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1 Introduction

1.1 Background

Using quantum effects to speed up computation has been aimaohresearch-topic for the past two
decades. Most known quantum algorithms have been develoghd model of quantum query complex-
ity, the quantum generalization of decision tree compjexitere an algorithm is charged for each “query”
to the input, while intermediate computation is free ($€8] fbr more details). This model facilitates the
proof of lower bounds, and often, though not always, quanjuery upper bounds carry over to quantum
time complexity. For certain functions one can obtain laggantum-speedups in this model. For example,
Grover’s algorithm([2B] can search arbit database (looking for a bit-position of a 1) usifg,/n) queries,
while any classical algorithm neef$n) queries. For some partial functions we know exponentialesech
unbounded speed-ups [19] 35] 34,18, 1].

A more recent crop of quantum speed-ups come from algorithemed ormquantum walksSuch algo-
rithms solve a search problem by embedding the search omph,grad doing a quantum walk on this graph
that converges rapidly to a superposition over only the kadf vertices, which are the ones containing
a solution. An important example is Ambainis’s quantum &tpm for solving theelement distinctness
problem [4]. In this problem one is given an inpute [¢]", and the goal is to find a pair of distinét
andj in [n] such thats; = z;, or report that none exists. Ambainis’s quantum walk sotésin O (n?/?)
queries, which is optimal [2]. Classicall§)(n) queries are required. Two generalizations of this are the
k-distinctnessproblem, where the objective is to find distingt . .. ,i; € [n] such thaty;, = --- = z;,,
and thek-sumproblem, where the objective is to find distiri¢t. . . , i, € [n] such that;, +--- +z;, =0
mod ¢. Ambainis’s approach solves both problems ugihg*/(*+1)) quantum queries. Recently, Belovs
gave ao(n3/ 4)-query algorithm fork-distinctness for any fixe# [9] (which can also be made time-efficient
for k = 3 [12]). In contrast, Ambainis'® (n*/(¥+1))-query algorithm is optimal fok-sum [11[15].

Here we consider to what extent such algorithms capdrallelized Doing operations in parallel is a
well-known way to trade hardware for time, speeding up ca@mmns by distributing the work over many
processors that run in parallel. This is becoming ever mopenment in classical computing due to multi-
core processors and grid computing. In the case of quantumputing there is an additional reason to
consider parallelization, namely the limited lifetime aflgts due todecoherencebecause of unintended
interaction with their environment, qubits tend to loseirtlggiantum properties over a limited amount of
time, called thalecoherence timand degrade to classical random bits. One way to fight thésapply the
recipes of quantum error-correction and fault—tolernwhich can counteract the effects of certain kinds
of decoherence. Another way is to try to parallelize as msghossible, completing the computation before
the qubits decohere too much (this may of course increaswitike of the computation, creating problems
of its own).

1.2 Earlier work on parallel quantum algorithms

We know of only a few results about parallel quantum alganghmost of them in the circuit model where
“time” is measured by the depth of the circuit. A particwairhportant and beautiful example is the work
of Cleve and Watrous [17], who showed how to implement/tbgubit quantum Fourier transform using a
quantum circuit of depti®(log n). As a consequence, they were able to parallelize the quactomponent
of Shor’s algorithm: they showed that one can factdit integers by means of an(log n)-depth quantum

Parallelism is in fachecessaryo do quantum error-correction against a constant noise sagjuential operations cannot keep
up with the parallel build-up of errors.



circuit with polynomial-time classical pre- and post-pgesing. There have also been a number of papers
about quantum versions of small-depth classical Booleamiticlasses like AC and NC [30, 20,125,/ 36].
Beals et al.[[6] show how the quantum circuit model can beiefitty simulated by the more realistic model
of a distributed quantum computer (see alsd [22]). Thergetif measurement-basegliantum computing
(seel[26] and references therein) in some cases allows racaligdization than the usual circuit model.
Another example, basically the only one we know of in theisgtbf query complexity, is Zalka’s tight
analysis of parallelizing quantum searchl[37, Section 4Jpf®se one wants to search 5aiit database,
with the ability to dop queries in parallel in one time-step. An easy way to make fiski® parallelism
is to view the database asdatabases af/p bits each, and to run a separate copy of Grover's algorithm
on each of those. This finds a 1-position with high probabilising O(\/n/p) p-parallel queries, and
Zalka showed that this is optimal. Subsequently Grover aadhBkrishnan[[21] studied the problem of
finding all £ solutions in am-bit database using-parallel queries. They assurkep < /n and show that

@)(\ /nk/pmin{k,p}) p-parallel queries are necessary and sufficient.

1.3 Our results

We focus on parallel quantum algorithms in the setting ohtiua query complexity. Consider a functign

D — {0,1}, with D C [¢]|". For standard (sequential) query complexity,(J&tf) denote the bounded-error
guantum query complexity of, i.e., the minimal number of queries needed among all quatgorithms
that (for every inputc € D) output f(z) with probability at leas/3. In the p-parallel query model, for
some integep > 1, an algorithm can make up @quantum queries in parallel in each timestep. In that
case, we leQ”ll(f) denote the bounded-errprparallel complexity off. As always in query complexity,
all intermediate input-independent computation is freer dvery function, we havé(f)/p < Qp”(f) <
Q).

An extreme case of the parallel model is wherkarge enough so tha@f””(f) becomes 1; such algo-
rithms are called “nonadaptive,” because all queries ardenva parallel. Montanara [29] showed that for
total functions, such nonadaptive quantum algorithms eaimprove much over classical algorithms: ev-
ery Boolean function that depends arinput bits need® > n/2 nonadaptive quantum queries for exact
computation, angh = €2(n) queries for bounded-error computation.

Here we prove matching upper and lower bounds orptparallel complexityQ?!!(f) for a number of
problems: ©((n/p)?/3) queries for element distinctness add(n/p)*/(*+1)) for the k-sum problem for
any constank > 1. Our upper bounds are obtained by parallelized quantum algtikithms, and our lower
bounds are based on a modification of the adversary lowerdbm@thod combined with some recent results
by Belovs et al. about using so-called “learning graphsthifor upper and for lower bounds [10,/14] 11} 15].
The modification we need to make is surprisingly small, actneally we need to do little more than adapt
recent progress on sequential algorithms to the parals.céstill, we feel this extension is important
because: (1) our techniques may be useful for proving futwer bounds; (2) parallel quantum algorithms
are important and yet have received little attention befarel (3) the fact that the extension is easy and
natural increases our confidence that the adversary meshibd fright” approach in the parallel as well as
the sequential case.

In Section5 we prove some more “structural” results, i.eyrs forQ?l(f) that hold for all total
Boolean functionsf : {0,1}" — {0, 1}. Specifically, based on earlier results in the sequentialehdue
to Beals et al.[[[7], we show that §f is not too large thel@P||(f) is polynomially related to its classical
deterministicp-parallel counterpart. We also observe t@4t ( f) ~ n/2p for almost allf.



2 Preliminaries

2.1 Sequential and parallel query complexity
We useln] := {1,...,n}, () = {S C [n] : [S] = Kk}, (U)) == {S C [n] : S| < K}, and(2}) :=
>0 (3)-

We assume basic familiarity with the model of sequentiainfua query algorithms [16]. We will con-

sider algorithms in the-parallel quantum query model. A quantum query to an inpat[q]™ corresponds
to the following unitary map on two quantum registers:

Here the firsto-dimensional register contains the index [n] of the queried element, and the value of
that element is added (i,) to the contents of the secong-dimensional) register. In order to enable an
algorithm to not make a query on part of its state, we exteagthvious unitary map to the case- 0 by
|0,b) — |0, b). In each timestep we can make upstquantum queries in parallel by applying the map

|i1,b1,... ,ip,bp> — |i1,b1 + Xy, ,’ip,bp+$ip>

at unit cost. All intermediate input-independent comgatats free, so the complexity of @parallel algo-
rithm is measured solely by the number of times it applipsparallel query.

Consider a functiorf : D — {0,1}, with D C [¢]*. Whenp = 1 we have the standard sequential
query complexity, and we l&D.(f) denote the quantum query complexity pivith error probability< e
on every inputz € D. For generap, let Qf”(f) be thep-parallel complexity off. Note thatQ.(f)/p <
Qé’”(f) < Q:(f) for every function. The exact value of the error probabilitgoes not matter, as long as it
is a constank 1/2. We usually fixe = 1/3, abbreviatingQ(f) = Q1,3(f) andQ?ll(f) = Q’l’%(f) as in
the introduction.

We will use an extension of the adversary bound for the usegliential (1-parallel) quantum query
model. Anadversary matrix for f is a real-valued matrix whose rows are indexed by inputs f~*(0)
and whose columns are indexed ¥ f‘l(l)E Let A; be the Boolean matrix whose rows and columns
are indexed by € f~1(0) andy € f~1(1), such that\ [z, y] = 1if z; # y;, andA[z,y] = 0 otherwise.
The (negative-weights) adversary bound fds given by:

Tl
ADV (f) = max ,
I max ey T o Al

(1)

whereI ranges over all adversary matrices for o’ denotes entry-wise product of two matrices, afid
denotes the operator norm associated ta/sheorm. This lower bound (often denoted ABY/) instead of
ADV (f)) was introduced by Hayer et &l. [24], generalizing AmbajBis They showed

Q-(1) 2 3(1 = V(I = 2)ADV ()

for all f. Reichardt et al[[33, 27] showed this is tigi2( /) = ©(ADV (f)) for all (total as well as partial)
Boolean functions.

20One also often sees this defined as a matrix whose rows antheslare both indexed by the set of all inputs, and that is
required to be 0 om, y-entries wheref (z) = f(y). Both definitions of an adversary matrix give the same loveemial.



2.2 Quantum walks

We will construct and analyze our algorithms in the quantuatkramework of [28], which we now briefly
describe. Given a reversible Markov procéssn state spac¥, and a subset/ C V' of marked elements,
we define three costs: the setup c6stis the cost to construct a superpositipi) ., /7, |v), wherer, is
the probability of vertex in the stationary distributionr of P; the checking cosi, is the cost to check if
a statev € V' is in M; and the update codl, is the cost to perform the map)|0) — |v) > oy vV Poulu),
where P, is the transition probability irP to go fromv to u. Let§ be the spectral gap d?, which is the
difference between its largest and second-largest eiggnviaets be a lower bound ob _,, m, whenever
M is nonempty. Then we can determinglif is nonempty with bounded error probability in cost

1 1
O|S+—=|—=U+C)|.
(s (7+9))
If S, UandC denote query complexities, then the above expression tliedsounded-error query complex-

ity of the quantum walk algorithm. If they denagteparallel query complexities, the above expression gives
the bounded-errgp-parallel complexity.

3 Lower bounds for parallel quantum query complexity

3.1 Adversary bound for parallel algorithms

We start by extending the adversary bound for the usual séig@lguantum query algorithms goparallel
algorithms. ForJ C [n], let z; be the stringe restricted to the entries ii. Let A ; be the Boolean matrix
whose rows are indexed hy< f~1(0) and whose columns are indexed#y f~!(1), and that has & at
position(z, y) iff z; # ys (i.e.,xz; # y; for atleast ong € J). ForJ = 0, A is the all-O matrix. Define
the following quantity:

L
ADVPI(f) = max H .
(f) = me max o) [T0 A

(2)

The following fact (Appendix_A) implies we only need to comeri sets/ ¢ ([Z}) in the above definition:
ADV?Il(f) equals

i I
I max iy [T o Al

up to a factor of 2. We could even use the latter as an altgendéfinition of ADVIl(f).
Fact 1 For every set/ C K C [n], we have|T o Ay|| < 2|T o Ag]|.

We now show that, just like in the sequential case, the adweisound characterizes the quantum query
complexity also in the-parallel case:

Theorem 2 For everyf : D — {0,1} andD C [¢]", Q"I (f) = ©(ADV?I(f)).

Proof. In order to derivep-parallel lower bounds from sequential lower bounds, oleséhnat we can
make a bijection between input € [¢]” and a larger string\ indexed by all sety € ([Z];) such that
X = (xj);jes. Thatis, each inde¥ of X corresponds to up tp indices; of z. We now define a new



function F : D' — {0, 1}, whereD’ is the set ofX as above, in 1-to-1 correspondence with the elements of
x € D,andF(X) is defined agf(a:).ﬁ One query taX can be simulated by parallel queries ta, and vice
versa, so we hawe”ll(f) = Q(F). As mentioned at the end of Sect{onl3.1, we h@\é&) = ©(ADV (F)).

Now Eq. [1) applied ta” gives the claimed lower bound of EG] (2) @#!l(f). |

Sometimes we can even use the same adversary nhatobobtain optimal lower bounds fdr and f.
An example is the:-bit OR-function. Letl" be the all-oned x n matrix, with the row corresponding to
input0™ and the columns indexed by all weight-1 inputs. TH&fj = \/n and||I" o A,|| = 1 forall j € [n],
and hence&)(OR) = Q(y/n). To getp-parallel lower bounds, we define a new functibn X — {0,1} as
in the proof of Theoreml2. We can use the sdmwith then columns still indexed by the weight-1 inputs
to f (which induce 1-inputs td"). Now J ranges over subsets pf] of size at mosp, andA ; will be the
matrix whose(z, y)-entry is 1 if there is at least onec .J such thatr; # y;. Note that|T o A ;|| = /[ J]
for all J. HenceQ?l(OR) = Q(ADV (F)) = Q(/n/p). This is optimal and was already proved (in a
different way) by Zalkal[37, Section 4].

3.2 Belovs’s learning graph approach

Recently Belovs/[[10] gave a new approach to designing (sei@llequantum algorithms, via the optimal-
ity of the adversary method. He introduced the modelleafning graphsto prove upper bounds on the
adversary bound, and hence upper bounds on quantum queplexdtyn We state it here focertificate
structures We define these below, slightly simpler and less general Befinitions 1 and 3 of Belovs and
Rosmanis([14] (for us\/ denotes a minimal certificate, while in_[14] it denotes thedfesupersets of a
minimal certificate).

Definition 1 LetC be a set of incomparable subsetggf We say is a 1-certificate structuréor a function
f:D — {0,1}, withD C [g]", if for everyz € f~1(1) there exists an\/ € C such that for ally € D,
ynm = xpr implies f(y) = 1. We sayC is k-boundedf [M| < k for all M € C.

The learning graph complexity @fis defined in the following in its primal formulation as a nririza-
tion problem (we will see an equivalent dual formulationspd_et& = {(S,j) : S C [n],j € [n]\S}. For
e=(S,j) € £, we uses(e) = S andt(e) = SU {j}.

LGC(C) = min /> s we such that (3)

2

ng forall M e C (4)
ec& We

Yo bM)= > (M) forall M €C,0 # S C[n],M Z S (5)
ec:t(e)=S ect:s(e)=S

> be(M)=1 forall M € C (6)
ec:s(e)=0
0. (M) € Rywe >0 foralle € £andM € C @)

For eachM, 6.(M) is aflowfrom () to M on the graph with vertice§S C [n]} and edgeg{S, S U {j}} :
(S,7) € E}if 6.(M) satisfies conditior (5). Moreovet, (M) is aunit flowif it also satisfies conditiori {6).

®Note that forp > 1 the new functionF is partial, even if the underlying is total. A similar translation from parallel to
sequential complexity was used by Grover and RadhakrisfiarSection 2] for the special case of searching a database.

5



Belovs showed that the learning graph complexityCas an upper bound on ADY), and hence on
Q(f), for any functionf with certificate structur€. This bound is not always optimal, since it only depends
on the certificate structure gf. For examplek-distinctness has quantum query complexi(yﬁ”/ ) even
though it has the same 1-certificate structurg-asm, whose quantum query complexity@ign*/(++1)) [11],
15]. However, Belovs and Rosmanis [14] proved that for aigpetass of functions, it turns out the upper
bound LGCC() is optimal.

Definition 2 An orthogonal arrayof lengthk is a setT C [¢]*, such that for every < [k] and every
T1y.eo,Tim1,Tix1, - - -, Tk there exists exactly ong € [¢] such that(zq, ... ,x;) € T.

Theorem 3 (Belovs-Rosmanis)LetC be ak-bounded 1-certificate structure for some constant > 2|C|,
and let eachM € C be equipped with an orthogonal arrélj, of length|)|. Define a Boolean function
f g™ — {0,1} by: f(x) = 1iff there exists an\/ € C such thatz; € Tys. ThenQ(f) = O(LGC(C)).

For example, the element distinctness problem ED on impat [¢|” is induced by the 2-bounded 1-
certificate structur€ = (1)), equipped with associated orthogonal arrdys;, = {(v,v) : v € [g]}.
HenceQ(ED) = O(LGC(()).

Belovs and Rosmanis [114] show that an equivalent dual defndf the learning graph complexity as a
maximization problem is the following:

LGC(C) =max /> ;e ap(M)? (8)
St > nree(s(e) (M) — ayey (M))? < 1 foralle € £ 9)
ag(M)=0 wheneverM C S
ag(M) e R forall S C [nJandM € C

In particular, that means we can prolesver bounds on LGQC) (and hence, for the functions described
in Theorem[ B, or)(f)) by exhibiting a feasible solutiofag(M)} for this maximization problem and
calculating its objective value.

Before stating a similar result fgr-parallel query complexity, we first adapt learning grapgslges,
which previously were of type = (S, j) with S C [n] andj € [n] \ S, are now of typee = (.S, J) with
S Cin],J C[n]\SandlJ| <p.

Definition 3 The p-parallel learning graph complexity LG’&(C) of C is defined ad. GC(C) where we
replace the edge seét with &, = {(S,J) : § C [n],J C [n]\ S,|J| < p}. Its dual is analogous. In
particular, we replace constrainf@) by

D (ag(e) (M) = oyey (M))* < 1forall e = (S, J) € &,
MeC

wheres(e) = S andt(e) = S U J. We call this modified constraint “paralle)”

As in the special case of = 1, the p-parallel learning graph complexity 6fprovides an upper bound
on ADV?l(f), and hence o)?!( f), for any functionf having that same certificate structure. The proof is
given in AppendixXB.

Lemma 4 LetC be a certificate structure fof. ThenADV?Il(f) < LGCPIl(C).

6



We now generalize Theordm 3 to theparallel case. The proof of Theoréin 5 can be found in Appendi
[C. It is an adaptation of the proof of [14, Theorem 5].

Theorem 5 LetC be ak-bounded 1-certificate structure for some constant > 2|C|, and let each\/ € C
be equipped with an orthogonal arrd, of length|)|. Define a Boolean functioffi : [¢]" — {0,1} as
follows: f(x) = 1 iff there exists alM/ € C such thatzy, € Tys. Then@Q?!l(f) = ©(LGCPI(C)).

4 Parallel quantum query complexity of specific functions

4.1 Algorithms

In this section we give upper bounds for element distin&resdk-sum in thep-parallel quantum query
model, by way of quantum walk algorithms.

Our p-parallel algorithm for element distinctness is based erséquential query algorithm for element
distinctness of Ambainis$ [4]. Ambainis’s algorithm usesiantum walk on a Johnson graph(y, ), which
has vertex se¥ = {S C [n] : |S| = r} and edge se{{S,S'} C V :|S\ S| = 1}. Each states € V
represents a set of queried indices. The algorithm seelasteSstontaining (i, z;) and(j,z;) such that
i # j andx; = z;. Such a state is said to bearked

Theorem 6 Element distinctness dn]” hasQ”!l(ED) = O((n/p)?/3).

Proof. We modify Ambainis’'s quantum walk algorithm slightly. Cadsr a walkJ(n, r/p)?P, onp copies

of the Johnson grapi(n, r/p). Vertices arep-tuples(S1, Sa, . . ., Sp) where, for eachi € [p], S; C [n] and
|Si| = r/p. Two verticeg S, Sa, ..., Sp) and(Sy, Sy, . . ., S,,) are adjacent if, for eache [p], [S;\ S]] = 1.
We call a staté Sy, So, . .., S,) markedif there arej, j* € [ J!_, S; such thatz; = z;,. Since the stationary
distribution isp?, wherey is the uniform distribution or(l?jg), the probability that a state is marked is at
leaste = Q(r2/n?).

The setup cost is only = O(r/p) p-parallel queries, since it suffices to querglements in the initial
superposition over all states. Similarly, the update mneguihat we query and ungquepyelements, but we
can accomplish this in twp-parallel queries, st) = O(1). Also, C = 0. Finally, the eigenvalues of the
product ofp copies of a graph are exactly the product® @igenvalues of that graph. Hence if the largest
eigenvalue of a graph is 1 and the second-largestis), then the same will be true for the product graph.
Accordingly, the spectral gapof p copies ofJ(n, r/p) is exactly the spectral gap of one copy.kifr, r /p),
which isQ(p/r). We can now upper bound theparallel query complexity of element distinctness as

o7 G50+ 9) -0 G () -0+ 75)

Settingr to the optimak?/3p'/3 gives an upper bound @#((n/p)?/3). O

It is easy to generalize our element distinctness upperdtuk-sum:
Theorem 7 k-sum on[g]™ hasQP!l (k-sum) = O((n/p)/(k+1),

Proof. Again, we walk onp copies ofJ(n,r/p), but now we consider a staté,, Sz, ..., Sp) marked if
there are distinct indices, ..., i, € |J_; S; such thatZé‘?:1 r;; = 0 (mod ¢). The fraction of marked



states in al-instance i = Q(r*/n*). All other parameters are as in TheorEm 6. We get the follgwin
upper bound fok-sum:

(oo (o)) o) o (o is)

Settingr = nk/(k+Dpl/(+1) givesO((n/p)k/ (1), .

4.2 Lower bounds

We now use the ideas from Section]3.2 to prpvearallel lower bounds for ED anksum, matching our
upper bounds if the alphabet sigas sufficiently large. Our proofs are generalizations of skquential
lower bounds in[[14, Section 4].

Theorem 8 For ¢ > 2(}), element distinctness ¢g™ hasQ?l(ED) = Q((n/p)?/?).

Proof. Recall that element distinctness is induced by the 1-ceatéi structure = (1), equipped with
associated orthogonal arra¥/g ;3 = {(v,v) : v € [¢]}. By Theorenib, it suffices to prove the lower bound
on thep-parallel learning graph complexity of ED. For this, it so#fs to exhibit a feasible solution to the
parallel version of dua[{8) and to lower bound its objecfuwection. Note that the elements &f are now
of the form(S, J), whereS C [n] andJ C [n] \ S with |J| < p. Define

0 if M CS

a5 otherwise.

)= g max((n/p = 5/p.0), and as(01) = {

To show that this is a feasible solution, the only constraiatneed to verify is paralle[-[9). Fig C [n] of
some sizes, and a set/ C [n] \ S with |J| < p. Let L denote the left-hand side of parallel-(9), which is a
sum over all(}) certificates)M € C. With respect ta = (S, J), there are four kinds of/ = {i, j}:

1.4,5 € S. Thenay) (M) = aye) (M) = 0, so theseV/ contribute O tol.

2.i€8,j € J. There ares|.J| < sp suchM, and each contributes? to L becausev (M) = o, and
at(e)(M) =0.

3.4,j ¢S, i,j € J. There are(l])) < (8) suchM, each contributes? to L.
4. iandlorj ¢ SU J. There are(}) — (**}’) < n? suchM, each contributegy, — a,,||* to L.

Hence, usingys = 0 if s > n?/3p!/3; a, < ag =
constraint paralleE(9):

W; and|o, — g qy7|? < 1/4n?, we can establish

p 2 21, 2 2/3.1/3 1 2 1
L< <sp—|— <2>> g +nclas — agg)* < p(np +p/2)4p4/3n2/3 Tt s < 1.

Hence our solution is feasible. Its objective valugﬁzég)ag = Q((n/p)*/3). ]



The lower bound proof fok-sum is similar. Here we use certificate structdre: ([Z]) with the orthogonal
arrayT = {(v1,...,vx) : Ele v; = 0 mod ¢}, which inducesi-sum. In AppendixD, we show that the
following solution is feasible for LG8 (C):

0 if M CS

Q4 .
J og| Otherwise;

Since its objective value ig/ (})a2 = Q ((n/p)¥/#+1)), we obtain

Theorem 9 For ¢ > 2(}), k-sumon [¢]" hasQPl (k-sum) = Q ((n/p)*/ *+D).

5 Some general bounds

In this section we will relate quantum and classiegdarallel complexity. For the sequential model£ 1)

it is known that quantum bounded-error query complexityaswore than a 6th power less than classical
deterministic complexity, for all total Boolean functiofi]. Here we will see to what extent we can prove
a similar result for they-parallel model.

We start with a few definitions, referring td_[16] for more aiét. Let f : {0,1}" — {0,1} be a
total Boolean function. Fob € {0,1}, ab-certificatefor f is an assignment’ : S — {0,1} to a subset
S of the n variables, such thaf(z) = b wheneverz is consistent withC'. Thessizeof C'is |S|. The
certificate complexity”,.(f) of f on z is the size of a smallest(x)-certificate that is consistent with
The certificate complexityf f is C(f) = max, C,(f). The l1-certificate complexitof f is C(V(f) =
maxy,. f()=1} Cz(f). Given an inputr € {0,1}" and subseB3 C [n] of indices of variables, let” denote
then-bit input obtained fromx by negating all bits:; whose index is in B. Theblock sensitivitys( f, x) of
f atinputz, is the maximal integek such that there exist disjoint sdfs, . . . , By, satisfyingf(z) # f(zPi)
for all 7 € [k]. Theblock sensitivityof f is bs(f) = max, bs(f, z). Nisan [31] proved that

bs(f) < C(f) < bs(f)*. (10)
Via a standard reductioh [32], Zalka@(\/n—/p) bound for OR implies:
Theorem 10 For everyf : {0,1}" — {0, 1}, QIl(f) = Q(/bs(f)/p)-
We now prove a general upper bound on determinjsii@rallel complexity:
Theorem 11 For everyf : {0,1}™ — {0,1}, DPI(f) < [COV(f)/p]bs(f).

Proof. Beals et al.[[7, Lemma 5.3] give a deterministic decisior fia f that runs for at mosbs(f)
rounds, and in each round queries all variables of a 1-aatifj substituting their values into the function.
They show this reduces the function to a constant. By pdirtlg the querying of the certificate we can
implement every round using>") (f)/p] p-parallel steps. o

Drl(f) andQPll(f) are polynomially related if is not too big:

Theorem 12 For everyf : {0,1}" — {0,1}, ¢ > 1,p < bs(f)"/<, we haveD?!l (f) < O(QPI (f)5+4/(c= 1),



Proof. We can assumé(f) = C(f) (else considet— f). By Eq. [10) we have < bs(f)Y/c < C(f).
We also haveC'(V(f) < bs(f)2. The assumption op is equivalent top < (bs(f)/p)"/(c=1). Using
Theorem$ 10 arld 11, we obtain

DPI(f) < [ (f)/p1bs(f) < Obs(£)*/p) = O((bs(f)/p)*p?)
< O((bs(f)/p)3+2/(0—1)) < O(QPH (f)6+4/(c—1)).

a

For example, ifp < bs(f)'/3 thenQ?l(f) is at most an 8th power smaller tha!l(f). Whether
superpolynomial gaps exist for largegemains open.

We end with an observation about random functions. Van Dahdhowed that am-bit input stringz
can be recovered with high probability using2 + O(/n) quantum queries, hen€g(f) < n/2+ O(y/n)
forall f:{0,1}™ — {0, 1}. His algorithm already applies its queries in parallel, ko us to compute:
using roughlyn/2p p-parallel quantum queries (see Apperidix E). Ambainis g§bhproved an essentially
optimal lower bound for random functions: almost #llhave Q(f) > (1/2 — o(1))n. Since trivially
Q(f) < pQPII(f), we obtain thep-parallel lower boundy?!l(f) > (1/2 — o(1))n/p for almost allf. So for
this type of “guantum oracle interrogation,” parallelipat gives the optimal factop-speed-up for almost
all Boolean functions.

Corollary 13 For all p < n, almost allf : {0,1}" — {0, 1} satisfyQ?!l (f) = (1/2 4 o(1))n/p.

Forp = n/2 + O(y/n), onep-parallel query suffices.

6 Conclusion and future work

This paper is the first to systematically study the power amitdtions of parallelism for quantum query
algorithms. Itis motivated in particular by the need to re&loverall computing time when running quantum
algorithms on hardware with quickly decohering quantura.bit

We leave open many interesting questions for future worketample:

e There are many other computational problems wheparallel complexity is unknown, for example
finding a triangle in a graph or deciding whether two givennmoas multiply to a third one. For both
of these problems, however, even the sequential quantung gamplexity is still open.

e We suspect Theoref 112 is non-optimal, and conjecture ittt f) and Q?!l(f) are polynomially
related for largey as well. Montanaro’s result [29] about the weakness of makinparallel quantum
algorithms is evidence for this. Even for the sequential ehgal= 1) the correct bound is open; the
best known bound is a 6th poweér [7] but the correct power mdilvee?.

e Can we find relations with quantum communication compléxilyonadaptive quantum query algo-
rithms induce one-way communication protocols, whileyfatiaptive ones induce protocols that are
very interactive. Oup-parallel algorithms would sit somewhere in between.

Acknowledgment. We thank Jérémie Roland for helpful discussions.
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A Proof of Fact

We use they;-norm for matrices, which is defined as

v2(d) = min r(X)e(Y),
wherer(X) denotes the maximum squared length among the rows,afndc(Y") denotes the maximum
squared length among the columnsYof Note that the identity and the all-1 matrix both haygnorm
equal to 1 (the latter by taking andY” to be the all-1 row and columns, respectively). Alsg(A @ B) =
v2(A)v2(B). SinceA; can be written as the all-1 matrix of the appropriate dimamsi minus identity
tensored with a smaller all-1 matrix, the triangle inedyaiinplies y2(A ;) < 2. The~s-norm satisfies
||A o Bl < |Alv2(B) by [27, Lemma A.1]. Observe théto A; = (I'o Ag) o A;. Hence we have

ITo Ayl =[[(TeoAk)o Ayl <[[ToAxlra(Ar) < 2T o Akl

B Proof of Lemmal4

The proof is a straightforward adaptation of the prooflof,[TBeorem 9], but we repeat it here for com-
pleteness. Lefws s : (S,J) € &} and{0s (M) : (S,J) € &, M € C} be an optimal solution to the
primal formulation of LG€!l(C).

We will use this solution to construct a feasible solutioth#®dual expression of oprparallel adversary
of Eq. (2), which is the following:

ADVPI(f) = min | max |1z, )12 (11)
{lus.0)} | w€la" =
Je(2y)
S.t.|ug, s) € C* forall z € [¢]", J € <[n]>
’ <p
> (uagluy,s) =1 forallz € f~1(1),y € f~1(0)
Jiz £y

The dimensiork of the vectorgu, ;) can be anything, and is implicitly minimized over.
For eachr € f~1(1), let M, € C be such that for every € [¢]", 11, = yar, implies f(y) = 1. For
everyr € DandJ € (["}) define the following state in spéi®)|a) : S C [n], a € [¢]°}:

0.7 (M)
2o SCi\J S‘Lfs |S,zs) if f(ac):

|tz g) -:{ Y\ Vs, a|S:xs) i f(z) =
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We now verify that{|u, )}, ; is a feasible solution to the dual formulation of AB\(f):

S (uagluys) = > > M\/—ww (12)

ws,J
([n]) T Yy JG([S"Z]))::BJ#yJ SCn\J:zs=ys
= > > 05,7 (M,). (13)
SCInlws=ys Je(\S):z sy,

To see that this expression is equal tave need only notice that Ed. (13) is the sum of the flow on ajesd
across the cut induced by the 4&t C [n] : x5 = ys}, and the total flow across a cut is alwalssince
(M) is a unit flow. Thus the constraint frofn_(11) is satisfied gpd, ;) }.. s is a feasible solution.

We can now bound AD¥!( f) by the objective value of the feasible solutipju,. ;) }..;. First note that
for anyx € f~1(1), by constraint[{4), we have:

O, (Mz)*
DRI Sy )
Je([gng) Je([gng)sg[n]\J

Second, for any € f~1(0) we have

Sl NP= D> > wsy.

Je(l2)) Je () SSinh\J

We can therefore bound the objective value as:

o e se () SCm\

<p
< > we=Lecrle),
e€ép

where)  w, > 1 follows from the Cauchy-Schwarz inequality and the fact tha,

follows:
2
1= (Y60 = (Z 9%)> ) I s

C Proof of Theorem[8

For the upper bound, we immediately obtg#l (f) = O(LGC?!(C)) by Theoreni2 and Lemnia 4.

For the lower bound, our proof will be similar to that of [14hdorem 5], and we will omit parts of the
proof that are identical to theirs. Just aslini[14, Theorepo6t proof will start with an optimal feasible
solution {as (M)} yrec,scin) to the dual [(8). Therefore LGE(C) = > mec @p(M)? and moreover
S weelas(M) — asus(M))? < 1. Then we will construct an adversary matfixfor f such thaf|T'|| >

ADVPI(f) < Jmax llue )I* < max 91, > > wsy

O (My)?
We

\/% > viee ap(M)? (as proven in[[14]) and for every C [n],

IT oAy < 2max Z as(M) — asus(M))?
MeC
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(proven below). Then Theorelm 2 will imp9?!(f) = Q(\/3 yrec ao(M)?) = QLGCPI(C)).

First we use a variation of the adversary bound from [15] #fflatvs the duplication of row and column
indices. Concretely, rows and columns Iofare now indexed byzx,a) and (y, b), respectively, where
z € f71(1), y € £7(0), anda andb belong to some finite sets. Then, with slight abuse of natatlg is
now defined such thak;[(z, a), (y,b)] = 1if z; # y;, andA;[(z, a), (y,b)] = 0 otherwise. Specifically,
in our case rows of will be indexed by(x, M) for somex € f~!(1) andM € C, and columns will simply
be indexed by € f~1(0).

Second,I" will be the submatrix of a larger matrik (defined below), whose rows are indexed by the
elements ofg|" x C and whose columns are indexed[by*. ThenA; is naturally extended to all, y € [¢]"
andM e C by Aj[(z, M),y] = 1if z; # y;, andA;[(z, M), y] = 0 otherwise. Sinc& oA is a submatrix
of ['o A, we will have||T" o A < T o Ay||. Hence we only need to upper bound the latter norm.

We now defind". Consider the Hilbert spad®!. Let F denote the orthogonal projector onto the vector
ﬁ(l, 1,...,1), and By = I — Ej its orthogonal complement. For evesy C [n], let Es = ®;¢)y Es,
(acting onC?"), wheres; = 1if j € S, ands; = 0 otherwise. Note thabsEs = Eg if S = S’, and
EsEg = 0 otherwise. Defind" as

f: GM s with G]\/[: Z Ozs(M)Es,
: SC[n]
Mec
where theag(M) come from a feasible solution to the du@l (8). We then deffires the submatrix of
obtained by keeping only those columns indexed,syich thatf(y) = 0; and only those rows indexed by
(x, M) such that)M/ is al-certificate forz (i.e., for allz € [¢]", zar = xar iIMplies f(z) = 1).

Fact 14 ||T|| > % S ag(M)2.

Mec
Proof. Belovs and Rosmanis [14, Lemma 17] prove this result for aayrimnI’ constructed as above
assuming that, for each/ € C, (1) ag(M) = 0 wheneverM C S, and (2) M is equipped with an
orthogonal arrayl’s; of length|M|. Those two assumptions are satisfied in our case too. O

Upper bounding|f o Aj|| requires some additional steps compared to [14]. We firsewethe ap-
proach of [14], which is for the special cade= {;j}. Define a linear mag; on matrixI' by its action

on blocks Elg, for every S C [n]. First, lety be such thatp(Ey) = Ey andg(E;) = —Ey. Then
9j(Es) =FEqy ®@...0 B, ®p(E,;)® By, ®...® E,,. An alternative but equivalent definition is
Eg, if j €5,
pj(Es) = .
—FEq\j; otherwise.

The mapyp; was introduced because it satisfieg o A; = ¢;(Eg) o A;. This comes from the observation
thatp(E7) o Ay = Ey0Ay, sinceEy =1— Ey andI oA; = 0. The approach of [14] then consists of
applyingy; to I before computing the norm afo A

We now generalize; to subsets/ C [n] as

Eg, if JZS,;
psBs)=- > Eg, otherwise.
§1.8\JCS'CS

15



Theny; satisfies the following fact, which is an extension of theecas= {;j} (proved in [14]).
Fact 15 Let.J C [n] be any subset. Thdho A; = (') o A .

Proof. By linearity it suffices to prove the fact fdrg, i.e., thatFgo A, = ng(ES)oAJ, whereS, J C [n].
This equality is immediate whei Z S, since thenp;(Es) = Es.

Assume from now on that C S. For notational simplicity, assume further and withousloggenerality
thatJ = {1,2,...,5},andsetF = F, ., ®...® E,,, henceEs = EY’ ® F. Usingl = Ey + F; we have

Sj+1

1% = (By+ E)™ = Y Eg,
S":pCS'CJ

where the notation&'; and E's, stand for the firsy bits only. This implies
E; =197 — Z Egr.
S:0CS'CJ

This concludes the proof since

(I®j®F)OAJ:0, and (,DJ(Es):— Z Eg ® F.
S1:0CS'CJ

a

Therefore (using also Fact 1) we can upper boliid A ;|| by 2|/ (I)]|. It remains to upper bound
the latter norm.

Fact 16 ¢, (T)| = max Y (as(M) — asus(M))>2.
<M\ arec

Proof. We first computep ;(G):

7(Gu) = Y Bs(M)Es, whereBs(M) = as(M) — asus(M).
SCn|

Observe thaBs (M) = 0if J C 5. Now rewrite(p;(I'))*¢ (L) as

(s @) (M) = > (0s(Gu) es(Gu) = D (Z Bs(M )

Mec SCln] \MeC

Since the differenirg project onto orthogonal subspaces, we can conclude

s @)1 = Ve ) s Ol = max |5 Bs(as
MeC

16



We therefore have

IT o Ayl < [T oAyl <20 (D) = Qmax > (as(M) = agus(M))2.
Mec

WhenJ has size at mogt, the right-hand side is at mogtecause of the constraint parallel-(9), applied to
edge(S,J’) € &, with J' = J \ S. Therefore

1 2
T \/5 > mec (M) 1
ADVPI(£) > H > = Lecerle).
() maXJe([n]) IIT o Ayl 2 2v/2 ©

D Proof of Theorem[9

Here we prove our parallel lower bound for thesum problem. The proof strategy is the same as in
TheoreniB. We now use certificate structdre: (1) with the orthogonal array

k
T={(v1,...,vx) : Z’ui =0 mod ¢}.
i=1

This induces thé-sum problem in the way mentioned in Theorgin 5. We define thesfimg solution to
the dual for LGCI (C):

05 = g max((n/p) 1) — /,0)

as(M)=0if M CS

as(M) = a)g otherwise

Fix somee = (S,J) with S C [n] of size s, and disjointJ C [n] of size at mosp. Let L denote the

left-hand side of constraint parall€ll(9). In order to bfish that the above solution is feasible, we want

to showL < 1. With respect tee, we can distinguish different kinds &/ = {i1,...,}, depending on
=|MnS|andj := |M N J|:

1. i+ j < k. There are($ )(“”) suchM, and each contributes |a, — a.y s> < 1/4n" to L.

2. i+ j = k. There are($) (/') suchM, each contributes? to L if i < k, and 0 ifi = k.

Over all such choices afandy, at mosdJ\(erk‘f'l‘l) of theseM havej > 1 (i.e.,as(M) # 0), since
this counts the number of ways of choosing one index ftgrandk — 1 more fromJ U S.
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Note thata, = 0 if s > p(n/p)¥/* +1), so below we may assume+ p — 1 < 2p(n/p)¥/*+D for n
sufficiently large. Alsay, < ag = (n/p)*/*+1) /2n*/2 Hence we can bound as

2R ><>z< -

J=
s+ |J| s —l— J| —
£=0
nk1 N (3 +p— 1)k 1 (n/p)%/ k+1)
4nk (k—1)! 4Ank
1 2h-1 (k—1)k (”/P)%/ k1)
I A Yo/ (k1) (/D)7
1 k(”/P) 1
< — = — — < 1.
St Tt st

Hence our solution is feasible. Its objective valu |<Z> a2 =0 ((n/p)k/(k"’l)).

E Parallel guantum oracle interrogation

The following quantum algorithm recovers the complete tnpu= {0, 1}" with high probability, using
roughlyn /2p p-parallel queries:

1. WithT = n/2 + O(y/nlog(1/e)) andB = 3., () being the number of € {0,1}" with weight
ly| < T, set up thew-qubit superposmon— zye{O,l}”:|y\§T ly).

2. Apply the unitary|y) — (—=1)*Y|y). We can implement this usingl’/p| p-parallel queries for
ly| < T the first batch of queries would query the firgt positions wherey has a one and put the
answer in the phase; the second batch queries theormditions, etc.

3. Apply a Hadamard transform to all qubits and measure.

To see the correctness of this algorithm, note that theidmacif »n-bit stringsy that have weight- T
is < e. Hence the state obtained in step 2 is very close to the %ezye{o 130 (=1)™¥]y), whose

Hadamard transform is exactly).
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