
ar
X

iv
:1

30
6.

21
82

v2
 [

cs
.D

M
]

 1
7

M
ay

 2
01

4

EXTENDING PARTIAL REPRESENTATIONS

OF INTERVAL GRAPHS∗

P. KLAVÍK† , J. KRATOCHVÍL‡ , Y. OTACHI§ , T. SAITOH¶, AND T. VYSKOČIL‡

Abstract. Interval graphs are intersection graphs of closed intervals of the real-line. The well-
known computational problem, called recognition, asks whether an input graph G can be represented
by closed intervals, i.e., whether G is an interval graph. There are several linear-time algorithms
known for recognizing interval graphs, the oldest one is by Booth and Lueker [J. Comput. System
Sci., 13 (1976)] based on PQ-trees.

In this paper, we study a generalization of recognition, called partial representation extension.
The input of this problem consists of a graph G with a partial representation R′ fixing the positions
of some intervals. The problem asks whether it is possible to place the remaining interval and create
an interval representation R of the entire graph G extending R′. We generalize the characterization
of interval graphs by Fulkerson and Gross [Pac. J. Math., 15 (1965)] to extendible partial represen-
tations. Using it, we give a linear-time algorithm for partial representation extension based on a
reordering problem of PQ-trees.

1. Introduction. One of the fundamental themes of mathematics is studying
relations between mathematical objects and their representations. For graph theory,
the study of graph representations and graph drawing is as old as the study of graphs
themselves. A widely studied type of graph representations are intersection represen-
tation which encode edges by intersections of sets. An intersection representation R
of a graph G assigns a collection of sets

{
Rv | v ∈ V (G)

}
such that uv ∈ E(G) if

and only if Ru ∩ Rv 6= ∅. Since every graph has an intersection representation [23],
interesting graph classes are obtained by restricting the representing sets to some nice
class of, say, geometrical objects, e.g., continuous curves in plane, chords of a circle,
convex sets, etc. For overview of these classes, see books [10, 25, 31].

The most famous are interval graphs (INT) which are intersection graphs of closed
intervals of the real line. It is one of the oldest classes of graphs, introduced by
Hajós [11] already in 1957. Interval graphs have many useful theoretical properties,
for example they are perfect and related to path decompositions. In many cases, very
hard combinatorial problems are polynomially solvable for interval graphs [30]; e.g.,
maximum clique, k-coloring, maximum independent set, etc. Also, interval graphs
naturally appear in many applications concerning biology, psychology, time schedul-
ing, and archaeology; see for example [29, 32, 3].

Partial Representation Extension. For a fixed class C, there is a natural well-
studied problem called recognition. Given a graph G, we ask whether G belongs
to C. We denote this problem by Recog(C). For interval graphs, there are several
algorithms solving Recog(INT) in linear time [5, 7, 22]. Further, interval graphs have
nice mathematical characterizations [9, 21] which are foundations of these algorithms.

∗A conference version of this paper appeared in TAMC 2011 [18]. Supported by ESF Eurogiga
project GraDR as GAČR GIG/11/E023. The first two authors are also supported by Charles Uni-
versity as GAUK 196213.

†Computer Science Institute, Faculty of Mathematics and Physics, Charles University, Mal-
ostranské náměst́ı 25, 118 00 Prague, Czech Republic. E-mail: klavik@iuuk.mff.cuni.cz.

‡Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University,
Malostranské náměst́ı 25, 118 00 Prague, Czech Republic. E-mails: honza@kam.mff.cuni.cz and
whisky@kam.mff.cuni.cz.

§School of Information Science, Japan Advanced Institute of Science and Technology. Asahidai
1-1, Nomi, Ishikawa 923-1292, Japan. Email: otachi@jaist.ac.jp

¶Graduate School of Engineering, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan.
E-mail: saitoh@eedept.kobe-u.ac.jp

1

http://arxiv.org/abs/1306.2182v2

2 P. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, T. VYSKOČIL

Recog:

G
?

−→ R
a

b

c

d

G R

a
b

c
d

RepExt:

G+R′ ?
−→ R

a

b

c

d

GG′ R′

a

b c

Fig. 1.1. The graph G is an interval graph, but the partial representation R′ is not extendible.

In this paper, we introduce a natural generalization of recognition called partial
representation extension. A partial representation R′ of G is a representation of an
induced subgraph G′ of G. The vertices of G′ are called pre-drawn. A representation
R of G extends R′ if it assigns the same sets to the vertices of G′, i.e., Rv = R′

v for
every v ∈ V (G′). Partial representation extension is the following decision problem:

Problem: Partial representation extension – RepExt(C)
Input: A graph G and a partial representation R′.

Question: Is there a representation R of G extending R′?

Figure 1.1 illustrates the difference between the recognition problem and the partial
representation extension problem.

In this paper, we initiate the study of partial representation extension with inter-
val graph. We have two reasons to choose interval graphs. First, this class is one of
the oldest and most understood. As an evidence of its popularity, Web of Knowledge
lists more than 300 papers with the words “interval graphs” in the title. Second,
there are many structural results and techniques known for interval graphs. Namely
we can use PQ-trees [5] which combinatorially describe all interval representations
of an interval graph. This way we discover the most important properties of partial
representation extension, applicable to other more complex graph classes, without
dealing with technical details. In particular, we show that a good understanding of
the structure of all representations is essential to solve the problem; unlike recognition
for which any representation has to be found.

We give the following main algorithmic result, where sorted representations are
defined in the end of this section:

Theorem 1.1. If the partial representation is given sorted from left to right, then
the problem RepExt(INT) can be solved in time O(n+m), where n is the number of
vertices and m is the number of edges.

Fulkerson and Gross [9] proved in 1965 the following characterization. A graph is
an interval graphs if and only if there exists an ordering of its maximal cliques such
that for each vertex the cliques containing this vertex appear consecutively in this
ordering. Intervals of the real line have the Helly property, so all intervals representing
one maximal clique have a common intersection. In this intersection, we choose one
point which we call a clique-point. The considered ordering is the left-to-right ordering
of the chosen clique-points.

We generalize this result and characterize extendible partial representations. The
partial representation gives a partial ordering ⊳ which has to be extended by the

EXTENDING PARTIAL REPRESENTATIONS OF INTERVAL GRAPHS 3

R

x y
x1 x2 x3 y1 y2 y3

xx1 xx2 xx3 yy1 yy2 yy3

xx1 xx2 xx3

yy1 yy2 yy3

⊳

Fig. 1.2. An interval graph consisting of two stars with pre-drawn central vertices. One of the
extending representations is depicted on the left. Any extending representation places all maximal
cliques containing x on the left of the maximal cliques containing y. Therefore the ordering of the
maximal cliques has to extend the partial ordering ⊳, depicted by the Hasse diagram on the right.

ordering of the maximal cliques of any extending representation; see Figure 1.2 for an
example. Our characterization of extendible instances says that the constraints posed
by ⊳ are not only necessary, but also sufficient.

The algorithm of Theorem 1.1 tests this characterization. The data structure
called PQ-tree combinatorially describes all orderings of the maximal cliques yielding
interval representations. We test whether this tree can be reordered according to ⊳.
By applying several tricks, we can test this for a specific type of partial orderings
called interval orders in linear time.

Previous results of RepExt. Concerning previous results, the conference version
of this paper [18] shows that interval representations can be extended in time O(n2)
and proper interval representations can be extended in time O(nm). For interval
graphs, Bläsius and Rutter [4] improve this result to time O(n + m). They reduce
it to a more general problem called simultaneous representations which they solve
using simultaneous PQ-trees. This framework also applies to other problems such as
simultaneous planar embeddings. Consequently their algorithm is quite involved and
gives no understanding of partial representation extension.

Compared to the algorithm of Bläsius and Rutter [4], there are three main points
why our linear-time algorithm for partial representation extension is interesting.

1. Our algorithm is much simpler and easier to implement.

2. Some of our understanding and techniques can be applied to more compli-
cated classes, for which either the simultaneous representations problem is
still open, or the relation with partial representation extension is lost. For in-
stance, the simultaneous representation problem is polynomially solvable for
chordal graphs [14], but partial representation extension is NP-complete [17].

3. Our structural understanding can be used to obtain further results. Namely,
Balko et al. [2] proved that our algorithm can be simply modified to a more
general problem called bounded representation. To the best of our knowledge,
there are no relations between bounded and simultaneous representations.
Further, the paper [19] uses our characterization of extendible instances to
describe minimal obstructions for extendibility of partial interval represen-
tations. This generalizes the result of Lekherkerker and Boland [21] which
describes all minimal graphs which are not interval graphs.

Every interval graph has a representation in which every endpoint is placed at
an integer position. We note that extending such representations, again by integer
endpoints, is an NP-complete problem [17].

The paper [16] improves [18] by giving a linear-time algorithm for proper interval
graphs, and it also solves an open problem of [18] by giving an almost quadratic-
time algorithm for unit interval graphs. These two results might seem surprising in
the context of Robert’s Theorem [28] which states that these two classes are equal,

4 P. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, T. VYSKOČIL

i.e, PROPER INT = UNIT INT. But the partial representation extension problems
distinguish them. In the case of proper interval representations, a partial represen-
tation just prescribes some partial ordering of the endpoints of the intervals. But a
partial unit interval representation gives in addition precise rational positions. The
algorithm of [16] for unit interval graphs is based on linear programming and new
structural results.

The paper [15] gives polynomial-time algorithms for permutation and function
graphs. The paper [17] studies several possible versions of the problem for chordal
graphs (in the setting of intersection graphs of subtrees of a tree) and shows that
almost all of them are NP-complete. Concerning circle graphs, a polynomial-time
algorithm is given by Chaplick et al. [6]. It is based on new structural results which
describe via split decomposition all possible representations of circle graphs.

For planar graphs, Angelini et al. [1] show that partial planar embeddings can be
extended in linear time. Well-known Fáry’s Theorem states that every planar graph
has a straight-line embedding. But it is NP-complete to decide whether a partial
straight-line embedding can be extended to a straight-line embedding of the entire
graph [26].

Motivation for RepExt. To solve the recognition problem, an arbitrary representa-
tion can be constructed. Solving partial representation extension is harder, and better
understanding of the structure of all possible representations seems to be necessary.
This is a desirable property since one is forced to improve the structural understand-
ing of the studied classes to solve this problem; and this structural understanding can
be later applied in attacking other problems.

The structure of all representations of interval graphs is already well under-
stood [5], so for our algorithm we just use this structure. On the other hand, the
papers [16, 6] build completely new structural results for unit interval and circle
graphs which might be of independent interest.

Partial representation extension belongs to a larger group of restricted represen-
tation problems. In these problems, one asks whether there exists a representation
satisfying some additional constraints. We define the simultaneous representations
problem in §4. The bounded representation problem gives two restricting intervals
Av and Bv to each vertex v ∈ V (G). The task is to find a representation which
places one endpoint of the interval Rv into Av and the other one to Bv. So it is a
relaxation of the partial representation extension since we can move endpoints of Rv

slightly. There are several similar problems studied for intervals graphs; for example
see [27, 20].

Sorted Representations. To obtain the linear-time algorithm, we need some rea-
sonable assumption on a partial representation which is given by the input. Similarly,
most of the graph algorithms cannot achieve better running time than O(n2) if the
input graph is given by an adjacency matrix instead of a list of neighbors for each
vertex.

We say that a partial representation is sorted if it gives all (left and right) end-
points of the pre-drawn intervals sorted from left to right. We assume that the input
partial representation is given sorted. If this assumption is not satisfied, the algo-
rithm needs additional time O(k log k) to sort the partial representation where k is
the number of pre-drawn intervals. We note that Bläsius and Rutter [4] need the
same assumption for their linear-time algorithm.

Structure. This paper is structured as follows.
In §2, we define a PQ-tree which is a data structure describing all representations

EXTENDING PARTIAL REPRESENTATIONS OF INTERVAL GRAPHS 5

of an interval graph. We introduce a reordering problem asking whether the leaves of a
PQ-tree can be reordered according to some partial ordering⊳. We give two algorithm
for this problem: one for general partial orderings, and another faster one for interval
orders which are partial orderings represented by collections of open intervals.

In §3, we build a bridge between PQ-trees and interval graphs. We derive charac-
terization of extendible instances saying a partial representation is extendible if and
only if the PQ-tree can be reordered according to some interval ordering ⊳. The main
algorithm of Theorem 1.1 just computes this interval ordering and applies the second
reordering algorithm as a subroutine.

In §4, we discuss connections with the simultaneous representations problems and
show that Theorem 1.1 gives an FPT algorithm for the simultaneous representations
problem of interval graphs. We conclude in §5 with the current major open problem
of partial representation extension.

2. PQ-trees and the Reordering Problem. To describe PQ-trees, we start
with a motivational problem. An input of the consecutive ordering problem consists
of a set E of elements and restricting sets S1, S2, . . . , Sk. The task is to find a (linear)
ordering of E such that every Si appears consecutively (as one block) in this ordering.

Example 2.1. Consider the elements E = {a, b, c, d, e, f, g, h} and the restricting
sets S1 = {a, b, c}, S2 = {d, e}, and S3 = {e, f, g}. For instance, the orderings
abcdefgh and fgedhacb are feasible. On the other hand, the orderings acdefgbh (violates
S1) and defhgabc (violates S3) are not feasible.

PQ-trees. A PQ-tree is a tree structure invented by Booth and Lueker [5] for solving
the consecutive ordering problem efficiently. Moreover, it stores all feasible orderings
for a given input.

The leaves of the tree correspond one-to-one to the elements of E. The inner
nodes are of two types: The P-nodes and the Q-nodes. The tree is rooted and an
order of the children of every inner node is fixed. Also we assume that each inner
node has at least two children. A PQ-tree T represents one ordering <T , given by
the ordering of the leaves from left to right, see Figure 2.1.

To obtain other feasible orderings, we can reorder children of inner nodes. The
children of a P-node can be reordered in an arbitrary way. On the other hand, we
can only reverse the order of the children of a Q-node. We say that a tree T ′ is a
reordering of T if it can be created from T by applying several reordering operations.
Two trees are equivalent if one is a reordering of the other. For example, the trees in
Figure 2.1 are equivalent. Every equivalence class of PQ-trees corresponds to all the
orderings feasible for a fixed family of equivalent input sets. The equivalence class of

P

P

P

Q

a b c d e

gf

h

P

P

P

Q

a bcde

gf

h

Fig. 2.1. PQ-trees representing orderings abcdefgh and fgedhacb.

6 P. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, T. VYSKOČIL

the PQ-trees in Figure 2.1 corresponds to the input sets in Example 2.1.

For the purpose of this paper, we only need to know that a PQ-tree can be
constructed in time O(e + k + t) where e is the number of elements of E, k is the
number of restricting sets and t is the sum of cardinalities of restricting sets. Booth
and Lueker [5] prove their existence and describe details of their construction.

2.1. The Reordering Problem for General Orderings. Suppose that T is
a PQ-tree and we have a partial ordering ⊳ of its elements (leaves). We say that a
reordering T ′ of the PQ-tree T is compatible with ⊳ if the ordering <T ′ extends ⊳,
i.e., a ⊳ b implies a <T ′ b.

Problem: The reordering problem – Reorder(T,⊳)
Input: A PQ-tree T and a partial ordering ⊳.

Question: Is there a reordering T ′ of T compatible with ⊳?

Local Solutions. A PQ-tree defines some hierarchical structure on its elements. A
subtree of a PQ-tree consists of one inner node and all its successors.

Observation 2.2. Let S be a subtree of a PQ-tree T . Then the elements of E
contained in S appear consecutively in <T .

We start with a lemma which states the following: If we can solve the problem
locally (inside of some subtree), then this local solution is always correct; either there
exists no solution of the problem at all, or our local solution can be extended to a
solution for the whole tree.

Lemma 2.3. Let S be a subtree of a PQ-tree T . If T can be reordered compatibly
with ⊳, then every local reordering of the subtree S compatible with ⊳ can be extended
to a reordering of the whole tree T compatible with ⊳.

Proof. Let T ′ be a reordering of the whole PQ-tree T compatible with ⊳. Ac-
cording to Observation 2.2, all elements contained in S appear consecutively in <T ′ .
Therefore, we can replace this local ordering of S by any other local ordering of S
satisfying all constraints given by ⊳. We obtain another reordering of the whole tree
T which is compatible with ⊳ and extends the prescribed local ordering of S.

The Algorithm. We describe the following algorithm for Reorder(T,⊳):

Proposition 2.4. The problem Reorder(T,⊳) can be solved in time O(e+m),
where e is the number of elements and m is the number of comparable pairs in ⊳.

Proof. The algorithm is based on the following greedy procedure. We represent
the ordering ⊳ by a digraph having m edges. We reorder the nodes from the bottom
to the root and modify the digraph by contractions. When we finish reordering a
subtree, the order is fixed and never changed in the future; by Lemma 2.3, either this
local reordering will be extendible, or there is no correct reordering of the whole tree
at all. When we finish reordering a subtree, we contract the corresponding vertices
in the digraph. We process a node of the PQ-tree when all its subtrees are already
processed and their digraphs are contracted to single vertices.

For a P-node, we check whether the subdigraph induced by the vertices corre-
sponding to the children of the P-node is acyclic. If it is acyclic, we reorder the children
according to any topological sort of the subdigraph. Otherwise, there exists a cycle,
no feasible ordering exists and the algorithm returns “no”. For a Q-node, there are
two possible orderings. We just need to check whether one of them is feasible. For an
example, see Figure 2.2.

We need to argue the correctness. The algorithm processes the tree from the
bottom to the top. For every subtree S, it finds some reordering of S compatible with

EXTENDING PARTIAL REPRESENTATIONS OF INTERVAL GRAPHS 7

P

P Q

a b c d e f

a
b

c

d

e

f

P

P Q

ab c d e f

bac
d

e

f

P

P Q

ab c d e f

bac def

Fig. 2.2. We show from left to right an example how the reordering algorithm works. First, we
reorder the highlighted P-node on the left. The subdigraph induced by a, b and c has the topological
sort b → a → c. We contract these vertices into the vertex bac. Next, we keep the order of the
highlighted Q-node and contract its children into the vertex def . When we reorder the root P-node,
the algorithm finds a cycle between bac and def , and outputs “no”. Notice that the original digraph
⊳ is acyclic, just not compatibly with the structure of the PQ-tree.

⊳. If no such reordering of S exists, the whole tree T cannot be reordered according
to ⊳. If a reordering of S exists, it is correct according to Lemma 2.3.

The algorithm can be implemented in linear time with respect to the size of the
PQ-tree and the partial ordering ⊳ which is O(e +m). Each edge of the digraph ⊳

is processed exactly once before it is contracted.

We note that the described algorithm works even for a general relation ⊳. For
example, ⊳ does not have to be transitive (as in the example in Figure 2.2) or even

Algorithm 1 Reordering a PQ-tree – Reorder(T,⊳)

Require: A PQ-tree T and a partial ordering ⊳.
Ensure: A reordering T ′ of T such that <T ′ extends ⊳ if it exists.

1: Construct the digraph of ⊳.

2: Process the nodes of T from the bottom to the root:
3: for a processed node N do

4: Consider the subdigraph induced by the children of N .
5: if the node N is a P-node then

6: Find a topological sort of the subdigraph.
7: If it exists, reorder N according to it, otherwise output “no”.
8: else if the node N is a Q-node then

9: Test whether the current ordering or its reversal are compatible
with the subdigraph.

10: If at least one is compatible, reorder the node, otherwise output “no”.
11: end if

12: Contract the subdigraph into a single vertex.
13: end for

14: return A reordering T ′ of T .

8 P. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, T. VYSKOČIL

a

b

c

d e

e

dc

ba

Fig. 2.3. On the left, a collection of open intervals. On the right, the Hasse diagram of the
interval order ⊳ represented by these intervals.

acyclic (but in such a case, of course, no solution exists). A pseudocode is given in
Algorithm 1.

2.2. The Reordering Problem for Interval Orders. In this section, we
establish a faster algorithm for the reordering problem for a special type of partial
orderings called interval orders. We first define them.

Let E be a set and let {Ia = (ℓa, ra) | a ∈ E} be a collection of open intervals.1

Then these intervals represent the following partial ordering ⊳ on E. If two intervals
Ia and Ib do not intersect, then one is on the left and the other is on the right.
Therefore we naturally ordered intervals as they appear from left to right. Formally,
for a, b ∈ E, we put a ⊳ b if and only if ra ≤ ℓb. A partial ordering of E is called an
interval order if there exists a collection of intervals representing this ordering in this
way. See Figure 2.3 for an example.

Both interval graphs and interval orders are represented by collections of intervals,
and indeed they are closely related [8]. The study of interval orders has the following
motivation. Suppose that the elements of E correspond to events and each interval
describes when one event can happen in the timeline. If a ⊳ b, we know for sure
that the event a happened before the event b. If two intervals intersect, we do not
have any information about the order of the corresponding events. Nevertheless, for
purpose of this paper, we only need to know the definition of interval orders. For
more information, see the survey [33].

Faster Reordering of PQ-trees. Let e be the number of elements of E and let ⊳
be an interval order of E represented by {Ia | a ∈ E}. We assume the representation
is sorted which means that we know the order of all endpoints of the intervals from
left to right. We show that for such ⊳ we can solve Reorder(T,⊳) faster:

Proposition 2.5. If ⊳ is an interval order given by a sorted representation, we
can solve the problem Reorder(T,⊳) in time O(e) where e is the number of elements
of T .

For the following, let ⋖ be the linear ordering of the endpoints ℓe and re of the
intervals according to their appearance from left to right in the representation. To
ensure that a ⊳ b if and only if ra ⋖ ℓb, we need to deal with endpoints sharing
position. For them, we place in ⋖ first the right endpoints (ordered arbitrarily) and
then the left endpoints (again ordered arbitrarily). For a sorted representation, this
ordering ⋖ can be computed in time O(e). For example in Figure 2.3 we get

ℓa ⋖ ℓb ⋖ ra ⋖ ℓc ⋖ rb ⋖ ℓd ⋖ rc ⋖ rd ⋖ ℓe ⋖ re.

The general outline of the algorithm is exactly the same as before. We process
the nodes of the PQ-tree from the bottom to the root and reorder them according to

1For the purpose of §3, we allow empty intervals with ℓv = rv.

EXTENDING PARTIAL REPRESENTATIONS OF INTERVAL GRAPHS 9

a

a′
b

b′

Fig. 2.4. The normal intervals belong to I1 and the dashed intervals belong to I2. If a ⊳ b,
then also a′ ⊳ b′.

the local constraints. Using the interval representation of ⊳, we can implement all
steps faster than before.

Informally speaking, the main trick is that we do not construct the digraph ex-
plicitly. Instead, we just work with sets of intervals corresponding to subtrees and
compare them with respect to ⊳ fast. When we process a node, its children corre-
spond to sets I1, . . . , Ik ⊆ E we already processed before. We test efficiently in time
O(k) whether we can reorder these k subtrees according to ⊳. If it is not possible,
the algorithm stops and outputs “no”. If the reordering succeeds, we put all the sets
together I = I1 ∪ I2 ∪ · · · ∪ Ik, and proceed further. We now describe everything in
details.

Comparing Subtrees. Let I1 and I2 be sets of intervals. We say I1 ⊳ I2 if there
exist a ∈ I1 and b ∈ I2 such that a ⊳ b. We want to show that using the interval
representation and some precomputation, we can test whether I1 ⊳ I2 in constant
time. The following lemma states that we just need to compare the “left-most”
interval of I1 with the “right-most” interval of I2.

Lemma 2.6. Suppose that a ⊳ b for a ∈ I1 and b ∈ I2. Then for every a′ ∈ I1
with ra′ ⋖ ra and every b′ ∈ I2 with ℓb ⋖ ℓb′ , it holds that a′ ⊳ b′.

Proof. From the definition, a ⊳ b if and only if ra ≤ ℓb. We have ra′ ⋖ra⋖ℓb⋖ℓb′ ,
and thus a′ ⊳ b′. See Figure 2.4.

Using this lemma, we just need to compare a having the left-most ra to b having
the right-most ℓb since I1 ⊳ I2 if and only if a ⊳ b.

To simplify the description, these special endpoints of intervals used for compar-
isons are called handles. More precisely, for a set of intervals I, we define a lower
handle and an upper handle:

LH(I) = min{rx | x ∈ I} and UH(I) = max{ℓx | x ∈ I}. (2.1)

We note that LH(I)⋖UH(I) if I is not a clique. Using handles, we can compare sets
of intervals fast. According to Lemma 2.6, we have:

I1 ⊳ I2 if and only if LH(I1)⋖UH(I2). (2.2)

For an example, see Figure 2.5.

I1

I2

I3

UH(I1) LH(I2) UH(I3) LH(I1) =UH(I2) LH(I3)

Fig. 2.5. The handles for sets I1, I2 and I3. We have UH(I1)⋖LH(I2)⋖UH(I3)⋖LH(I1)⋖
UH(I2) ⋖ LH(I3). According to (2.2), we get I1 ⊳ I2, I2 ⊳ I3, and I1 6⊳ I3; so the relation ⊳ on
sets of intervals is not necessarily transitive.

10 P. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, T. VYSKOČIL

So throughout the algorithm, we efficiently compute these handles for each pro-
cessed subtree, and we do not need to remember which specific intervals are contained
in the subtree. The handles serve in the same manner as the contraction operation of
digraphs in the proof of Proposition 2.4.

Reordering Nodes. We describe fast reordering of the children of a processed node
using the handles. Let I1, . . . , Ik be the sets of intervals corresponding to the subtrees
defined by the children of this node. Suppose that we know their handles and have
them ordered according to ⋖ as in Figure 2.5. Let ⋖̃ be the ordering ⋖ restricted to
the handles of I1, . . . , Ik.

A linear ordering < of the sets I1, . . . , Ik is called a topological sort if Ii ⊳ Ij
implies Ii < Ij for every i 6= j. An element Ij is minimal if there is no Ii such
that Ii ⊳ Ij . We use minimal elements to characterize all topological sorts. For
every topological sort 1 < · · · < k, the ℓ-th element restricted to {ℓ, ℓ + 1, . . . , k} is
minimal. We describe this classical characterization in details since it is important
for our algorithm.

Every topological sort can be constructed as follows. We repeatedly detect all
minimal element Ii and always pick one of them. (For different choices we get different
topological sorts). We stop when all elements are placed in the topological sort. If in
some step no minimal element exists, we also know that no topological sort exists.

The following lemma describes minimal elements in terms of the ordering ⋖̃:
Lemma 2.7. Let Ij be an element. It is a minimal element if and only if there

is no lower handle LH(Ii) for i 6= j such that LH(Ii)⋖̃UH(Ij).
Proof. According to (2.2), Ii ⊳ Ij if and only if LH(Ii)⋖̃UH(Ij). If there is no

such Ii, then Ij is minimal.
We can use this lemma to identify all minimal elements:
• If the ordering ⋖̃ starts with two lower handles LH(Ii) and LH(Ij), there
exists no minimal element. The reason is that all upper handles are larger,
and so both Ii and Ij are smaller than everything else; specifically, we get
Ii ⊳ Ij ⊳ Ii.

• If the first element of the ordering ⋖̃ is LH(Ii) then Ii is the unique candidate
for a minimal element. We just need to check whether there is some other
LH(Ij) smaller than UH(Ii), and if so, no minimal element exists.2

• If ⋖̃ starts with a consecutive group of upper handles, we have several candi-
dates for a minimal element. First, all Ii’s of these upper handles are minimal
elements. Second, if the lower handle following the group of upper handles
is LH(Ij), then Ij is a candidate for a minimal element. As above, Ij is
minimal if there is no other lower handle smaller than UH(Ij).

When constructing a topological sort, we remove the handles of the picked minimal
elements Ii from ⋖̃ and append Ii to the sort.

For a P-node, we just need to find any topological sort by repeated removing of
minimal elements in any way. For a Q-node, we test whether the current ordering
or its reversal are topological sorts. We iterate through each of the two prescribed
orderings, check whether each element is a minimal element, and then remove its
handles from ⋖̃. In both cases, if we find a correct topological sort, we use it reorder
the children of the node. Otherwise, the reordering is not possible and the algorithm
outputs “no”. We are able to do the reordering of the node in time O(k).

2This can be done in constant time if we remember in each moment the positions of the two
left-most lower handles in the ordering, and update this information after removing one of them
from ⋖̃.

EXTENDING PARTIAL REPRESENTATIONS OF INTERVAL GRAPHS 11

The Algorithm.We are ready to show that our algorithm allows to find a reordering
of the PQ-tree T compatible with an interval order ⊳ with a sorted representation in
time O(e):

Proof. [Proposition 2.5] We first deal with details of the implementation. We
precompute the handles for every set of intervals corresponding to a subtree of an
inner node of T . For each leaf, the handles are the endpoints. We process the tree
from the bottom to the root. Suppose that we have an inner node corresponding to
the set I of intervals and it has k children corresponding to I1, . . . , Ik for which we
already know their handles. Then we calculate the handles of I using

LH(I) = min
{
LH(Ii)

}
and UH(I) = max

{
UH(Ii)}. (2.3)

This can clearly be computed in time O(e), and we also note for each endpoint a list of
nodes for which it is a handle. Using these list, we can sweep the sorted representation
and compute all orderings ⋖̃ for all inner nodes of T , again in O(e) time.

Now we test for each inner node of T with its ordering ⋖̃ whether its subtrees
can be reordered according to ⊳. The algorithm is correct since it works in the same
way as in Proposition 2.4, based on Lemma 2.6 and 2.7.

Concerning the time complexity, we already discussed that we are able to compare
sets of intervals using handles in constant time, by Lemma 2.6. The precomputation
of all orderings ⋖̃ takes time O(e). We spend time O(k) in each node with k children.

Algorithm 2 Reordering a PQ-tree, with an interval order – Reorder(T,⊳)

Require: A PQ-tree T and an interval order ⊳ with a sorted representation.
Ensure: A reordering T ′ of T such that <T ′ extends ⊳ if it exists.

1: Calculate the handles for each individual leaf of T and initiate an empty list for
each endpoint.

2: Process the nodes of T from the bottom to the root:
3: for a processed node N do

4: Compute the handles of N using (2.3).
5: Add the node N to the lists of the two endpoints which are the handles of N .
6: end for

7: Iterate the sorted representation and construct all orderings ⋖̃ for all inner nodes
N .

8: Again process the nodes from the bottom to the root:
9: for a processed node N with the ordering ⋖̃ do

10: if the node N is a P-node then

11: Find any topological sort by removing minimal elements from ⋖̃.
12: If it exists, reorder N according to it, otherwise output “no”.
13: else if the node N is a Q-node then

14: Test whether the current ordering or its reversal are topological sorts.
15: Process the prescribed ordering from left to right, check for every element

whether it is minimal and remove its handles from ⋖̃.
16: If at least one ordering is correct, reorder the node, otherwise output “no”.
17: end if

18: end for

19: return A reordering T ′ of T .

12 P. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, T. VYSKOČIL

Thus the total time complexity of the algorithm is linear in the size of the tree, which
is O(e).

For a pseudocode, see Algorithm 2. We note that when the orderings ⋖̃ are
constructed for all inner nodes, we do not need to process the tree from the bottom
to the top. We can process them independently in parallel and a reordering T ′ of T
exists if and only if we succeed in reordering every inner node.

3. Extending Interval Graphs. In this section, we describe an algorithm solv-
ingRepExt(INT) in timeO(n+m) which uses Proposition 2.5 as a subroutine. Unlike
in §2, the interval representations consist of closed intervals. We allow the intervals
to share the endpoints and to have zero lengths. First, we describe a recognition
algorithm for interval graphs based on PQ-trees. Then we show how to modify this
approach to solve RepExt(INT), using the reordering algorithms from §2.

3.1. Recognition using PQ-trees. Recognition of interval graphs in linear
time was a long-standing open problem, first solved by Booth and Lueker [5] using
PQ-trees. Nowadays, there are three main approaches to linear-time recognition.
The first one finds a feasible ordering of the maximal cliques which can be done using
PQ-trees. The second one uses surprising properties of the lexicographic breadth-first
search, searches through the graph several times and constructs a representation if the
graph is an interval graph [7]. The third one [22] tests whether the graph contains one
of the minimal forbidden subgraphs, characterized by Lekherkerker and Boland [21].

We describe the PQ-tree approach in details. Recall the PQ-trees from §2.

Maximal Cliques. The PQ-tree approach is based on the following characterization
of interval graphs, due to Fulkerson and Gross [9]. A linear ordering of the maximal
cliques is called a consecutive ordering of the maximal cliques if for every vertex the
cliques containing this vertex appear consecutively in this ordering.

Lemma 3.1 (Fulkerson and Gross). A graph is an interval graph if and only if
there exists a consecutive ordering of the maximal cliques.

Consider an interval representation of an interval graph. For each maximal clique,
consider the intervals representing the vertices of this maximal clique and select a point
in their intersection. (We know that this intersection is non-empty because intervals
of the real line have the Helly property.) We call these points clique-points. For an
illustration, see Figure 3.1. The ordering of the clique-points from left to right gives
the ordering required by Lemma 3.1. Every vertex appears in consecutive maximal
cliques since it is represented by an interval. For a maximal clique a, we denote the
assigned clique-point by cp(a).

On the other hand, given a consecutive ordering of the maximal cliques, we place
clique-points in this ordering on the real line. Each vertex is represented by the
interval containing exactly the clique-points of the maximal cliques containing this
vertex. Since the ordering of maximal clique is consecutive, we obtain a valid interval
representation of the graph.

p

q

r

s

t

u

v pqr qrst tu tv

p
q

r
s

t
u v

Fig. 3.1. An interval graph and one of its representations with denoted clique-points.

EXTENDING PARTIAL REPRESENTATIONS OF INTERVAL GRAPHS 13

The following simple lemma is useful later in proving Proposition 3.5:
Lemma 3.2. Let < be a consecutive ordering of the maximal cliques and S be a

connected induced subgraph. Then the maximal cliques containing at least one vertex
of S appear consecutively in <.

Proof. Consider the interval representation given by < with some choice of clique-
points. The union U of the intervals of S is a closed intervals, so it is connected. For
every clique a, its clique-point cp(a) is placed on U if and only if a contains at least
one vertex from S. Therefore the set of maximal cliques containing at least one vertex
of S appears consecutively, with the remaining cliques on one side or the other.

Recognition Algorithm. Every chordal graph has at most O(n) maximal cliques
of total size O(n+m) and they can be found in linear time [30]. Since every interval
graph is chordal, we run this subroutine. If it fails, the input graph is not an interval
graph, and the recognition algorithm outputs “no”.

According to Lemma 3.1, we want to test whether a consecutive ordering of the
maximal cliques exists. We can reduce this to the consecutive ordering problem from
§2. The elements E are the maximal cliques of the graph. For each vertex v, we
introduce the restricting set Sv containing all the maximal cliques containing this
vertex v. Using PQ-trees, we can find a consecutive ordering of the maximal cliques
and recognize an interval graph in time O(n+m).

3.2. Modification for RepExt. We first sketch the algorithm. We construct a
PQ-tree T for the input graph independently of the partial representation. The partial
representation gives another restriction—an interval order ⊳ of the maximal cliques.
Using Proposition 2.5, we try to find a reordering T ′ of the PQ-tree T compatible
with ⊳ in time O(n+m). We are going to prove the following statement: The partial
representation is extendible if and only if the reordering subroutine succeeds.

Since our proof is constructive, we can use it to build a representationR extending
the partial representation R′. We place clique-points on the real line according to the
ordering <T ′ . We need to be more careful in this step. Since several intervals are
pre-drawn, we cannot change their representations, so the clique-points have to be
placed correctly. Using the clique-points, we construct the remaining intervals in a
similar manner as in Figure 3.1.

Now, we describe everything in detail.

Restricting Clique-points. Suppose that there exists a representation R extending
R′. Then R gives some ordering < of clique-points from left to right. We want to
show that pre-drawn intervals partially specify the positions of some clique-points and
give some necessary condition for <.

For a maximal clique a, let P (a) denote the set of all pre-drawn intervals that are
contained in a. Then P (a) restricts the possible position of cp(a) on only those points
x of the real line which are covered in R′ by exactly the pre-drawn intervals of P (a)
and no others. We denote by x(a) (resp. y(a)) the leftmost (resp. the rightmost)
point where the clique-point cp(a) can be placed, formally:

x(a) = inf
{
x | the clique-point cp(a) can be placed on x

}
,

y(a) = sup
{
x | the clique-point cp(a) can be placed on x

}
.

Notice that (x(a),y(a)) is a subinterval of
⋂

u∈P (a) R
′

u. For an example, see Fig-
ure 3.2.

For a clique-point cp(a), the structure of all x where cp(a) can be placed is simple.
The endpoints of the pre-drawn intervals split the real line into several open intervals

14 P. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, T. VYSKOČIL

x(a) y(a) x(b) y(b)

R′

p

R′

q R′

r

R′

s

R′

Fig. 3.2. The partial representation R′ consisting of four pre-drawn intervals. Clique-points
cp(a) and cp(b), having P (a) = {p} and P (b) = {r, s}, can be placed to the bold parts of the real
lines.

and each such interval is called a part. For example in Figure 3.2, we have from left to
right 9 parts separated by gray lines. A clique-point cp(a) can be placed only on those
parts which contain exactly the intervals of P (a) and no other pre-drawn intervals.
So the set of all points x where cp(a) can be placed is a union of parts.

Also notice that the definition of x(a) and y(a) does not imply that cp(a) can
be placed to all the points between x(a) and y(a). If a clique-point cannot be placed
at all, the given partial representation is clearly not extendible.

The Interval Order ⊳. For two maximal cliques a and b, we define a ⊳ b if y(a) ≤
x(b). The definition of ⊳ is quite natural since a ⊳ b implies that every extending
representation R has to place cp(a) to the left of cp(b). For example, the maximal
cliques a and b in Figure 3.2 satisfy a ⊳ b.

The goal of this section is to characterize extendible partial representations as
those representations having a consecutive orderings of maximal cliques which extends
⊳. Consequently for the algorithm for RepExt(INT), we just solve the reordering
problem of the PQ-tree for ⊳ from §2. To get the linear-time complexity, we cannot
use the reordering algorithm for general partial orderings; the example in Figure 1.2
can be easily generalized to get quadratically many comparable pairs in ⊳. Luckily,
we can apply the second reordering algorithm for interval orders:

Lemma 3.3. The relation ⊳ is an interval order.

Proof. The intervals representing ⊳ correspond to the maximal cliques of G. To
a maximal clique a, we assign an open interval Ia = (x(a),y(a)). The definition of
⊳ exactly states that a ⊳ b if and only if the intervals Ia and Ib are disjoint and Ia is
on the left of Ib.

The reader might be wondering why we represent interval graphs by closed in-
tervals, but interval orders by open intervals. The standard definition of interval
graph uses closed intervals. In every interval representation, its clique-points are
strictly ordered from left to right, with no two sharing their positions. So even when
y(a) = x(b), the clique-point cp(a) is always placed to the left of cp(b). Therefore
it is natural to represent the interval orders ⊳ by open intervals.

Lemma 3.4. For a sorted partial representation R′, we can compute the sorted
representation of ⊳ in time O(n+m).

Proof. We sweep the real line from left to right and compute the sorted represen-
tation of ⊳. As stated above, the interval graph has O(n) maximal cliques containing
in total O(n + m) vertices. We compute for every pre-drawn vertex the list of the
maximal cliques containing it, and for every maximal clique a the number |P (a)| of
pre-drawn vertices it contains. We initiate an empty list W , a counter i of pre-drawn
intervals covering the currently sweeped point.

When sweeping, there are two types of events. If we encounter a set of endpoints
of pre-drawn intervals sharing a point, we first process the left endpoints, then we

EXTENDING PARTIAL REPRESENTATIONS OF INTERVAL GRAPHS 15

update x and y for this point,3 and then we process the right endpoints. If we
sweep over a part, we just update x and y. In details, we do the following:

• If we encounter a left endpoint ℓu, then we increase the counter i. For every
clique a containing u, we increase its counter. If some clique a has all pre-
drawn intervals placed over ℓu, we add a into the list W of watched cliques.

• If we encounter a right endpoint ru, we decrease the counter of pre-drawn
intervals. We ignore all maximal cliques containing u till the end of the
procedure, and naturally we also remove them from W if there are any.

• The update of x and y is done for all cliques a ∈ W such that |P (a)| =
i. Notice that we currently sweep over exactly i pre-drawn intervals, and
therefore we have to sweep over exactly the pre-drawn intervals of P (a). We
update x(a) to the current point or the infimum of the current part if it is
not yet initialized. And we update y(a) to the supremum.

In the end, we output the computed x and y naturally sorted from left to right. If
for some maximal clique a, the value x(a) was not initialized, the clique-point cp(a)
cannot be placed and the procedure outputs “no”.

The procedure is clearly correct, and it remains to argue that it can be imple-
mented in linear time. We have the cliques in W partitioned according to |P (a)|.
When we sweep over i pre-drawn intervals, there is no a ∈ W such that |P (a)| > i,
and if a, b ∈ W such that |P (a)| = |P (b)| = i, then necessarily P (a) = P (b). But
then x(a) = x(b) and y(a) = y(b), so we can ignore b for the rest of the sweep
procedure and set the values x(b) and y(b) according to the clique a in the end.
Thus each update costs O(1). This implementation clearly runs in O(n+m).

The following proposition is the main structural result of this paper and it gener-
alizes the characterization of Fulkerson and Gross [9] to partially represented interval
graphs:

Proposition 3.5. A partial representation R′ is extendible if and only if there
exists a consecutive ordering of the maximal cliques extending the interval order ⊳.

Proof. A representation R extending R′ gives some consecutive ordering of the
maximal cliques. It is easy to observe that the constraints given by ⊳ are necessary, so
this consecutive ordering has to extend ⊳. It remains to show the other implication.

Suppose that we have a consecutive ordering < of the maximal cliques which
extends ⊳. We construct a representation R extending R′ as follows. We place the
clique-points according to < from left to right, always greedily as far to the left as
possible. Suppose we want to place a clique-point cp(a). Let cp(b) be the last placed
clique-point. Consider the infimum over all the points where the clique-point cp(a) can
be placed and that are to the right of the clique-point cp(b). If there is a single such
point on the right of cp(b) (equal to the infimum), we place cp(a) there. Otherwise
x(a) < y(a) and we place the clique-point cp(a) to the right of this infimum by an
appropriate epsilon, for example the length of the shortest part (see the definition of
⊳) divided by n.

We prove by contradiction that this greedy procedure cannot fail; see Figure 3.3.
Let cp(a) be the clique-point for which the procedure fails. Since cp(a) cannot be
placed, there are some clique-points placed on the right of y(a) (or possibly on y(a)
directly). Let cp(b) be the leftmost one of them. If x(b) ≥ y(a), we obtain a ⊳ b

which contradicts b < a since cp(b) was placed before cp(a). So, we know that

3We also need to update here since it might happen that the interval (x(a),y(a)) is empty for
some maximal clique a. This can happen only if some pre-drawn interval of P (a) is a singleton.

16 P. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, T. VYSKOČIL

y(a) cp(b)x(b) cp(c)

S

Fig. 3.3. An illustration of the proof: The positions of the clique-points cp(b) and cp(c), the
intervals of S are dashed.

x(b) < y(a). To get contradiction, we question why the clique-point cp(b) was not
placed on the left of y(a).

The clique-point cp(b) was not placed on the left of y(a) because all these posi-
tions were either blocked by some other previously placed clique-points, or they are
covered by some pre-drawn interval not in P (b). There is at least one clique-point
placed to the right of x(b) (otherwise we could place cp(b) to x(b) or right next to
it). Let cp(c) be the right-most clique-point placed between x(b) and cp(b). Every
point between cp(c) and y(a) has to be covered by a pre-drawn interval not in P (b).
Consider the set S of all the pre-drawn intervals not contained in P (b) intersecting
[c,y(a)]; depicted dashed in Figure 3.3.

Let C be the set of all maximal cliques containing at least one vertex from S.
Since S induces a connected subgraph, according to Lemma 3.2 all maximal cliques of
C appear consecutively in <. Now, a and c both belong to C, but b does not. Since
c < b, then a < b which contradicts our original assumption b < a.

This characterization has the following algorithmic reformulation:
Corollary 3.6. A partial representation R′ is extendible if and only if a PQ-

tree T represents all consecutive orderings of the maximal cliques and the problem
Reorder(T,⊳) can be solved.

The Algorithm. We solve the problem RepExt(INT) in the following five steps.
Only the first three steps are necessary to answer the decision problem without con-
structing a representation.

1. Independently of the partial representation, find all maximal cliques and con-
struct a PQ-tree T representing all consecutive orderings of the maximal
cliques.

2. Construct the sorted representation of the interval order ⊳ by Lemma 3.4.

3. Using Proposition 2.5, test whether there is a reordering T ′ of the PQ-tree T
according to ⊳.

4. Place the clique-points from left to right according to <T ′ on the real line,
greedily as far to the left as possible.

5. Using these clique-points, construct a representation R extending R′.
Step 1 is the original recognition algorithm. In Step 2, we compute splitting of

the real line into parts and construct a sorted representation of ⊳. In Step 3, we
apply the algorithm of Proposition 2.5. Step 4 is the greedy procedure from the
proof of Proposition 3.5. In Step 5, we construct intervals representing the vertices of
G \G′ as in Figure 3.1; we construct each such interval on top of the corresponding
clique-points. See Algorithm 3 for a pseudocode.

Now we are ready to prove the main result of this paper, Theorem 1.1 which
states that the problem RepExt(INT) can be solved in time O(n+m):

Proof. [Theorem 1.1] The correctness of the algorithm is implied by Corollary 3.6.
Concerning the complexity, the total size of all maximal cliques is at most O(n+m)

EXTENDING PARTIAL REPRESENTATIONS OF INTERVAL GRAPHS 17

Algorithm 3 Extending Interval Graphs – RepExt(INT)

Require: An interval graph G and a partial representation R′.
Ensure: A representation R extending R′ if it exists.

1: Compute maximal cliques and construct a PQ-tree.
2: Sweep R′ from left to right and construct the sorted representation of ⊳.
3: Use Algorithm 2 to reorder the PQ-tree according ⊳.
4: If any of these steps fails, no representation exists and output “no”.

5: Place the clique-points according to the ordering <T ′ from left to right:
6: for a clique-point cp(a) placed after cp(b) do
7: Compute the infimum of all points of the real line on the right of cp(b) where

cp(a) can be placed.
8: If there is single such point, place cp(a) there.
9: Otherwise place cp(a) by ε on the right of the infimum, where ε is the size of

the smallest part divided by n.
10: end for

11: Construct R for the remaining intervals on top of the placed clique-points.

12: return A representation R extending R′.

and the PQ-tree can be constructed in this time. Using Lemma 3.4, we can construct
the sorted representation of ⊳ in time O(n +m). According to Proposition 2.5, the
PQ-tree can be reordered according to ⊳ in time O(n+m). Finally, a representation
R extending R′ can be constructed, if necessary, in time O(n+m).

4. Simultaneous Representations of Interval Graphs. The input of the
simultaneous representations problem gives several graphs G1, . . . , Gk having a com-
mon intersection I. The task is to construct their representations R1, . . . ,Rk which
represent the vertices of I the same; see Figure 4.1. Formally it is the following
decision problem:

Problem: Simultaneous representations – SimRep(C)
Input: Graphs G1, . . . , Gk such that Gi ∩Gj = I for all i 6= j.

Question: Do there exist representations R1, . . . ,Rk such that
Ri =

{
Ri

u | u ∈ V (Gi)
}

represents Gi and for every
u ∈ I we have Ri

u = Rj
u for every i and j.

a
b

c d
G1

G2

G3

I

a b

c

d

R1

a b

c

d

R2

a b

c

d

R3

Fig. 4.1. An example of three interval graphs with simultaneous representations assigning the
same intervals to I = {a, b, c, d}.

18 P. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, T. VYSKOČIL

Jampani et al. [14] show that for permutation and comparability graphs the corre-
sponding problems can be solved in polynomial time for any number of graphs, and for
chordal graphs the problem is polynomially solvable for k = 2 and NP-complete when
k is a part of the input. For two interval graphs, the paper [13] gives an O(n2 logn)
algorithm which Bläsius and Rutter [4] improve to O(n +m). For circle graphs, the
problem is NP-complete when k is a part of the input [6] and open even for k = 2.

Relation to RepExt. For many classes, the simultaneous representations problem
is closely related to the partial representation extension problem. A negative example
is the class of chordal graphs, denoted by CHOR. The problem SimRep(CHOR) is
polynomially solvable for k = 2 [14], but RepExt(CHOR) is NP-complete [17]. On
the other hand, we get the following relations for interval graphs.

We sketch an easy reduction of RepExt(INT) to SimRep(INT) for k = 2 of
Bläsius and Rutter, see [4, Section 4.1]. As the graph G1, we put the input graph
G, and as I we put the pre-drawn vertices V (G′). Now consider R′, add a path
going from left to right consisting of short intervals. This represents some interval
graph which we put as G2. The key is that G2 fixes any representation of I to be
topologically equivalent to R′. So the question whether G1 can be simultaneously
represented with G2 is equivalent to RepExt(INT). The linear-time algorithm for
RepExt(INT) of Bläsius and Rutter [4] is based on this reduction.

The other relation is that if I is small enough, we can use the partial representation
extension algorithm to test all possible representations of I. As a straightforward
corollary of Theorem 1.1, the problem SimRep(INT) is FPT in the size of I:

Corollary 4.1. The problem SimRep(INT) can be solved in O((n + m)(2ℓ)!)
where ℓ = |I|, n = |V (G1)|+ · · ·+ |V (Gk)|, and m = |E(G1)|+ · · ·+ |E(Gk)|.

Proof. There are (2ℓ)! different representations of I, given by all possible or-
derings of the 2ℓ endpoints. (Indeed, many of these orderings do not give a correct
representation of I.) For each representation R′ of I, we test whether it is extendible
to representations R1, . . . ,Rk. This can be done by running k instances of the algo-
rithm of Theorem 1.1 which takes the total time O(n + m). Since we need to test
(2ℓ)! possible representations, the total time is O((n +m)(2ℓ)!).

For the correctness, if the algorithm succeeds in constructing R1, . . . ,Rk, the
simultaneous representations problem is solvable. On the other hand, if the simulta-
neous representations problem is solvable, there exists some common representation
of I and we test a representation R′ which is topologically equivalent to it. Since
the solvability of partial representation extension depends only on the ordering of the
endpoints, then the representation R′ is extendible to R1, . . . ,Rk.

We note that the same idea works for several other graph classes. For instance,
Chaplick et al. [6] give the same FPT algorithm for simultaneous representations of
circle graphs based on partial representation extension. Further, they prove that the
simulateneous representations problem is NP-complete when k is a part of the input.
In the case of interval graphs, the complexity of simultaneous representations is open
when k is a part of the input.

5. An Open Problem. We conclude the paper with currently the main open
problem. Circular-arc graphs (CIRCULAR-ARC) are intersection graphs of arcs of a
circle; see [31].

Problem 5.1. Can the problem RepExt(CIRCULAR-ARC) be solved in polyno-
mial time?

Solving this problem might lead to a better understanding of the class itself.
All known polynomial-time recognition algorithms are quite complex and construct

EXTENDING PARTIAL REPRESENTATIONS OF INTERVAL GRAPHS 19

specific types of representations called canonical representations ; see [12, 24]. To solve
RepExt(CIRCULAR-ARC), the structure of all representations needs to be better
understood which could lead to a major breakthrough concerning this and other
classes.

Acknowledgements. We are very thankful to Pavol Hell for suggesting the PQ-
trees approach, and to Martin Balko and Jǐŕı Fiala for comments concerning writing.

REFERENCES

[1] P. Angelini, G. D. Battista, F. Frati, V. Jeĺınek, J. Kratochv́ıl, M. Patrignani, and
I. Rutter, Testing planarity of partially embedded graphs, in Proceedings of the 21st
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’10, 2010, pp. 1030–1043.

[2] M. Balko, P. Klav́ık, and Y. Otachi, Bounded representations of interval and proper interval
graphs, in Algorithms and Computation, vol. 8283 of LNCS, Springer, 2013, pp. 535–546.

[3] S. Benzer, On the topology of the genetic fine structure, Proc. Nat. Acad. Sci. U.S.A., 45
(1959), pp. 1607–1620.

[4] T. Bläsius and I. Rutter, Simultaneous PQ-ordering with applications to constrained em-
bedding problems, in Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’13, 2013, pp. 1030–1043.

[5] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs,
and planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[6] S. Chaplick, R. Fulek, and P. Klav́ık, Extending partial representations of circle graphs, in
Graph Drawing, vol. 8242 of LNCS, Springer, 2013, pp. 131–142.

[7] D. G. Corneil, S. Olariu, and L. Stewart, The LBFS structure and recognition of interval
graphs, SIAM Journal on Discrete Mathematics, 23 (2009), pp. 1905–1953.

[8] P.C. Fishburn, Interval orders and interval graphs: a study of partially ordered sets, Wiley,
1985.

[9] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs., Pac. J. Math.,
15 (1965), pp. 835–855.

[10] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, North-Holland Publishing
Co., 2004.

[11] G. Hajós, Über eine Art von Graphen, Internationale Mathematische Nachrichten, 11 (1957),
p. 65.

[12] W. Hsu, $o(m.n)$ algorithms for the recognition and isomorphism problems on circular-arc
graphs, SIAM J. Comput., 24 (1995), pp. 411–439.

[13] K. R. Jampani and A. Lubiw, Simultaneous interval graphs, in Algorithms and Computation,
vol. 6506 of Lecture Notes in Computer Science, 2010, pp. 206–217.

[14] , The simultaneous representation problem for chordal, comparability and permutation
graphs, Journal of Graph Algortihms and Applications, 16 (2012), pp. 283–315.

[15] P. Klav́ık, J. Kratochv́ıl, T. Krawczyk, and B. Walczak, Extending partial representa-
tions of function graphs and permutation graphs, in Algorithms – ESA 2012, vol. 7501 of
Lecture Notes in Computer Science, 2012, pp. 671–682.

[16] P. Klav́ık, J. Kratochv́ıl, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and T. Vyskočil,
Extending partial representations of proper and unit interval graphs, Accepted to SWAT
2014, (2014).

[17] P. Klav́ık, J. Kratochv́ıl, Y. Otachi, and T. Saitoh, Extending partial representations
of subclasses of chordal graphs, in Algorithms and Computation – ISAAC, vol. 7676 of
Lecture Notes in Computer Science, 2012, pp. 444–454.

[18] P. Klav́ık, J. Kratochv́ıl, and T. Vyskočil, Extending partial representations of interval
graphs, in Theory and Applications of Models of Computation - 8th Annual Conference,
TAMC 2011, vol. 6648 of Lecture Notes in Computer Science, 2011, pp. 276–285.

[19] P. Klav́ık and M. Saumell, Minimal obstructions for partial representation extension of
interval graphs, In preparation, (2014).

[20] J. Kobler, S. Kuhnert, and O. Watanabe, Interval graph representation with given interval
and intersection lengths, in Algorithms and Computation, vol. 7676 of Lecture Notes in
Computer Science, 2012, pp. 517–526.

[21] C. Lekkerkerker and D. Boland, Representation of nite graphs by a set of intervals on the
real line, Fund. Math., 51 (1962), pp. 45–64.

[22] N. Lindzey and R. M. McConnell, On finding tucker submatrices and lekkerkerker-boland

20 P. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, T. VYSKOČIL

subgraphs, in Graph-Theoretic Concepts in Computer Science, vol. 8165 of Lecture Notes
in Computer Science, 2013, pp. 345–357.

[23] E. S. Marczewski, Sur deux propriétés des classes d’ensembles, Fund. Math., 33 (1945),
pp. 303–307.

[24] R. M. McConnell, Linear-time recognition of circular-arc graphs, Algorithmica, 37 (2003),
pp. 93–147.

[25] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM Monographs
on Discrete Mathematics and Applications, 1999.

[26] M. Patrignani, On extending a partial straight-line drawing, in Lecture Notes in Computer
Science, vol. 3843, 2006, pp. 380–385.

[27] I. Pe’er and R. Shamir, Realizing interval graphs with size and distance constraints, SIAM
J. Discret. Math., 10 (1997), pp. 662–687.

[28] F. S. Roberts, Indifference graphs, Proof techniques in graph theory, (1969), pp. 139–146.
[29] , Discrete Mathematical Models, with Applications to Social, Biological, and Environ-

mental Problems, Prentice-Hall, Englewood Cliffs, 1976.
[30] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on

graphs, SIAM Journal on Computing, 5 (1976), pp. 266–283.
[31] J. P. Spinrad, Efficient Graph Representations, Field Institute Monographs, 2003.
[32] K. E. Stoffers, Scheduling of traffic lights–a new approach, Transportation Research, 2 (1968),

pp. 199–234.
[33] W. T. Trotter, New perspectives on interval orders and interval graphs, in in Surveys in

Combinatorics, Cambridge Univ. Press, 1997, pp. 237–286.

