤ 1,
that uses a polynomial number of schedules. The number is(m/ε)O(log(1/ε)/ε), which
depends onm but is independent of the job sequenceσ. These performance guarantees
are nearly best possible. The algorithms are obtained via some intermediate results that
may be of independent interest.

First, in Section 2 we show that the original problem MPS can be reduced to the
variant MPSopt in which the optimum makespan is known. More specifically, given
anyρ-competitive algorithmA for MPSopt we construct a(ρ+ε)-competitive algorithmA∗(ε), for any0 < ε ≤ 1. If A usesl schedules, thenA∗(ε) usesl ⋅⌈log(1+ 6ρ

ε
)/ log(1+

ε
3ρ
)⌉ schedules. The construction works for any algorithmA for MPSopt. In particular

we could use a 1.6-competitive algorithm by Chen et al. [13] that assumes that the
optimum makespan is known and builds a single schedule. We would obtain a(1.6+ε)-
competitive algorithm that builds at most⌈log(1 + 10/ε)/ log(1 + ε/5)⌉ schedules.

We proceed and develop algorithms for MPSopt. In Section 3 we give a(1 + ε)-
competitive algorithm, for any0 < ε ≤ 1, that uses(⌊2m/ε⌋ + 1)⌈log(2/ε)/ log(1+ε/2)⌉
schedules. In Section 4 we devise a(4/3 + ε)-competitive algorithm, for any0 < ε ≤ 1,
that uses1/εO(log(1/ε)) schedules. Combining these algorithms withA∗(ε), we derive
the two algorithms for MPS mentioned in the above paragraph;see also Section 5.
The number of schedules used by our strategies depends on1/ε and exponentially on
log(1/ε) or 1/ε. Such a dependence seems inherent if we wish to explore the full power
of parallel schedules. The trade-offs resemble those exhibited by PTASes in offline
approximation. Recall that the PTAS by Hochbaum and Shmoys [23] for makespan
minimization achieves a(1 + ε)-approximation with a running time ofO((n/ε)1/ε2).

In Section 6 we present lower bounds. We show that any online algorithm for MPS
that achieves a competitive ratio smaller than 4/3 must construct more than⌊m/3⌋
schedules. Hence the competitive ratio of 4/3 is best possible using a constant number
of schedules. We show a second lower bound that implies that the number of schedules
of our(1 + ε)-competitive algorithm is nearly optimal, up to a polynomial factor.

Our algorithms make use of novel guessing schemes.A∗(ε) works with guesses on
the optimum makespan. Guessing anddoublingthe value of the optimal solution is a
technique that has been applied in other load balancing problems, see e. g. [6]. However
here we design a refined scheme that carefully sets and readjusts guesses so that the
resulting competitive ratio increases by a factor of1 + ε only, for anyε > 0. Moreover,
the readjustment and job assignment rules have to ensure that scheduling errors, made
when guesses were to small, are not critical. Our(4/3+ε)-competitive algorithm works
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with guesses on the job processing times and their frequencies inσ. In order to achieve
a constant number of schedules, we have to sparsify the set ofall possible guesses. As
far as we know such an approach has not been used in the literature before.

All our algorithms have the property that the parallel schedules are constructed ba-
sically independently. The algorithms for MPSopt require no coordination at all among
the schedules. InA∗(ε) a schedule only has to report when it fails, i. e. when a guess
on the optimum makespan is too small.

The competitive ratios achieved with parallel schedules are considerably smaller
than the best ratios of about 1.92 known for the scenario without resource augmen-
tation. Our ratio of(4/3 + ε), for smallε, is lower than the competitiveness of about
1.46 obtained in the settings where a reordering buffer of size O(m) is available or
O(m) jobs may be reassigned. Skutella et al. [33] gave an online algorithm that is(1 + ε)-competitive if, before the assignment of any jobJt, jobs of processing volume
2O((1/ε) log

2(1/ε))pt may be migrated. Hence the total amount of extra resources used
while schedulingσ depends on the input sequence.

Related work: Makespan minimization with parallel schedules was first studied by
Kellerer et al. [27]. They assume thatm = 2 machines are available and two schedules
may be constructed. They show that in this case the optimal competitive ratio is 4/3.

We summarize results known for online makespan minimization without resource
augmentation. As mentioned before,List is (2 − 1/m)-competitive. Deterministic on-
line algorithms with a smaller competitive ratio were presented in [1,9,18,20,25]. The
best algorithm currently known is 1.9201-competitive [18]. Lower bounds on the per-
formance of deterministic strategies were given in [1,8,16,22,31,32]. The best bound
currently known is 1.88, see [31]. No randomized online algorithm whose competitive
ratio is provably below the deterministic lower bound is currently known for generalm.

We next review the results for the various models of resourceaugmentation. Arti-
cles [3,4,5,7,13,27] study makespan minimization assuming that an online algorithm
knows the optimum makespan or the sum of the processing timesof σ. Chen et al. [13]
developed a 1.6-competitive algorithm. Azar and Regev [7] showed that no online al-
gorithm can attain a competitive ratio smaller than 4/3. Thesetting in which an online
algorithm is given a reordering buffer was explored in [15,27]. Englert et al. [15] pre-
sented an algorithm that, using a buffer of sizeO(m), achieves a competitive ratio of
W−1(−1/e2)/(1 +W−1(−1/e2)) ≈ 1.46, whereW−1 is the LambertW function. No
algorithm using a buffer of sizeo(n) can beat this ratio.

Makespan minimization with job migration was addressed in [2,33]. An algorithm
that achieves again a competitiveness ofW−1(−1/e2)/(1 +W−1(−1/e2)) ≈ 1.46 and
usesO(m) job reassignments was devised in [2]. No algorithm usingo(n) reassign-
ments can obtain a smaller competitiveness. Sanders et al. [33] study a scenario in
which before the assignment of each jobJt, jobs up to a total processing volume ofβpi
may be migrated, for some constantβ. For β = 4/3, they present a 1.5-competitive
algorithm. They also show a(1 + ε)-competitive algorithm, for anyε > 0, where
β = 2O((1/ε) log2(1/ε)).

As for memory in online algorithms, Sleator and Tarjan [34] studied the paging
problem assuming that an online algorithm has a larger fast memory than an offline
strategy. Raghavan and Snir [30] traded memory for randomness in online caching.
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Notation: Throughout this paper it will be convenient to associate schedules with
algorithms, i. e. a scheduleSk is maintained by an algorithmAk that specifies how to
assign jobs to machines inSk. Thus an algorithmA for MPS or MPSopt can be viewed
as a family{Ak}k∈K of algorithms that maintain the various schedules. We will writeA = {Ak}k∈K. If A is an algorithm for MPSopt, then the valueOPT(σ) is of course
given to all algorithms of{Ak}k∈K. Furthermore, theloadof a machine always denotes
the sum of the processing times of the jobs already assigned to that machine.

2 ReducingMPS to MPSopt

In this section we will show that anyρ-competitive algorithmA for MPSopt can be used
to construct a(ρ + ε)-competitive algorithmA∗(ε) for MPS, for any0 < ε ≤ 1. The
main idea is to repeatedly executeA for a set of guesses on the optimum makespan. The
initial guesses are small and are increased whenever a guessturns out to be smaller than
OPT(σ). The increments are done in small steps so that, among the final guesses, there
exists one that is upper bounded by approximately(1+ε)OPT(σ). In the analysis of this
scheme we will have to bound machine loads caused by scheduling “errors” made when
guesses were too small. Unfortunately the execution ofA, given a guessγ ≠ OPT(σ),
can lead to undefined algorithmic behavior. As we shall show,guessesγ ≥ OPT(σ) are
not critical. However, guessesγ < OPT(σ) have to be handled carefully.

So letA = {Ak}k∈K be aρ-competitive algorithm for MPSopt that, given guessγ,
is executed on a job sequenceσ. Upon the arrival of a jobJt, an algorithmAk ∈ A
may fail because the scheduling rules ofAk do not specify a machine where to place
Jt in the current scheduleSk. We define two further conditions when an algorithmAk

fails. The first one identifies situations where a makespan ofργ is not preserved and
henceρ-competitiveness may not be guaranteed. More precisely,Ak would assignJt to
a machineMj such thatℓ(j) + pt > ργ, whereℓ(j) denotesMj ’s machine load before
the assignment. The second condition identifies situationswhereγ is not consistent with
lower bounds on the optimum makespan, i. e.γ is smaller than the average machine load
or the processing time ofJt. Formally, an algorithmAk fails if a job Jt, 1 ≤ t ≤ n, has
to be scheduled and one of the following conditions holds.

(i) Ak does not specify a machine where to placeJt in the current scheduleSk.
(ii) There holdsℓ(j) + pt > ργ, for the machineMj to whichAk would assignJt in

Sk.
(iii) There holdsγ < ∑t′≤t pt′/m or γ < pt.

We first show that guessesγ ≥ OPT(σ) are not problematic. If aρ-competitive
algorithmA = {Ak}k∈K for MPSopt is given a guessγ ≥ OPT(σ), then there exists an
algorithmAk ∈ A that does not fail during the processing ofσ and generates a schedule
whose makespan is at mostργ. This is shown by the next lemma.

Lemma 1. Let A = {Ak}k∈K be a ρ-competitive algorithm for MPSopt that, given
guessγ, is executed on a job sequenceσ with γ ≥ OPT(σ). Then there exists an algo-
rithm Ak ∈ A that does not fail during the processing ofσ and generates a schedule
whose makespan is at mostργ.
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Proof. Let Sopt be an optimal schedule for the job sequence
σ = J1, . . . , Jn. Moreover, letℓ(j) denote the load of machineMj in Sopt, 1 ≤ j ≤ m.
For anyj with ℓ(j) < γ, define a jobJ ′j of processing timep′j = γ − ℓ(j). Letσ′ be the
job sequence consisting ofσ followed by the new jobsJ ′j . These up tom jobs may be
appended toσ in any order. ObviouslyOPT(σ′) = γ. Hence whenA using guessγ is
executed onσ′, there must exist an algorithmAk∗ ∈ A that generates a schedule with a
makespan of at mostργ. Sinceσ is a prefix ofσ′, this algorithmAk∗ does not fail and
generates a schedule with a makespan of at mostργ, whenA given guessγ is executed
onσ. ◻

Algorithm for MPS: We describe our algorithmA∗(ε, h) for MPS, where0 < ε ≤ 1
andh ∈ N may be chosen arbitrarily. The construction takes as input any algorithmA ={Ak}k∈K for MPSopt. For a proper choice ofh, A∗(ε, h) will be (ρ + ε)-competitive,
provided thatA is ρ-competitive.

At any timeA∗(ε, h)works withh guessesγ1 < . . . < γh on the optimum makespan
for the incoming job sequenceσ. These guesses may be adjusted during the processing
of σ; the update procedure will be described in detail below. Foreach guessγi, 1 ≤ i ≤ h,A∗(ε, h) executesA. HenceA∗(ε, h) maintains a total ofh∣K∣ schedules, which can
be partitioned into subsetsS1, . . . ,Sh. SubsetSi contains those schedules generated byA usingγi, 1 ≤ i ≤ h. LetSik ∈ Si denote the schedule generated byAk usingγi.

A job sequenceσ is processed as follows. Initially, upon the arrival of the first job
J1, the guesses are initialized asγ1 = p1 andγi = (1+ ε)γi−1, for i = 2, . . . , h. Each job
Jt, 1 ≤ t ≤ n, is handled in the following way. Of course each such job is sequenced in
every scheduleSik, 1 ≤ i ≤ h and1 ≤ k ≤ ∣K∣. AlgorithmA∗(ε, h) checks ifAk using
γi fails when having to sequenceJt in Sik. We remark that this check can be performed
easily by just verifying if one of the conditions (i–iii) holds. IfAk usingγi does not fail
and has not failed since the last adjustment ofγi, then inSik job Jt is assigned to the
machine specified byAk usingγi. The initialization of a guess is also regarded as an
adjustment. IfAk usingγi does fail, thenJt and all future jobs are always assigned to
a least loaded machine inSik until γi is adjusted the next time.

Suppose that after the sequencing ofJt all algorithms ofA = {Ak}k∈K using a
particular guessγi have failed since the last adjustment of this guess. Leti∗ be the
largest indexi with this property. Then the guessesγ1, . . . , γi∗ are adjusted. Setγ1 =(1 + ε)max{γh, pt,∑1≤t′≤t pt′/m} andγi = (1 + ε)γi−1, for i = 2, . . . , i∗. For any
readjusted guessγi, 1 ≤ i ≤ i∗, algorithmA usingγi ignores all jobsJt′ with t′ < t

when processing future jobs ofσ. Specifically, when making scheduling decisions and
determining machine loads, algorithmAk usingγi ignores all jobJt′ with t′ < t in its
scheduleSik. These jobs are also ignored whenA∗(ε, h) checks ifAk using guessγi
fails on the arrival of a job. Furthermore, after the assignment ofJt, machines inSik

machines are renumbered so thatJt is located on a machine it would occupy if it were
the first job of an input sequence.

When guesses have been adjusted, they are renumbered, together with the corre-
sponding schedule setsSi, such that againγ1 < . . . < γh. Hence at any timeγ1 =
min1≤i≤h γi andγi ≥ (1 + ε)γi−1, for i = 2, . . . , h. We also observe that whenever a
guess is adjusted, its value increases by a factor of at least(1 + ε)h. A summary ofA∗(ε, h) is given in Figure 1.
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Algorithm A∗(ε,h)

1. Setγi = p1(1 + ε)i−1, for i = 1, . . . , h.

2. At time t execute the following steps.

(a) Jt is sequenced as follows in eachSik. If Ak using γi fails or has failed since
the last adjustment ofγi, then assignJt to a least loaded machine. Otherwise
assign it to the machine specified byAk, ignoring jobs that arrived before the last
adjustment ofγi.

(b) If all algorithms {Ak}k∈K for some γi have failed since the last read-
justment of γi, then let i∗ be the largest index with this property. Set
γi = (1 + ε)imax{γh, pt,∑t′≤t pt′/m}, for i = 1, . . . , i∗. Renumber the
guesses such thatγ1 < . . . < γh.

Fig. 1. The algorithmA∗(ε,h)

We obtain the following theorem.

Theorem 1. LetA = {Ak}k∈K be aρ-competitive algorithm for MPSopt. Then for any
0 < ε ≤ 1 andh = ⌈log(1 + 6ρ

ε
)/ log(1 + ε

3ρ
)⌉, algorithmA∗(ε) = A∗(ε/(3ρ), h) for

MPS is(ρ + ε)-competitive and usesh∣K∣ schedules.

For the analysis ofA∗(ε, h) we need the following lemma.

Lemma 2. After A∗(ε, h) has processed a job sequenceσ, there holdsγ1 ≤ (1 +
ε)OPT(σ).
Proof. At any timeA∗(ε, h) maintainsh guesses. We can view these guesses as be-
ing stored inh variables. A variable is updated whenever its current guessis increased.
Hence during the processing ofσ a variable may take any position in the sorted se-
quence of guesses. We analyze the steps in whichA∗(ε, h) adjusts guesses.

We first show that whenA∗(ε, h) adjusts a guessγ, thenγ < OPT(σ). So suppose
that after the arrival of a jobJt, A∗(ε, h) adjust guessesγ1, . . . , γi∗ , wherei∗ is the
largest indexi such that all algorithms{Ak}k∈K usingγi have failed. We proveγi∗ <
OPT(σ), which implies the desired statement because guesses are numbered in order of
increasing value. Lett∗, with t∗ < t, be the most recent time when the variable storing
γi∗ was updated last. If the variable has never been updated since its initialization, then
let t∗ = 1. All the algorithms{Ak}k∈K usingγi∗ ignore the jobs having arrived before
Jt∗ when making scheduling decisions forJt∗ , . . . , Jt. Let σ∗ = Jt∗ , . . . , Jt. There
holds,OPT(σ∗) ≤ OPT(σ). If γi∗ ≥ OPT(σ) held true, then by Lemma 1 there would
be an algorithmAk∗ ∈ {Ak}k∈K that, using guessγi∗ , does not fail when handlingσ∗.
This contradicts the fact that at timet all algorithms{Ak}k∈K usingγi∗ fail or have
failed since the arrival ofJt∗ .

Letγe
1 denote the value of the smallest guess whenA∗(ε, h) has finished processing

σ. We distinguish two cases depending on whether or not the variable storingγe
1 has

ever been updated since its initialization. If the variablehas never been updated, then
γe
1 = p1(1 + ε)i−1, for somei ∈ {1, . . . , h}. If i = 1, there is nothing to show because
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p1 ≤ OPT(σ). If i > 1, then the initial guess of valueγi−1 = p1(1+ε)i−2 must have been
adjusted. This implies, as shown above,γi−1 < OPT(σ) and the lemma follows because
γe
1 = (1 + ε)γi−1.

In the remainder of the proof we assume that the variableg storingγe
1 has been up-

dated. Consider the last update ofg before the end ofσ and suppose that it took place on
the arrival of jobJt∗ . First assume thatg stores the smallest guess, among theh guesses,
before the update. Thenγe

1 = (1 + ε)max{γ∗, pt∗ ,∑1≤t′≤t∗ pt′/m}, whereγ∗ is the
largest guess before the update. Ifγ∗ is also adjusted on the arrival ofJt∗ , then we are
done because, as shown above,γ∗ < OPT(σ) and thusmax{γ∗, pt∗ ,∑1≤t′≤t∗ pt′/m} ≤
OPT(σ). If γ∗ is not adjusted on the arrival ofJt∗ , thenγe

1 is the smallest guess greater
thanγ∗ after the update. By the end ofσ guessγ∗ must be adjusted since otherwiseγe

1

cannot become the smallest guess. Againγ∗ < OPT(σ) and we are done.
Finally assume that before the updateg does not store the smallest guess. Letg′ be

the variable that stores the largest guess smaller than thatin g. After the update there
holdsγe

1 = (1 + ε)γ, whereγ is the guess stored ing′ after the update. Until the end
of σ, γ must be adjusted again since otherwiseγe

1 cannot become the smallest guess.
Againγ < OPT(σ) and henceγe

1 < (1 + ε)OPT(σ). ◻
Proof (of Theorem 1).Throughout the proof leth = ⌈log(1 + 6ρ

ε
)/ log(1 + ε

3ρ
)⌉ and

A∗(ε) = A∗(ε/(3ρ), h). Consider an arbitrary job sequence and letγ1 be the smallest
of theh guesses maintained byA∗(ε) at the end ofσ. Let S1 be the set of schedules
associated withγ1, i. e.S1 was generated byA = {Ak}k∈K using a series of guesses
ending withγ1. Let γ(0) < . . . < γ(s), with s ≥ 0, be this series andg be the variable
that stored these guesses. Hereγ(0) is one of the initial guesses andγ(s) = γ1.

A first observation is that at the end ofσ there exists an algorithmAk∗ ∈ {Ak}k∈K
that usingγ1 has not failed. This holds true ifg was set toγ1 = γ(s) upon the arrival of
a jobJt with t < n because the failure of all algorithms{Ak}k∈K usingγ1 would have
caused an adjustment ofγ1. This also holds true ifg was set toγ1 upon the arrival of
Jn because in this case none of the algorithms{Ak}k∈K usingγ1 has failed at the end
of σ. So letAk∗ ∈ {Ak}k∈K be an algorithm that usingγ1 has not failed and letS1k∗

be the associated schedule. We prove that the load of every machine inS1k∗ is upper
bounded by(ρ + ε)OPT(σ). This establishes the theorem.

Let t0 = 1. If the variableg was updated during the processing ofσ, then let
t1, . . . , ts be these points in time, i. e. the arrival ofJti caused an update ofg and the
variable was set toγ(i), 1 ≤ i ≤ s. For any machineMj , 1 ≤ j ≤ m, in S1k∗ let ℓ(j)
denote its final load at the end ofσ. Moreover, letℓti(j) denote its load due to jobsJt
with t ≥ ti, for i = 0, . . . , s. Obviously

ℓ(j) = ℓts(j) +
s−1∑
i=0

(ℓti(j) − ℓti+1(j)) . (1)

We first show thatℓts(j) ≤ ργ1. Immediately afterJts has been scheduledMj ’s
load consisting of jobsJt′ with t′ ≥ ts is at mostpts . Sinceg was set toγ(s) = γ1
on the arrival ofJts , the guess adjustment rule ensurespts ≤ γ1. Until the end ofσ
algorithmAk∗ usingγ1 does not fail and hence condition (ii) specifying the failure of
algorithms implies that the assignment of each further job does not create a machine
load greater thanργ1 in S1k∗ .
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We next showℓti(j)−ℓti+1(j) ≤max{ρ,2}γ(i), for eachi = 0, . . . , s−1. The latter
difference is the load on machineMj caused by jobs of the subsequenceJti , . . . , Jti+1−1.
Hence it suffices to show that after the assignment of anyJt, with ti ≤ t < ti+1, Mj ’s
load due to jobsJt′ , with t′ ≥ ti, is at mostmax{ρ,2}γ(i). After the assignment of
Jti Mj ’s respective loadℓti(j) is at mostpti and this value is upper bounded byγ(i)
as ensured by the guess adjustment rule. At timest > ti, whileAk∗ usingγ(i) has not
failed,Mj ’s load due to jobsJt′ with t′ ≥ ti does not exceedργ(i) as ensured by con-
dition (ii) specifying the failure of algorithms. Finally consider a timet, ti < t < ti+1,
at whichAk∗ fails or has failed. The incoming jobJt is assigned to a least loaded ma-
chine. Hence ifJt is placed onMj , then the resulting machine load due to jobsJt′ with
t′ ≥ ti is upper bounded by∑ti≤t′<t pt′/m + pt ≤ ∑1≤t′≤t pt′/m + pt. Observe that after
the arrival ofJt there exists an algorithmAk ∈ A that usingγ(i) has not yet failed,
since otherwiseγ(i) would be adjusted before timeti+1. Condition (iii) defining the
failure of algorithms ensures that∑1≤t′≤t pt′/m ≤ γ(i) andpt ≤ γ(i). We obtain that
Mj ’s machine load is at most2γ(i).

We conclude that (1) is upper bounded by

ργ1 + s−1∑
i=0

max{ρ,2}γ(i). (2)

By Lemma 2,γ1 = γ(s) ≤ (1 + ε/(3ρ))OPT(σ). At the end of the description ofA∗(ε, h) we observed that whenever a guess is adjusted it increases bya factor of at
least(1+ε)h. Henceγ(i) ≥ (1+ε/(3ρ))hγ(i−1). It follows thatγ(i) ≤ γ(s)

(1+(ε/3ρ))(s−i)⋅h
,

for every0 ≤ i ≤ s. Hence (2) is upper bounded by

ρ(1 + ε

3ρ
)OPT(σ) + s−1∑

i=0

max{ρ,2}γ(s)
(1 + ε/(3ρ))h⋅(s−i)

≤ ρ(1 + ε

3ρ
)OPT(σ) + ρ(1 + ε

3ρ
)OPT(σ) s−1∑

i=0

2

(1 + ε/(3ρ))h⋅(s−i) (3)

≤ ρ(1 + ε

3ρ
)OPT(σ)(1 + ∞∑

i=1

2

(1 + ε/(3ρ))h⋅i)
= ρ(1 + ε

3ρ
)OPT(σ)(1 + 2

(1 + ε/(3ρ))h − 1) (4)

≤ ρ(1 + ε

3ρ
)2OPT(σ) ≤ ρ(1 + ε

ρ
)OPT(σ) = (ρ + ε)OPT(σ). (5)

Here (3) uses the fact thatmax{ρ,2} ≤ 2ρ and, as mentioned above, is a consequence of
Lemma 2. Line (4) follows from the Geometric Series and, finally, (5) is by the choice
of h and the assumption0 < ε ≤ 1. ◻
3 A (1 + ε)-competitive algorithm for MPSopt

We present an algorithmA1(ε) for MPSopt that attains a competitive ratio of1 + ε, for
anyε > 0. The number of parallel schedules will be(⌊2m/ε⌋ + 1)⌈log(2/ε)/ log(1+ε/2)⌉.
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The algorithms will yield a(1+ε)-competitive strategy forMPS and, furthermore, will
be useful in the next section where we develop a(4/3 + ε)-competitive algorithm for
MPSopt. ThereA1(ε) will be used as subroutine for a small, constant number ofm.

Description ofA1(ε): Let ε > 0 be arbitrary. Recall that in MPSopt the optimum
makespanOPT(σ) for the incoming job sequenceσ is initially known. Assume without
loss of generality thatOPT(σ) = 1. Then all job processing times are in(0,1]. Set
ε′ = ε/2. First we partition the range of possible job processing times into intervals
I0, . . . , Il such, within each intervalIi with i ≥ 1, the values differ by a factor of at most
1 + ε′. Such a partitioning is standard and has been used e. g. in thePTAS for offline
makespan minimization [23]. Letl = ⌈log(1/ε′)/ log(1 + ε′)⌉. Set I0 = (0, ε′] and
Ii = ((1+ ε′)i−1ε′, (1+ ε′)iε′], for i = 1, . . . , l. ObviouslyI0 ∪ . . .∪ Il = (0, (1+ ε′)lε′]
and(0,1] ⊆ (0, (1+ ε′)lε′]. A job is small if its processing time is at mostε′ and hence
contained inI0; otherwise the job islarge.

Each job sequenceσ with OPT(σ) = 1 contains at most⌊m/ε′⌋ large jobs. For
each possible distribution of large jobs over the processing time intervalsI1, . . . , Il, al-
gorithmA1(ε) prepares one algorithm/schedule. LetV = {(v1, . . . , vl) ∈ Nl

0 ∣ vi ≤⌊m/ε′⌋}. There holds∣V ∣ = (⌊m/ε′⌋ + 1)l. Let A1(ε) = {Av}v∈V . For any vector
v = (v1, . . . , vn) ∈ V , algorithmAv works as follows. It assumes that the incoming
job sequenceσ contains exactlyvi jobs with a processing time inIi, for i = 1, . . . , l.
Moreover, it pessimistically assumes that each processingtime in Ii takes the largest
possible value(1 + ε′)iε′. Hence, initiallyAv computes an optimal scheduleS∗v for a
job sequence consisting ofvi jobs with a processing time of(1+ ε′)iε′, for i = 1, . . . , l.
Small jobs are ignored. Since running time is not an issue in the design of online
algorithms, such a scheduleS∗v can be computed exactly. Alternatively, an(1 + ε′)-
approximation to the optimal schedule can be computed usingthe PTAS by Hochbaum
and Shmoys [23]. Letn∗i (j) denote the number of jobs with a processing time of(1+ε′)iε′ ∈ Ii assigned to machineMj in S∗v , where1 ≤ i ≤ l and1 ≤ j ≤m. Moreover,
let ℓ∗(j) = ∑l

i=1 n
∗
i (j)(1 + ε′)iε′ be the load on machineMj in S∗v , 1 ≤ j ≤m.

When processing the actual job sequenceσ and constructing a real scheduleSv, Av

usesS∗v as a guideline to make scheduling decisions. At any time during the scheduling
process, letni(j) be the number of jobs with a processing time inIi that have already
been assigned to machineMj in Sv, where again1 ≤ i ≤ l and1 ≤ j ≤ m. Each
incoming jobJt, 1 ≤ t ≤ n, is handled as follows. IfJt is large, then letIi with 1 ≤ i ≤ l
be the interval such thatpt ∈ Ii. AlgorithmAv checks if there is a machineMj such that
n∗i (j) − ni(j) > 0, i. e. there is a machine that can still accept a job with a processing
time in Ii as suggested by the optimal scheduleS∗v . If such a machineMj exists, then
Jt is assigned to it; otherwiseJt is scheduled on an arbitrary machine. IfJt is small,
thenJt is assigned to a machineMj with the smallest current valueℓ∗(j)+ ℓs(j). Here
ℓs(j) denotes the current load on machineMj caused by small jobs inSv. A summary
of A1(ε) is given in Figure 2. Subsequently we show Theorem 2.

Theorem 2. For anyε > 0, A1(ε) is (1 + ε)-competitive and uses at most(⌊2m/ε⌋ +
1)⌈log(2/ε)/ log(1+ε/2)⌉ schedules.

Proof. The bound on the number of schedules simply follows from the fact thatA1(ε)
maintains∣V ∣ = (⌊m/ε′⌋+1)l schedules whereε′ = ε/2 andl = ⌈log(1/ε′)/ log(1 + ε′)⌉.
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Algorithm A1(ε)

1. A1(ε) = {Av}v∈V , whereV = {(v1, . . . , vl) ∈ N
l
0 ∣ vi ≤ ⌊m/ε

′⌋}
with ε′ = ε/2 andl = ⌈log(1/ε′)/ log(1 + ε′)⌉.

2. Av works as follows.

(a) Compute optimal scheduleS∗v for input consisting ofvi jobs of processing time
(1 + ε′)iε′, 1 ≤ i ≤ l.

(b) In Sv eachJt is sequenced in the following way.
If pt > ε′, then determineIi such thatpt ∈ Ii. If ∃Mj with n∗i (j)−ni(j) > 0, then
assignJt to it; otherwise assignJt to an arbitrary machine.
If pt ≤ ε

′, then assignJt toMj with the smallest valueℓ∗(j) + ℓs(j).

Fig. 2.The algorithmA1(ε)

Letσ be an arbitrary job sequence and letvi be the number of jobs with a processing
time in Ii, for i = 1, . . . , l. Since anyvi is upper bounded by⌊m/ε′⌋, the resulting
vectorv = (v1, . . . , vl) is in V . For this vectorv, consider the associated algorithm
Av. We prove that whenAv has finished processingσ, the resulting scheduleSv has a
makespan of at most(1+ε) = (1+ε)OPT(σ). Recall again that we assume without loss
of generality thatOPT(σ) = 1.

We analyze the steps in whichAv assigns jobsJt, 1 ≤ t ≤ n, to machines inSv. If Jt
is large withpt ∈ Ii, 1 ≤ i ≤ l, then there must exist a machineMj in the current schedule
Sv such thatn∗i (j)−ni(j) > 0. AlgorithmAv will assignJt to such a machine. Hence
after the processing ofσ, for anyMj in Sv, the total load caused by large jobs is upper
bounded byℓ∗(j). We next argue that this value is at most(1 + ε′)OPT(σ). Consider
an optimal scheduleSopt for σ. Modify this schedule by (a) deleting all small jobs and
(b) rounding each job processing time inIi to (1 + ε′)iε′, for i = 1, . . . , l. The resulting
schedule scheduleS′opt has a makespan of at most(1+ε′)OPT(σ). FurthermoreS′opt is a
schedule for an input sequence consisting ofvi jobs of processing time(1+ε′)iε′. Since
S∗v is an optimal schedule for this input, each machine loadℓ∗(j) is upper bounded by(1 + ε′)OPT(σ).

We finally show that whenAv has to sequence a small jobJt, then there is a machine
Mj such thatℓ∗(j) + ℓs(j) is upper bounded by(1 + ε′)OPT(σ). This implies that
the assignment ofJt causes a machine load of at most(1 + ε′)OPT(σ) + pt ≤ (1 +
2ε′)OPT(σ) = (1 + ε)OPT(σ) in the final scheduleSv.

So suppose that upon the arrival of a small jobJt there holdsℓ∗(j) + ℓs(j) >(1 + ε′)OPT(σ) for all machinesMj, 1 ≤ j ≤ m. Recall thatℓs(j) is the load on
machineMj caused by small jobs in the current scheduleSv. Note that∑m

j=1 ℓ
∗(j) is

the total processing time of large jobs inσ if processing times inIi are rounded up to(1 + ε′)iε′, for i = 1, . . . , l. Hence1/(1 + ε)∑m
j=1 ℓ

∗(j) is a lower bound on the total
processing time of large jobs inσ. It follows that the total processing time of all jobs in
σ is at least1/(1+ε′)∑m

j=1 ℓ
∗(j)+∑m

j=1 ℓs(j)+pt ≥ 1/(1+ε′)∑m
j=1(ℓ∗(j)+ℓs(j))+pt.

The assumption thatℓ∗(j)+ ℓs(j) > (1+ ε′)OPT(σ) holds for all machinesMj implies
that the total processing time of jobs inσ is at leastm ⋅OPT(σ)+pt >m ⋅OPT(σ), which
contradicts the fact thatOPT(σ) is the optimum makespan. ◻
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4 A (4/3 + ε)-competitive algorithm for MPSopt

We develop an algorithmA2(ε) for MPSopt that is(4/3 + ε)-competitive, for any0 <
ε ≤ 1, if the numberm of machines is not too small. We then combineA2(ε) withA1(ε), presented in the last section, and derive a strategyA3(ε) that is (4/3 + ε)-
competitive, for arbitrarym. The number of required schedules is1/εO(log(1/ε)), which
is a constant independent ofn andm. We firstly present a description of the algorithm;
the corresponding analysis is given thereafter.

Before describingA2(ε) in detail, we explain the main ideas of the algorithm. One
concept is identical to that used byA1(ε): Partition the range of possible job processing
times into intervals orjob classesand consider distributions of jobs over these classes.
However, in order to achieve a constant number of schedules we have to refine this
scheme and incorporate new ideas. First, the job classes have to be chosen properly so
as to allow a compact packing of jobs on the machines. An important, new aspect in the
construction ofA2(ε) is that we will not consider the entire setV of tuples specifying
how large jobs of an input sequenceσ are distributed over the job classes. Instead we
will define a suitable sparsificationV ′ of V . Eachv ∈ V ′ represents an estimate or guess
on the number of large jobs arising inσ. More specifically, ifv = (v1, . . . , vl), then it is
assumed thatσ contains at leastvi jobs with a processing time of job classi.

Obviously, the job sequenceσ may contain more large jobs, the exact number of
which is unknown. Furthermore, it is unknown which portion of the total processing
time of σ will arrive as small jobs. In order to cope with these uncertaintiesA2(ε)
has to construct robust schedules. To this end the number of machines is partitioned
into two setsMc andMr. For the machines ofMc, the algorithm initially determines
a good assignment orconfigurationassuming thatvi jobs of job classi will arrive.
The machines ofMr are reserve machines and will be assigned additional large jobs
as they arise inσ. Small jobs will always be placed on machines inMc. The initial
configuration determined for these machines has the property that, no matter how many
small jobs arrive, a machine load never exceeds4/3 + ε times the optimum makespan.

We proceed to describeA2(ε) in detail. Let0 < ε ≤ 1. Moreover, setε′ = ε/8. Again
we assume without loss of generality that, for an incoming job sequence, there holds
OPT(σ) = 1. Hence the processing time of any job is upper bounded by 1.

Job classes:A job Jt, 1 ≤ t ≤ n, is smallif pt ≤ 1/3+2ε′; otherwiseJt is large. We
divide the range of possible job processing times into job classes. LetIs = (0,1/3+2ε′]
be the interval containing the processing times of small jobs. Letλ = ⌈log( 3

8
+ 1

48ε′
)⌉

andl = λ + 2, where the logarithm is taken to base 2. Fori = 1, . . . , l, let

ai =max{ 1
3
− 2ε′ + ( 1

12
+ 3

2
ε′) 1

2λ+1−i
, 1
3
+ 2ε′} and bi = 1

3
− 2ε′ + ( 1

12
+ 3

2
ε′) 1

2λ−i
.

It is easy to verify thata1 = 1/3 + 2ε′ andai < bi, for i = 1, . . . , l. Furthermorebl−1 =
1/2 + ε′ andbl = 2/3 + 4ε′. For i = 1, . . . , l defineIi = (ai, bi]. There holds⋃1≤i≤l Ii =(1/3+2ε′,2/3+4ε′]. Moreover, fori = 1, . . . , l−1, let Il+i = (2ai,2bi]. Intuitively,Il+i
contains the processing times that are twice as large as those in Ii, 1 ≤ i ≤ l − 1. There
holds⋃1≤i≤l−1 Il+i = (2/3 + 4ε′,1 + 2ε′]. HenceIs ∪ I1 ∪ . . . ∪ I2l−1 = (0,1 + 2ε′]. In
the followingIi representsjob classi, for i = 1, . . . ,2l − 1. We say thatJt is aclass-i
job if pt ∈ Ii, where1 ≤ i ≤ 2l − 1.
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Definition of target configurations: As mentioned above, for any incoming job
sequenceσ, A2(ε) works with estimates on the number of class-i jobs arising inσ,
1 ≤ i ≤ 2l − 1. For each estimate, the algorithm initially determines a virtual schedule
or target configurationon a subset of the machines, assuming that the estimated set of
large jobs will indeed arrive. Hence we partition them machines into two setsMc andMr. Let µ = ⌈(1 + ε′)/(1 + 2ε′) ⋅m⌉. Moreover, letMc = {M1, . . . ,Mµ} andMr ={Mµ+1, . . . ,Mm}. SetMc contains the machines for which a target configuration will
be computed;Mr contains the reserve machines. The proportion of∣Mr ∣ to ∣Mc∣ is
roughly1 ∶ 1 + 1/ε′.

A target configuration has the important property that any machineMj ∈Mc con-
tains large jobs of only one job classi, 1 ≤ i ≤ 2l − 1. Therefore, a target configuration
is properly defined by a vectorc = (c1, . . . , cµ) ∈ {0, . . . ,2l − 1}µ. If cj = 0, thenMj

does not contain any large jobs in the target configuration,1 ≤ j ≤ µ. If cj = i, where
i ∈ {1, . . . ,2l − 1}, thenMj contains class-i jobs,1 ≤ j ≤ µ. The vectorc implicitly
also specifies how many large jobs reside on a machine. Ifcj = i with 1 ≤ i ≤ l, then
Mj contains two class-i jobs. Note that, for generali ∈ {1, . . . , l}, a third job cannot
be placed on the machine without exceeding a load bound of4/3 + ε. If cj = i with
l + 1 ≤ i ≤ 2l − 1, thenMj contains one class-i job. Again, the assignment of a second
job is not feasible in general. Given a configurationc, Mj is referred to as aclass-i
machineif cj = i, where1 ≤ j ≤ µ and1 ≤ i ≤ 2l − 1.

With the above interpretation of target configurations, each vectorc = (c1, . . . , cµ)
encodes inputs containing2∣{cj ∈ {c1, . . . cµ} ∶ cj = i}∣ class-i jobs, fori = 1, . . . , l, as
well as∣{cj ∈ {c1, . . . cµ} ∶ cj = i}∣ class-i jobs, fori = l + 1, . . . ,2l − 1. Hence, for an
incoming job sequence, instead of considering estimates onthe number of class-i jobs,
for any1 ≤ i ≤ 2l−1, we can equivalently consider target configurations. Unfortunately,
it will not be possible to work with all target configurationsc ∈ {0, . . . ,2l − 1}µ since
the resulting number of schedules to be constructed would be(2l)µ = (log(1/ε))Ω(m).
Therefore, we will work with a suitable sparsification of theset of all configurations.

Sparsification of the set of target configurations:Letκ = ⌈2(2+1/ε′)(2l−1)⌉ and
U = {0. . . . , κ}2l−1. We will show thatκ⌊(m − µ)/(2l − 1)⌋ ≥ m if m is not too small
(see Lemma 4). This property in turn will ensure that any job sequenceσ can be mapped
to au ∈ U . For any vectoru = (u1, . . . , u2l−1) ∈ U , we define a target configuration
c(u) that containsui⌊(m−µ)/(2l−1)⌋ class-i machines, fori = 1, . . . ,2l−1, provided
that∑2l−1

i=1 ui⌊(m − µ)/(2l − 1)⌋ does not exceedµ. More specifically, for anyu =(u1, . . . , u2l−1) ∈ U , let π0 = 0 andπi = ∑i
j=1 uj⌊(m − µ)/(2l − 1)⌋, be the partial

sums of the firsti entries ofu, multiplied by⌊(m − µ)/(2l − 1)⌋, for i = 1, . . . ,2l − 1.
Let µ′ = π2l−1. First construct a vectorc′(u) = (c′1, . . . , c′µ′) of lengthµ′ that contains
exactlyui⌊(m − µ)/(2l − 1)⌋ class-i machines. That is, fori = 1, . . . ,2l − 1, let c′j = i
for j = πi−1 + 1, . . . , πi. We now truncate or extendc′(u) to obtain a vector of lengthµ.
If µ′ ≥ µ, thenc(u) is the vector consisting of the firstµ entries ofc′(u). If µ′ < µ, then
c(u) = (c′1, . . . , c′µ′ ,0, . . . ,0), i. e. the lastµ − µ′ entries are set to 0. LetC = {c(u) ∣
u ∈ U} be the set of all target configurations constructed from vectorsu ∈ U .

The algorithm family: LetA2(ε) = {Ac}c∈C . For anyc ∈ C, algorithmAc works
as follows. Initially, prior to the arrival of any job ofσ, Ac determines the target config-
uration specified byc = (c1, . . . , cµ) and uses this virtual schedule for the machines of
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Mc to make scheduling decisions. Consider a machineMj ∈Mc and supposecj > 0,
i. e.Mj is a class-i machine for somei ≥ 1. Let ℓ−(j) andℓ+(j) be the targeted min-
imal and maximal loads caused by large jobs onMj , according to the target configu-
ration. More precisely, ifi ∈ {1, . . . , l}, thenℓ−(j) = 2ai andℓ+(j) = 2bi. Recall that
in a target configuration a class-i machine contains two class-i jobs if 1 ≤ i ≤ l. If
i ∈ {l + 1, . . . ,2l − 1} and hencei = l + i′ for somei′ ∈ {1, . . . , l − 1}, thenℓ−(j) = 2ai′
andℓ+(j) = 2bi′ . If Mj ∈Mc is a machine withcj = 0, thenℓ−(j) = ℓ+(j) = 0. While
the job sequenceσ is processed, a machineMj ∈Mc may or may not beadmissible.
Again assume thatMj is a class-i machine withi ≥ 1. If i ∈ {1, . . . , l}, then at any time
during the scheduling processMj is admissible if it has received less than two class-i

jobs so far. Analogously, ifi ∈ {l+1, . . . ,2l−1}, thenMj is admissible if it has received
no class-i job so far. Finally, at any time during the scheduling process, letℓ(j) be the
current load of machineMj and letℓs(j) be the load due to small jobs,1 ≤ j ≤m.

AlgorithmAc schedules each incoming jobJt, 1 ≤ t ≤ n, in the following way. First
assume thatJt is a large job and, in particular, a class-i job,1 ≤ i ≤ 2l−1. The algorithm
checks if there is a class-i machine inMc that is admissible. If so,Jt is assigned to
such a machine. If there is no admissible class-i machine available, thenJt is placed
on a machine inMr. There jobs are scheduled according to theBest-Fitpolicy. More
specifically,Ac checks if there exists a machineMj ∈Mr such thatℓ(j)+pt ≤ 4/3+ε.
If this is the case, thenJt is assigned to such a machine with the largest current load
ℓ(j). If no such machine exists,Jt is assigned to an arbitrary machine inMr. Next
assume thatJt is small. The job is a assigned to a machine inMc, where preference is
given to machines that have already received small jobs. AlgorithmAc checks if there
is anMj ∈Mc with ℓs(j) > 0 such thatℓ+(j) + ℓs(j) + pt ≤ 4/3+ ε. If this is the case,
thenJt is assigned to any such machine. OtherwiseAc considers the machines ofMc

which have not yet received any small jobs. If there exists anMj ∈Mc with ℓs(j) = 0
such thatℓ+(j) + pt ≤ 4/3+ ε, then among these machinesJt is assigned to one having
the smallest targeted loadℓ−(j). If again no such machine exists,Jt is assigned to an
arbitrary machine inMc. A summary ofA2(ε), which focuses on the job assignment
rules, is given in Figure 3. We obtain the following result.

Theorem 3. A2(ε) is (4/3 + ε)-competitive, for any0 < ε ≤ 1 andm ≥ 2l/(ε′)2. The
algorithm uses1/εO(log(1/ε)) schedules.

A2(ε) is (4/3 + ε)-competitive if, for the chosenε, the number of machines is at
least2l/(ε′)2. If the number of machines is smaller, we can simply apply algorithmA1(ε) with an accuracy ofε0 = 1/3. LetA3(ε) be the following combined algorithm.
If for the chosenε, m < 2l/(ε′)2, executeA1(1/3). Otherwise executeA2(ε).
Corollary 1. A3(ε) is (4/3+ε)-competitive, for any0 < ε ≤ 1, and uses1/εO(log(1/ε))
schedules.

Proof. If A1(1/3) is executed for a machine numberm < 2l/(ε′)2, then by Theorem 2
the number of schedules is(log(1/ε)/ε3)O(1), which is1/εO(1). ◻

In the remainder of this section we prove Theorem 3. The stated number of sched-
ules follows from the fact thatA2(ε) consists of∣C ∣ = (κ + 1)2l−1 algorithms. Recall
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Algorithm A2(ε)

1. A2(ε) = {Ac}c∈C , whereC = {c(u) ∣ u ∈ U}
U = {0, . . . , κ}2l−1 , whereκ = ⌈2(2 + 1/ε′)(2l − 1)⌉, l = ⌈log( 3

8
+ 1

48ε′
)⌉ + 2 and

ε′ = ε/8
µ = ⌈(1 + ε′)/(1 + 2ε′) ⋅m⌉

2. Ac works as follows.

(a) Determine target configuration specified byc = (c1, . . . , cµ).

(b) EachJt is sequenced as follows.
Jt is large: Let Jt be a class-i job. If there is an admissible class-i machine inMc,
assignJt to it. Otherwise check if∃Mj ∈Mr such thatℓ(j) + pt ≤ 4/3 + ε. If so,
assignJt to such anMj with the highestℓ(j); otherwise placeJt on an arbitrary
Mj ∈Mr.
Jt is small: If ∃Mj ∈Mc with ℓs(j) > 0 such thatℓ+(j) + ℓs(j) + pt ≤ 4/3 + ε,
assignJt to it. Otherwise check if∃ Mj ∈ Mc with ℓs(j) = 0 such that
ℓ+(j) + pt ≤ 4/3 + ε. If so, assignJt to such anMj with the lowestℓ−(j);
otherwise placeJt on an arbitraryMj ∈Mc.

Fig. 3.The algorithmA2(ε)

thatκ = ⌈2(2+1/ε′)(2l−1)⌉ andl = λ+2 = ⌈log( 3
8
+ 1

48ε′
)⌉+2. Hencel = O(log(1/ε))

andκ = O(1/ε log(1/ε)), which gives that∣C ∣ is 1/εO(log(1/ε)).
Hence it suffices to show that, for any job sequenceσ, A2(ε) generates a schedule

whose makespan is at most(4/3 + ε)OPT(σ), which we will do in the remainder of
this section. More specifically we will prove that, for anyσ, there exists a target con-
figurationc ∈ C that accurately models the large jobs arising inσ. We will refer to
such a vector as a valid target configuration. Then we will show that the corresponding
algorithmAc builds a schedule with a makespan of at most(4/3 + ε)OPT(σ).

We introduce some notation. Consider any job sequenceσ. For anyi, 1 ≤ i ≤ 2l− 1,
let ni(σ) be the number of class-i jobs arising inσ, i. e.ni(σ) is the number of jobs
Jt with pt ∈ Ii. Furthermore, for any target configurationc = (c1, . . . , cµ) ∈ C and any
i with 1 ≤ i ≤ 2l − 1, let mi be the number of class-i machines inc, i. e.mi = ∣{cj ∈{c1, . . . , cµ} ∶ cj = i}∣. Letµ1 = ∑l

i=1 mi be the total number of class-i machines with
i ∈ {1, . . . , l}. Similarly, µ2 = ∑2l−1

i=l+1 mi is the total number of class-i machines with
i ∈ {l + 1, . . . ,2l − 1}. Givenσ, vectorc ∈ C will be a valid target configuration if, for
anyi = 1, . . . ,2l − 1, σ contains as many class-i jobs as specified inc and, moreover, if
all the additional large jobs can be feasibly scheduled on them − µ reserve machines.
Recall that in a configurationc, any class-i machine with1 ≤ i ≤ l is supposed to contain
two class-i jobs. Formally,c ∈ C is avalid target configurationif the following three
conditions hold.

(i) For i = 1, . . . , l, there holds2mi ≤ ni(σ).
(ii) For i = l + 1, . . . ,2l − 1, there holdsmi ≤ ni(σ).

(iii) ⌈(∑l
i=1 ni(σ) − 2µ1)/2⌉ +∑2l−1

i=l+1 ni(σ) − µ2 ≤m − µ
Conditions (i) and (ii) represent the constraint thatσ contains as many class-i jobs as
specified inc, 1 ≤ i ≤ 2l − 1. Condition (iii) models the requirement that extra large
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jobs can be feasibly packed on the reserve machines. Here∑l
i=1 ni(σ) − 2µ1 is the

extra number of class-i jobs with i ∈ {1, . . . , l} in σ. Any two of these can be packed
on one machine since the processing time of any of these jobs is upper bounded by
bl ≤ 2/3 + 4ε′. Hence two jobs incur a machine load of at most4/3 + 8ε′ = 4/3 + ε.
Analogously,∑2l−1

i=l+1 ni(σ)−µ2 is the extra number of class-i jobs withi ∈ {l+1, . . . ,2l−
1}, which cannot be combined together because their processing times are greater than
2a1 ≥ 2/3 + 4ε′.

In order to prove that, for anyσ, there exists a valid target configuration we need
two lemmas.

Lemma 3. For anyσ, there holds⌈∑l
i=1 ni(σ)/2⌉ +∑2l−1

i=l+1 ni(σ) ≤m.

Proof. Consider any optimal scheduleS∗ for σ and recall that we assume without loss
of generality thatOPT(σ) = 1. In S∗ any machine containing a class-i job with i ∈{l + 1, . . . ,2l − 1} cannot contain an additional large job: The class-i job causes a load
greater than2a1 ≥ 2/3 + 4ε′ and any additional large job, having a processing time
greater than1/3 + 2ε′, would generate a total load greater than 1. Furthermore, any
machine containing a class-i job with i ∈ {1, . . . , l} can contain at most one additional
job of the job classes1, . . . , l because two further jobs would generate a total load
greater than3a1 ≥ 3(1/3+ 2ε′) > 1. ◻
Lemma 4. For any0 < ε′ ≤ 1/8, there holdsκ⌊(m−µ)/(2l − 1)⌋ ≥m if m ≥ 2l/(ε′)2.

Proof. There holds

κ⌊(m − µ)/(2l − 1)⌋ ≥ 2(2 + 1
ε′
)(2l − 1) ⋅ ⌊(m − µ)/(2l − 1)⌋

≥ 2(2 + 1
ε′
)(2l − 1) ⋅ ((m − µ)/(2l − 1) − 1)

= 2(2 + 1
ε′
)(2l − 1) ⋅ ⎛⎝

m − ⌈ 1+ε′

1+2ε′
m⌉

2l − 1 − 1⎞⎠
≥ 2(2 + 1

ε′
)(2l − 1) ⋅ ⎛⎝

ε
′

1+2ε′
m − 1

2l − 1 − 1⎞⎠
= 2(2 + 1

ε′
)(2l − 1) ⋅ ( ε′m−(1+2ε′)2l(1+2ε′)(2l−1) )

≥ m +m − (2/ε′)(1 + 2ε′)2l
≥ m,

where the last line follows because ofm ≥ 2l/(ε′)2 and2l/(ε′)2 ≥ (2/ε′)(1 + 2ε′)2l,
for anyε′ ≤ 1/8. ◻

The next lemma establishes the existence of valid target configurations.

Lemma 5. For anyσ, there exists a valid target configurationc ∈ C if m ≥ 2l/(ε′)2.

Proof. In this proof letm0 = ⌊(m − µ)/(2l − 1)⌋. Givenσ, we first construct a vector
u ∈ U . Lemma 3 implies that for any job classi, 1 ≤ i ≤ l, there holds⌈ni(σ)/2⌉ ≤ m.
For any job classi, l + 1 ≤ i ≤ 2l − 1, there holdsni(σ) ≤ m. By Lemma 4,κm0 ≥ m,
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which is equivalent tom/m0 ≤ κ. For anyi with 1 ≤ i ≤ l, setui = ⌊ni(σ)/(2m0)⌋.
For anyi with l + 1 ≤ i ≤ 2l − 1, setui = ⌊ni(σ)/m0⌋. Thenui ∈ {0, . . . , κ}, for
i = 1, . . . ,2l − 1, and the resulting vectoru = (u1, . . . .u2l−1) is element ofU . We next
show that the vectorc(u) constructed byA2(ε) is a valid target configuration.

WhenA2(ε) constructsc(u), it first builds a vectorc′(u) = (c′1, . . . , c′µ′) of length

µ′ = ∑2l−1
i=1 uim0 containing exactlyuim0 entries withc′j = i, for i = 1, . . . ,2l − 1. If

µ′ ≥ µ, thenc(u) contains the firstµ entries ofc′(u). If µ′ < µ, thenc(u) is obtained
from c′(u) by addingµ − µ′ entries of value 0. In either casec(u) contains at most
uim0 entries of valuesi, for i = 1, . . . ,2l − 1. Hence for the target configurationc(u),
there holdsmi ≤ uim0, for i = 1, . . . ,2l − 1, wheremi is again the total number of
class-i machines inc(u).

If i ∈ {1, . . . , l}, thenmi ≤ ⌊ni(σ)/(2m0)⌋m0 ≤ ni(σ)/2, which is equivalent to
2mi ≤ ni(σ). Similarly, if i ∈ {l + 1, . . . ,2l − 1}, thenmi ≤ ⌊ni(σ)/m0⌋m0 ≤ ni(σ).
Therefore, conditions (i) and (ii) defining valid target configurations are satisfied and
we are left to verify condition (iii).

First assumeµ′ ≥ µ. In this case the vectorc(u) contains no entries of value 0 and
henceµ = µ1+µ2. Recall thatµ1 = ∑l

i=1mi is the total number of class-i machines with
i ∈ {1, . . . , l} specified inc(u). Similarly,µ2 = ∑2l−1

i=l+1mi is the total number of class-i
machines withi ∈ {l+1, . . . ,2l−1}. By Lemma 3,⌈∑l

i=1 ni(σ)/2⌉+∑2l−1
i=l+1 ni(σ) ≤m.

Subtracting the equationµ1 + µ2 = µ, we obtain

⌈∑l
i=1 ni(σ)/2⌉ − µ1 +∑2l−1

i=l+1 ni(σ) − µ2 ≤m − µ.
There holds⌈∑l

i=1 ni(σ)/2⌉ − µ1 = ⌈(∑l
i=1 ni(σ) − 2µ1)/2⌉ becauseµ1 is an integer.

Hence condition (iii) defining valid target configurations is satisfied.
It remains to study the caseµ′ < µ. For anyi with i ∈ {l + 1, . . . ,2l − 1}, there

holdsui = ⌊ni(σ)/m0⌋ and henceui > ni(σ)/m0 − 1, which is equivalent toni(σ) <(ui + 1)m0. Hence

∑2l−1
i=l+1 ni(σ) < ∑2l−1

i=l+1(ui + 1)m0 = ∑2l−1
i=l+1 uim0 + (l − 1)m0.

The sum∑2l−1
i=l+1 uim0 = ∑2l−1

i=l+1 ui⌊(m − µ)/(2l − 1)⌋ is the total number of entries
c′j with c′j ∈ {l + 1, . . . ,2l − 1} in c′(u). Sinceµ′ < µ, none of these entries is deleted

whenc(u) is derived fromc′(u). Hence∑2l−1
i=l+1 uim0 = µ2 is the total number of class-i

machines withi ∈ {l + 1, . . . ,2l − 1} specified inc(u). We conclude

∑2l−1
i=l+1 ni(σ) ≤ µ2 + (l − 1)m0. (6)

For anyi with i ∈ {1, . . . , l}, there holdsui = ⌊ni(σ)/(2m0)⌋ and henceui >
ni(σ)/(2m0) − 1. This impliesni(σ)/2 < (ui + 1)m0. Since(ui + 1)m0 is an integer
we obtainni(σ)/2 ≤ (ui + 1)m0 − 1. Thus

⌈∑l
i=1 ni(σ)/2⌉ ≤ ∑l

i=1 ni(σ)/2 + 1 ≤ ∑l
i=1(ui + 1)m0 = µ1 + lm0. (7)

Again∑l
i=1 uim0 = µ1 becausec′(u) contains exactly∑l

i=1 uim0 entriesc′j with c′j ∈{1, . . . , l} and all of these entries are contained inc(u) representing class-i machines for
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i ∈ {1, . . . , l}. Inequalities (6) and (7) together with the identitym0 = ⌊(m−µ)/(2l−1)⌋
imply

⌈∑l
i=1 ni(σ)/2⌉ − µ1 +∑2l−1

i=l+1 ni(σ) − µ2 ≤ (2l − 1)⌊(m − µ)/(2l − 1)⌋ ≤m − µ.
Since again⌈∑l

i=1 ni(σ)/2⌉ − µ1 = ⌈(∑l
i=1 ni(σ) − 2µ1)/2⌉, condition (iii) defining

valid target configurations holds. ◻
We next analyze the scheduling steps ofA2(ε).

Lemma 6. LetAc be any algorithm ofA2(ε) processing a job sequenceσ. At any time
there exists at most one machineMj ∈Mc with ℓs(j) > 0 andℓ−(j)+ ℓs(j) < 1+ ε′ in
the schedule maintained byAc.

Proof. Consider any point in time whileAc sequencesσ. Suppose that there exists a
machineMj ∈ Mc with ℓs(j) > 0 and ℓ−(j) + ℓs(j) < 1 + ε′. We show that if a
small jobJt arrives andAc assigns it to a machineMj′ ∈ Mc with ℓs(j′) = 0, then
ℓ−(j′) + pt > 1 + ε′ so that no new machine with the property specified in the lemma
is generated. A first observation is thatMj is not a class-l machine because in this case
ℓ−(j) would be2al = 2bl−1 = 1+ 2ε′. Also, if Mj′ is a class-l machine, there is nothing
to show because, again, in this caseℓ−(j′) ≥ 1 + 2ε′.

So assume thatAc assignsJt to a machineMj′ ∈Mc, which is not a class-l ma-
chine, andℓs(j′) = 0 prior to the assignment. We first show thatℓ−(j′) ≥ ℓ−(j). Con-
sider the scheduling step in whichAc assigned the first small jobJt′ to Mj . SinceMj

is not a class-l machineℓ+(j) = 2bi, for somei ∈ {1, . . . , l − 1} and the assignment of
Jt′ toMj led to a load of at mostℓ+(j)+ pt′ ≤ 1+ 2ε′ + 1/3+ 2ε′ = 4/3+ 4ε′ < 4/3+ ε.
SinceMj′ is not a class-l machine either,Jt′ could have also been assigned toMj′

incurring a resulting load of at mostℓ+(j′) + pt′ < 4/3 + ε on this machine. Note that
when an algorithmAc cannot assign a small job to a machineMj ∈Mc with ℓs(j) > 0
and instead has to resort to machinesMk ∈Mc with ℓs(k) = 0, it chooses a machine
having the smallestℓ−(k) value. We concludeℓ−(j) ≤ ℓ−(j′).

Next consider the assignment ofJt. AlgorithmAc would prefer to placeJt onMj

as it already contains small jobs. Since this is impossible,there holdsℓ+(j)+ℓs(j)+pt >
4/3 + ε and thuspt > 4/3 + 8ε′ − ℓ+(j) − ℓs(j). Since by assumptionℓ−(j) + ℓs(j) <
1 + ε′ it follows pt > 1/3 + 7ε′ − ℓ+(j) + ℓ−(j). Suppose thatℓ+(j) = 2bi, for some
i ∈ {1, . . . , l − 1}. Thenℓ−(j) = 2ai. Sinceℓ−(j′) ≥ ℓ−(j) we obtain

ℓ−(j′) + pt ≥ 1/3 + 7ε′ + ℓ−(j) − ℓ+(j) + ℓ−(j)
≥ 1/3 + 7ε′ + 2( 1

12
+ 3

2
ε′)( 1

2λ+1−i
− 1

2λ−i
)

+2/3− 4ε′ + 2( 1
12
+ 3

2
ε′) 1

2λ+1−i= 1 + 3ε′ > 1 + ε′,
as desired. ◻

The following lemmas focus on algorithmsAc such thatc is a valid target configu-
ration forσ.
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Lemma 7. Let σ be any job sequence andAc be an algorithm such thatc is a valid
target configuration forσ. Let m ≥ 2l/(ε′)2. Consider any point in time during the
scheduling process. If the schedule ofAc contains at most one machineMj ∈Mc with
ℓ−(j) + ℓs(j) < 1 + ε′, then no further small job can arrive.

Proof. Sincec is a valid target configuration forσ, the job sequence contains as many
class-i jobs, for anyi ∈ {1, . . . , l}, as indicated byc. Hence the total processing time
of large jobs inσ is lower bounded by∑µ

j=1 ℓ
−(j). Hence the total processing time of

jobs inσ is at least∑µ
j=1(ℓ−(j) + ℓs(j)), where the machine loads due to small jobs

may be considered at an arbitrary point in time. Hence if there exists a time such that
ℓs(j) + ℓ−(j) < 1 + ε′ for at most oneMj ∈Mc, we obtain

∑µ
j=1(ℓ−(j) + ℓs(j)) ≥ (1 + ε′)(µ − 1) ≥ (1 + ε′)( 1+ε′

1+2ε′
m − 1)

= m + (ε′)2
1+2ε′

m − (1 + ε′) ≥m.

The last inequality holds becausem ≥ 2l/(ε′)2 ≥ 2/(ε′)2 ≥ (1 + ε′)(2ε′ + 1)/(ε′)2, for
anyε′ ≤ 1/8. Hence no further small job can arrive. ◻
Lemma 8. Let σ be any job sequence andAc be an algorithm such thatc is a valid
target configuration forσ. Letm ≥ 2l/(ε′)2. Then in the final schedule constructed by
Ac, each machine inMc has a load of at most4/3 + ε.
Proof. We consider the scheduling steps in whichAc assigns a jobJt to a machine inMc. First suppose thatJt is large. LetJt be a class-i job, where1 ≤ i ≤ 2l − 1. If
Jt is assigned to anMj ∈ Mc, thenMj must be an admissible class-i machine, i. e.
prior to the assignment ofJt it contains fewer class-i jobs as specified by the target
configuration. This implies that for any machineMj ∈Mc, its load due to large jobs
is always at mostℓ+(j). The latter value is upper bounded by2bl ≤ 2(2/3 + 4ε′) =
4/3 + 8ε′ = 4/3 + ε. Hence, in order to establish the lemma it suffices to show that
whenever a small job is assigned to a machineMj ∈Mc, the resulting loadℓ+(j)+ℓs(j)
onMj is at most4/3 + ε.

Suppose on the contrary that a small jobJt arrives andAc schedules it on a machine
inMc such that the resulting load is greater than4/3 + ε. Algorithm Ac first tries to
placeJt on a machineMj ∈Mc with ℓs(j) > 0, which has already received small jobs.
By Lemma 6, among these machines there exists at most one having the property that
ℓ−(j) + ℓs(j) < 1 + ε′. Since an assignment to those machines is impossible without
exceeding a load of4/3+ε,Ac tries to placeJt on a machineMj ∈Mc with ℓs(j) = 0.
Since this is also impossible without exceeding a load of4/3 + ε, anyMj ∈Mc with
ℓs(j) = 0 must be a class-l machine. This holds true because for any class-i machine
with i ≠ l, there holdsℓ+(j) ≤ 2bl−1 ≤ 1 + 2ε′ and an assignment of a small job would
result in a total load of at most1 + 2ε′ + 1/3 + 2ε′ < 4/3 + ε. Observe that any class-l

machine has a targeted minimal load of2al = 2bl−1 ≥ 1 + 2ε′ > 1 + ε′.
We conclude that immediately before the assignment ofJt the schedule ofAc con-

tains at most one machineMj ∈Mc with ℓ−(j)+ ℓs(j) < 1+ ε′. Lemma 7 implies that
the incoming jobJt cannot be small, and we obtain a contradiction. ◻
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Lemma 9. Let σ be any job sequence andAc be an algorithm such thatc is a valid
target configuration forσ. Then in the final schedule constructed byAc, each machine
inMr has a load of at most4/3 + ε.
Proof. Algorithm Ac assigns only large jobs to machines inMr. A first observation
is that whenever there exists anMj ∈Mr that contains only one class-i job with i ∈{1, . . . , l} but no further jobs, then an incoming class-i′ job with i′ ∈ {1, . . . , l} will
not be assigned to an empty machine. This holds true because the two jobs can be
combined, which results in a total load of at most2bl ≤ 4/3 + 8ε′ = 4/3 + ε.

The observation implies that at any time whileAc processesσ, the number of
machines ofMr containing at least one job is upper bounded by⌈n1/2⌉ + n2. Here
n1 denotes the total number of class-i jobs with i ∈ {1, . . . , l} that have been as-
signed to machines ofMr so far. Analogously,n2 is the total number of class-i jobs
with i ∈ {l + 1, . . . ,2l − 1} currently residing on machines inMr. Sincec is a valid
target configuration forσ conditions (i) and (ii) defining those configurations imply
0 ≤ ∑l

i=1 ni(σ) − 2µ1 and0 ≤ ∑2l−1
i=l+1 ni(σ) − µ2. Moreover, sinceAc assigns large

jobs preferably to machines inMc, there holdsn1 ≤ ∑l
i=1 ni(σ) − 2µ1 andn2 ≤∑2l−1

i=l+1 ni(σ)−µ2. By condition (iii) defining valid target configurations,⌈(∑l
i=1 ni(σ)−

2µ1)/2⌉+∑2l−1
i=l+1 ni(σ)−µ2 ≤m−µ. Hence, whilen2 < ∑2l−1

i=l+1 ni(σ)−µ2 there holds⌈n1/2⌉+n2 <m−µ and thus exists an empty machineMr to which an incoming class-i
jobs withi ∈ {l+1, . . . ,2l−1} can be assigned. Similarly, whilen1 < ∑l

i=1 ni(σ)−2µ1,
there must exist an empty machine or a machine containing only one class-i′ job with
i′ ∈ {1, . . . , l} to which in incoming class-i job with i ∈ {1, . . . , l} can be assigned. In
either case, the assignment generates a load of at most4/3+ ε on the selected machine.◻
Theorem 3 now follows from Lemmas 5, 8 and 9.

5 Algorithms for MPS

We derive our algorithms for MPS. The strategies are obtained by simply combiningA∗(ε), presented in Section 2, withA1(ε) andA3(ε). In order to achieve a preci-
sion ofε in the competitive ratio, the strategies are combined with aprecision ofε/2
in its parameters. For any0 < ε ≤ 1, let A∗3(ε) be the algorithm obtained by execut-
ing A3(ε/2) in A∗(ε/2). For any0 < ε ≤ 1, letA∗1(ε) be the algorithm obtained by
executingA1(ε/2) in A∗(ε/2).
Corollary 2. A∗3(ε) is a (4/3 + ε)-competitive algorithm for MPS and uses no more
than1/εO(log(1/ε)) schedules, for any0 < ε ≤ 1.

Proof. Theorem 1 and Corollary 1 imply thatA∗3(ε) is (4/3 + ε)-competitive, for any
0 < ε ≤ 1, and that the total number of schedules is the product of1/εO(log(1/ε)) and⌈log(1+12ρ/ε)/ log(1+ε/(6ρ))⌉, whereρ = 4/3+ε/2. By the Taylor series forln(1+x),−1 < x ≤ 1, we obtainln(1 + x) ≥ x/2, for any0 < x ≤ 1. Hence the second term of the
product is1/εO(1). ◻
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Corollary 3. A∗1(ε) is a(1+ε)-competitive algorithm for MPS and uses no more than(m/ε)O(log(1/ε)/ε) schedules, for any0 < ε ≤ 1.

Proof. By Theorems 1 and 2 algorithmA∗1(ε) is (1+ ε)-competitive, for any0 < ε ≤ 1.
The total number of schedules is the product of(⌊4m/ε⌋ + 1)⌈log(4/ε)/ log(1+ε/4)⌉ and⌈log(1 + 12ρ/ε)/ log(1 + ε/(6ρ))⌉, whereρ = 1 + ε/2. Again, by the Taylor series,
ln(1 + x) ≥ x/2, for any0 < x ≤ 1. Hence both terms of the product are upper bounded
by (m/ε)O(log(1/ε)/ε). ◻

6 Lower bounds

We develop lower bounds that apply to both MPS and MPSopt.

Theorem 4. LetA be a deterministic online algorithm for MPS or MPSopt. IfA attains
a competitive ratio smaller than4/3, then it must maintain at least⌊m/3⌋+1 schedules.

Proof. LetA be any deterministic online algorithm for MPS or MPSopt that maintains
at most⌊m/3⌋ schedules. We show thatA’s competitive ratio is at least4/3. To this end
we construct an adversarial job sequenceσ such that each schedule maintained byA
has a makespan of at least4/3 ⋅ OPT(σ).

The job sequenceσ is composed of two subsequencesσ1 andσ2, i. e. σ = σ1σ2.
Subsequenceσ1 consists ofm jobs of processing time1/3 each. Subsequenceσ2 will
consist of jobs having a processing time of either 2/3 or 1. The exact number of these
jobs depends on the schedules constructed byA and will be determined later.

Consider the schedules thatA may have built after all jobs ofσ1 have been as-
signed. Each such schedule containsm jobs of processing time 1/3. For the moment
we concentrate on schedules in which each machine contains either zero, one or three
jobs, i. e. there exists no machine containing two or more than three jobs. Each such
scheduleS can be represented by a pair(m1,m3), wherem1 denotes the number of
machines containing exactly one job andm3 is the number of machines containing
three jobs. Herem1 andm3 are non-negative integers such thatm1 + 3m3 = m. Let
P = {(m1,m3) ∣ m1,m3 ∈ N0 andm1 + 3m3 = m} be the set of all these pairs. Set
P has⌊m/3⌋ + 1 elements becausem3 can take any value between 0 and⌊m/3⌋ and
m1 =m−3m3. LetS be an arbitrary schedule containingm jobs of processing time 1/3
and(m1,m3) ∈ P . We say thatS is an(m1,m3)-scheduleif the number of machines
containing exactly one job equalsm1 and the number of machines containing exactly
three jobs equalsm3.

Let S be the set of schedules constructed byA when the entire subsequenceσ1 has
arrived. By assumptionA maintains at most⌊m/3⌋ schedules, i. e.∣S ∣ ≤ ⌊m/3⌋. Hence
there must exist a pair(m∗1 ,m∗3) ∈ P such that no schedule ofS is an (m∗1,m∗3)-
schedule. On the other hand, letS∗ be an(m∗1 ,m∗3)-schedule. InS∗ we number the
machines in order of non-decreasing load such thatℓ∗(1) ≤ . . . ≤ ℓ∗(m). ScheduleS∗
containsm −m∗3 machines with a load smaller than 1 and, in particular,m −m∗1 −m∗3
empty machines.

Now the subsequenceσ2 consists ofm−m∗3 jobs, where thej-th job has a processing
time of 1 − ℓ∗(j), for j = 1, . . . ,m − m∗3. Henceσ2 containsm − m∗1 − m∗3 jobs of
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processing time 1 followed bym∗1 jobs of processing time2/3. Obviously, the makespan
of an optimal schedule forσ is 1: The jobs ofσ1 are sequenced so that an(m∗1,m∗3)-
schedule is obtained. Again, afterσ1 has arrived, the machines are numbered in order of
non-decreasing load. Whileσ2 arrives, thej-th job is assigned to machineMj, having
a load ofℓ∗(j), for j = 1, . . . ,m −m∗3.

In the remainder of this proof we consider any scheduleS ∈ S and show that afterσ2

has been sequenced, the resulting makespan is at least 4/3. This establishes the theorem.
So letS ∈ S be any schedule and recall thatS containsm jobs of processing time 1/3
each. If inS there exists a machine that contains at least four of these jobs, then the
makespan is already 4/3 and there is nothing to show. Therefore, we restrict ourselves
to the case that every machine inS contains at most three jobs. Again we number the
machines inS in order of non-decreasing load so thatℓ(1) ≤ . . . ≤ ℓ(m). Consider the(m∗1 ,m∗3)-scheduleS∗ in which the machines loads satisfyℓ∗(1) ≤ . . . ≤ ℓ∗(m). There
must exist a machineMj0 , 1 ≤ j0 ≤ m, such thatℓ(j0) > ℓ∗(j0): For, if ℓ(j0) ≤ ℓ∗(j0)
held for all j = 1, . . . ,m, thenℓ(j0) = ℓ∗(j0) for all j = 1, . . . ,m becauseS andS∗

both contain jobs with a total processing time ofm/3. ThusS would be an(m∗1,m∗3)-
schedule and we obtain a contradiction. The lastm∗3 machines inS∗ have a load of 1. It
follows thatj0 ≤m −m∗3 because otherwiseMj0 in S contained at least four jobs. The
propertyℓ(j0) > ℓ∗(j0) impliesℓ(j0) ≥ ℓ∗(j0) + 1/3 becauseS andS∗ only contain
jobs of processing time1/3.

We finally show that sequencing ofσ2 leads to a makespan of at least4/3 in S.
If A assigns two jobs ofσ2 to the same machine, then the resulting machine load is
at least 4/3 because each job ofσ2 has a processing time of at least2/3. So assume
thatA assigns the jobs ofσ2 to different machines. The firstj0 jobs ofσ2 each have a
processing time of at least1− ℓ∗(j0) because the jobs arrive in order of non-increasing
processing times. InS there exist at mostj0 − 1 machines having a load strictly smaller
thanℓ(j0). Hence, after the firstj0 jobs have been scheduled inS, there exists a machine
having a load of at leastℓ(j0) + 1 − ℓ∗(j0) ≥ ℓ∗(j0) + 1/3 + 1 − ℓ∗(j0) = 4/3. This
concludes the proof. ◻

The next theorem gives a lower bound on the number of schedules required by a(1+
ε)-competitive algorithm, where0 < ε < 1/4. It implies that, for any fixedε, the number
asymptotically depends onmΩ(1/ε), asm increases. For instance, any algorithm with a
competitive ratio smaller than1+ 1/12 requiresΩ(m2) schedules. Any algorithm with
a competitive ratio smaller than1 + 1/16 needsΩ(m3) schedules.

Theorem 5. LetA be a deterministic online algorithm for MPS or MPSopt. IfA attains
a competitive ratio smaller than1 + ε, where0 < ε ≤ 1/4, then it must maintain at least
(m′+h−1

h−1
) schedules, wherem′ = ⌊m/2⌋ and h = ⌊1/(4ε)⌋. The binomial coefficient

increases asε decreases and is at leastΩ((εm)⌊1/(4ε)⌋−1/2/√m).
Proof. We extend the proof of Theorem 4. Let0 < ε ≤ 1/4. Furthermore, letm′ andh
be defined as in the theorem. There holdsh ≥ 1. Letε′ = 1/(4h) and note thatε′ ≥ ε. We
will define a setM whose cardinality is at least(m′+h−1

h−1
), and show that ifAmaintains

less than∣M ∣ schedules, then its competitive ratio is at least1 + ε′.
We specify a job sequenceσ and first assume thatm is even. Later we will describe

how to adaptσ if m is odd. Againσ is composed of two partial sequencesσ1 and
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σ2 so thatσ = σ1σ2. Subsequenceσ1 consists ofmh jobs of processing timeε′ each.
Subsequenceσ2 depends on the schedules constructed byA and will be specified below.
Consider the possible schedules afterσ1 has been sequenced on them machines. We
restrict ourselves to schedules having the following property: Each machine has a load
of exactly 1 or a load that is at most1/2 − ε′. Observe that each machine of load 1
contains1/ε′ jobs. Each machine of load at most1/2 − ε′ contains up to2h − 1 jobs
because(2h − 1)ε′ = 2h/(4h) − ε′ = 1/2 − ε′. Therefore any schedule with the stated
property can be described by a vectorm⃗ = (m0, . . . ,m2h), wherem2h is the number of
machines having a load of 1 andmi is the number of machines containing exactlyi jobs,
for i = 0, . . . ,2h−1. The vectorm⃗ satisfies∑2h

i=0 mi =m and(1/ε′)m2h+∑2h−1
i=1 imi =

mh. The last equation specifies the constraint that the schedule containsmh jobs. Let
M be the set of all these vectors, i. e.

M = {(m0, . . . ,m2h) ∈ N2h+1
0 ∣ ∑2h

i=0 mi =m and

(1/ε′)m2h +∑2h−1
i=1 imi =mh}.

We remark that each⃗m ∈ M uniquely identifies one schedule with our desired prop-
erty. Let S be any schedule containing exactlymh jobs of processing timeε′ and
m⃗ = (m0, . . . ,m2h) ∈ M . We say thatS is an m⃗-scheduleif in S there existm2h

machines of load 1 andmi machines containing exactlyi jobs, fori = 0, . . . ,2h − 1.
Now suppose thatAmaintains less than∣M ∣ schedules. LetS be the set of schedules

constructed byA after all jobs ofσ1 have arrived. Since∣S ∣ < ∣M ∣ there must exist an
m⃗∗ = (m∗0 , . . . ,m∗2h) ∈ M such that no schedule ofS is anm⃗∗-schedule. LetS∗ be
anm⃗∗-schedule in which machines are numbered in order of non-decreasing load such
thatℓ∗(1) ≤ . . . ≤ ℓ∗(m). Subsequenceσ2 consists ofm −m∗2h jobs, where jobj has
a processing time of1 − ℓ∗(j), for j = 1, . . . ,m −m∗2h. Henceσ2 consists ofm∗i jobs
of processing time1 − iε′, for i = 0, . . . ,2h − 1. These jobs arrive in order of non-
increasing processing time. Each job has a processing time of at least1/2 + ε′ because
1 − (2h − 1)ε′ = 1 − (2h/4h − ε′) = 1/2 + ε′. The makespan of an optimal schedule for
σ is 1. The jobs ofσ1 are sequenced so that anm⃗∗-schedule is obtained. Machines are
again numbered in order of non-decreasing load. Then, whilethe jobs ofσ2 arrive, the
j-th job of the subsequence is assigned to machineMj in S∗, 1 ≤ j ≤m −m∗2h.

We next show that afterA has sequencedσ2, each of its schedules has a makepan
of at least1+ε′. So consider anyS ∈ S and, as always, number the machines in order of
non-decreasing load such thatℓ(1) ≤ . . . ≤ ℓ(m). If in S there exists a machine that has
a load of at least1+ ε′ and hence contains at least1/ε′ + 1 jobs, then there is nothing to
show. So assume that each machine inS contains at most1/ε′ jobs and thus has a load
of at most 1. We study the assignment of the jobs ofσ2 to S. If A places two jobs of
σ2 on the same machine, then we are done because each job has a processing time of at
least1/2 + ε′. Therefore we focus on the case thatA assigns the jobs ofσ2 to different
machines.

SchedulesS andS∗ both contain jobs of total processing timemhε′. SinceS is
not anm⃗∗-schedule there must exist aj0, 1 ≤ j0 ≤ m, such thatℓ(j0) > ℓ∗(j0) and
henceℓ(j0) ≥ ℓ∗(j0) + ε′. Each machine inS has a load of at most 1 while the last
m−m∗2h machines inS∗ have a load of exactly 1. This impliesj0 ≤m−m∗2h. The first
j0 jobs ofσ2 each have a processing time of at least1 − ℓ∗(j0). However, there exist at
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mostj0 − 1 machines inS having a load strictly smaller thanℓ∗(j0). Hence afterA has
sequenced the firstj0 jobs ofσ2 there must exist a machine inS with a load of at least
ℓ(j0) + 1 − ℓ∗(j0) ≥ ℓ∗(j0) + ε′ + 1 − ℓ∗(j0) = 1 + ε′.

So far we have assumed thatm is even. Ifm is odd, we can easily modifyσ. The
first job ofσ is a job of processing time 1. Thenσ1 andσ2 follow. These subsequences
are defined as above, wherem is replaced by the even numberm − 1. In this case

M = {(m0, . . . ,m2h) ∈ N2h−1
0 ∣ ∑2h

i=0 mi =m − 1 and

(1/ε′)m2h +∑2h−1
i=1 imi = (m − 1)h}.

The analysis presented above carries over because the first job ofσ, having a processing
time of 1, must be scheduled on a separate machine and cannot be combined with any
job of σ1 or σ2 if a competitive ratio smaller than1 + ε′ is to be attained.

We next lower bound the cardinality ofM . Again we first focus on the case thatm

is even. In the definition ofM the critical constraint is(1/ε′)m2h +∑2h−1
i=1 imi = mh,

which implies that not every vector of{0, . . . ,m}2h+1 represents a schedule that can be
built of mh jobs. In particular, the vector(0, . . . ,0,m) of length2h + 1 would require
m/ε′ = 4h jobs. Therefore, we introduce a setM ′ and show∣M ′∣ ≤ ∣M ∣. SetM ′

contains vectors of length2h + 1 in which the firsth + 1 entries as well as the last one
are equal to 0. The other entries sum to at mostm/2, i. e.

M ′ = {(0, . . . ,0,m′h+1, . . . ,m′2h−1,0) ∈ N2h+1
0 ∣ ∑h−1

i=1 m′h+i ≤m/2}.
We show that each⃗m′ ∈M ′ can be mapped to a⃗m ∈M . The mapping has the property
that any two different vectors ofM ′ are mapped to different vectors ofM . This implies∣M ′∣ ≤ ∣M ∣.

Consider any⃗m′ = (0, . . . ,0,m′h+1, . . . ,m′2h−1,0) ∈ M ′. Let m⃗ = (m0, . . . ,m2h)
be defined as follows. Fori = h + 1, . . . ,2h, let mi = m′i. For i = 0, . . . , h − 1, let
mi =m2h−i. Finally, letmh =m − 2∑h−1

i=1 mi. Note thatm0 =m2h = 0. We next show
thatm⃗ ∈M . There holds∑2h

i=0 mi = ∑2h−1
i=1 mi = 2∑h−1

i=1 mi +mh =m. Furthermore,

m2h/ε′ + 2h−1∑
i=0

imi = 2h−1∑
i=1

imi = h−1∑
i=1

(i + 2h − i)mi + hmh

= 2h h−1∑
i=1

mi + h(m − 2 h−1∑
i=1

mi) =mh.

It follows, as desired,⃗m ∈M . Note that the lasth entries ofm⃗ are identical to the last
h entries ofm⃗′. Hence no two vectors ofM ′ that differ in at least one entry are mapped
to the same vector ofM . Hence∣M ′∣ ≤ ∣M ∣. If the numberm of machines is odd, then
in the definition ofM ′ the entries of a vector sum to at most(m − 1)/2. The rest of the
construction and analysis is the same. Thus, for a general numberm of machines

M ′ = {(0, . . . ,0,m′h+1, . . . ,m′2h−1,0) ∣m′i ∈ N0 and ∑h−1
i=1 m′h+i ≤ ⌊m/2⌋}.

This set contains exactly(m′+h−1
h−1

) elements, where againm′ = ⌊m/2⌋. In the remainder
of this proof we lower bound this binomial coefficient.
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There holds
√
2πe(k/e)k+1/2 ≤ k! ≤ 2√2πe(k/e)k+1/2 for anyk ∈ N by Stirling’s

approximation [17]. Hence

(m′ + h − 1
h − 1 ) = (m′ + h − 1)!

m′!(h − 1)! ≥
(m′ + h − 1)m′+h−1/2

4
√
2π(m′)m′+1/2(h − 1)h−1/2

= 1

4
√
2πm′

(1 + h − 1
m′
)m

′

(1 + m′

h − 1)
h−1/2

> 1

4
√
2πm′

(1 + m/2 − 1/2
1/(4ε) )

h−1/2

.

The last expression isΩ((εm)⌊1/(4ε)⌋−1/2/√m). ◻
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28. A. López-Ortiz, S. Schuierer. On-line parallel heuristics, processor scheduling and robot

searching under the competitive framework.Theor. Comput. Sci., 310:527–537, 2004.
29. L. Lovász, M.E. Saks and W.A. Trotter. An on-line graph coloring algorithm with sublinear

performance ratio.Discrete Mathematics, 75:319–325, 1989.
30. P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms.IBM Journal

of Research and Development, 38:683–708, 1994.
31. J.F. Rudin III. Improved bounds for the on-line scheduling problem. Ph.D. Thesis. The Uni-

versity of Texas at Dallas, May 2001.
32. J.F. Rudin III and R. Chandrasekaran. Improved bounds for the online scheduling problem.

SIAM Journal on Computing, 32:717–735, 2003.
33. P. Sanders, N. Sivadasan and M. Skutella. Online scheduling with bounded migration.Math-

ematics of Operations Reseach, 34(2):481–498, 2009.
34. D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.Commu-

nications of the ACM, 28:202–208, 1985.

26


	Online Makespan Minimization with Parallel Schedules*-0.3cm

