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Abstract. Fan-planar graphs were recently introduced as a generalization of 1-planar graphs. A graph
is fan-planar if it can be embedded in the plane, such that each edge that is crossed more than once, is
crossed by a bundle of two or more edges incident to a common vertex. A graph is outer-fan-planar if
it has a fan-planar embedding in which every vertex is on the outer face. If, in addition, the insertion
of an edge destroys its outer-fan-planarity, then it is maximal outer-fan-planar.
In this paper, we present a polynomial-time algorithm to test whether a given graph is maximal outer-
fan-planar. The algorithm can also be employed to produce an outer-fan-planar embedding, if one
exists. On the negative side, we show that testing fan-planarity of a graph is NP-hard, for the case
where the rotation system (i.e., the cyclic order of the edges around each vertex) is given.

1 Introduction

A simple drawing of a graph is a representation of a graph in the plane, where each vertex is represented
by a point and each edge is a Jordan curve connecting its end-points such that no edge contains a vertex in
its interior, no two edges incident to a common end-vertex cross, no edge crosses itself, no two edges meet
tangentially, and no two edges cross more than once.

An important subclass of drawn graphs is the class of planar graphs, in which there exist no crossings
between edges. Although planarity is one of the most desirable properties when drawing a graph, many
real-world graphs are in fact non-planar.

On the other hand, it is widely accepted that edge crossings have negative impact on the human un-
derstanding of a graph drawing [26] and simultaneously it is NP-complete in general to find drawings with
minimum number of edge crossings [16]. This motivated the study of “almost planar” graphs which may
contain crossings as long as they do not violate some prescribed forbidden crossing patterns. Typical exam-
ples of such graphs include k-planar graphs [27], k-quasi planar graphs [2], RAC graphs [9] and fan-crossing
free graphs [7].

Fan-planar graphs were recently introduced in the same context [21]. Typically, a fan-planar drawing of
graph G = (V,E) is a simple drawing which allows for more than one crossing on an edge e ∈ E if and only
if the edges that cross e are incident to a common vertex on the same side of e. Such a crossing is called
fan-crossing (see Fig.1a). An equivalent definition can be stated by means of forbidden crossing patterns;
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(a) Fan-crossing (b) Forbidden pattern I (c) Forbidden pattern II (d) Triangle crossing

Fig. 1. (taken from [21])(a) Illustration of a fan-crossing. (b) Forbidden crossing pattern I: An edge cannot be crossed
by two independent edges. (c) Forbidden crossing pattern II: An edge cannot be crossed by two edges having their
common end-point on different sides of it. (d) Forbidden crossing pattern II implies that an edge cannot be crossed
by three edges forming a triangle.

see Fig. 1b, 1c and 1d. A graph is fan-planar if it admits a fan-planar drawing. Note that the class of fan-
planar graphs is in a sense the complement of the class of fan-crossing free graphs [7], which simply forbid
fan-crossings.

To the best of our knowledge the only known result for this particular class of graphs is due to Kaufmann
and Ueckerdt [21], who showed that a fan-planar graph on n vertices cannot have more than 5n− 10 edges
and this bound is tight. An outer-fan-planar drawing is a fan-planar drawing in which all vertices are on the
outer face. A graph is outer-fan-planar if it admits an outer-fan-planar drawing. An outer-fan-planar graph
is maximal outer-fan-planar if adding any edge to it yields a graph that is not outer-fan-planar. Note that
the forbidden pattern II is irrelevant for outer-fan-planarity. Our main contribution is a polynomial time
algorithm for the recognition of maximal outer-fan-planar graphs and significant insights in their structural
properties (see Section 2). We also prove that the general fan-planar problem is NP-hard, for the case where
the rotation system (i.e., the circular order of the edges around each vertex) is given (see Section 3). The
question how to test (non-maximal) outer-fan-planarity efficiently is left open.

1.1 Related Work

As already stated, k-planar graphs [27], k-quasi planar graphs [2], RAC graphs [9] and fan-crossing free
graphs [7] are closely related to the class of graphs we study. A graph is k-planar, if it can be embedded in
the plane with at most k crossings per edge. Obviously, 1-planar graphs are also fan-planar. A 1-planar graph
with n vertices has at most 4n−8 edges and this bound is tight [5,13,25]. Grigoriev and Bodlaender [17], and,
independently Kohrzik and Mohar [22] proved that the problem of determining whether a graph is 1-planar
is NP-hard and remains NP-hard, even if the deletion of an edge makes the input graph planar [6].

On the positive side, Eades et al. [10] presented a linear time algorithm for testing maximal 1-planarity
of graphs with a given rotation system. Testing outer-1-planarity of a graph can be solved in linear time, as
shown independently by Auer et al. [4] and Hong et al. [19]. It is worth to note that an outer-1-planar graph
is always planar [4], while this is not true in general for outer-fan-planar graphs. Indeed, the complete graph
K5 is outer-fan-planar, but not planar.

The well-known Fary’s theorem [14] proved that every plane graph admits a straight-line drawing. How-
ever, Thomassen [28] presented two forbidden subgraphs for straight-line drawings of 1-plane graphs. Hong
et al. [20] gave a linear-time testing and drawing algorithm to construct a straight-line 1-planar drawing, if
it exists. Recently, Nagamochi solved the more general problem of straight-line drawability for wider classes
of embedded graphs [23]. On the other hand, Eggleton showed that every outer-1-planar graph admits an
outer-1-planar straight-line drawing [12].

A drawn graph is called k-quasi planar if it does not contain k mutually crossing edges. Fan-planar graphs
are 3-quasi planar, since they cannot contain three independent edges that mutually cross. It is conjectured
that the number of edges of a k-quasi planar graph is linear in the number of its vertices. Pach et al. [24]
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and Ackerman [1] showed that this conjecture holds for 3- and 4-quasi planar graphs, respectively. Fox and

Pach [15] showed that every k-quasi-planar graph with n vertices has at most O(n log1+o(1) n) edges.

A different forbidden crossing pattern arises in RAC drawings where two edges are allowed to cross, as
long as the crossings edges form right angles. Graphs that admit such drawings (with straight-line edges)
are called right-angle crossing graphs or RAC graphs, for short. Didimo et al. [9] showed that a RAC graph
with n vertices cannot have more than 4n − 10 edges and that this bound is tight. It is also known that
a RAC graph is quasi planar [9], while a maximally dense RAC graph (i.e., a RAC graph with n vertices
and exactly 4n − 10 edges) is 1-planar [11]. Testing whether a given graph is a RAC graph is NP-hard [3].
Dekhordi and Eades [8] proved that every outer-1-plane graph has a straight-line RAC drawing, at the cost
of exponential area.

1.2 Preliminaries

We consider finite, undirected and simple graphs. A drawing of a graph maps vertices to points in the plane
and edges to simple closed curves between the points corresponding to the end-vertices of the edge. For a
given drawing, we say that two edges cross if the interiors of their corresponding curves share a common
point. A drawing is simple if no edge contains a vertex in its interior, no two edges incident to a common
end-vertex cross, no edge crosses itself, no two edges meet tangentially, and no two edges cross more than
once. The rotation system of a drawing is the counterclockwise order of the incident edges around each
vertex. The embedding of a drawn graph consists of its rotation system and for each edge the sequence of
edges crossing it. For a graph G and a vertex v ∈ V [G], we denote by G − {v} the graph that results from
G by removing v. A fan-planar drawing of a graph G = (V,E) is a simple drawing such that, for each edge
e ∈ E, the edges that cross e, if any, are all incident to a common vertex v on the same side of e. Such
a crossing is called a fan-crossing. An equivalent definition can be stated by means of forbidden crossing
patterns; see Fig. 1b, 1c and 1d. A graph is fan-planar if it admits a fan-planar drawing. An drawing is
outer-fan-planar if it is a fan-planar drawing with all vertices on the outer face. A graph is outer-fan-planar
if it admits an outer-fan-planar drawing. An outer-fan-planar graph is maximal outer-fan-planar if adding
any edge to it yields a graph that is not outer-fan-planar. Note that forbidden pattern II is irrelevant for
outer-fan-planarity.

We now briefly recall the SPQR-tree data structure [18]. Two vertices v and w are a separation pair of
a connected graph G if the graph that results from G by deleting v and w is not connected. A graph is
3-connected if it contains more than three vertices but no separation pair. An SPQR-tree is a labeled tree
that represents the decomposition of a biconnected graph into 3-connected components. Each node x of an
SPQR-tree is labeled with a multi-graph Gx – called the skeleton of x. There are four different types of
labels with the following skeletons: (i) S-nodes: a simple cycle. (ii) P -nodes: three or more parallel edges.
(iii) R-nodes: a simple 3-connected graph. (iv) Q-nodes: a single edge. No two S-nodes, nor two P -nodes
are adjacent in an SPQR-tree. For each node x of an SPQR-tree there is a one-to-one correspondence of the
edges of the skeleton of Gx and the edges incident to x. Further, let {x, y} be an edge of an SPQR-tree and
let ex and ey be the edges of Gx and Gy, respectively, that are assigned to {x, y}. Then, ex and ey have the
same end-vertices – say u and v. Moreover, let x′ and y′ be two nodes in different connected components of
T without the edge {x, y}. Then Gx′ and Gy′ share at most u and v as common vertices.

An SPQR-tree represents the (multi-)graph constructed by iteratively merging edges of the SPQR-tree
as follows. For an edge {x, y} of the current tree, let Gx and Gy be the graphs currently associated with
x and y, respectively. Remove the edge associated with {x, y} from both Gx and Gy – except if they are
Q-nodes. Let the graph associated with the node that results from merging x and y be the union of (the
remaining parts of) Gx and Gy.

The edges of a skeleton are called virtual edges if they correspond to a tree edge that is not incident to
a Q-node and real edges otherwise. Note that real edges correspond to the edges of the graph represented
by the SPQR-tree. Every biconnected graph has a unique SPQR-tree and the SPQR-tree of a biconnected
graph can be constructed in linear time [18].
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2 Recognizing and Drawing Maximal Outer-Fan-Planar Graphs

In this section, we prove that given a graph G = (V,E) on n vertices, there is a polynomial time algorithm
to decide whether G is maximal outer-fan-planar and if so a corresponding straight-line drawing can be
computed in linear time. We first observe that biconnectivity is a necessary condition for maximal outer-fan-
planarity. In other words, a simply connected graph that is not biconnected cannot be maximal outer-fan-
planar. Indeed, if an outer-fan-planar drawing has a cut-vertex c, it is easy to see that it is always possible to
draw an edge connecting two neighbors of c while preserving the outer-fan-planarity. Further, because of the
following lemma, we only have to check whether G admits a straight-line fan-planar drawing on a circle C;
such a drawing is completely determined by the cyclic ordering of the vertices on C.

Lemma 1. A biconnected graph G is outer-fan-planar if and only if it admits a straight-line outer-fan-planar
drawing in which the vertices of G are restricted on a circle C.

Proof. Let G be an outer-fan-planar graph and let Γ be an outer-fan-planar drawing of G. We will only show
that G has a straight-line outer-fan-planar drawing whose vertices lie on a circle C (the other direction is
trivial). The order of the vertices along the outer face of Γ completely determines whether two edges cross,
as in a simple drawing no two incident edges can cross and any two edges can cross at most once. Now,
assume that two edges cross another edge in Γ . Then, both edges have to be incident to the same vertex;
hence, cannot cross each other. So, the order of the crossings on an edge is also determined by the order of
the vertices on the outer face. Therefore, we can construct a drawing ΓC by placing the vertices of G on a
circle C preserving their order in the outer face of Γ and draw the edges as straight-line segments. ut

Since fan-planar graphs with n vertices have at most 5n−10 edges [21], we may assume that the number
of edges is linear in the number of vertices. We first consider the case that G is 3-connected (see Section 2.1)
and then using SPQR-trees we show how the problem can be solved for biconnected graphs (see Section 2.2).

2.1 The 3-Connected Case

Assume that a straight-line drawing of a 3-connected graph G with n vertices on a circle C is given. Let
v1, . . . , vn be the order of the vertices around C. An edge {vi, vj} is an outer edge, if i− j ≡ ±1 (mod n), a
2-hop, if i− j ≡ ±2 (mod n), and a long edge otherwise. G is a complete 2-hop graph, if there are all outer
edges and all 2-hops, but no long edges. Two crossing long edges are a scissor if their end-points form two
consecutive pairs of vertices on C. We say that a triangle is an outer triangle if two of its three edges are
outer edges. We call an outer-fan-planar drawing maximal, if adding any edge to it yields a drawing that is
not outer-fan-planar.

Our algorithm is based on the observation that if a graph is 3-connected maximal outer-fan-planar, then
it is a complete 2-hop graph, or we can repeatedly remove any degree-3 vertex from any 4-clique until only
a triangle is left. In a second step, we reinsert the vertices maintaining outer-fan-planarity (if possible). It
turns out that we have to check a constant number of possible embeddings. In the following, we prove some
necessary properties. The first three lemmas are used in the proof of Lemma 5. Their proofs are based on
the 3-connectivity of the input graph; see also Fig. 2, 3 and 2c.

Lemma 2. Let G be a 3-connected outer-fan-planar graph embedded on a circle C. If two long edges cross,
then two of its end-points are consecutive on C.

Proof. Assume to the contrary that there exist two long crossing edges {vi1 , vi3} and {vi2 , vi4}, such that
2 ≤ i1 ≤ i2 − 2 ≤ i3 − 4 ≤ i4 − 6 and i4 = n; see Fig.2. Since G is 3-connected, there has to be a vertex
vj1 with i1 < j1 < i2, such that vj1 is adjacent to a vertex not in {vi1 , . . . , vi2}. By outer-fan-planarity, this
can only be vi3 or vi4 ; say without loss of generality vi3 . Likewise there is a vertex vi2 with i2 < j2 < i3,
such that vj2 is adjacent to a vertex not in {vi2 , . . . , vi3}. By outer-fan-planarity this can now only be vi4 .
But now outer-fan-planarity does not permit to add an edge connecting the two parts separated by vi3 and
vi4 . ut
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Fig. 2. Different configurations used in: (a) Lemma 2, (b) Lemma 3, (c, d) Lemma 4.

Lemma 3. Let G be a 3-connected outer-fan-planar graph embedded on a circle C. If there are two long
crossing edges, then there is a scissor, as well.

Proof. Let e and e′ be two long crossing edges. By Lemma 2, it follows that two of the end-points of e and
e′ are consecutive on C. So, assume without loss of generality that the vertices on C are labeled such that
e = {v1, vk} and e′ = {v`, vn} for some ` < k; see Fig.3. If k = `+ 1, then the lemma holds. If this is not the
case, then among all crossing long edges with end-vertices v1 and vn on one hand and end-vertices between
v` and vk on the other hand, let edges {v1, vj} and {vn, vi}, with ` ≤ i < j ≤ k be the ones for which the
difference j − i is minimal. Obviously, if j = i+ 1, then the edges {v1, vj} and {vn, vi} are a scissor. Assume
now that j > i+ 1. Since vi and vj cannot be a separation pair, there has to be an edge between a vertex vs
with j < s < i and a vertex vt with t < i or t > j. By outer-fan-planarity t = 1 or t = n. This contradicts
the choice of {v1, vj} and {vi, vn}. ut

Lemma 4. Let G be a 3-connected graph embedded on a circle C with a maximal outer-fan-planar drawing.
If G contains a scissor, then its end-vertices induce a K4.

Proof. Assume without loss of generality that the vertices on C are labeled such that {v1, vi+1} and {vi, vn}
is a scissor, for some 1 < i < n. We have to show that {v1, vi} ∈ E[G] and {vn, vi+1} ∈ E[G]. By outer-
fan-planarity there cannot be an edge {v`, vk}, such that 1 < ` < i and i+ 1 < k < n; see Fig. 2c. Since
v1 and vi cannot be a separation pair, there has to be an edge between vn or vi+1 and a vertex v` with
1 < ` < i; say from vn. Similarly, since vn and vi+1 cannot be a separation pair, there has to be an edge
between v1 or vi and a vertex vk, with i+ 1 < k < n. By outer-fan-planarity, this can only be an edge from
v1, as otherwise edge {v1, vi+1} would be crossed by two independent edges; see Fig. 2c. As a consequence,
there cannot be an edge between vi and a vertex vk, i+ 1 < k < n nor an edge between vi+1 and a vertex
v`, 1 < ` < i. Hence, the edge {v1, vi} is only crossed by edges incident to vn. Moreover, any edge that is
crossed by {vi, v1} is already crossed by two edges incident to v1. Since G is maximal outer-fan-planar, it
must contain edge {vi, v1}. A similar argument holds for {vn, vi+1}. ut

Lemma 5. Let G be a 3-connected graph with a maximal outer-fan-planar drawing and assume that the
drawing contains at least one long edge. Then, G contains a K4 with all four vertices drawn consecutively
on the circle.

Proof. First consider the case where the graph contains at least two crossing long edges and, thus, by
Lemma 3 a scissor. Removing the vertices of a scissor, splits G into two connected components. Assume
that we have chosen the scissor such that the smaller of the two components is as small as possible (thus,
scissor-free) and that the vertices around C are labeled such that this scissor is {v1, vi+1}, {vi, vn} with
i ≤ n − i, i.e., the component induced by v2, . . . , vi−1 is the smaller one. Recall that by Lemma 4 a scissor
induces a K4.

If i = 3, i.e., if {v1, v3} is a 2-hop, then G should contain either {v2, vn} or {v2, v4}, as otherwise v1 and
v3 is a separation pair; see Fig. 2d. Say without loss of generality {v2, vn}. Then, v1, v2, v3 together with vn
induce a K4 with all vertices consecutive on circle C.

5



vk′ v`′
v1

vn

vi

vi+1

vk v`

vk+1 vk+2

(a)

v5v1

vj

v4
v2

v3

v`
vk

(b)

v4

vk

v1

v2
v3

vk

(c)

v1

v4
v2

v3

vn
e

e′

v5

(d)

Fig. 3. Different configurations used in: (a) Lemma 5, (b) Lemma 6, (c) Lemma 7, (d) Lemma 9.

If i > 3, let {vk, v`}, 1 ≤ k < ` ≤ i be a long edge such that there is no long edge {vk′ , v`′} 6= {vk, v`}
with k ≤ k′ < `′ ≤ `; see Fig. 3a. Then, no long edge is crossing the edge {vk, v`}, as otherwise by Lemma 3
such a crossing would yield a new scissor, contradicting the choice of {v1, vi+1} and {vi, vn}. Since {vk, v`}
is not crossed by a long edge, it must be crossed by exactly one 2-hop, say {vk−1, vk+1}. Now, ` − k > 3
is not possible, since we could add the edge {vk+1, v`}, which is long. Hence, ` − k = 3 and by maximality
of the outer-fan-planar drawing, vk, vk+1, vk+2, v` induces a K4 with all vertices consecutive on C. Finally,
if G contains no two crossing long edges, let {vk, v`}, 1 ≤ k < ` ≤ n be a long edge such that there is no
long edge {vk′ , v`′} 6= {vk, v`} with k ≤ k′ < `′ ≤ `. By the same argumentation as above, we obtain that
vk, vk+1, vk+2, v` induces a K4 with all vertices consecutive on C. ut
Lemma 6. Let G be a 3-connected outer-fan-planar graph with at least six vertices. If G contains a K4 with
all vertices drawn consecutively on circle C, then this K4 contains exactly one vertex of degree three and this
vertex is neither the first nor the last of the four vertices.

Proof. Let the vertices around circle C be labeled so that v1, v2, v3, v4 induce a K4. Since v1 and v4 is not a
separation pair, there is an edge between v2 or v3 and a vertex, say vk, among v5, . . . , vn. Hence, three out
of the four vertices v1, v2, v3 and v4 have degree at least four; see Fig. 3b. If v3 had a neighbor in v5, . . . , vn,
then this could only be vk, as otherwise {v1, v4} would be crossed by two independent edges. Since G has at
least 6 vertices, we assume without loss of generality that k > 5. Since v4 and vk is not a separation pair,
there has to be an edge {v`, vm} for some 4 < ` < k and a j /∈ {4, . . . , k}. But such an edge would not be
possible in an outer-fan-planar drawing. ut

Lemma 7. Let G be a 3-connected outer-fan-planar graph with at least six vertices. If G contains a K4 with
a vertex of degree 3, then this K4 has to be drawn consecutively on circle C in any outer-fan-planar drawing
of G.

Proof. Observe that any outer-fan-planar drawing of a K4 contains exactly one pair of crossing edges. If two
2-hops cross, then all vertices of the K4 are consecutive. If the K4 contains two crossing long edges, then
each of the vertices of the K4 is incident to an outer edge not contained in the K4; thus, has degree at least
four. If a long edge and a 2-hop cross, assume that the vertices around C are labeled such that v1, v2, v3, vk
induce a K4 for some 5 ≤ k < n; see Fig. 3c. Since v1, v3 and vk are incident to an outer edge not contained
in the K4, they have degree at least four. We claim that v2 has degree at least four. Since v3 and vk is not
a separation pair, there is an edge between a vertex among v4, . . . , vk−1 and v2 or v1 and an edge between a
vertex among vk+1, . . . , vn and v2 or v3. Choosing v1 and v3 in the first and second case respectively, yields
two independent edges crossing {v2, vk}. So, v2 is connected to a vertex outside K4. ut
Lemma 8. Let G be a 3-connected graph with n ≥ 5 vertices and let v ∈ V [G] be a vertex of degree three
that is contained in a K4. Then, G− {v} is 3-connected.

Proof. Let a, b, c and d be four arbitrary vertices of G− {v}. Since G was 3-connected, there was a path P
from a to b in G−{c, d}. Assume that P contains v. Since v is only connected to vertices that are connected
to each other, there is also another path from a to b in G − {c, d} not containing v. Hence, a and b cannot
be a separation pair in G− {v}. Since a and b were arbitrarily selected, G− {v} is 3-connected. ut
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Lemma 9. Let G be a 3-connected graph with n > 6 vertices, let v1, v2, v3 and v4 be four vertices that
induce a K4, such that the degree of v3 is three. Then, G− {v3} has a maximal outer-fan-planar drawing if
G has a maximal outer-fan-planar drawing.

Proof. Consider a maximal outer-fan-planar drawing of G on a circle C and let v1, v2, v3, v4, . . . , vn be the
order of the vertices on C (recall Lemma 7). Assume to the contrary that after removing v3, we could add an
edge e to the drawing; see Fig. 3d. By Lemma 6, {v3, v1} is the only edge incident to v3 that crosses some
edges of G− {v3}. Hence, there must be an edge e′ that is crossed by e and {v3, v1}. Since {v3, v1} crosses
only edges incident to v2 that also cross {v1, v4}, it follows that e′ has to be incident to v2. Further, since
G − {v3} plus e is outer-fan-planar it follows that e is incident to v1 or v4. Moreover, since G plus e is not
outer-fan-planar it follows that e is incident to v4.

Let i be maximal so that there is an edge {v2, vi}. If i 6= n, then v1 and vi is a separation pair: Any
edge connecting {vi+1, . . . , vn−1} to {v2, v3, . . . , vi−1} and not being incident to v2 crosses {v2, vi}. But edges
crossing {v2, vi} can only be incident to v1, a contradiction. Now, let j > 4 be minimum such that there is
an edge {v2, vj}. We claim that j = 5. If this is not the case, then similarly to the previous case v4 and vj
would be a separation pair in G− {v3} plus e, which is not possible due to Lemma 8.

It follows that G has to contain edge {v1, v5}: Since G is outer-fan-planar, in G there cannot be an edge
{v4, vk} for some k = 6, . . . , n, since it would cross {v2, v5} which is crossed by {v3, v1}. So, {v1, v5} crosses
only edges incident to v2 that are already crossed by {v3, v1} and {v4, v1}. Hence, {v1, v5} could be added
to G without violating outer-fan-planarity; a clear contradiction. Since e and {v2, vn} both cross {v1, v5} it
follows that e = {v4, vn}. But now, v5 and vn has to be a separation pair. ut
Remark 1. Let G be a graph with 6 vertices containing a vertex v of degree three. Then, G is maximal
outer-fan-planar if and only if G−{v} is a K5 missing one of the edges that connects a neighbor of v to one
of the other two vertices.

Lemma 10. It can be tested in linear time whether a graph is a complete 2-hop graph. Moreover, if a graph
is a complete 2-hop graph, then it has a constant number of outer-fan-planar embeddings and these can be
constructed in linear time.

Proof. Let G be an n-vertex graph. We test whether G is a complete 2-hop as follows. If n ∈ {4, 5}, then
G is either K4 or K5. Otherwise, check first whether all vertices have degree four. If so, pick one vertex as
v1, choose a neighbor as v2 and a common neighbor of v1 and v2 as v3 (if no such common neighbor exists,
then G is not a complete 2-hop). Assume now that we have already fixed v1, . . . , vi, 3 ≤ i < n. Test whether
there is a unique vertex v ∈ V \ {v1, . . . , vi} that is adjacent to vi and vi−1. If so, set vi+1 = v. Otherwise
reject. If we have fixed the order of all vertices check whether there are only outer edges and 2-hops. Do this
for any possible choices of v2 and v3, i.e., for totally at most 6 choices. ut
Remark 2. No degree 3 vertex can be added to an n-vertex complete 2-hop with n ≥ 5.

We are now ready to describe our algorithm. If the graph is not a complete 2-hop graph, recursively try
to remove a vertex of degree 3 which is contained in a K4. If G is maximal outer-fan-planar, Lemmas 5 and 6
guarantee that such a vertex always exists in the beginning. Remark 2 guarantees that also in subsequent
steps there is a long edge and, thus, Lemmas 8 and 9 guarantee that also in subsequent steps, we can apply
Lemma 5 as long as we have at least six vertices. Remark 1 guarantees that we can also remove two more
vertices of degree 3 ending with a triangle.

At this stage, we already know that if the graph is outer-fan-planar, it is indeed maximal outer-fan-planar.
Either, we started with a complete 2-hop graph or we iteratively removed vertices of degree three yielding a
triangle. Note that in the latter case we must have started with 3n−6 edges. On the other hand, if we apply
the above procedure to an n-vertex 3-connected maximal outer-fan-planar graph, we get that the number of
edges is exactly 2n or 3n− 6.

Finally, we try to reinsert the vertices in the reversed order in which we have deleted them. By Lemma 7,
we can insert the vertex of degree three only between its neighbor, i.e., there are at most two possibilities
where we could insert the vertex. Lemma 11 guarantees that in total, we have to check at most four possible
drawings for G. A summary of our approach is also given in Algorithm 1.
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Algorithm 1: 3-Connected Maximal Outer-Fan-Planarity

Input : 3-connected graph G = (V,E), subset E′ ⊆ E
Output : true if and only if G is maximal outer-fan-planar and

has an outer-fan-planar drawing in which edges in E′ are outer edges and if so
all outer-fan-planar drawings of G in which edges in E′ are outer edges

begin
mark all edges in E′;
if G is a complete 2-hop graph then

return whether G has an outer-fan-planar drawing with marked edges on outer face;

while there are vertices of degree 3 contained in a K4 do
let v be such a vertex, with neighbors a, b, c;
if v is contained in three marked triangles or three marked edges then

return false;

forall the marked triangles v, x, y containing v do
if the edge {x, y} was not marked then mark the edge {x, y} with v

S.Push(v);
remove v from G;
mark the triangle a, b, c;

if the remainder is not a triangle then return false while S 6= ∅ do
v ← S.Pop;
remove the mark from all edges marked v;
insert v between two of its neighbors such that

(a) all marked edges are outer edges and (b) outer-fan-planarity is preserved;
if both possibilities work then branch if no possibility works then return false

return true;
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Lemma 11. When reinserting a sequence of degree 3 vertices starting from a triangle, at most the first two
vertices have two choices where they could be inserted.

Proof. Let H be a outer-fan-planar graph and let three consecutive vertices v1, v2, v3 induce a triangle.
Assume, we want to insert a vertex v adjacent to v1, v2, v3. By Lemma 6, we have to insert v between v1 and
v2 or between v2 and v3. Note that the edges that are incident to v2 and cross {v1, v3} are also crossed by
an edge e incident to v. So, if there is an edge incident to v2 that was already crossed twice before inserting
v, this would uniquely determine whether e is incident to v1 or v3 and, thus, where to insert v.

We will now show that after the first insertion each relevant vertex is incident to an edge that is crossed
at least twice. When we insert the first vertex we create a K4. From the second vertex on, whenever we
insert a new vertex, it is incident to an edge that is crossed at least twice. Also, after inserting the second
degree 3 vertex, three among the four vertices of the initial K4 are also incident to an edge that is crossed
at least twice. The forth vertex of the initial K4 is not the middle vertex of a triangle consisting of three
consecutive vertices. It can only become such a vertex if its incident inner edges are crossed by a 2-hop. But
then these inner edges are all crossed at least twice. ut

Summarizing, we obtain the following theorem; in order to exploit this result in the biconnected case, it
is also tested whether a prescribed subset (possibly empty) of edges can be drawn as outer edges.

Theorem 1. Given a 3-connected graph G with a subset E′ of its edge set, it can be tested in linear time
whether G is maximal outer-fan-planar and has an outer-fan-planar drawing such that the edges in E′ are
outer edges. Moreover if such a drawing exists, it can be constructed in linear time.

Proof. Let n be the number of vertices. By Lemma 10, a complete 2-hop graph has only a constant number
of outer-fan-planar embeddings which can be computed in linear time. In the other case, any vertex that
was removed from the queue will never be appended again. Hence, there are at most n iterations in the first
part of Algorithm 1.

To check whether the degree three vertices can be reinserted back in the graph, we only have to consider
in total four different embeddings. Assume that we want to insert a vertex v into an outer triangle v1, v2, v3.
Then we just have to check whether v1 or v3 are incident to edges other than the edge {v1, v3} that cross an
edge incident to v2. This can be done in constant time by checking only two pairs of edges. ut

2.2 The Biconnected Case

We now show how to test outer-fan-planar maximality on a biconnected graph.

Lemma 12. Let v1, . . . , vn be the order of the vertices around the circle in an outer-fan-planar drawing of a
3-connected graph G. If we can add a vertex v between v1 and vn with an edge {v, vi} for some i = 2, . . . , n−1,
then i = 2 or i = n− 1.

Proof. Otherwise, since v1, vi cannot be a separation pair of G, there has to be an edge from a vk for some
k = 2, . . . , i − 1 that crosses {v, vi} and hence an edge {vk, vn}. Since vn, vi cannot be a separation pair of
G, there has to be an edge {v1, v`} for some ` = i+ 1, . . . , n− 1. But now there are three independent edges
crossing. ut

We say that an outer edge {v1, vn} is porous around v1 if we could add a vertex v between v1 and vn and
an edge {v, v2} maintaining outer-fan-planarity. Note that any edge of a simple cycle, i.e., of the skeleton
of an S-node is porous around any of its end-vertices. Any outer edge of a K4 is porous around any of its
end-vertices; see Fig. 4.

We use the SPQR-tree of a biconnected graph to characterize whether it is maximal outer-fan-planar.

Theorem 2. A biconnected graph is maximal outer-fan-planar iff the following hold:

1) The skeleton of any R-node is maximal outer-fan-planar and has an outer-fan-planar drawing in which
all virtual edges are outer edges,
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Fig. 4. (a) In the solid graph, edge {v2, v3} ({v5, v6}) is porous around v2 (v6, resp.). (b) Illustration of Case 5b of
Theorem 2.

2) No R-node is adjacent to an R-node or an S-node,
3) All S-nodes have degree three,
4) All P -nodes have degree three and are adjacent to a Q-node, and
5) Let G1 and G2 be the skeleton of the two neighbors of a P -node other than the Q-node and let {s, t} be

the common virtual edge of G1 and G2. Then, Gi, i = 1, 2 must not admit an outer-fan-planar drawing
with ti, s, t, si being consecutive around the circle and
(a) edge {s, t} is porous in both G1 and G2 around the same vertex, or
(b) edge {t1, s} ({s2, t}) is real and porous around s (t, resp.), or
(c) edge {s1, t} ({t2, s} ) is real and porous around t (s, resp.).

Proof. Let G be a biconnected graph.

⇐: Clearly, if 1 and 4 are fulfilled, then G is outer-fan-planar. Just merge skeletons at common virtual edges
such that one skeleton is in the outer face of the other skeleton. It remains to show maximality.
The skeleton of each node is maximal outer-fan-planar. Assume now that we have already merged some
nodes of the SPQR-tree obtaining a maximal outer-fan-planar graph H and that we next want to merge
H with a skeleton Gx at a virtual edge {s, t} obtaining a graph H ′. There is nothing to show if Gx

is the skeleton of a P -node. So assume that Gx is a triangle or a 3-connected graph. Consider a fixed
outer-fan-planar drawing of H ′.
We first show that the vertices of Gx are consecutive on the circle. If Gx is a triangle, this follows directly
from Lemma 12, Condition 5b, and its symmetric counter part. Assume now that Gx is 3-connected.
Note that the outer-fan-planar drawing of H ′ also induce outer-fan-planar drawings of Gx and H. By
maximality these two drawings contain all outer edges. Let now e be an edge that was an outer edge in
one of the two subgraphs – say Gx – but not incident to s or t. Then, e can only be an outer edge or a
2-hop in H ′: if e′ is not an outer edge in H, it crosses at least two outer edges of the other subgraph – here
H. Hence, starting from s and t the vertices must be ordered as follows around the circle: first there
might be one or more vertices of one of the two subgraphs Gx or H. Then, there might be alternatingly
a vertex from H and Gx, finally there could be again several vertices from one of the two subgraphs Gx

or H. Using that Gx is 3-connected and a case distinction on whether the two sequences of vertices next
to s and t, respectively, are chosen from H or Gx, respectively, we obtain that the alternating part on
the circle has to be empty.
Hence, Gx has to be inserted next to s or t. Now, Condition 5b implies that Gx must be inserted right
between s and t. Hence, the only edge that could be inserted into the drawing would be an edge crossing
{s, t} which is prohibited by Condition 5b and its symmetric counter part.

⇒: Assume again that we have already merged some nodes of the SPQR-tree obtaining a maximal outer-
fan-planar graph H and that we next want to merge H with a skeleton Gx at a virtual edge {s, t}
obtaining a graph H ′. Note that in a maximal outer-fan-planar drawing all outer edges have to be
present. This implies especially, that the vertices of Gx have to be consecutive in an outer-fan-planar
drawing of H ′ with s and t being the first and the last vertex and that we cannot draw the skeletons of
two nodes adjacent to one P -node on the same side of the respective virtual edge. Otherwise, we obtain
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the situation indicated in Fig. 4b. This implies 1, 5b, and its symmetric counterpart. Moreover, all virtual
edges have to be real edges which implies 2 and, combined with the previous observation, also 4. If the
skeleton of an S-node would be a cycle of length greater than three, we could add chords, contradicting
maximality. Hence, 3 is fulfilled. Finally, when combining two components in parallel, we should not be
able to add an edge from one component to the other routed over the virtual edge. This implies 5a. ut

3 The NP-hardness of the Fan-Planarity with Fixed Rotation System Problem

In this section, we study the Fan-Planarity with Fixed Rotation System problem (FP-FRS), that
is, the problem of deciding whether a graph G = (V,E) with a fixed rotation system R admits a fan-planar
drawing preserving R.

Theorem 3. Fan-Planarity with Fixed Rotation System is NP-hard.

Proof. We prove the statement by using a reduction from 3-Partition (3P). An instance of 3P is a multi-
set A = {a1, a2, . . . , a3m} of 3m positive integers in the range (B/4, B/2), where B is an integer such that∑3m

i=1 ai = mB. 3P asks whether A can be partitioned into m subsets A1, A2, . . . , Am, each of cardinality 3,
such that the sum of the numbers in each subset is B. As 3P is strongly NP-hard [16], it is not restrictive to
assume that B is bounded by a polynomial in m.

Given an instance A of 3P, we show how to transform it into an instance 〈GA,RA〉 of FP-FRS, by a
polynomial-time transformation, in such a way that the former is a Yes-instance of 3P if and only if the
latter is a Yes-instance of FP-FRS.

Before describing our transformation in detail, we need to introduce the concept of barrier gadget. An
n-vertex barrier gadget is a graph consisting of a cycle of n ≥ 5 vertices plus all its 2-hop edges; a barrier
gadget is therefore a maximal outer-2-planar graph. We make use of barrier gadgets in order to constraint
the routes of some specific paths of GA, as will be clarified soon. We exploit the following property of barrier
gadgets. Let G be a biconnected fan-planar graph containing a barrier subgraph Gb, and let Γ be a fan-planar
drawing of G such that drawing Γb of Gb in Γ is maximal outer-2-planar. Then, no path π of G − Gb can
enter inside the boundary cycle of Γb and cross a 2-hop edge. Indeed, every 2-hop edge eb of Γb is crossed
by two other 2-hop edges having an end-vertex in common, hence if eb were crossed by π, then eb would be
crossed by two independent edges. On the other hand, if path π enters inside Γb without crossing any 2-hop
edge, then it must cross twice a same boundary edge e′b because of the biconnectivity of G; namely, if path
π enters in Γb, then it must also exit from it passing through the same boundary edge. In this case, the only
possibility that preserves the fan-planarity of Γ is that π crosses e′b with two consecutive edges, thus forming
a fan-crossing. Otherwise, e′b would be crossed either by two independent edges of π or by a same edge of π
twice, but both these cases are not allowed in a (simple) fan-planar drawing.

Now, we are ready to describe how to transform an instance A of 3P into an instance 〈GA,RA〉 of FP-
FRS. We start from the construction of graph GA which will be always biconnected. First of all, we create a
global ring barrier by attaching four barrier gadgets Gt, Gr, Gb and Gl as depicted in Figure 5. Gt is called
the top beam and contains exactly 3mK vertices, where K = dB/2e + 1. Gr is the right wall and has only
five vertices. Gb and Gr are called the bottom beam and the left wall, respectively, and they are defined in
a specular way. Observe that Gt, Gr, Gb and Gl can be embedded so that all their vertices are linkable to
points within the closed region delimited by the global ring barrier. Then, we connect the top and bottom
beams by a set of 3m columns, see Figure 5 for an illustration of the case m = 3. Each column consists of a
stack of 2m−1 cells; a cell consists of a set of pairwise disjoint edges, called the vertical edges of that cell. In
particular, there are m−1 bottommost cells, one central cell and m−1 topmost cells. Cells of a same column
are separated by 2m − 2 barrier gadgets, called floors. Central cells (that are 3m in total) have a number
of vertical edges depending on the elements of A. Precisely, the central cell Ci of the i-th column contains
ai vertical edges connecting its delimiting floors (i ∈ {1, 2, ..., 3m}). Instead, all the remaining cells have,
each one, K vertical edges. Hence, a non-central cell contains more edges than any central cell. Further,
the number of vertices of a floor is given by the number of its incident vertical edges minus two. Let u
and v be the “central” vertices of the left and right walls, respectively (see also Figure 5). We conclude the
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Fig. 5. Illustration of the reduction of FP-FRS from 3P, where m = 3, A = {7, 7, 7, 8, 8, 8, 8, 9, 10} and B = 24.
Transversal paths are routed according to the following solution of 3P: A1 = {7, 7, 10}, A2 = {7, 8, 9} and A3 =
{8, 8, 8}. The top-left and top-right boxes show a zoom of the first central cell and of the non-central cell of the 3-rd
column traversed by path π1, respectively.

construction of graph GA by connecting vertices u and v with m pairwise internally disjoint paths, called
the transversal paths of GA; each transversal path has exactly (3m− 3)K +B edges.

Concerning the choice of a rotation system RA, we define a cyclic ordering of edges around each vertex
that is compatible with the following constraints: (i) every barrier gadget can be embedded with all its 2-hop
edges inside its boundary cycle; (ii) the global ring barrier can be embedded with only four vertices on the
outer face; (iii) columns can be embedded inside the region delimited by the global ring barrier without
crossing each other; (iv) vertical edges of cells can be embedded without creating crossings; (v) transversal
paths are attached to the left and right walls such that the ordering of their edges around u is specular to
the ordering around v; this choice makes it possible to avoid crossings between any two transversal paths.
From what said, it is straightforward to see that an instance of 3P can be transformed into an instance of
FP-FRS in polynomial time in m.

We now prove that a Yes-instance of 3P is transformed into a Yes-instance of FP-FRS, and vice-versa.
Let A be a Yes-instance of 3P, we show that 〈GA,RA〉 admits a fan-planar drawing ΓA preserving RA. We
preliminarily observe that such a drawing is easy to compute if one omits all the transversal paths. It is
essentially a drawing like that one depicted in Figure 5, where columns are one next to the other within the
closed region delimited by the global ring barrier. However, by exploiting a solution {A1, A2, . . . , Am} of 3P
for the instance A, also the transversal paths can be easily embedded without violating the fan-planarity.
The idea is to route these paths in such a way that: (R.1) they do not cross each other; (R.2) they do not
cross any barrier; (R.3) each path passes through exactly 3 central cells and 3m − 3 non-central cells; and
(R.4) each cell is traversed by at most one path. More precisely, each transversal path πj is biunivocally
associated with a subset Aj (j ∈ {1, 2, . . . ,m}) and the three central cells it passes through have three
sets of vertical edges whose cardinalities form a triple of integers matching the three integers of Aj . Paths
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are routed by sweeping columns from left to right and by proceeding as follows. Let C1 be the 1-st central
cell; C1 has a1 vertical edges by construction. The transversal path passing through C1 is a path πj(1) such
that subset Aj(1) contains an integer equal to a1. The remaining transversal paths are routed until the 1-st
column by preserving the cyclic edge-ordering around u and by respecting conditions R.1, R.2, R.3 and R.4;
note that condition R.3 cannot be violated at this point. Suppose now that all paths have been already
routed until the (i − 1)-th column, for some i ≥ 2, and suppose also that conditions R.k (1 ≤ k ≤ 4) are
satisfied. Then, there is at least a path πj(i) whose corresponding subset Aj(i) contains an integer ai that
has not yet been considered. Path πj(i) is the next path that goes through the central cell Ci. The remaining
paths are routed in such a way that their “vertical distances” to path πj(i), in terms of number of cells, are
unchanged when passing from the (i − 1)-th column to the i-th column. Eventually, each transversal path
crosses exactly (3m−3)K+B vertical edges, which is the same number of its edges. Therefore, it is possible
to draw these paths by ensuring that each of their edges crosses exactly one vertical edge, which preserves
the fan-planarity. Hence, eventually we get a fan-planar drawing ΓA preserving the rotation system RA.

We conclude the proof by showing that if 〈GA,RA〉 is a Yes-instance of FP-FRS, then A is a Yes-instance
of 3P. Let ΓA be a fan-planar drawing of GA preserving the rotation system RA. We first observe that the top
beam and the bottom beam are disjoint, otherwise there would be at least a 2-hope edge in one beam that
is crossed by another edge of the other beam, thus violating the fan-planarity. We also note that columns
can partially cross each other, but this does not actually affect the validity of the proof. Indeed, an edge e
of a column L might cross an edge e′ of another column L′ only if e is incident to a vertex in the rightmost
(leftmost) side of L, e′ is a leftmost (rightmost) vertical edge of L′, and L and L′ are two consecutive columns.
With a similar argument, it is immediate to see that vertices u and v must be separated by all the columns.
Therefore, every transversal path satisfies conditions R.1, R.2 and it must pass through at least three central
cells, if not it would cross a number of pairwise disjoint edges that is greater than the number of its edges,
hence ΓA would not be fan-planar. On the other hand, because of condition R.4, which is obviously satisfied,
there cannot be any transversal path passing through more than three central cells. Otherwise, there would be
some other transversal path that traverses a number of central cells that is strictly less than three. Hence, also
condition R.3 is satisfied. In conclusion, every transversal path πj (j ∈ {1, 2, . . . ,m}) crosses (3m− 3)K +B
vertical edges and traverses exactly three central cells C1j , C2j and C3j . If m(C1j),m(C2j) and m(C3j) denote
the number of edges of these cells, then m(C1j)+m(C2j)+m(C3j) = B, because each non-central cell has K
edges. Therefore, the partitioning of A defined by A1, A2, . . . , Am, where Aj = {m(C1j),m(C2j),m(C3j)},
is a solution of 3P for the instance A. ut
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14. Fáry, I.: On straight line representations of planar graphs. Acta Sci. Math. Szeged 11, 229 – 233 (1948)
15. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J. Discrete Math. 27(1), 550–561

(2013)
16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.

Freeman & Co., New York, NY, USA (1979)
17. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica

49(1), 1–11 (2007)
18. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS,

vol. 1984, pp. 77–90. Springer, Heidelberg (2001)
19. Hong, S.H., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing

outer-1-planarity. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 71–82. Springer, Heidelberg
(2013)
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25. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)
26. Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Inter-

acting with Computers 13(2), 147–162 (2000)
27. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamburg 29, 107–117 (1965)
28. Thomassen, C.: Rectilinear drawings of graphs. Journal of Graph Theory 12(3), 335–341 (1988)

14


	On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs  

