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1 Introduction

1.1 Background

Using quantum effects to speed up computation has been a prominent research-topic for the past two
decades. Most known quantum algorithms have been developedin the model of quantum query complex-
ity, the quantum generalization of decision tree complexity. Here an algorithm is charged for each “query”
to the input, while intermediate computation is free (see [16] for more details). This model facilitates the
proof of lower bounds, and often, though not always, quantumquery upper bounds carry over to quantum
time complexity. For certain functions one can obtain largequantum-speedups in this model. For example,
Grover’s algorithm [23] can search ann-bit database (looking for a bit-position of a 1) usingO(

√
n) queries,

while any classical algorithm needsΩ(n) queries. For some partial functions we know exponential andeven
unbounded speed-ups [19, 35, 34, 8, 1].

A more recent crop of quantum speed-ups come from algorithmsbased onquantum walks. Such algo-
rithms solve a search problem by embedding the search on a graph, and doing a quantum walk on this graph
that converges rapidly to a superposition over only the “marked” vertices, which are the ones containing
a solution. An important example is Ambainis’s quantum algorithm for solving theelement distinctness
problem [4]. In this problem one is given an inputx ∈ [q]n, and the goal is to find a pair of distincti
andj in [n] such thatxi = xj, or report that none exists. Ambainis’s quantum walk solvesthis inO(n2/3)
queries, which is optimal [2]. Classically,Θ(n) queries are required. Two generalizations of this are the
k-distinctnessproblem, where the objective is to find distincti1, . . . , ik ∈ [n] such thatxi1 = · · · = xik ,
and thek-sumproblem, where the objective is to find distincti1, . . . , ik ∈ [n] such thatxi1 + · · ·+ xik = 0
mod q. Ambainis’s approach solves both problems usingO(nk/(k+1)) quantum queries. Recently, Belovs
gave ao(n3/4)-query algorithm fork-distinctness for any fixedk [9] (which can also be made time-efficient
for k = 3 [12]). In contrast, Ambainis’sO(nk/(k+1))-query algorithm is optimal fork-sum [11, 15].

Here we consider to what extent such algorithms can beparallelized. Doing operations in parallel is a
well-known way to trade hardware for time, speeding up computations by distributing the work over many
processors that run in parallel. This is becoming ever more prominent in classical computing due to multi-
core processors and grid computing. In the case of quantum computing there is an additional reason to
consider parallelization, namely the limited lifetime of qubits due todecoherence: because of unintended
interaction with their environment, qubits tend to lose their quantum properties over a limited amount of
time, called thedecoherence time, and degrade to classical random bits. One way to fight this isto apply the
recipes of quantum error-correction and fault-tolerance1, which can counteract the effects of certain kinds
of decoherence. Another way is to try to parallelize as much as possible, completing the computation before
the qubits decohere too much (this may of course increase thewidth of the computation, creating problems
of its own).

1.2 Earlier work on parallel quantum algorithms

We know of only a few results about parallel quantum algorithms, most of them in the circuit model where
“time” is measured by the depth of the circuit. A particularly important and beautiful example is the work
of Cleve and Watrous [17], who showed how to implement then-qubit quantum Fourier transform using a
quantum circuit of depthO(log n). As a consequence, they were able to parallelize the quantumcomponent
of Shor’s algorithm: they showed that one can factorn-bit integers by means of anO(log n)-depth quantum

1Parallelism is in factnecessaryto do quantum error-correction against a constant noise rate: sequential operations cannot keep
up with the parallel build-up of errors.
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circuit with polynomial-time classical pre- and post-processing. There have also been a number of papers
about quantum versions of small-depth classical Boolean circuit classes like AC and NC [30, 20, 25, 36].
Beals et al. [6] show how the quantum circuit model can be efficiently simulated by the more realistic model
of a distributed quantum computer (see also [22]). The setting of measurement-basedquantum computing
(see [26] and references therein) in some cases allows more parallelization than the usual circuit model.

Another example, basically the only one we know of in the setting of query complexity, is Zalka’s tight
analysis of parallelizing quantum search [37, Section 4]. Suppose one wants to search ann-bit database,
with the ability to dop queries in parallel in one time-step. An easy way to make use of this parallelism
is to view the database asp databases ofn/p bits each, and to run a separate copy of Grover’s algorithm
on each of those. This finds a 1-position with high probability usingO(

√
n/p) p-parallel queries, and

Zalka showed that this is optimal. Subsequently Grover and Radhakrishnan [21] studied the problem of
finding all k solutions in ann-bit database usingp-parallel queries. They assumek, p ≤ √

n and show that
Θ̃(
√

nk/pmin{k, p}) p-parallel queries are necessary and sufficient.

1.3 Our results

We focus on parallel quantum algorithms in the setting of quantum query complexity. Consider a functionf :
D → {0, 1}, with D ⊆ [q]n. For standard (sequential) query complexity, letQ(f) denote the bounded-error
quantum query complexity off , i.e., the minimal number of queries needed among all quantum algorithms
that (for every inputx ∈ D) outputf(x) with probability at least2/3. In thep-parallel query model, for
some integerp ≥ 1, an algorithm can make up top quantum queries in parallel in each timestep. In that
case, we letQp‖(f) denote the bounded-errorp-parallel complexity off . As always in query complexity,
all intermediate input-independent computation is free. For every function, we haveQ(f)/p ≤ Qp‖(f) ≤
Q(f).

An extreme case of the parallel model is wherep large enough so thatQp‖(f) becomes 1; such algo-
rithms are called “nonadaptive,” because all queries are made in parallel. Montanaro [29] showed that for
total functions, such nonadaptive quantum algorithms cannot improve much over classical algorithms: ev-
ery Boolean function that depends onn input bits needsp ≥ n/2 nonadaptive quantum queries for exact
computation, andp = Ω(n) queries for bounded-error computation.

Here we prove matching upper and lower bounds on thep-parallel complexityQp‖(f) for a number of
problems:Θ((n/p)2/3) queries for element distinctness andΘ((n/p)k/(k+1)) for the k-sum problem for
any constantk > 1. Our upper bounds are obtained by parallelized quantum walkalgorithms, and our lower
bounds are based on a modification of the adversary lower bound method combined with some recent results
by Belovs et al. about using so-called “learning graphs,” both for upper and for lower bounds [10, 14, 11, 15].
The modification we need to make is surprisingly small, and technically we need to do little more than adapt
recent progress on sequential algorithms to the parallel case. Still, we feel this extension is important
because: (1) our techniques may be useful for proving futurelower bounds; (2) parallel quantum algorithms
are important and yet have received little attention before; and (3) the fact that the extension is easy and
natural increases our confidence that the adversary method is the “right” approach in the parallel as well as
the sequential case.

In Section 5 we prove some more “structural” results, i.e., bounds forQp‖(f) that hold for all total
Boolean functionsf : {0, 1}n → {0, 1}. Specifically, based on earlier results in the sequential model due
to Beals et al. [7], we show that ifp is not too large thenQp‖(f) is polynomially related to its classical
deterministicp-parallel counterpart. We also observe thatQp‖(f) ≈ n/2p for almost allf .
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2 Preliminaries

2.1 Sequential and parallel query complexity

We use[n] := {1, . . . , n},
([n]
k

)
:= {S ⊆ [n] : |S| = k},

( [n]
≤k

)
:= {S ⊆ [n] : |S| ≤ k}, and

(
n
≤k

)
:=

∑k
s=0

(n
s

)
.

We assume basic familiarity with the model of sequential quantum query algorithms [16]. We will con-
sider algorithms in thep-parallel quantum query model. A quantum query to an inputx ∈ [q]n corresponds
to the following unitary map on two quantum registers:

|i, b〉 7→ |i, b + xi〉.

Here the firstn-dimensional register contains the indexi ∈ [n] of the queried element, and the value of
that element is added (inZq) to the contents of the second (q-dimensional) register. In order to enable an
algorithm to not make a query on part of its state, we extend the previous unitary map to the casei = 0 by
|0, b〉 7→ |0, b〉. In each timestep we can make up top quantum queries in parallel by applying the map

|i1, b1, . . . , ip, bp〉 7→ |i1, b1 + xi1 , . . . , ip, bp + xip〉

at unit cost. All intermediate input-independent computation is free, so the complexity of ap-parallel algo-
rithm is measured solely by the number of times it applies ap-parallel query.

Consider a functionf : D → {0, 1}, with D ⊆ [q]n. Whenp = 1 we have the standard sequential
query complexity, and we letQε(f) denote the quantum query complexity off with error probability≤ ε

on every inputx ∈ D. For generalp, let Qp‖
ε (f) be thep-parallel complexity off . Note thatQε(f)/p ≤

Q
p‖
ε (f) ≤ Qε(f) for every function. The exact value of the error probabilityε does not matter, as long as it

is a constant< 1/2. We usually fixε = 1/3, abbreviatingQ(f) = Q1/3(f) andQp‖(f) = Q
p‖
1/3(f) as in

the introduction.
We will use an extension of the adversary bound for the usual sequential (1-parallel) quantum query

model. Anadversary matrixΓ for f is a real-valued matrix whose rows are indexed by inputsx ∈ f−1(0)
and whose columns are indexed byy ∈ f−1(1).2 Let ∆j be the Boolean matrix whose rows and columns
are indexed byx ∈ f−1(0) andy ∈ f−1(1), such that∆j[x, y] = 1 if xj 6= yj , and∆j[x, y] = 0 otherwise.
The (negative-weights) adversary bound forf is given by:

ADV(f) = max
Γ

‖Γ‖
maxj∈[n] ‖Γ ◦∆j‖

, (1)

whereΓ ranges over all adversary matrices forf , ‘◦’ denotes entry-wise product of two matrices, and ‘‖·‖’
denotes the operator norm associated to theℓ2 norm. This lower bound (often denoted ADV±(f) instead of
ADV(f)) was introduced by Høyer et al. [24], generalizing Ambainis[3]. They showed

Qε(f) ≥
1

2
(1−

√
ε(1− ε))ADV(f)

for all f . Reichardt et al. [33, 27] showed this is tight:Q(f) = Θ(ADV(f)) for all (total as well as partial)
Boolean functionsf .

2One also often sees this defined as a matrix whose rows and columns are both indexed by the set of all inputs, and that is
required to be 0 onx, y-entries wheref(x) = f(y). Both definitions of an adversary matrix give the same lower bound.
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2.2 Quantum walks

We will construct and analyze our algorithms in the quantum walk framework of [28], which we now briefly
describe. Given a reversible Markov processP on state spaceV , and a subsetM ⊂ V of marked elements,
we define three costs: the setup cost,S, is the cost to construct a superposition

∑
v∈V

√
πv|v〉, whereπv is

the probability of vertexv in the stationary distributionπ of P ; the checking cost,C, is the cost to check if
a statev ∈ V is in M ; and the update cost,U, is the cost to perform the map|v〉|0〉 7→ |v〉∑u∈V

√
Pvu|u〉,

wherePvu is the transition probability inP to go fromv to u. Let δ be the spectral gap ofP , which is the
difference between its largest and second-largest eigenvalue. Letε be a lower bound on

∑
v∈M πv whenever

M is nonempty. Then we can determine ifM is nonempty with bounded error probability in cost

O

(
S+

1√
ε

(
1√
δ
U+ C

))
.

If S, U andC denote query complexities, then the above expression givesthe bounded-error query complex-
ity of the quantum walk algorithm. If they denotep-parallel query complexities, the above expression gives
the bounded-errorp-parallel complexity.

3 Lower bounds for parallel quantum query complexity

3.1 Adversary bound for parallel algorithms

We start by extending the adversary bound for the usual sequential quantum query algorithms top-parallel
algorithms. ForJ ⊆ [n], let xJ be the stringx restricted to the entries inJ . Let∆J be the Boolean matrix
whose rows are indexed byx ∈ f−1(0) and whose columns are indexed byy ∈ f−1(1), and that has a1 at
position(x, y) iff xJ 6= yJ (i.e.,xj 6= yj for at least onej ∈ J). ForJ = ∅, ∆J is the all-0 matrix. Define
the following quantity:

ADVp‖(f) = max
Γ

‖Γ‖
max

J∈([n]
≤p)

‖Γ ◦∆J‖
. (2)

The following fact (Appendix A) implies we only need to consider setsJ ∈
(
[n]
p

)
in the above definition:

ADVp‖(f) equals

max
Γ

‖Γ‖
max

J∈([n]
p )

‖Γ ◦∆J‖

up to a factor of 2. We could even use the latter as an alternative definition of ADVp‖(f).

Fact 1 For every setJ ⊆ K ⊆ [n], we have‖Γ ◦∆J‖ ≤ 2‖Γ ◦∆K‖.

We now show that, just like in the sequential case, the adversary bound characterizes the quantum query
complexity also in thep-parallel case:

Theorem 2 For everyf : D → {0, 1} andD ⊆ [q]n, Qp‖(f) = Θ(ADVp‖(f)).

Proof. In order to derivep-parallel lower bounds from sequential lower bounds, observe that we can
make a bijection between inputx ∈ [q]n and a larger stringX indexed by all setsJ ∈

([n]
≤p

)
, such that

XJ = (xj)j∈J . That is, each indexJ of X corresponds to up top indicesj of x. We now define a new
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functionF : D′ → {0, 1}, whereD′ is the set ofX as above, in 1-to-1 correspondence with the elements of
x ∈ D, andF (X) is defined asf(x). 3 One query toX can be simulated byp parallel queries tox, and vice
versa, so we haveQp‖(f) = Q(F ). As mentioned at the end of Section 3.1, we haveQ(F ) = Θ(ADV(F )).
Now Eq. (1) applied toF gives the claimed lower bound of Eq. (2) onQp‖(f). ✷

Sometimes we can even use the same adversary matrixΓ to obtain optimal lower bounds forF andf .
An example is then-bit OR-function. LetΓ be the all-ones1 × n matrix, with the row corresponding to
input0n and the columns indexed by all weight-1 inputs. Then‖Γ‖ =

√
n and‖Γ ◦∆j‖ = 1 for all j ∈ [n],

and henceQ(OR) = Ω(
√
n). To getp-parallel lower bounds, we define a new functionF : X 7→ {0, 1} as

in the proof of Theorem 2. We can use the sameΓ, with then columns still indexed by the weight-1 inputs
to f (which induce 1-inputs toF ). Now J ranges over subsets of[n] of size at mostp, and∆J will be the
matrix whose(x, y)-entry is 1 if there is at least onej ∈ J such thatxj 6= yj . Note that‖Γ ◦∆J‖ =

√
|J |

for all J . HenceQp‖(OR) = Ω(ADV(F )) = Ω(
√

n/p). This is optimal and was already proved (in a
different way) by Zalka [37, Section 4].

3.2 Belovs’s learning graph approach

Recently Belovs [10] gave a new approach to designing (sequential) quantum algorithms, via the optimal-
ity of the adversary method. He introduced the model oflearning graphsto prove upper bounds on the
adversary bound, and hence upper bounds on quantum query complexity. We state it here forcertificate
structures. We define these below, slightly simpler and less general than Definitions 1 and 3 of Belovs and
Rosmanis [14] (for usM denotes a minimal certificate, while in [14] it denotes the set of supersets of a
minimal certificate).

Definition 1 LetC be a set of incomparable subsets of[n]. We sayC is a1-certificate structurefor a function
f : D → {0, 1}, with D ⊆ [q]n, if for everyx ∈ f−1(1) there exists anM ∈ C such that for ally ∈ D,
yM = xM impliesf(y) = 1. We sayC is k-boundedif |M | ≤ k for all M ∈ C.

The learning graph complexity ofC is defined in the following in its primal formulation as a minimiza-
tion problem (we will see an equivalent dual formulation soon). LetE = {(S, j) : S ⊆ [n], j ∈ [n]\S}. For
e = (S, j) ∈ E , we uses(e) = S andt(e) = S ∪ {j}.

LGC(C) = min
√∑

e∈E we such that (3)

∑

e∈E

θe(M)2

we
≤ 1 for all M ∈ C (4)

∑

e∈E:t(e)=S

θe(M) =
∑

e∈E:s(e)=S

θe(M) for all M ∈ C, ∅ 6= S ⊆ [n],M 6⊆ S (5)

∑

e∈E:s(e)=∅
θe(M) = 1 for all M ∈ C (6)

θe(M) ∈ R, we ≥ 0 for all e ∈ E andM ∈ C (7)

For eachM , θe(M) is aflow from ∅ to M on the graph with vertices{S ⊆ [n]} and edges{{S, S ∪ {j}} :
(S, j) ∈ E} if θe(M) satisfies condition (5). Moreover,θe(M) is aunit flow if it also satisfies condition (6).

3Note that forp > 1 the new functionF is partial, even if the underlyingf is total. A similar translation from parallel to
sequential complexity was used by Grover and Radhakrishnan[21, Section 2] for the special case of searching a database.
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Belovs showed that the learning graph complexity ofC is an upper bound on ADV(f), and hence on
Q(f), for any functionf with certificate structureC. This bound is not always optimal, since it only depends
on the certificate structure off . For example,k-distinctness has quantum query complexityo(n3/4) even
though it has the same 1-certificate structure ask-sum, whose quantum query complexity isΘ(nk/(k+1)) [11,
15]. However, Belovs and Rosmanis [14] proved that for a special class of functions, it turns out the upper
bound LGC(C) is optimal.

Definition 2 An orthogonal arrayof lengthk is a setT ⊆ [q]k, such that for everyi ∈ [k] and every
x1, . . . , xi−1, xi+1, . . . , xk there exists exactly onexi ∈ [q] such that(x1, . . . , xk) ∈ T .

Theorem 3 (Belovs-Rosmanis)LetC be ak-bounded 1-certificate structure for some constantk, q ≥ 2|C|,
and let eachM ∈ C be equipped with an orthogonal arrayTM of length|M |. Define a Boolean function
f : [q]n → {0, 1} by: f(x) = 1 iff there exists anM ∈ C such thatxM ∈ TM . ThenQ(f) = Θ(LGC(C)).

For example, the element distinctness problem ED on inputx ∈ [q]n is induced by the 2-bounded 1-
certificate structureC =

([n]
2

)
, equipped with associated orthogonal arraysT{i,j} = {(v, v) : v ∈ [q]}.

HenceQ(ED) = Θ(LGC(C)).
Belovs and Rosmanis [14] show that an equivalent dual definition of the learning graph complexity as a

maximization problem is the following:

LGC(C) =max
√∑

M∈C α∅(M)2 (8)

s.t.
∑

M∈C(αs(e)(M)− αt(e)(M))2 ≤ 1 for all e ∈ E (9)

αS(M) = 0 wheneverM ⊆ S

αS(M) ∈ R for all S ⊆ [n] andM ∈ C

In particular, that means we can provelower bounds on LGC(C) (and hence, for the functions described
in Theorem 3, onQ(f)) by exhibiting a feasible solution{αS(M)} for this maximization problem and
calculating its objective value.

Before stating a similar result forp-parallel query complexity, we first adapt learning graphs.Edges,
which previously were of typee = (S, j) with S ⊆ [n] andj ∈ [n] \ S, are now of typee = (S, J) with
S ⊆ [n], J ⊆ [n] \ S and|J | ≤ p.

Definition 3 The p-parallel learning graph complexity LGCp‖(C) of C is defined asLGC(C) where we
replace the edge setE with Ep = {(S, J) : S ⊆ [n], J ⊆ [n] \ S, |J | ≤ p}. Its dual is analogous. In
particular, we replace constraint(9) by

∑

M∈C
(αs(e)(M)− αt(e)(M))2 ≤ 1 for all e = (S, J) ∈ Ep,

wheres(e) = S andt(e) = S ∪ J . We call this modified constraint “parallel-(9).”

As in the special case ofp = 1, thep-parallel learning graph complexity ofC provides an upper bound
on ADVp‖(f), and hence onQp‖(f), for any functionf having that same certificate structure. The proof is
given in Appendix B.

Lemma 4 LetC be a certificate structure forf . ThenADVp‖(f) ≤ LGCp‖(C).

6



We now generalize Theorem 3 to thep-parallel case. The proof of Theorem 5 can be found in Appendix
C. It is an adaptation of the proof of [14, Theorem 5].

Theorem 5 LetC be ak-bounded 1-certificate structure for some constantk, q ≥ 2|C|, and let eachM ∈ C
be equipped with an orthogonal arrayTM of length|M |. Define a Boolean functionf : [q]n → {0, 1} as
follows: f(x) = 1 iff there exists anM ∈ C such thatxM ∈ TM . ThenQp‖(f) = Θ(LGCp‖(C)).

4 Parallel quantum query complexity of specific functions

4.1 Algorithms

In this section we give upper bounds for element distinctness andk-sum in thep-parallel quantum query
model, by way of quantum walk algorithms.

Ourp-parallel algorithm for element distinctness is based on the sequential query algorithm for element
distinctness of Ambainis [4]. Ambainis’s algorithm uses a quantum walk on a Johnson graph,J(n, r), which
has vertex setV = {S ⊆ [n] : |S| = r} and edge set{{S, S′} ⊆ V : |S \ S′| = 1}. Each stateS ∈ V
represents a set of queried indices. The algorithm seeks a stateS containing(i, xi) and(j, xj) such that
i 6= j andxi = xj . Such a state is said to bemarked.

Theorem 6 Element distinctness on[q]n hasQp‖(ED) = O((n/p)2/3).

Proof. We modify Ambainis’s quantum walk algorithm slightly. Consider a walkJ(n, r/p)p, onp copies
of the Johnson graphJ(n, r/p). Vertices arep-tuples(S1, S2, . . . , Sp) where, for eachi ∈ [p], Si ⊆ [n] and
|Si| = r/p. Two vertices(S1, S2, . . . , Sp) and(S′

1, S
′
2, . . . , S

′
p) are adjacent if, for eachi ∈ [p], |Si\S′

i| = 1.
We call a state(S1, S2, . . . , Sp) markedif there arej, j′ ∈ ⋃p

i=1 Si such thatxj = xj′ . Since the stationary

distribution isµp, whereµ is the uniform distribution on
( [n]
r/p

)
, the probability that a state is marked is at

leastε = Ω(r2/n2).
The setup cost is onlyS = O(r/p) p-parallel queries, since it suffices to queryr elements in the initial

superposition over all states. Similarly, the update requires that we query and unqueryp elements, but we
can accomplish this in twop-parallel queries, soU = O(1). Also, C = 0. Finally, the eigenvalues of the
product ofp copies of a graph are exactly the products ofp eigenvalues of that graph. Hence if the largest
eigenvalue of a graph is 1 and the second-largest is1 − δ, then the same will be true for the product graph.
Accordingly, the spectral gapδ of p copies ofJ(n, r/p) is exactly the spectral gap of one copy ofJ(n, r/p),
which isΩ(p/r). We can now upper bound thep-parallel query complexity of element distinctness as

O

(
S+

1√
ε

(
1√
δ
U+ C

))
= O

(
r

p
+

n

r

(√
r

p

))
= O

(
r

p
+

n√
rp

)
.

Settingr to the optimaln2/3p1/3 gives an upper bound ofO((n/p)2/3). ✷

It is easy to generalize our element distinctness upper bound tok-sum:

Theorem 7 k-sum on[q]n hasQp‖(k-sum) = O((n/p)k/(k+1)).

Proof. Again, we walk onp copies ofJ(n, r/p), but now we consider a state(S1, S2, . . . , Sp) marked if
there are distinct indicesi1, . . . , ik ∈ ⋃p

i=1 Si such that
∑k

j=1 xij = 0 (mod q). The fraction of marked

7



states in a1-instance isε = Ω(rk/nk). All other parameters are as in Theorem 6. We get the following
upper bound fork-sum:

O

(
S+

1√
ε

(
1√
δ
U+ C

))
= O

(
r

p
+

nk/2

rk/2

(√
r

p

))
= O

(
r

p
+

nk/2

r(k−1)/2√p

)
.

Settingr = nk/(k+1)p1/(k+1) givesO((n/p)k/(k+1)). ✷

4.2 Lower bounds

We now use the ideas from Section 3.2 to provep-parallel lower bounds for ED andk-sum, matching our
upper bounds if the alphabet sizeq is sufficiently large. Our proofs are generalizations of thesequential
lower bounds in [14, Section 4].

Theorem 8 For q ≥ 2
(n
2

)
, element distinctness on[q]n hasQp‖(ED) = Ω((n/p)2/3).

Proof. Recall that element distinctness is induced by the 1-certificate structureC =
([n]
2

)
, equipped with

associated orthogonal arraysT{i,j} = {(v, v) : v ∈ [q]}. By Theorem 5, it suffices to prove the lower bound
on thep-parallel learning graph complexity of ED. For this, it suffices to exhibit a feasible solution to the
parallel version of dual (8) and to lower bound its objectivefunction. Note that the elements ofEp are now
of the form(S, J), whereS ⊆ [n] andJ ⊆ [n] \ S with |J | ≤ p. Define

αj =
1

2n
max((n/p)2/3 − j/p, 0), and αS(M) =

{
0 if M ⊆ S
α|S| otherwise.

To show that this is a feasible solution, the only constraintwe need to verify is parallel-(9). FixS ⊆ [n] of
some sizes, and a setJ ⊆ [n] \ S with |J | ≤ p. LetL denote the left-hand side of parallel-(9), which is a
sum over all

(
n
2

)
certificatesM ∈ C. With respect toe = (S, J), there are four kinds ofM = {i, j}:

1. i, j ∈ S. Thenαt(e)(M) = αs(e)(M) = 0, so theseM contribute 0 toL.

2. i ∈ S, j ∈ J . There ares|J | ≤ sp suchM , and each contributesα2
s toL becauseαs(e)(M) = αs and

αt(e)(M) = 0.

3. i, j 6∈ S, i, j ∈ J . There are
(|J |
2

)
≤
(p
2

)
suchM , each contributesα2

s toL.

4. i and/orj 6∈ S ∪ J . There are
(n
2

)
−
(s+|J |

2

)
≤ n2 suchM , each contributes|αs − αs+|J ||2 to L.

Hence, usingαs = 0 if s ≥ n2/3p1/3; αs ≤ α0 = 1
2p2/3n1/3 ; and|αs − αs+|J ||2 ≤ 1/4n2, we can establish

constraint parallel-(9):

L ≤
(
sp+

(
p

2

))
α2
s + n2|αs − αs+|J ||2 ≤ p(n2/3p1/3 + p/2)

1

4p4/3n2/3
+ n2 1

4n2
≤ 1.

Hence our solution is feasible. Its objective value is
√(n

2

)
α2
0 = Ω((n/p)2/3). ✷
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The lower bound proof fork-sum is similar. Here we use certificate structureC =
([n]
k

)
with the orthogonal

arrayT = {(v1, . . . , vk) :
∑k

i=1 vi = 0 mod q}, which inducesk-sum. In Appendix D, we show that the
following solution is feasible for LGCp‖(C):

αj =
1

2nk/2
max((n/p)k/(k+1) − j/p, 0) and αS(M) =

{
0 if M ⊆ S
α|S| otherwise;

Since its objective value is
√(n

k

)
α2
0 = Ω

(
(n/p)k/(k+1)

)
, we obtain

Theorem 9 For q ≥ 2
(
n
k

)
, k-sumon [q]n hasQp‖(k-sum) = Ω

(
(n/p)k/(k+1)

)
.

5 Some general bounds

In this section we will relate quantum and classicalp-parallel complexity. For the sequential model (p = 1)
it is known that quantum bounded-error query complexity is no more than a 6th power less than classical
deterministic complexity, for all total Boolean functions[7]. Here we will see to what extent we can prove
a similar result for thep-parallel model.

We start with a few definitions, referring to [16] for more details. Let f : {0, 1}n → {0, 1} be a
total Boolean function. Forb ∈ {0, 1}, a b-certificatefor f is an assignmentC : S → {0, 1} to a subset
S of the n variables, such thatf(x) = b wheneverx is consistent withC. The sizeof C is |S|. The
certificate complexityCx(f) of f on x is the size of a smallestf(x)-certificate that is consistent withx.
The certificate complexityof f is C(f) = maxxCx(f). The1-certificate complexityof f is C(1)(f) =
max{x:f(x)=1} Cx(f). Given an inputx ∈ {0, 1}n and subsetB ⊆ [n] of indices of variables, letxB denote
then-bit input obtained fromx by negating all bitsxi whose indexi is inB. Theblock sensitivitybs(f, x) of
f at inputx, is the maximal integerk such that there exist disjoint setsB1, . . . , Bk satisfyingf(x) 6= f(xBi)
for all i ∈ [k]. Theblock sensitivityof f is bs(f) = maxx bs(f, x). Nisan [31] proved that

bs(f) ≤ C(f) ≤ bs(f)2. (10)

Via a standard reduction [32], Zalka’sΘ(
√

n/p) bound for OR implies:

Theorem 10 For everyf : {0, 1}n → {0, 1}, Qp‖(f) = Ω(
√

bs(f)/p).

We now prove a general upper bound on deterministicp-parallel complexity:

Theorem 11 For everyf : {0, 1}n → {0, 1}, Dp‖(f) ≤ ⌈C(1)(f)/p⌉bs(f).

Proof. Beals et al. [7, Lemma 5.3] give a deterministic decision tree for f that runs for at mostbs(f)
rounds, and in each round queries all variables of a 1-certificate, substituting their values into the function.
They show this reduces the function to a constant. By parallelizing the querying of the certificate we can
implement every round using⌈C(1)(f)/p⌉ p-parallel steps. ✷

Dp‖(f) andQp‖(f) are polynomially related ifp is not too big:

Theorem 12 For everyf : {0, 1}n → {0, 1}, c > 1, p ≤ bs(f)1/c, we haveDp‖(f) ≤ O(Qp‖(f)6+4/(c−1)).

9



Proof. We can assumeC(f) = C(1)(f) (else consider1−f ). By Eq. (10) we havep ≤ bs(f)1/c ≤ C(1)(f).
We also haveC(1)(f) ≤ bs(f)2. The assumption onp is equivalent top ≤ (bs(f)/p)1/(c−1). Using
Theorems 10 and 11, we obtain

Dp‖(f) ≤ ⌈C(1)(f)/p⌉bs(f) ≤ O(bs(f)3/p) = O((bs(f)/p)3p2)

≤ O((bs(f)/p)3+2/(c−1)) ≤ O(Qp‖(f)6+4/(c−1)).

✷

For example, ifp ≤ bs(f)1/3 thenQp‖(f) is at most an 8th power smaller thanDp‖(f). Whether
superpolynomial gaps exist for largep remains open.

We end with an observation about random functions. Van Dam [18] showed that ann-bit input stringx
can be recovered with high probability usingn/2+O(

√
n) quantum queries, henceQ(f) ≤ n/2+O(

√
n)

for all f : {0, 1}n → {0, 1}. His algorithm already applies its queries in parallel, so allows us to computex
using roughlyn/2p p-parallel quantum queries (see Appendix E). Ambainis et al.[5] proved an essentially
optimal lower bound for random functions: almost allf haveQ(f) ≥ (1/2 − o(1))n. Since trivially
Q(f) ≤ pQp‖(f), we obtain thep-parallel lower boundQp‖(f) ≥ (1/2− o(1))n/p for almost allf . So for
this type of “quantum oracle interrogation,” parallelization gives the optimal factor-p speed-up for almost
all Boolean functions.

Corollary 13 For all p ≤ n, almost allf : {0, 1}n → {0, 1} satisfyQp‖(f) = (1/2 ± o(1))n/p.

Forp = n/2 +O(
√
n), onep-parallel query suffices.

6 Conclusion and future work

This paper is the first to systematically study the power and limitations of parallelism for quantum query
algorithms. It is motivated in particular by the need to reduce overall computing time when running quantum
algorithms on hardware with quickly decohering quantum bits.

We leave open many interesting questions for future work, for example:

• There are many other computational problems whosep-parallel complexity is unknown, for example
finding a triangle in a graph or deciding whether two given matrices multiply to a third one. For both
of these problems, however, even the sequential quantum query complexity is still open.

• We suspect Theorem 12 is non-optimal, and conjecture thatDp‖(f) andQp‖(f) are polynomially
related for largep as well. Montanaro’s result [29] about the weakness of maximally parallel quantum
algorithms is evidence for this. Even for the sequential model (p = 1) the correct bound is open; the
best known bound is a 6th power [7] but the correct power may well be 2.

• Can we find relations with quantum communication complexity? Nonadaptive quantum query algo-
rithms induce one-way communication protocols, while fully adaptive ones induce protocols that are
very interactive. Ourp-parallel algorithms would sit somewhere in between.

Acknowledgment.We thank Jérémie Roland for helpful discussions.
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A Proof of Fact 1

We use theγ2-norm for matrices, which is defined as

γ2(A) = min
X,Y :A=XY

r(X)c(Y ),

wherer(X) denotes the maximum squared length among the rows ofX, andc(Y ) denotes the maximum
squared length among the columns ofY . Note that the identity and the all-1 matrix both haveγ2-norm
equal to 1 (the latter by takingX andY to be the all-1 row and columns, respectively). Also,γ2(A⊗B) =
γ2(A)γ2(B). Since∆J can be written as the all-1 matrix of the appropriate dimensions, minus identity
tensored with a smaller all-1 matrix, the triangle inequality implies γ2(∆J) ≤ 2. Theγ2-norm satisfies
‖A ◦B‖ ≤ ‖A‖γ2(B) by [27, Lemma A.1]. Observe thatΓ ◦∆J = (Γ ◦∆K) ◦∆J . Hence we have

‖Γ ◦∆J‖ = ‖(Γ ◦∆K) ◦∆J‖ ≤ ‖Γ ◦∆K‖γ2(∆J) ≤ 2‖Γ ◦∆K‖.

B Proof of Lemma 4

The proof is a straightforward adaptation of the proof of [13, Theorem 9], but we repeat it here for com-
pleteness. Let{wS,J : (S, J) ∈ Ep} and{θS,J(M) : (S, J) ∈ Ep,M ∈ C} be an optimal solution to the
primal formulation of LGCp‖(C).

We will use this solution to construct a feasible solution tothe dual expression of ourp-parallel adversary
of Eq. (2), which is the following:

ADVp‖(f) = min
{|ux,J〉}

√√√√max
x∈[q]n

∑

J∈([n]
≤p)

‖|ux,J〉‖2 (11)

s.t. |ux,J〉 ∈ Ck for all x ∈ [q]n, J ∈
(
[n]

≤ p

)

∑

J :xJ 6=yJ

〈ux,J |uy,J〉 = 1 for all x ∈ f−1(1), y ∈ f−1(0)

The dimensionk of the vectors|ux,J〉 can be anything, and is implicitly minimized over.
For eachx ∈ f−1(1), let Mx ∈ C be such that for everyy ∈ [q]n, xMx = yMx impliesf(y) = 1. For

everyx ∈ D andJ ∈
([n]
≤p

)
, define the following state in span{|S〉|α〉 : S ⊆ [n], α ∈ [q]S}:

|ux,J〉 :=
{ ∑

S⊆[n]\J
√
wS,J |S, xS〉 if f(x) = 0

∑
S⊆[n]\J

θS,J (Mx)√
wS,J

|S, xS〉 if f(x) = 1

13



We now verify that{|ux,J〉}x,J is a feasible solution to the dual formulation of ADVp‖(f):

∑

J∈([n]
≤p):xJ 6=yJ

〈ux,J |uy,J 〉 =
∑

J∈([n]
≤p):xJ 6=yJ

∑

S⊆[n]\J :xS=yS

θS,J(Mx)√
wS,J

√
wS,J (12)

=
∑

S⊆[n]:xS=yS

∑

J∈([n]\S
≤p ):xJ 6=yJ

θS,J(Mx). (13)

To see that this expression is equal to1, we need only notice that Eq. (13) is the sum of the flow on all edges
across the cut induced by the set{S ⊆ [n] : xS = yS}, and the total flow across a cut is always1, since
θ(Mx) is a unit flow. Thus the constraint from (11) is satisfied and{|ux,J〉}x,J is a feasible solution.

We can now bound ADVp‖(f) by the objective value of the feasible solution{|ux,J〉}x,J . First note that
for anyx ∈ f−1(1), by constraint (4), we have:

∑

J∈([n]
≤p)

‖|ux,J〉‖2 =
∑

J∈([n]
≤p)

∑

S⊆[n]\J

θS,J(Mx)
2

wS,J
≤ 1.

Second, for anyx ∈ f−1(0) we have
∑

J∈([n]
≤p)

‖|ux,J〉‖2 =
∑

J∈([n]
≤p)

∑

S⊆[n]\J
wS,J .

We can therefore bound the objective value as:

ADVp‖(f) ≤
√√√√max

x∈[q]n

∑

J∈([n]
≤p)

‖|ux,J〉‖2 ≤

√√√√√√max




1,
∑

J∈([n]
≤p)

∑

S⊆[n]\J
wS,J





≤
√∑

e∈Ep
we = LGCp‖(C),

where
∑

ewe ≥ 1 follows from the Cauchy-Schwarz inequality and the fact that
∑

e
θe(Mx)2

we
≤ 1, as

follows:

1 = (
∑

e

θe(Mx))
2 =

(
∑

e

θe(Mx)√
we

)
≤
∑

e

θe(Mx)
2

we

∑

e

we ≤
∑

e

we.

C Proof of Theorem 5

For the upper bound, we immediately obtainQp‖(f) = O(LGCp‖(C)) by Theorem 2 and Lemma 4.
For the lower bound, our proof will be similar to that of [14, Theorem 5], and we will omit parts of the

proof that are identical to theirs. Just as in [14, Theorem 5], our proof will start with an optimal feasible
solution {αS(M)}M∈C,S⊆[n] to the dual (8). Therefore LGCp‖(C) =

√∑
M∈C α∅(M)2 and moreover∑

M∈C(αS(M) − αS∪J(M))2 ≤ 1. Then we will construct an adversary matrixΓ for f such that‖Γ‖ ≥√
1
2

∑
M∈C α∅(M)2 (as proven in [14]) and for everyJ ⊆ [n],

‖Γ ◦∆J‖ ≤ 2 max
S⊆[n]

√∑

M∈C
(αS(M)− αS∪J(M))2
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(proven below). Then Theorem 2 will implyQp‖(f) = Ω(
√∑

M∈C α∅(M)2) = Ω(LGCp‖(C)).
First we use a variation of the adversary bound from [15] thatallows the duplication of row and column

indices. Concretely, rows and columns ofΓ are now indexed by(x, a) and (y, b), respectively, where
x ∈ f−1(1), y ∈ f−1(0), anda andb belong to some finite sets. Then, with slight abuse of notation, ∆j is
now defined such that∆j [(x, a), (y, b)] = 1 if xj 6= yj, and∆j [(x, a), (y, b)] = 0 otherwise. Specifically,
in our case rows ofΓ will be indexed by(x,M) for somex ∈ f−1(1) andM ∈ C, and columns will simply
be indexed byy ∈ f−1(0).

Second,Γ will be the submatrix of a larger matrix̃Γ (defined below), whose rows are indexed by the
elements of[q]n×C and whose columns are indexed by[q]n. Then∆j is naturally extended to allx, y ∈ [q]n

andM ∈ C by ∆̃j[(x,M), y] = 1 if xj 6= yj, and∆̃j[(x,M), y] = 0 otherwise. SinceΓ◦∆J is a submatrix
of Γ̃ ◦ ∆̃J , we will have‖Γ ◦∆J‖ ≤ ‖Γ̃ ◦ ∆̃J‖. Hence we only need to upper bound the latter norm.

We now definẽΓ. Consider the Hilbert spaceCq. LetE0 denote the orthogonal projector onto the vector
1√
q (1, 1, . . . , 1), andE1 = I − E0 its orthogonal complement. For everyS ⊆ [n], let ES = ⊗j∈[n]Esj

(acting onCqn), wheresj = 1 if j ∈ S, andsj = 0 otherwise. Note thatESES′ = ES if S = S′, and
ESES′ = 0 otherwise. DefinẽΓ as

Γ̃ =




...
GM

...



M∈C

, with GM =
∑

S⊆[n]

αS(M)ES ,

where theαS(M) come from a feasible solution to the dual (8). We then defineΓ as the submatrix of̃Γ
obtained by keeping only those columns indexed byy such thatf(y) = 0; and only those rows indexed by
(x,M) such thatM is a1-certificate forx (i.e., for allz ∈ [q]n, zM = xM impliesf(z) = 1).

Fact 14 ‖Γ‖ ≥
√

1

2

∑

M∈C
α∅(M)2.

Proof. Belovs and Rosmanis [14, Lemma 17] prove this result for any matrix Γ constructed as above
assuming that, for eachM ∈ C, (1) αS(M) = 0 wheneverM ⊆ S, and (2)M is equipped with an
orthogonal arrayTM of length|M |. Those two assumptions are satisfied in our case too. ✷

Upper bounding‖Γ̃ ◦ ∆̃J‖ requires some additional steps compared to [14]. We first review the ap-
proach of [14], which is for the special caseJ = {j}. Define a linear mapϕj on matrix Γ̃ by its action
on blocksES, for everyS ⊆ [n]. First, letϕ be such thatϕ(E0) = E0 andϕ(E1) = −E0. Then
ϕj(ES) = Es1 ⊗ . . . ⊗ Esj−1 ⊗ ϕ(Esj )⊗ Esj+1 ⊗ . . .⊗ Esn . An alternative but equivalent definition is

ϕj(ES) =

{
ES , if j 6∈ S;

−ES\{j} otherwise.

The mapϕj was introduced because it satisfiesES ◦∆j = ϕj(ES) ◦∆j. This comes from the observation
thatϕ(E1) ◦ ∆1 = E1 ◦ ∆1, sinceE1 = I − E0 andI ◦ ∆1 = 0. The approach of [14] then consists of
applyingϕj to Γ̃ before computing the norm of̃Γ ◦ ∆̃j.

We now generalizeϕj to subsetsJ ⊆ [n] as

ϕJ(ES) =





ES , if J 6⊆ S;

−
∑

S′:S\J⊆S′(S

ES′ , otherwise.
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Thenϕj satisfies the following fact, which is an extension of the caseJ = {j} (proved in [14]).

Fact 15 LetJ ⊆ [n] be any subset. TheñΓ ◦ ∆̃J = ϕJ (Γ̃) ◦ ∆̃J .

Proof. By linearity it suffices to prove the fact forES , i.e., thatES ◦∆̃J = ϕJ(ES)◦∆̃J , whereS, J ⊆ [n].
This equality is immediate whenJ 6⊆ S, since thenϕJ (ES) = ES .

Assume from now on thatJ ⊆ S. For notational simplicity, assume further and without loss of generality
thatJ = {1, 2, . . . , j}, and setF = Esj+1 ⊗ . . .⊗Esn , henceES = E⊗j

1 ⊗F . UsingI = E0+E1 we have

I⊗j = (E0 + E1)
⊗j

=
∑

S′:∅⊆S′⊆J

ES′ ,

where the notationsEJ andES′ stand for the firstj bits only. This implies

EJ = I⊗j −
∑

S′:∅⊆S′(J

ES′ .

This concludes the proof since

(I⊗j ⊗ F ) ◦ ∆̃J = 0, and ϕJ (ES) = −
∑

S′:∅⊆S′(J

ES′ ⊗ F.

✷

Therefore (using also Fact 1) we can upper bound‖Γ̃ ◦ ∆̃J‖ by 2‖ϕJ (Γ̃)‖. It remains to upper bound
the latter norm.

Fact 16 ‖ϕJ (Γ̃)‖ = max
S⊆[n]

√∑

M∈C
(αS(M)− αS∪J(M))2.

Proof. We first computeϕJ(GM ):

ϕJ(GM ) =
∑

S⊆[n]

βS(M)ES , whereβS(M) = αS(M)− αS∪J(M).

Observe thatβS(M) = 0 if J ⊆ S. Now rewrite(ϕJ (Γ̃))
∗ϕJ (Γ̃) as

(ϕJ (Γ̃))
∗ϕJ (Γ̃) =

∑

M∈C
(ϕJ (GM ))∗ϕJ(GM ) =

∑

S⊆[n]

(
∑

M∈C
βS(M)2

)
ES .

Since the differentES project onto orthogonal subspaces, we can conclude

‖ϕJ (Γ̃)‖ =

√
‖(ϕJ (Γ̃))

∗ϕJ (Γ̃)‖ = max
S⊆[n]

√∑

M∈C
βS(M)2.

✷
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We therefore have

‖Γ ◦∆J‖ ≤ ‖Γ̃ ◦ ∆̃J‖ ≤ 2‖ϕJ (Γ̃)‖ = 2 max
S⊆[n]

√∑

M∈C
(αS(M)− αS∪J(M))2.

WhenJ has size at mostp, the right-hand side is at most2 because of the constraint parallel-(9), applied to
edge(S, J ′) ∈ Ep with J ′ = J \ S. Therefore

ADVp‖(f) ≥ ‖Γ‖
max

J∈([n]
p )

‖Γ ◦∆J‖
≥

√
1
2

∑
M∈C α∅(M)2

2
=

1

2
√
2

LGCp‖(C).

D Proof of Theorem 9

Here we prove our parallel lower bound for thek-sum problem. The proof strategy is the same as in
Theorem 8. We now use certificate structureC =

([n]
k

)
with the orthogonal array

T = {(v1, . . . , vk) :
k∑

i=1

vi = 0 mod q}.

This induces thek-sum problem in the way mentioned in Theorem 5. We define the following solution to
the dual for LGCp‖(C):

αj =
1

2nk/2
max((n/p)k/(k+1) − j/p, 0)

αS(M) = 0 if M ⊆ S

αS(M) = α|S| otherwise

Fix somee = (S, J) with S ⊆ [n] of sizes, and disjointJ ⊆ [n] of size at mostp. Let L denote the
left-hand side of constraint parallel-(9). In order to establish that the above solution is feasible, we want
to showL ≤ 1. With respect toe, we can distinguish different kinds ofM = {i1, . . . , ik}, depending on
i := |M ∩ S| andj := |M ∩ J |:

1. i+ j < k. There are
(s
i

)(|J |
j

)
suchM , and each contributes≤ |αs − αs+|J ||2 ≤ 1/4nk toL.

2. i+ j = k. There are
(s
i

)(|J |
j

)
suchM , each contributesα2

s toL if i < k, and 0 ifi = k.

Over all such choices ofi andj, at most|J |
(s+|J |−1

k−1

)
of theseM havej ≥ 1 (i.e.,αS(M) 6= 0), since

this counts the number of ways of choosing one index fromJ , andk − 1 more fromJ ∪ S.
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Note thatαs = 0 if s ≥ p(n/p)k/(k+1), so below we may assumes + p − 1 ≤ 2p(n/p)k/(k+1) for n
sufficiently large. Alsoαs ≤ α0 = (n/p)k/(k+1)/2nk/2. Hence we can boundL as

L ≤
k−1∑

i=0

k−1−i∑

j=0

(
s

i

)(|J |
j

)
|αs − αs+|J ||2 +

k−1∑

i=0

(
s

i

)( |J |
k − i

)
α2
s

≤
k−1∑

ℓ=0

(
s+ |J |

ℓ

)
|αs − αs+|J ||2 + |J |

(
s+ |J | − 1

k − 1

)
α2
s

≤ nk−1

4nk
+

p(s+ p− 1)k−1

(k − 1)!

(n/p)2k/(k+1)

4nk

≤ 1

4n
+

2k−1

(k − 1)!
pk(n/p)(k−1)k/(k+1) (n/p)

2k/(k+1)

4nk

≤ 1

4n
+ pk

(n/p)k

4nk
=

1

4n
+

1

4
≤ 1.

Hence our solution is feasible. Its objective value is

√(
n

k

)
α2
0 = Ω

(
(n/p)k/(k+1)

)
.

E Parallel quantum oracle interrogation

The following quantum algorithm recovers the complete input x ∈ {0, 1}n with high probability, using
roughlyn/2p p-parallel queries:

1. With T = n/2 +O(
√

n log(1/ε)) andB =
∑T

i=0

(n
i

)
being the number ofy ∈ {0, 1}n with weight

|y| ≤ T , set up then-qubit superposition 1√
B

∑
y∈{0,1}n:|y|≤T |y〉.

2. Apply the unitary|y〉 7→ (−1)x·y|y〉. We can implement this using⌈T/p⌉ p-parallel queries for
|y| ≤ T : the first batch ofp queries would query the firstp positions wherey has a one and put the
answer in the phase; the second batch queries the nextp positions, etc.

3. Apply a Hadamard transform to all qubits and measure.

To see the correctness of this algorithm, note that the fraction of n-bit stringsy that have weight> T
is ≪ ε. Hence the state obtained in step 2 is very close to the state1√

2n

∑
y∈{0,1}n(−1)x·y|y〉, whose

Hadamard transform is exactly|x〉.

18


	1 Introduction
	1.1 Background
	1.2 Earlier work on parallel quantum algorithms
	1.3 Our results

	2 Preliminaries
	2.1 Sequential and parallel query complexity
	2.2 Quantum walks

	3 Lower bounds for parallel quantum query complexity
	3.1 Adversary bound for parallel algorithms
	3.2 Belovs's learning graph approach

	4 Parallel quantum query complexity of specific functions
	4.1 Algorithms
	4.2 Lower bounds

	5 Some general bounds
	6 Conclusion and future work
	A Proof of Fact ??
	B Proof of Lemma ??
	C Proof of Theorem ??
	D Proof of Theorem ??
	E Parallel quantum oracle interrogation

