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Abstract We study connectivity relations among points, where the precise location

of each input point lies in a region of uncertainty. We distinguish two fundamental sce-

narios under which uncertainty arises. In the favorable Best-Case Uncertainty (BU),

each input point can be chosen from a given set to yield the best possible objective

value. In the unfavorable Worst-Case Uncertainty (WU), the input set has worst pos-

sible objective value among all possible point locations, which are uncertain due, for

example, to imprecise data.

We consider these notions of uncertainty for the bottleneck spanning tree problem,

giving rise to the following Best-Case Connectivity with Uncertainty (BCU) problem:

Given a family of geometric regions, choose one point per region, such that the longest

edge length of an associated geometric spanning tree is minimized. We show that this

problem is NP-hard even for very simple scenarios in which the regions are line segments

or squares. On the other hand, we give an exact solution for the case in which there

are n + k regions, where k of the regions are line segments and n of the regions are

fixed points. We then give approximation algorithms for cases where the regions are

either all line segments or all unit discs. We also provide approximation methods for

the corresponding Worst-Case Connectivity with Uncertainty (WCU) problem: Given

a set of uncertainty regions, find the minimal distance r such that for any choice of

points, one per region, there is a spanning tree among the points with edge length at

most r.

A preliminary extended abstract summarizing parts of this paper appears in [5].
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1 Introduction

Finding an optimally connected substructure in a network is one of the fundamental

combinatorial optimization problems in network design. The standard problem of mini-

mizing the total edge cost in the network amounts to finding a minimum spanning tree,

which can be computed by straightforward greedy methods. A closely related problem

that has gained in importance in the context of wireless networking is to consider the

“bottleneck” problem of minimizing the length of the longest edge. A solution to this

problem allows one to choose a point set of lowest power, where equi-power routers are

to be placed at nodes, such that a message can be relayed between any two nodes. How-

ever, the situation changes when the locations of devices becomes part of the problem:

How should each location be chosen from a given neighborhood, such that the solution

to the resulting bottleneck connectivity problem is minimized? The neighborhoods can

be the result of imprecise input data, or simply arise from a geometric range of possible

locations; depending on the scenario, the choice of locations can be optimistic (i.e., best

case) or adversarial (i.e., worst case).

Let U , |U | = n, denote a family of uncertainty regions, e.g., a family of disks,

squares, line segments or pairs of points. For each uncertainty region ui ∈ U , 1 ≤ i ≤ n,

one point pi is to be chosen inside this region ui. Let P be the set of points chosen. For

a value α ∈ R, we define the connectivity graph Gα = (V,E) of P with respect to α as

follows: V = P and E = {(pi, pj) ∈ P ×P, ‖pi− pj‖2 ≤ 2α}. Thus, the graph connects

a pair of points with an edge whenever closed disks of radius α centered at these points

intersect. We can now formally define the main problem, Best-Case Connectivity with

Uncertainty (BCU), that we study in this paper.

The BCU Problem. Given a set U = {u1, . . . , un} of n uncertainty regions, find the

minimum value α for which there exists a choice of point set P = {p1, . . . , pn}, pi ∈ ui,

such that the connectivity graph Gα of P is connected.

We further study a closely related problem, Worst-Case Connectivity with Uncertainty

(WCU):

The WCU Problem. Given a set U = {u1, . . . , un} of n uncertainty regions, find

the minimum value α, such that for any choice of point set P = {p1, . . . , pn}, pi ∈ ui,

the connectivity graph Gα of P is connected.

1.1 Related Work.

If the n uncertainty regions are points (in other words, there is no uncertainty), then

finding the minimum α for which the connectivity graph is connected amounts to find-

ing a minimum Euclidean Bottleneck Spanning Tree (MBST) on the points. Because

minimum spanning trees (MSTs) are also MBSTs, a solution can be found in time

O(n log n).

Closely related to our BCU and WCU problems is the well-studied family of range

assignment problems. In these problems, the disks centered at the points can be of

different radius, and the goal is to minimize the total power consumption under the

constraint that the network satisfies certain structural properties like connectivity,

strong connectivity, or a particular broadcast property. Most of the work on these
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problems has considered point sets rather than uncertainty regions (see [2,6,16,19,20]).

Thus our work provides an early exploration of connectivity problems, arising in the

context of wireless networks, for points lying in nontrivial uncertainty regions.

The minimum spanning tree problem (MST) has been studied in the setting of

uncertainty regions. Yang et al. [29] showed that the problem of computing a spanning

tree that minimizes the total edge length is NP-hard if the uncertainty regions are non-

overlapping unit disks or rectangles. They also give a polynomial-time approximation

scheme (PTAS) for the case in which the uncertainty regions are unit disks; this is

notably different from our problem, which does not admit a PTAS, unless P=NP.

Further approximation results for minimization and maximization versions of the MST

with uncertainty were provided by Dorrigiv et al. [11]. Another optimization problem

with neighborhoods that have received attention is the Traveling Salesman Problem;

e.g. see [4,7,12,14,18,24,25]. The bottleneck version of TSP is known to be NP-hard

[17, p. 212]. A 2-approximation has been known since 1984 [27].

Other work on geometric optimization with uncertainty regions has been framed

using the notions of imprecise data or neighborhoods. For studies of shortest paths

with uncertainty regions see [9,10,26]. For a more general treatment and discussion of

problems such as convex hulls, see Löffler and van Kreveld [22], who also considered

the size of bounding boxs, diameters and related problems in [23]. A discrete variant

in d-dimensional space was considered by Ding and Xu [8], who studied the problem

of picking one representative each from a family of finite sets, such that the resulting

set has a small enclosing hypersphere. Fiala et al. [15] considered “systems of dis-

tant representatives”, which amounts to maximizing the minimum distance between

selected points. This is related to but different from our work in this paper: we aim for

minimizing the maximum length in a spanning tree.

Another angle is to consider topological changes under uncertainty: when does the

structure of an optimal solution change when the input data is perturbed? Abellanas

et al. [1] studied this structure with respect to the largest perturbation of a set of

planar points that keeps the Delaunay triangulation unchanged. Conversely, problems

of determining a necessary perturbation in order to achieve a desired change have also

been studied; e.g., see Arkin et al.[3] for deciding whether a given set of neighborhoods

has a convex stabber, which amounts to deciding whether a given set can be moved

into a convex position. For further discussions of related problems, see the excellent

exposition by Löffler and van Kreveld [22].

1.2 Our Main Results.

After showing that several variants of BCU are NP-hard (some even to approximate),

we give exact and approximation algorithms for certain variants. Given the geometric

nature of our problems, we use the Euclidean measure of distance. Our main results

are as follows:

1. We show that BCU is NP-hard even in the simple cases in which the uncertainty

regions are point pairs and vertical line segments, respectively. Our proof technique

also works when the regions are all squares. We further show that it is NP-hard to

approximate BCU within a factor less than
√
5/2 when the uncertainty regions are

pairs of points. See Section 2.
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2. We present an exact algorithm for BCU when the instance consists of n fixed points

and k line segments. The algorithm is polynomial in n for constant k. The output

of this algorithm is correct up to precision δ, δ > 0. See Section 3.

3. For uncertainty regions that are all unit disks, we give a simple constant additive

approximation algorithm for BCU. A slight modification of this algorithm gives a

constant multiplicative approximation in case the disks are non-overlapping. See

Section 4.

4. We provide approximation results for the WCU. In particular, we establish methods

with additive and multiplicative performance guarantees. See Section 5.

2 Hardness Results for BCU

We prove hardness results for three variants of the BCU problem. Our first main result

shows NP-hardness when the uncertainty regions are point pairs (Theorem 1). Inter-

estingly, this result also implies a hardness of approximation result for the case of point

pairs (Theorem 2), and NP-hardness when the uncertainty regions are line segments

(Theorem 3). Our second main result shows NP-hardness when the uncertainty regions

are unit squares (Theorem 4). We assume, in all cases, that the uncertainty regions are

non-overlapping. All of our reductions are from Planar 3-SAT – in other words 3-SAT

with the added condition that the input formula can be represented as a planar graph.

2.1 BCU when uncertainty regions are point pairs.

We consider the BCU problem for uncertainty regions of vertically aligned pairs of

points, unit distance apart with integer coordinates. We study the decision version of

the BCU problem for α = 1, i.e., we want to decide if Gα = G1 is connected for some

choice of points, one for each uncertainty pair.

Theorem 1 It is NP-hard to find an exact solution to the BCU problem for the case

in which the regions of uncertainty are point pairs that have a vertical distance of length

one.

Proof We show this problem is NP-hard, using a reduction from the following for-

mulation of Planar 3-SAT. Let Φ = (X,C) be an instance of 3-SAT, with variables

X = {x1, . . . , xn} and clauses C = {c1, . . . , cm}. Each clause consists of exactly three

literals, each a variable or its negation. For such an instance, we define a formula graph

H(Φ) as follows: H(Φ) = (V,E) with vertex set V = X ∪C and edge set E = E1 ∪E2,

such that E1 = {(xi, xi+1)|i < n}, and E2 = {(xi, cj)|cj contains xi or xi}. A Planar

3-SAT instance is one whose corresponding formula graph H(Φ) is planar. In the Pla-

nar 3-SAT problem, our goal is to determine whether a given Planar 3-SAT instance

Φ is satisfiable. This problem is known to be NP-complete [17,21].

Our reduction makes use of the fact that, given a Planar 3-SAT instance Φ with

formula graph H(Φ), this graph has a planar layout on an O(n + m) × O(n + m)

grid [13,28]. Further, in this layout, the vertices (variables and clauses) can be drawn

as horizontal line segments and edges as vertical line segments. Henceforth, we equate

the formula graph H(Φ) with the planar layout we have described above.
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To reduce from Planar 3-SAT to BCU when the uncertainty regions are pairs of

points, we design various gadgets. Specifically, given a layout of a Planar 3-SAT in-

stance using line segments as described above, we replace each horizontal line segment

corresponding to a variable by a variable gadget, each horizontal line segment corre-

sponding to a clause by a clause gadget, and each vertical line segment corresponding

to an edge in E1 by a variable-variable connector and each one corresponding to an

edge in E2 by a variable-clause connector. Below we will argue that there exists a choice

of point in each of these uncertainty pairs such that the connectivity graph for α = 1,

G1, is connected if and only if the corresponding Planar 3-SAT instance is satisfiable.

Overview of the gadgets

We present the main ideas behind the clause gadgets, variable gadgets, and connector

gadgets mentioned above.

A clause gadget is designed so that it contains three “gates”, one for each of the

literals in the clause. The gate for each literal is either on the top or the bottom of

the clause gadget, depending on whether the literal appears above or below the clause

in the planar grid layout of H(Φ). For the connectivity subgraph corresponding to the

clause to be connected to the rest of the graph in G1, at least one of these three gates

must be open. This corresponds to setting the literal to True in the clause. This, in

turn, ensures that the clause is satisfied.

The role of a variable gadget is to choose and propagate a truth value for the

variable to all the clauses containing it in a consistent manner. The variable gadget

contains three types of constructs. Type I and type II constructs help link the variable

to all the clauses that contain it and are either above or below it. We have one such

type I-type II pair for every occurrence of the variable in a clause. A construct of type

III is used to ensure that the subgraph corresponding to the variable gadget can be

connected if and only if the truth assignment to the variable in all the copies of type

I-type II pairs are the same. Our construction also prevents subgraphs arising from

parts of a variable gadget from being connected through other parts of G1.

The variable and clause gadgets are linked to each other using two types of con-

nectors. A clause-variable connector replaces an edge of H(Φ) between a clause vertex

and a variable vertex in such a way that points chosen in the corresponding gadgets

can be connected through it if and only if the truth value of the variable is consistent

with its occurrence (as a literal) in the clause. A variable-variable connector replaces

an edge of H(Φ) between two variable vertices. Points in one variable gadget can be

connected to those in another variable gadget via points chosen in the variable-variable

connector irrespective of the choice of truth values for each variable gadget.

Having given the overview of the reduction, we now provide a detailed proof by

first describing the different gadgets in detail and then arguing the correctness of our

reduction.

The clause gadget

Figure 1 depicts a schema that describes the functioning of a clause gadget. Each gate

in the schema represents the entry of a connection to a literal, with an open gate

representing a contribution of True. If all gates are closed, then, as suggested by the

schema, it is possible that the connectivity graph of the clause gadget is connected,

but it is isolated from the rest of the graph. Also, as the schema suggests, if gates to
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two literals xi and xj are both open, then connections are created between the clause

gadget and the gadgets for the literals, but no connection via the clause gadget is made

between the variable gadgets.

bb bb bb

b b b

Fig. 1 Schema of the clause gadget. When a gray gate is open the entire clause gadget can
be connected to the rest of the graph.

The shape of the clause gadget can be adapted to meet the requirements of the

clause vertex it represents in the planar layout ofH(Φ) (e.g., the length of the horizontal

line segment representing a particular clause gadget in the planar layout of H(Φ) by

line segments; however many of the horizontal segments representing literals contained

in the clause lie below the segment representing the clause and however many above).

Figure 2 shows an example of a clause gadget where, in the representation of H(Φ), the

clause was represented by a horizontal segment connected to one horizontal variable

segment lying above, and two horizontal variable segments lying below the segment for

the clause. The clause gadget is flexible, as its size can be adjusted by adding more

uncertainty pairs to the sequence between two connections to the variable gadgets, and

to the sequence between connections to variable gadgets and the left and right sides of

the gadget. Furthermore, in a straightforward manner we can modify the clause gadget

to move the connection to a particular variable gadget vertically by one unit without

moving the entire clause gadget; e.g., the uncertainty pairs in the gray box in Figure 2

can be moved up by one unit.

Consider the three uncertainty pairs with white and gray points in Figure 2. If all

three of the white points are chosen, then it is easy to see that, while points can be

chosen so that the connectivity subgraph arising from pairs in the clause gadget can be

made connected, no such subgraph can be connected to the rest of G1 for any choice of

points in the remaining uncertainty pairs. If a gray point is chosen from a white-gray

pair, then the dashed edges shown incident to the pair do not belong to G1.

Each of the three white-gray uncertainty pairs is connected to a variable gadget

by a sequence of vertical uncertainty pairs. The choice of a gray point, shown in the

schema as an open gate, is intended to mean that the literal (a variable or its negation)

connecting to this open gate contributes a True to the clause. Note that the clause

gadget never connects two variable gadgets.

Next, we outline how variable gadgets transmit truth values and how consistency

of truth assignments is assured.
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Fig. 2 An example clause gadget. As shown, aside from vertical sequences of uncertainty pairs
leading to variable gadgets, there are no other uncertainty pairs in the vicinity of the clause
gadget. The graph G1 can be connected only if at least one of the gray points is chosen; that
is, the attached literal is set to True. The gate inside the gray box can be moved up one unit
to meet variable-clause connectors at different heights, if necessary.

The variable gadget

An example of the variable gadget is shown in Figure 3. Let the uncertainty pair at

the extreme left of the variable gadget be the reference pair for this variable. We adopt

the interpretation that the choice of black point in the reference pair means a setting

of True to the variable and the choice of gray point means a setting of False to the

variable.

In order for the constructs of type I , II , and III to function as described above,

in the Overview of the gadgets, we require that the following two properties hold: (1)

for all variable gadgets, G1 is connected only if the subgraph of G1 restricted to points

chosen in a given variable gadget is connected; and, (2) the subgraph of G1 restricted

to points chosen in a variable gadget can be connected if and only if the truth values in

type I and II constructs are consistent with the reference pair (as these are the parts

of the gadget that propagate truth values to clause gadgets). Together, these properties

ensure that for G1 to be connected, the points chosen from variable gadgets must be

internally connected and, in turn, each variable gadget must propagate consistent truth

values to the clause gadgets that are connected to it via connector gadgets. We prove

these two properties now.

Recall that the clause gadget connects to the literals that are satisfied (only) by

opening gates, and that no two open gates are connected through the clause gadget.
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Fig. 3 An example variable gadget.

As such, there cannot be a path in G1 joining points in two (possibly indistinct)

variable gadgets through points in a clause gadget. In addition, the edges E1 join the

variable vertices (horizontal lines) in H(Φ) by a path, not a cycle. Therefore, G1 can be

connected only if the subgraph of G1 corresponding to points chosen from any variable

gadget is connected. This shows the first property.

The choice of any black point in a construct of type I or II forces the choice of

black points in this as well as in all the other constructs of type I and II inside a

variable gadget. The same is true for gray points. In Figure 3, if the gray point is

chosen in the reference pair, gray arrows show the implications that force the choice of

gray points in all the type I and II constructs. The function of the type III construct

in the variable gadget is to allow this propagation. Thus, the second property holds;

the variable gadget can be internally connected if and only if the truth value of the

reference pair agrees with the truth value in type I and type II constructs.

We describe how the type I and type II constructs are used to connect to clause

gadgets above and below the variable gadget. Suppose that the variable associated

with this gadget is x. If the literal x appears in a clause gadget embedded above

the variable gadget, then the connection from the corresponding clause gadget to this

variable gadget (to be described in the next section) is made to the top of a construct

of type I . In order to connect the variable gadget to the clause gadget, a black point

has to be chosen in the reference pair. If the literal x appears in a clause above the

variable gadget, then the connection is made to the top of a construct of type II and

a gray point is chosen in a reference pair. Similarly, if the literal x appears in a clause

embedded below the variable gadget, the connection from the clause gadget is made to

the bottom of a type II construct and the black point is chosen in the reference pair. If

the literal x appears in a clause embedded below the variable gadget, the connection is

made to the bottom of a type I construct and the gray point is chosen in the reference

pair.

We replace horizontal line segments corresponding to variables in the embedding

of the Planar 3-SAT instance by variable gadgets. Note that the width of type I and

II constructs can be adjusted by adding horizontally arranged uncertainty pairs. The

number of occurrences of constructs of type I , II and III depends on the number of

clauses containing this variable.



9

Linking the gadgets

We now explain how to represent the edges of the planar graph H(Φ), corresponding to

an instance Φ of Planar 3-SAT. In the embedding we are considering, edges are repre-

sented by vertical line segments. They represent two kinds of connections: (1) between

a pair of variables, and (2) between a clause and a variable in that clause. Figure 4

shows vertical constructs of uncertainty pairs that (right) connect pairs of variable

gadgets and (left) clause and variable gadgets. We observe the following properties of

the two connectors: In a clause-variable connector, the choice of black point in a clause

gadget above a variable gadget implies the choice of black point in the variable gadget.

The choice of gray point in the clause gadget below a variable gadget forces the choice

of gray point in the variable gadget. In the variable-variable connector, for any choice

of points in the two vertically extreme uncertainty pairs, there is a path using points

in the shown uncertainty pairs that connects the two extreme uncertainty pairs. The

white uncertainty pair allows this connection. The n variable gadgets are connected

using n− 1 variable-variable connectors that replace E1 in H(Φ).

b

b

b

b

b

b

b

b

b

b

b

b

b

bc

⊕ ⊕

⊕

⊕⊕⊕

⊕

⊕

b

b

b

bc

⊗ ⊗

⊗

⊗⊗⊗

⊗

⊗

Fig. 4 (Left): A connector between clause and variable gadgets. (Right): A connector between
variable gadgets.

Note that the parities of the (integer) heights of the tops of type I and type II

constructs in the variable gadget differ (see Figure 3); we must ensure that clause

gadgets have the flexibility to accommodate this. Indeed, this is the case; consider

again Figure 2. If necessary, gate-constructs can be shifted vertically by one unit to

allow such connections. For example, the gate on the top of the gadget in Figure 2 can

be shifted by moving all the uncertainty pairs in the gray box up by one unit. This

change preserves the properties of the clause gadget given earlier.
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Correctness of the reduction

In a line segment embedding of the planar graph H(Φ) corresponding to a Planar 3-

SAT instance Φ, nodes (clauses and variables) are horizontal line segments and edges

are vertical line segments. We have presented clause and variable gadgets to replace

horizontal line segments and connectors to replace vertical line segments. We argue that

the connectivity graph G1 is connected for some choice of points in these uncertainty

pairs if and only if the Planar 3-SAT instance Φ is satisfiable.

If the Planar 3-SAT instance Φ is satisfiable, let us consider the assignment of truth

values to the variables of the instance. When a variable is set to True, we choose the

black point in the reference pair of the corresponding variable gadget. When it is set

to False, we choose the gray point. Let P be the set of points chosen and consider the

graph G1 of P . In G1, points selected in variable gadgets are all internally connected

and connected to each other via the variable-variable connectors. As all the clauses

are satisfied by the truth assignment, each clause is connected to one or more variable

gadgets through edge-disjoint paths. Therefore the graph G1 is connected.

Suppose that there exists a choice of points in U such that its corresponding con-

nectivity graph G1 is connected. In G1, points in each clause gadget are connected to

points in one or more variable gadgets through edge-disjoint paths. Therefore, points

in two different variable gadgets can never be connected via a path that includes points

chosen from a clause gadget. This implies that if G1 is connected, then all the inter-

nally connected variable gadgets are connected to each other via the path in H(Φ)

that is replaced by the n− 1 variable-variable connectors. A truth value is assigned to

each variable solely depending on whether the black or gray point is chosen inside the

variable gadget. Since every clause gadget is connected to at least one variable gadget,

the truth assignment satisfies every clause. Therefore, this truth assignment satisfies

the Planar 3-SAT instance Φ.

This proves Theorem 1. �

2.2 Inapproximability for point pairs

We observe that for uncertainty regions that are pairs of points, there is no approx-

imation algorithm, polynomial in the size of the input, with an approximation ratio

less than
√
5/2, unless P = NP . Indeed, we have provided problem instances where

the uncertainty regions are vertically aligned pairs of points separated by a distance

of one unit such that a Bottleneck Spanning Tree of maximum edge length 2 (α = 1)

can be found if and only if P = NP . But two points on the integer grid, if further

apart than distance 2, must be at least distance
√
5 from one another. Hence if we had

a polynomial time approximation to the solution with a ratio less than
√
5/2 then we

could use the approximation to find a Bottleneck Spanning Tree with maximum edge

length not greater than 2, a contradiction (unless P = NP ).

Theorem 2 There is no approximation algorithm, polynomial in the size of the input,

that solves BCU for point pairs with approximation ratio less than
√
5/2, unless P =

NP .



11

2.3 BCU when the uncertainty regions are line segments

We can also prove that the BCU problem is NP-hard for vertical unit segments on an

integer grid. To show this, we use the same argument as in the proof of Theorem 1

except that point pairs, unit distance apart, are now replaced by vertical line segments

of unit length.

Theorem 3 It is NP-hard to find an exact solution to the BCU problem for the case

in which the regions of uncertainty are vertical unit edges.

Hardness of approximation, such as for point pairs (Theorem 2), however, does not

hold for line segments, because we can use edges of length arbitrarily close to 2.

2.4 BCU when the uncertainty regions are unit squares

We prove an NP-hardness result for this problem using a reduction from Planar 3-SAT.

Our reduction uses techniques similar to the previous reduction.

Theorem 4 It is NP-hard to find an exact solution to the BCU problem for the case

where the regions of uncertainty are unit squares.

Proof We use a reduction from the formulation and embeddingH(Φ) of a Planar 3-SAT

instance Φ that is given in the proof of Theorem 1.

We need the following terminology: A point p is l-connected to a point q if the

(Euclidean) distance from p to q does not exceed l. A set S of points is l-connected if

the maximum edge length of the minimum spanning tree of S does not exceed l.

We now describe the variable and the clause gadgets as well as the connectors we

use to link the variables and clauses.

2.4.1 The variable gadget.

For each variable, we create a gadget similar to the one shown in Figure 5. The variable

gadget, as shown in the figure, can be 5-connected in two ways: by choosing the gray

points in each square, or by choosing the black points in each square. We call the

bold square in the figure the reference square. A point in the reference square can

only be 5-connected to a point in at most one square among the other squares in the

variable gadget. If the black point is chosen to make this connection in the reference

square, then we say that the variable associated with this gadget is True; if the gray

point is chosen, we say that the variable is False. Furthermore, the subgraph of G1

corresponding to points in a variable gadget can be connected if and only if the points

(black or gray) chosen for all of its uncertainty regions are consistent.

Connections to clause gadgets (which replace clause vertices embedded as horizontal

lines) that contain this variable or its negation are made via constructs similar to the

four extreme top and bottom squares shown in the example variable gadget of Figure 5.

Of these, the top left and bottom right connect to clauses containing this variable and

the top right and bottom left connect to clauses containing the negation of this variable.

The width of the variable gadget can easily be increased and more such constructs can

be added to allow additional connections (which replace edges embedded as vertical

lines of H(Φ)) to clause gadgets above or below.
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Fig. 5 An example variable gadget.

2.4.2 The clause gadget.

For each clause, we create a gadget such as the one shown in Figure 6. We call the bold

square in the clause gadget the core square. For each of the 3 literals (a variable or its

negation), there is a sequence of squares in the gadget, called an arm.

Observe that the core square can be 5-connected to only a single arm, and once

this arm is selected, the choice of points in its squares is fixed in order for the squares

to be 5-connected. The choice of points within the other arms’ squares is free since

they do not need to connect to the core point. These squares can be made connected

to each other.

2.4.3 Linking the gadgets.

Here we explain how variable gadgets can be linked to clause gadgets and how variable

gadgets can be linked to each other.

Clause-variable connectors represent edges of H(Φ) and, as such, they propagate

truth values vertically. In order to attach them to the horizontal arms of the clause

gadget, shown in Figure 6, we use a corner gadget, shown in Figure 7, to change the

alignment of the gray and black points in the square regions from horizontal to vertical.

The corner and clause gadgets may be reflected as necessary in order to attach to three

clause-variable connectors above and/or below the clause gadget.

To complete the connection between vertex and clause gadgets, it remains to ex-

plain how to connect pairs of square uncertainty regions, one in the variable gadget

and the other in an extension of one of the arms of the clause gadgets. We would like

to propagate truth assignments (choice of gray or black point in the variable gadget)
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Fig. 6 An example clause gadget. The gray arrow connecting the core square to the top right
arm represents a connection to a negated variable.
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Fig. 7 An example corner gadget.
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Fig. 8 An example of a loose connection.

consistently along such connectors. When the distance between the points to be joined

in the two squares is a multiple of 5 and these points are vertically aligned, the con-

nection can be made in the way analogous to that shown in Figure 4(Left). Otherwise

the construction of such connectors can be easily accomplished but is quite tedious to

describe. We leave this construction to the reader.

To connect variable gadgets to each other (in place of the edge subset E1 of the

Planar 3-SAT embedding), we add n−1 loose connections between the n variable gad-

gets by using a sequence of squares that allow the variable gadgets to be 5-connected

to each other, regardless of the choice of point in the squares of the gadget. Figure 8

shows such a loose connection between two horizontal sequences of squares. The vari-

able gadgets may need to be expanded by adding horizontal sequences of squares in

order to allow these connections.
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2.4.4 Correctness of the Reduction.

We now argue that there exists a choice of point in each of the square uncertainty

regions such that the connectivity graph for α = 5/2 is connected if and only if the

corresponding Planar 3-SAT instance is satisfiable.

Suppose that there is a satisfying assignment to the Planar 3-SAT instance. Then,

in each variable gadget we choose the black corner of the reference square when that

variable is True and the gray corner when that variable is False in the satisfying

assignment. Our construction shares the property with the one in Section 2.1, for

point-pairs, that points chosen in a variable gadget must be internally connected for

G1 to be connected. As such, we must choose points in the other squares of the variable

gadgets to be the same colour as that of the reference square. The choice of gray or

black point is then propagated to every clause gadget satisfied by this assignment via

the connectors. Note that the truth value is correctly inverted by the variable gadget

when connecting a negated variable to a clause that includes this literal. Since all the

clauses are satisfied, the core square in each clause gadget is connected to a variable that

satisfies the clause. The arms that do not connect to the core square are connected

to their respective variable gadgets. At this point we have created n trees, one for

each variable. Points chosen in n− 1 connectors between variable gadgets make G5/2

connected.

Let P be any choice of points in the square regions for which the corresponding

graph G5/2 is connected. Since G5/2 is connected, points in each clause gadget are

connected to points in exactly one variable gadget. Because variable gadgets can never

be connected to each other via a clause gadget, each variable gadget must be internally

connected. The choice of gray or black point in the reference square of each variable

gadget assigns the satisfying truth assignment to the variable associated with that

variable gadget in the Planar 3-SAT instance.

By reduction from Planar 3-SAT, BCU for non-overlapping unit square uncertainty

regions whose corners can be given integer coordinates is NP-hard. �

Once again, hardness of approximation does not hold because we can use edges of

length arbitrarily close to 5.

3 An Exact Algorithm for Solving BCU for n Fixed Points and k Segments

We present an exact algorithm that solves BCU—for a given precision δ—when the

input consist of n fixed points, and the uncertainty regions are k line segments, possibly

of varying length, in general position. That is, no two of the line segments are parallel.

Our algorithm determines, in a time that is polynomial in n for any fixed k and constant

precision δ, a set of point positions on the line segments that permits a spanning tree

whose longest edge is of minimum length amongst all spanning trees that connect

exactly one point from each segment as well as all fixed points.

Rather than give a practical algorithm, the aim of this section is to show that BCU

is indeed computable and provide an upper bound on the running time. Nevertheless,

we introduce two tools below, minimum solution trees and critical paths, in order to

discretize and prune the search space (over all possible labelled spanning trees on n+k

vertices) considerably.

We highlight in the Key ideas how the general position assumption simplifies the

proof of correctness of the algorithm, but the extension to inputs that include parallel
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line segments is not difficult to conceive. We omit the details of such an extension for

the sake of clarity.

Key Ideas

In our search for an optimum solution we focus on determining optimum solutions that

satisfy slightly stronger additional properties: we seek a selection of point locations on

the line segments which supports a minimum solution tree. A minimum solution tree

is a spanning tree for segment locations and fixed points that does not just have a

shortest longest edge, but also has a shortest second longest edge amongst all such

solutions, and so forth. Looking for minimum solution trees, instead of optimum solu-

tions, can decrease the search space considerably by virtue of the fact that for certain

problem instances an infinite number of optimum solutions exist due to freedom of

point selection on the line segments.

Critical paths give support when determining minimum solution trees. These are

paths in spanning trees where all edges are of equal length and all inner path points are

located on line segments. Further, moving the location of any of the points on segments

will lengthen at least one of the edges while shortening another.

Our algorithm determines point locations on all segments that support a minimum

solution tree with longest tree edge of length 2α as follows. We enumerate candidates

for critical paths, from longest to shortest in terms of path length. Each candidate path

is tested to see whether or not it supports a critical path. If successful, and if the edge

length of this critical path is no longer than the longest edge of the solution tree for the

best point set found so far, the line segments of that critical path are replaced by their

corresponding point locations. The general position assumption provides that these

point locations are unique, and simplifies our method of computing them. We then

recurse on the updated input. Once all points on segments are determined, a greedy

algorithm to determine the corresponding minimum solution tree can be applied.

Minimum Solution Trees

To describe minimum solution trees formally, we begin by defining a way that allows us

to compare different spanning trees that correspond to optimum solutions. We partition

into equivalence classes the set of all spanning trees taken over all fixed points and all

point choices on the k segments, and we define a linear ordering on the equivalence

classes such that a minimum solution tree is a smallest spanning tree w.r.t. the linear

ordering.

For any two selections of points on the k segments, and for any two of their cor-

responding spanning trees, let L and L′ be ordered lists of lengths of all edges in

the two trees, sorted from longest to shortest. That is, L = (l1, l2, . . . , ln+k−1) and

L′ = (l′1, l
′
2, . . . , l

′
n+k−1), with li ≥ li+1 and l′i ≥ l′i+1 for all i. We say that L is

preferred over L′ if for a certain i, li < l′i, and lj = l′j for all j < i. If T and T ′ are
spanning trees with edge lists L and L′, respectively, we also say T is preferred over

T ′ if L is preferred over L′. Note that this defines a linear ordering on lists in general,

and not only those derived from spanning tree edge-lengths.

Our algorithm seeks to choose points on segments that result in a spanning tree

such that no other spanning tree is preferred over it. We call such a tree a minimum
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solution tree T .1 We call a choice of points on segments that results in a minimum

solution tree T a best point set for T .

In a minimum solution tree T , not only are longest edges as short as possible, but

also the number of longest edges is minimum. In other words, a tree with a smallest

number of shortest longest edges is preferred over the ones with more edges of the same

length. Further, for all i the ith longest edge is as small as possible, and the number

of edges of that length is minimum.

The above conditions imply convenient properties on the best point set w.r.t. a

minimum solution tree. Note that, for any point p on a segment in a best point set, it

is impossible to improve the solution by slightly moving p on its segment; in fact, any

perturbation of a point must lengthen at least one of the edges that is longest among

all edges incident to p. We now list the possibilities for a point p on a segment in a

best point set (see Figure 9) in distinguishing three different types. Given a point p

on a segment, we call an edge e that belongs to a minimum solution tree T incident

to p locally longest if no other tree edge of T incident to p is longer than e. Then, in

a minimum solution tree the possibilities for a point located on a segment w.r.t. its

locally longest edges are as follows.

segment

b
b

b

b

b

segment

b
b
b

b

b

b
segment

b
b
b

b

b

b

Fig. 9 Points (in black) of Type 1, 2, and 3 respectively, with the segment shown in bold,
incident edges in black, and perpendicular (to the segment) shown in gray. In each case, moving
the point along the segment results in a longer locally longest incident edge.

Type 1 Point p lies at an extremity of the segment. Then, one of the locally longest

edge, e, incident to p lies on the half plane that is delimited by a line perpendicular

to the segment and does not contain the segment. We observe that moving p would

lengthen e.

Type 2 Point p is on the relative interior of the segment and e, one of the locally longest

edges incident to p, is perpendicular to the segment. We observe that moving p in

any direction would lengthen e.

Type 3 Point p is on the relative interior of the segment but not of Type 2. Then there

are two locally longest edges incident to p laying in different half-planes delimited

by a line perpendicular to the segment passing through p. We observe that moving

p in any direction would increase the length of one of these two edges.

1 We remark that for lists L and L′ for two different spanning trees with two different sets
of points on the segments, it is possible that L = L′, so that optimum solutions that permit
minimum solutions trees are in general not unique.
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Notably, if we know for any point p on a segment that it is of Type 1 or 2 and what

its locally longest incident edge e is, then we can deduce p’s position on the segment

without any knowledge of other incident edges of p, just by minimizing the length of e.

Similarly, if we know that for any point p on a segment that it is of Type 3 and what

its pair of locally longest incident edges e, f is, then we can deduce p’s position on the

segment without any knowledge of other incident edges of p, just by minimizing the

length of e and f .

Critical Paths

Let (E1, . . . , Em) denote a sequence of fixed points and segments, where E1 and Em

are fixed points or segments, and E2, . . . , Em−1 are segments. A critical path supported

by (E1, . . . , Em) consists of points p1, . . . , pm, where each pi is located at a selected

position on segment Ei. The pis are connected by edges ei such that (1) the edges are

all of identical length, and (2) no different selection of point locations on these segments

results in a sequence where no edge is longer but some edge is strictly shorter. We may

specify that the edges are of length λ by writing λ-critical path.

Critical paths are useful in constructing minimum solution trees. Our algorithm

makes use of the fact that it is possible to reduce the construction of a minimum

solution tree to computing a set of critical paths.

We will show below (1) that a sequence (E1, . . . , Em) supports at most one critical

path (under the assumption of general position) and (2) how to compute a critical path

supported by (E1, . . . , Em)—in case of existence—for a given precision δ.

We introduce terminology that will aid us for both purposes. Given a sequence

(E1, . . . , Em) and a positive number λ, let Ui(λ) be the area around Ei that can be

reached from E1 via E2, . . . , Ei−1 by edges of length at most λ. More exactly, let

– U1(λ) be the set of points in the plane reachable from E1 by an edge of length at

most λ, and

– Ui(λ), i > 1, be the set of points on the plane reachable from Ui−1(λ) ∩ Ei by an

edge of length at most λ.

Let Si(λ) be the set of points on the plane reachable from Ei by an edge of length

exactly λ, such that p ∈ Si(λ) implies that there is a λ-critical path p1, p2, . . . , pi, p

supported by (E1, E2, . . . , Ei, {p}), with pi ∈ Ei (note that p need not be in one of the

uncertainty regions). In particular, Si(λ) is contained, for i > 1, in the set of points on

the plane reachable from Si−1(λ)∩Ei by an edge of length exactly λ. We characterise

the set Si(λ) more directly in Lemma 3.

We study the properties of Ui(λ) and Si(λ). By definition, E1 consists of either

a single point or a segment (Figure 10). Further, U1(λ) consists either of a circle of

radius λ (Figure 10) or the Minkowski sum of a circle of radius λ and a segment, and

therefore also U1(λ)∩E2—if not empty—consists of either a point or a subsegment of

E2.

In general we can deduce inductively the following lemma.

Lemma 1 For 1 < i ≤ m, if Ui−1(λ)∩Ei 6= ∅ then Ui−1(λ)∩Ei consists of either a

single point of Ei or a subsegment of Ei.

Using the definitions of Ui(λ) and Si(λ), we have the following observation.

Lemma 2 For all i ≥ 1, Si(λ) ⊆ boundary of Ui(λ).
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U1(λ)

S1(λ)
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U1(λ)

S1(λ)

Fig. 10 Examples of U1(λ) and S1(λ) for the cases that E1 is a fixed point (left) and a
segment (right).

Proof For i = 1, it follows easily from the definition that S1(λ) is contained in the

boundary of U1(λ). Let B be an open ball contained in Ui(λ), with p ∈ B; we will

show that p cannot be in Si(λ), and hence Si(λ) can only contain boundary points.

For any p′ ∈ B, since B ⊂ Ui(λ), there is a path on points (p1, p2, . . . , pi, p
′), with

pj ∈ Ej , for 1 ≤ j ≤ i, with no edge longer than λ. On the other hand, since B is an

open set, there exists a p′ ∈ B such that ‖pip‖ < ‖pip′‖, for all choices of pi in Ei,

and hence there exists a path on points (p1, p2, . . . , pi, p
′) where ‖pip‖ < ‖pip′‖ ≤ λ.

Thus we have points (p1, p2, . . . , pi, p) with ‖pjpj+1‖ ≤ λ, for 1 ≤ j < i, and ‖pip‖ < λ

implying that (E1, E2, . . . , Ei, {p}) does not support a λ-critical path, and therefore

p 6∈ Si(λ). �

We can conclude from the above lemma that, if Ui−1(λ)∩Ei = ∅ then Si−1(λ)∩Ei =

∅. Further, if Ui−1(λ) ∩ Ei consists of a single point p, then either Si−1(λ) ∩Ei = ∅

or Si−1(λ) ∩ Ei = {p}. If Ui−1(λ) ∩ Ei is a subsegment of Ei, then Si−1(λ) ∩ Ei can

be empty, consist of one or both extremities of the subsegment. In fact, we can prove

the following lemma that describes Si(λ) more directly.

Lemma 3 1. The set S1(λ) is the boundary of U1(λ).

2. For all i > 1, the set Si(λ) is the intersection of the boundary of Ui(λ) with the

Minkowski sum of a circle of radius λ and Si−1(λ) ∩ Ei.

Proof

1. This fact follows from the definition of S1(λ) and U1(λ).

2. ⊆: We make two observations. (1) By definition, Si(λ) ⊆ {points at distance exactly
λ from Si−1(λ) ∩ Ei}. This set, in turn, is contained in the Minkowski sum of a

circle of radius λ and Si−1(λ) ∩ Ei. (2) From Lemma 2, we know that Si(λ) ⊆
boundary of Ui(λ). Combining (1) and (2) gives us the result.

⊇: Proof by Induction. Let p be any point in the intersection of the boundary

of Ui(λ) with the Minkowski sum of a circle of radius λ and Si−1(λ) ∩ Ei. Then

by definition there exists q ∈ Si−1(λ) ∩ Ei and points q1, q2, . . . , qi−1 such that

‖qp‖ = λ and the path Q = (q1, q2, . . . , qi−1, q) is a λ-critical path supported by

(E1, E2, . . . , Ei−1, {q}).
Suppose that p 6∈ Si(λ). This implies that (E1, E2, . . . , Ei−1, Ei, {p}) does not

support a λ-critical path. In particular no edge of (p1, p2, . . . , pi−1, pi, p) is longer

than λ, but some edge is strictly shorter, for some choice of points pj ∈ Ej , for

1 ≤ j ≤ i; in particular, we have ‖pip‖ ≤ λ. On the other hand, we also have

‖pip‖ ≥ λ, since p is in the boundary of Ui(λ), so by assumption, ‖pip‖ = λ. If one
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of the edges in (p1, p2, . . . , pi−1, pi) is shorter than λ, then pi ∈ Ei(λ) \ Si−1(λ),

by definition of Si−1(λ). On the other hand, there is exactly one point in Ei that

is distance λ from p, and thus the existence of p and ‖pip‖ = λ imply that pi = q,

and therefore pi ∈ Si−1 ∩ Ei. This is a contradiction, and therefore p ∈ Si(λ), as

required.

�

We deduce that the following cases for Si(λ) are possible (see Figure 11, depicting

possibilities for S2(λ) for the case that E1 is a fixed point).

b
E1 E2

b

bc

E1

E2

b bc
E1

E2

b bc

bc

E1 E2

Fig. 11 Shapes of S2(λ) of Type a, b, c, and d, respectively. S1(λ) is indicated with a dashed
line, S1(λ) ∩ E2 with open dots, and S2(λ) with dark gray curves.

Type a. Si−1(λ) ∩Ei = ∅ and therefore Si(λ) = ∅.

Type b. Ui−1(λ)∩Ei consists of a single point p and Si−1(λ)∩Ei = {p}. Then Si(λ)

is a circle of radius λ centered around p.

Type c. Ui−1(λ) ∩Ei is a subsegment of Ei and Si−1(λ) ∩Ei is a single extremity of

the subsegment. In this case, Ui(λ) is the Minkowski sum of the subsegment and

a ball of radius λ, and Si(λ) is the half circle of radius λ centered on Si−1(λ)∩Ei

on the boundary of Ui(λ).

Type d. Ui−1(λ)∩Ei is a subsegment of Ei and Si−1(λ)∩Ei consists of both extremi-

ties of the subsegment. In this case, Ui(λ) is the Minkowski sum of the subsegment

and a ball of radius λ, and Si(λ) consists of both half circles of radius λ each

centered on a point of Si−1(λ) ∩Ei on the boundary of Ui(λ).

For a given (E1, . . . , Em) and length λ it is therefore possible to compute successively

the Ui(λ)’s and Si(λ)’s. With this knowledge in hand, we are now ready to describe

the computation of critical paths. The following lemma is crucial towards this goal.

Lemma 4 A critical path exists for a sequence (E1, . . . , Em) if and only if there exists

a λ∗ such that Um−1(λ
∗)∩Em = Sm−1(λ

∗)∩Em 6= ∅. Furthermore, such a λ∗ is the

smallest λ such that Um−1(λ) ∩ Em 6= ∅.

Proof Figure 12 illustrates the proof idea by describing types of possible outcomes for

any λ for the case of a sequence (E1, E2, E3) with E1 a fixed point, for which U2(λ)∩E3

is not empty. In general for any sequence (E1, . . . , Em) the following shapes of Sm(λ)

are possible. Recall our general position assumption that no two lines are parallel.

Using Lemma 1, if Um−1(λ) ∩Em 6= ∅, either Um−1(λ) ∩ Em is a subsegment of Em

(Type α below) or it is a single point of Em (Type β and γ below).

Type α. If Em intersects the interior of Um−1(λ) then there is no λ-critical path. A

path with edges of length exactly λ will not be critical as it can be shortened by

moving the point location on Em.
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Fig. 12 Sequence (E1, E2, E3) with outcomes of Type α, β, and γ respectively for the case
that U2(λ) ∩ E3 6= ∅. S1(λ) is depicted by dashed lines, S1(λ) ∩ E2 and S2(λ) ∩ E3 by open
dots, and S2(λ) in dark gray.

Type β. If Um−1(λ) ∩ Em = Sm−1(λ) ∩ Em = {p} then there is a λ-critical path as

moving the point location on Em only increases the edge length.

Type γ. If Um−1(λ) ∩ Em is a single point and Sm−1(λ) ∩ Em = ∅, there is no λ-

critical path. In this case, moving the point location on Em−1 gives a path with

shorter edge length.

To summarize, we observe that a critical path only exists for outcomes of Type β, and

that this is the only outcome for which the condition given in the lemma is satisfied.

Moreover, the λ∗ in outcomes of Type β is the smallest value of λ for which Um−1(λ)∩
Em 6= ∅ since Um−1(λ)∩Em is a single point and decreasing the value of λ any further

will make it empty. �

Given (E1, . . . , Em), the following algorithm determines whether (E1, . . . , Em) sup-

ports a critical path or not. If it does, the algorithm outputs the length of the edges in

the critical path with a precision δ′. Note that the need for a precision parameter arises

only due to the algebraic nature of the problem since our computation involves binary

search over real values. δ′ is chosen depending on the precision bound, δ, specified by

the user and the input instance so that the loss in precision over all the steps of the

algorithm is below the bound δ. More precisely, we will choose δ′ = δ/k. We describe

the reason for this choice after describing our algorithm.

1. Initialize λmin and λmax to be the minimum and the maximum distance between

any adjacent pair (Ei, Ei+1) in the input sequence. Initialize λ to be (λmin +

λmax)/2.

2. While (λmax − λmin > δ′) do

– Compute Um−1(λ).

– If Um−1(λ)∩Em = ∅, then set λmin to λ, set λ to (λmin + λmax)/2 and go to

(2).

– If Um−1(λ)∩Em 6= ∅, then set λmax to λ, set λ to (λmin+ λmax)/2 and go to

(2).

3. Check if Um−1(λmax) ∩ Em = Sm−1(λmax) ∩ Em 6= ∅ up to perturbation δ′ as

explained below. If so, output λmax as the edge-length of the critical path. If not,

output that no critical path exists.

We now give more details about the last step of our algorithm when the shape of

Sm−1(λmax) is of Type d and m ≥ 3; that is, where Sm−2(λmax) ∩Em−1, for m ≥ 3,

comprises exactly two distinct points, denoted pℓ and pr. This procedure is similar to
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what is needed to handle other non-trivial shapes of Sm−1(λmax), i.e., Types b and c

as well as S1(λmax), when m = 2. We will denote Um−1(λmax) ∩ Em by L if it is a

line segment and by q if it is a point. For a point p ∈ {pℓ, pr} and a line segment L,

let fp denote the point on L closest to point p. The algorithm will detect if one of the

six (mutually exclusive) cases described in Figure 13 occurs, where we assume that in

all cases the segment pℓpr does not intersect Em. Procedures for this detection can

be easily derived from high level descriptions2 of the cases. In each case the algorithm

performs a test, as follows:

Case 1a and 1b: Test if the length of line segment L is at most δ′.
Cases 2-4: Test if λmax−d(p, fp) is at most δ′. Here, p will be either pℓ or pr depending

on which semicircle is intersected by L.

Case 5: Test if the minimum distance from q to either semicircle is at most δ′.
Case 6: Test if λmax − d(p, fp) is at most δ′. Here, p will be either pℓ or pr depending

on which is closer to L (Note that by the general position assumption, one of them

will be closer).

If one of the above cases occurs and its test returns true, there is a λ∗ ∈ [λmin, λmax]

of Type β, as illustrated in Figure 12, and hence a critical path exists. For the two

other possible scenarios (Type α and Type γ) either none of cases 1-6 occur or the

corresponding test fails, and the algorithm concludes that the critical path does not

exist. These cases are also illustrated in Figure 12.

pℓ pr

Um−1(λmax)

Em−1

fpℓ

c.4

fpr

c.6
c.5

q
c.2

c.1a

c.1b

fpr

c.3
fpℓ

Fig. 13 Cases 1-6 where we test for for λ∗ of Type-β (up to perturbation δ′). Each line
segment labelled c.i, for 1 ≤ i ≤ 6, represents a possible instance of Em.

As a consequence of Lemma 4, we have the following corollary. It will help us

convert a set of line segments, for which we have found a critical path, into a set of

fixed points, resulting in an input with fewer line segments.

Corollary 1 If (E1, . . . , Em) supports a critical path consisting of edges that are locally

longest in a minimum solution tree, then there is a unique choice of point locations

that defines the critical path. Furthermore, this choice of point locations is a part of the

optimal solution.

2 The descriptions are evident from Figure 13, except perhaps the difference between c.1b
and c.2. These are distinguished by the fact that fpr lies outside the semi-disc for c.1b, and
inside the semi-disc for c.2, where p is pℓ or pr, as appropriate.
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Description of the Algorithm

We now show how to compute a best point set by examining all possible critical paths.

Note that if we had an oracle giving us a sequence (E1, E2, . . . , Em) that supports

a critical path consisting of edges that are locally longest in the best point set, then

we could determine the choice of points on (E1, E2, . . . , Em) these elements in the

best point set. We could then replace the segments in the sequence by fixed points

and solve the rest of the problem separately. This eventually would allow us to replace

all segments by fixed points, and then to solve the problem by finding an associated

MBST. Lacking an oracle we determine these sequences by complete enumeration of

all possible sequences (E1, E2, . . . , Em) that contain at least one segment, where E1

and Em are fixed points or segments, and E2, E3, . . . , Em−1 are segments. There are

O(n2 ·k! ·k) such sequences3. This enumeration accounts for most of the complexity of

our recursive algorithm, in which we initialize b to ∞ at the top level call, and proceed

as follows:

1. If the instance does not contain any segments, we compute an MST with a greedy

algorithm, in polynomial time, and report the length b′ of the bottleneck edge.

2. Else, for each sequence in the enumeration, if it supports an ℓ-critical path, for

some ℓ, do the following:

(a) If ℓ > b, do nothing; that is, we prune these sequences in the enumeration as

we find them.

(b) Else, if ℓ ≤ b, we replace the segments of the sequence with the unique fixed

points defined by the ℓ-critical path and recurse on the updated set of sequences

and points, with b (in the recursive call only) initialized to ℓ. Let b′ be the output
of the recursive call.

(c) If b′ < b, set b to b′.
3. If no MST is found, report ∞, else report b.

We remark that it is crucial to compute critical paths with progressively decreasing

edge lengths since positions of points on segments are determined by locally longest

edges incident to them; this is enforced in recursive calls with the parameter b. Further-

more, updating b in step 2(c) allows us to prune the search in step 2(a) by discarding

critical paths whose longest edge is too long. Finally, the algorithm terminates because

we only enumerate sequences with at least one segment.

We show by induction on k that the algorithm correctly outputs the length of the

bottleneck edge of a minimum solution tree. The algorithm is correct when there are 0

segments. Suppose it is correct for up to k − 1 segments. If we call the algorithm with

k segments, for k > 0, then at least one of the sequences (E1, E2, . . . , Em) supports

an ℓ-critical path whose edges are not only locally longest in a minimum solution tree,

but also globally longest among sequences of critical paths supported by at least one

segment. Thus the sequence satisfies the antecedents of Corollary 1, and furthermore,

all other critical paths in the minimum solution tree will be found in the recursive calls.

By the inductive hypothesis, the recursive call returns the length of the bottleneck edge

b′ of a minimum solution tree on the reduced input, and by Corollary 1 this is also the

length of a bottleneck edge on the unreduced input (we may have b′ > ℓ, however). We

have shown that for k segments the output is at most the length of a bottleneck edge

of a minimum solution tree on the input points and segments; on the other hand, the

3 Count the number of ordered i-subsets of k segments by
∑k

i=1
k!/(k − i)!, and multiply

these by the (n2 + n+ 1) to count ways that E1 and Em might be points.
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output value cannot be smaller than this, since the value is, in any case, derived from

the bottleneck edge of an MST on a set of points chosen from the n+ k input regions.

With regards to precision, when we replace the line segments with fixed points, our

choice is correct within δ′ of the true value. Since our algorithm is recursive, this choice

of points will in turn influence the choice of points in the next round of recursion. Since

our algorithm is computing distances between points, the edge lengths of the critical

path computed in level i of the recursion will be correct up to a precision of iδ (using

the triangle inequality). Since the last level of recursion, level k, requires a precision of

δ, we will fix kδ′ = δ in our analysis.

The enumeration in our algorithm described above is superexponential in the num-

ber k of segments, which is not surprising since we have shown the problem with no

fixed points is NP-hard. For constant k the problem is, however, polynomial in the

number n of points, as our running time analysis will show.

The (multiple recursive) enumeration results in a search tree of size O((n2 ·k! ·k)k)
with an O(k) running time for each node in the search tree. Thus the total time

complexity is O((n2 · k! · k)k · k).

Theorem 5 The BCU problem for a set of n fixed points and k line segments can be

solved in time O((n2 · k! · k)k · k), for any fixed precision δ.

4 Constant-Factor and Additive Approximations

We begin by considering the Best-Case Connectivity with Uncertainty problem (BCU).

Lemma 5 Given a set of uncertainty regions that are unit disks D1, . . . , Dn with cen-

ters p1, . . . , pn, let L be the largest edge of a minimum bottleneck spanning tree on

{pi : 1 ≤ i ≤ n}. Then choosing locations ℓi = pi and α = L/2 is at worst an OPT+1

approximation to the BCU Problem. In other words, if OPT denotes the smallest radius

α for any choice of ℓi ∈ Di, then L/2 ≤ OPT+1. This approximation can be computed

in polynomial time.

Proof Consider the best choice of the {ℓi ∈ Di : 1 ≤ i ≤ n} and an associated MBST

on these {ℓi : 1 ≤ i ≤ n}. The edges of this MBST are each at most 2 shorter than

the corresponding edges of a spanning tree, S, on the corresponding {pi : 1 ≤ i ≤ n}.
Thus the maximum length of any edge in S is at most 2 greater than the maximum

length edge in the MBST on {ℓi : 1 ≤ i ≤ n}, and, similarly, the maximum length, L,

of any edge of an MBST on the {pi : 1 ≤ i ≤ n} must be at most 2 greater than the

maximum length edge in the MBST on {ℓi : 1 ≤ i ≤ n}. The result follows. �

Our approximation for the BCU Problem, which we dub the “broadcast-from-

center” hueristic, is not necessarily a constant-factor approximation, because if one

takes n unit disks with non-empty intersection, then the ℓi can all be taken to equal

one of the intersection points so that OPT= 0 while L/2 can be non-zero (and as big as

1). However, we can modify our heuristic to obtain a constant-factor approximation for

non-overlapping unit disks, for a result analogous to that obtained by Yang et al. [29]

for the case of MST with neighborhoods.

A problem for our heuristic, as it stands, in the case of non-overlapping disks,

occurs if we have just two disks and these two disks are within ǫ of being tangent to

one another. As ǫ → 0 one can choose broadcast locations ℓi increasingly close together
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so broadcast-from-center becomes arbitrarily bad. However, we can either deal with

two disks as a special case, or take the following more principled approach: begin as

in broadcast-from-center by picking the centers of all uncertainty disks, and then find

an MBST on these centers, but at the end, “cinch-up” any leaf nodes by bringing the

broadcast locations for these disks as close as possible to their parent nodes. In the case

that the MBST is actually a simple path, cinch-up twice, first at one end, then at the

other. This process ensures that we always obtain OPT for two disks. For three disks,

we are not guaranteed to have OPT, but because points on three unit disks cannot

come arbitrarily close to one another, the modified broadcast-from-center heuristic is

a constant-factor approximation. See Figure 14.

Fig. 14 The BCU Problem for three (almost) tangent unit disks. OPT, as shown on the left is
given by the choice of locations (a′, b′, c′), not quite on an equilateral triangle, with MBST cost

(
√

1 + (
√
3− 1)2 − 1)/2 ≈ .12, while the “cinch-up” heuristic, on the right, chooses locations

(a′′, b′′, c′′) with cost 0.5.

5 The WCU Problem

We next consider the Worst-Case Connectivity with Uncertainty (WCU) problem: Find

the minimum value α such that for any choice of points P , the connectivity graph Gα of

P is connected. In what follows we assume that the number, n, of points and associated

uncertainty regions is at least 2, since otherwise the problem is trivial.

We show a simple approximation algorithm for WCU that is within an additive

factor of 1 and a multiplicative factor of 2 when the uncertainty regions are unit disks.

Let D(p;λ) denote the closed disk of radius λ about the point p.

Theorem 6 Given a set of uncertainty regions that are unit disks D1, . . . , Dn with

centers p1, . . . , pn, let L be the largest edge of an MBST on {pi : 1 ≤ i ≤ n}. Then
choosing α = L/2 + 1 always results in the connectivity graph being connected and is

at worst an OPT+1 approximation to the WCU Problem.

Proof First note that the connectivity graph given by any selection of ℓi ∈ D(pi; 1) and

{D(ℓi;L/2 + 1) : 1 ≤ i ≤ n} is connected, because if (pi, pj) is an edge of an MBST

on {pk : 1 ≤ k ≤ n} then D(ℓi;L/2 + 1) ∩ D(ℓj ;L/2 + 1) 6= ∅. We are thus left to

show that choosing α = L/2 + 1 is at worst an OPT+1 approximation. But clearly we
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can choose ℓi = pi for all i and so the minimum α is L/2. Hence OPT ≥ L/2 and the

theorem is established. �

Theorem 7 Given a set of uncertainty regions that are unit disks D1, . . . , Dn with

centers p1, . . . , pn, let L be the largest edge of an MBST on {pi : 1 ≤ i ≤ n}. Then
choosing α = L/2 + 1 is at worst a factor 2 approximation to OPT for the WCU

problem.

Proof Note that OPT+1 ≤ 2OPT as long as OPT ≥ 1 so, by Theorem 6, it suffices to

show that OPT ≥ 1. As noted in the first paragraph of this section we are assuming

that n > 1. Let pj be a leftmost point amongst the {pi : 1 ≤ i ≤ n} and choose ℓj
to be the leftmost point in D(pj ; 1) and for all other D(pk; 1)k 6=j choose ℓk to be the

rightmost point in D(pk; 1). Then ℓj is at least distance 2 from each of the other ℓk
and so we must choose α ≥ 1 to keep the connectivity graph connected. It follows that

OPT ≥ 1 and the theorem is established. �

Theorem 7 shows that the simple broadcast-from-center heuristic can be no worse

than a 2-approximation to the solution of the WCU Problem. However, we have thus

far only found examples showing that the approximation can be (asymptotically) as

bad as a
√
2-approximation, as the next theorem asserts.

Theorem 8 Given any L > 2, there is an instance of the WCU Problem with un-

certainty regions that are unit disks D1, . . . , Dn with centers p1, . . . , pn, such that the

longest edge of an MBST on {pi}ni=1 is L and OPT is as small as
√
L2+4
2 , and there-

fore the algorithm of Theorem 6 is at best a factor
√
2− ǫ approximation for arbitrarily

small ǫ.

Proof We distribute an even number of unit disks with centers equally spaced along

a very large (relative to the unit disks) circle C. Let us call the distance between

consecutive centers of disks centered along the large circle L. We will add more disks,

but L will remain the longest edge of a spanning tree of the disk centers. Additionally,

let us pick ǫ ≪ L− 2.

The construction contains a large number of highly overlapping disks in addition

to the disks whose centers lie along C. See Figure 15 for a sketch. The drawing is

approximate in several respects. First of all, C is much, much larger than drawn, so

that if the bottom of C is, say, tangent to the x-axis, and the center of the bottom

unit disk, D0, has y-coordinate equal to 0, then the center-points of the first unit disks

to the left and right of D0 along C, each have y-coordinate less than ǫ/3. In addition

to the disks along C, there is a sequence of disks going from D0 to its diametrically

opposite unit disk whose centers lie along the connecting diameter. The centers of

these disks are all distance ǫ, one from the next, along the diameter. If we number

the C-centered disks in counter-clockwise order, D0, ..., D2N−1, then we have a similar

set of disks extending from each of the disks D2, D4, ..., D2N−2. The key observation

is that we can add such diametrically centered disks in such a way that the center

of disks extending from Dj to the center of C are each more than distance L from

any other Dk for k 6= j – thus the choice of D1 and D2N−1 with y-coordinate less

than ǫ/3. On the other hand, the odd numbered unit disks D1, D3, ..., D2N−1, with

representative element that we shall call Di, each have a set of unit disks running from

Di to Di+2 with centers each ǫ from the next, but with the disks running in almost

circular patterns on the outside of C. An important point in this case, is that the disks
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Fig. 15 The construction begins with an even number of equally spaced unit disks with centers
along a very large circle C.

start out emanating from Di along a diametric line, and then bend around so that

their centers are never within L of Di+1.

We claim that for such an arrangement of unit disks, the maximum distance be-

tween locations ℓr ∈ Dr in a spanning tree can be as small as (and in fact slightly

smaller than)
√
L2 + 4, where the set {Dr} consists not just of the disks Di with cen-

ters along C, but all the other unit disks depicted in Figure 15 as well. If Di, Di+2 are

two consecutive disks in the cyclical ordering of C-centered disks with i odd, let {Dik}
denote the set of disks running from Di to Di+2 outside of C. Further, if Dj , Dj+N

are diametrically opposite C-centered disks with j even, let {Djk} denote the set of

disks running diametrically between Dj and Dj+N . To verify our claim about {ℓi}
with maximum bottleneck spanning tree edge length slightly less than

√
L2 + 4, pick

ℓi ∈ Di for even i to be the point in Di closest to the center of C and ℓi ∈ Di for odd

i to be the point in Di furthest from the center of C. See Figure 16. Regardless of the

choice of the ℓij ∈ Dij it is clear that
⋃
{D(ℓi;α)} ∪

⋃
{D(ℓij ;α)} is connected if

2α is the distance between consecutive locations ℓi, ℓi+1 (in the cyclical ordering), and

that this distance is, as claimed, just slightly less than
√
L2 + 4. Let us designate this

distinguished choice of the ℓi ∈ Di by ℓ∗i , and the associated α by α∗.

For these {Di} and {Dij }, if there were any choice of {ℓi}, {ℓij } making α any

larger, then we would have to pick one of the ℓi to the left or right of the diamet-

ric line through the center of C and Di. It is easy to check that the result of such

a choice is that there would be some cyclically ordered pair ℓj , ℓj+1 whose distance

d(ℓj , ℓj+1) < d(ℓ∗j , ℓ
∗
j+1) = α∗. But then D(ℓj ;α

∗)∪D(ℓj+1;α
∗) connects ℓj , ℓj+1 and⋃

{D(ℓ2k;α
∗)} ∪

⋃
{D(ℓ(2k)j ;α

∗)} connects the even-indexed ℓ2k and any associated

choices for ℓ(2k)j , while
⋃
{D(ℓ2k+1;α

∗)} ∪
⋃
{D(ℓ(2k+1)j ;α

∗)} connects the odd-

indexed ℓ2k+1 and any associated choices for ℓ(2k+1)j . It follows that α ≤ α∗, contrary

to assumption, and so the fact that OPT can be as small as
√
L2+4
2 is established. The

algorithm of Theorem 6 picked α = L
2 + 1, so picking L sufficiently close to 2 yields

L
2
+1√

L2+4

2

= L+2√
L2+4

sufficiently close to
√
2, completing the proof. �
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ℓ0

ℓ2N−1

ℓ2N−2

ℓ1

ℓ2

Fig. 16 The distance between ℓi and ℓi+1 (in the cyclical ordering) is just slightly less than√
L2 + 4 since the distance between successive disk centers (which we suppose to be x-axis

aligned) is L, and the distance between the top and bottom of the successive disks, in the
y-direction, is approximately 2.

6 Conclusions

A number of open problems remain. It would be interesting to show NP-hardness results

for the BCU problem for other uncertainty regions, such as disks. It is also possible that

techniques from convex optimization could be used to design approximation algorithms

for BCU for, say, line segments or squares. We conjecture that BCU for the case of line

segments is W[1]-hard and hence our exact algorithm is unlikely to be improved upon

significantly.

Although we have been able to obtain several NP-hardness results for BCU, we do

not have any complexity lower bounds for WCU which, a priori, seems harder. It is

an interesting open question to improve our approximation algorithms for both these

problems.

In conclusion, our work on connectivity problems for uncertainty regions moti-

vated by wireless network scenarios suggests that this area provides a rich collection

of problems for further investigation.
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