
Secluded Connectivity Problems

Shiri Chechik ∗ M. P. Johnson † Merav Parter ‡§ David Peleg ‡ ¶

November 2, 2018

Abstract

Consider a setting where possibly sensitive information sent over a path in a

network is visible to every neighbor of the path, i.e., every neighbor of some node

on the path, thus including the nodes on the path itself. The exposure of a path P

can be measured as the number of nodes adjacent to it, denoted by N [P]. A path

is said to be secluded if its exposure is small. A similar measure can be applied to

other connected subgraphs, such as Steiner trees connecting a given set of terminals.

Such subgraphs may be relevant due to considerations of privacy, security or revenue

maximization. This paper considers problems related to minimum exposure con-

nectivity structures such as paths and Steiner trees. It is shown that on unweighted

undirected n-node graphs, the problem of finding the minimum exposure path con-

necting a given pair of vertices is strongly inapproximable, i.e., hard to approximate

within a factor of O(2log1−ε n) for any ε > 0 (under an appropriate complexity as-

sumption), but is approximable with ratio
√

∆+3, where ∆ is the maximum degree

in the graph. One of our main results concerns the class of bounded-degree graphs,

which is shown to exhibit the following interesting dichotomy. On the one hand, the

minimum exposure path problem is NP-hard on node-weighted or directed bounded-

degree graphs (even when the maximum degree is 4). On the other hand, we present

∗Microsoft Research Silicon Valley Center, USA. Email: schechik@microsoft.com
†Department of Electrical Engineering, UCLA, Los Angeles, USA. Email: mpjohnson@gmail.com
‡The Weizmann Institute of Science, Rehovot, Israel. Email: {merav.parter,david.peleg}@

weizmann.ac.il.
§Recipient of the Google Europe Fellowship in distributed computing; research supported in part by

this Google Fellowship.
¶Supported in part by the Israel Science Foundation (grant 894/09), the United States-Israel Binational

Science Foundation (grant 2008348), the Israel Ministry of Science and Technology (infrastructures grant),

and the Citi Foundation.

1

ar
X

iv
:1

21
2.

61
76

v1
 [

cs
.D

S]
 2

6
D

ec
 2

01
2

a polynomial algorithm (based on a nontrivial dynamic program) for the problem

on unweighted undirected bounded-degree graphs. Likewise, the problem is shown

to be polynomial also for the class of (weighted or unweighted) bounded-treewidth

graphs. Turning to the more general problem of finding a minimum exposure Steiner

tree connecting a given set of k terminals, the picture becomes more involved. In

undirected unweighted graphs with unbounded degree, we present an approxima-

tion algorithm with ratio min{∆, n/k,
√

2n,O(log k · (k +
√

∆))}. On unweighted

undirected bounded-degree graphs, the problem is still polynomial when the number

of terminals is fixed, but if the number of terminals is arbitrary, then the problem

becomes NP-hard again.

1 Introduction

The problem. Consider a setting where possibly sensitive information sent over a path

in a network is visible to every neighbor of the path, i.e., every neighbor of some node on

the path, thus including the nodes on the path itself. The exposure of a path P can be

measured as the size (possibly node-weighted) of its neighborhood in this sense, denoted

by N [P]. A path is said to be secluded if its exposure is small. A similar measure can

be applied to other connected subgraphs, such as Steiner trees connecting a given set

of terminals. Our interest is in finding connectivity structures with exposure as low as

possible. This may be motivated by the fact that in real-life applications, a connectivity

structure operates normally as part of the entire network G (and is not “extracted” from

it), and so controlling the effect of its operation on the other nodes in the network may be

of interest, in situations in which any “activation” of a node (by taking it as part of the

structure) leads to an activation of its neighbors as well. In such settings, to minimize the

set of total active nodes, we aim toward finding secluded or sufficiently private connectivity

structures. Such subgraphs may be important in contexts where privacy is an important

concern, or in settings where security measures must be installed on any node from which

the information is visible, making it desirable to minimize their number. Another context

where minimizing exposure may be desirable is when the information transferred among

the participants has commercial value and overexposure to “free viewers” implies revenue

loss.

This paper considers the problem of minimizing the exposure of subgraphs that satisfy

some desired connectivity requirements. Two fundamental connectivity problems are con-

sidered, namely, single-path connectivity and Steiner trees, formulated as the Secluded

2

Path and Secluded Steiner Tree problems, respectively, as follows. Given a graph

G = (V,E) and an s, t pair (respectively, a terminal set S), it is required to find an s− t
path (respectively, a Steiner tree) of minimum exposure.

Related Work. The problems considered in this paper are variations of the classical

shortest path and Steiner tree problems. In the standard versions of these problems,

a cost measure is associated with edges or vertices, e.g., representing length or weight

and the task is to identify a minimum cost subgraph satisfying the relevant connectivity

requirement. Essentially, the cost of the solution subgraph is a linear sum of the solution’s

constituent parts, i.e., the sum of the weights of the edges or vertices chosen.

In contrast, in the setting of labeled connectivity problems, edges (and occasionally

vertices) are associated with labels (or colors) and the objective is to identify a subgraph

G′ ⊆ G that satisfies the connectivity requirements while minimizing the number of used

labels. In other words, costs are now assigned to labels rather than to single edges. Such

labeling schemes incorporate grouping constraints, based on partitioning the set of avail-

able edges into classes, each of which can be purchased in its entirety or not at all. These

grouping constraints are motivated by applications from telecommunication networks,

electrical networks, and multi-modal transportation networks. Labeled connectivity prob-

lems have been studies extensively from complexity-theoretic and algorithmic points of

view [7, 23, 11, 9]. The optimization problems in this category include, among others, the

Minimum Labeled Path problem [11, 23], the Minimum Labeled Spanning Tree problem

[15, 11], the Minimum Labeled Cut problem [24], and the Labelled Prefect Matching

problem [20].

In both the traditional setting and the labeled connectivity setting, only edges or nodes

that are explicitly part of the selected output structure are “paid for” in solution cost.

That is, the cost of a candidate structure is a pure function of its components, ignoring

the possible effects of “passive” participants, such as nodes that are “very close” to the

structure in the input graph G. In contrast, in the setting considered in this paper, the

cost of a connectivity structure G′ is a function not only of its components but also of

their immediate surroundings, namely, the manner in which G′ is embedded in G plays a

role as well. (Alternatively, we can say that the cost is a not necessarily a linear function

of its components.)

To the best of our knowledge, secluded connectivity problems have not been consid-

ered before in the literature. The Secluded Path and Secluded Steiner Tree problems

are related to several existing combinatorial optimization problems. These include the

3

Red-Blue Set Cover problem [4, 21], the Minimum Labeled Path problem [11, 23] and

the Steiner Tree [13] and Node Weighted Steiner Tree problems [14]. A prototypi-

cal example is the Red-Blue Set Cover problem, in which we are given a set R of red

elements, a set B of blue elements and a family S ⊆ 2|R|∪|B| of subsets of blue and red

elements, and the objective is to find a subfamily C ⊆ S covering all blue elements that

minimizes the number of red elements covered. This problem is known to be strongly

inapproximable.

Finally, turning to geometric settings, similarly motivated problems have been studied

in the networking and sensor networks communities, where sensors are often modeled as

unit disks. For example, the Maximal Breach Path problem [19] is defined in the context

of traversing a region of the plane that contains sensor nodes at predetermined points, and

its objective is to maximize the minimum distance between the points on the path and

the the sensor nodes. (The solution uses edges of the sensor nodes’ Voronoi diagram.) A

dual problem studied extensively is barrier coverage, i.e., the (deterministic or stochastic)

placement of sensors in order to make it difficult for an adversary to cross the region

unseen (see [16] and the references therein). [5] studies k-barrier coverage, in which the

task is to position the sensors so that any path across the region will intersect with at least

k sensor disks. Similarly motivated problems have been studied in the context of path

planning in AI. “Stealth” path planning problems, in which the task is to find a minimum

“visibility” path from source to destination, have been considered in [12, 17, 18]. Although

the motivation is similar, such problems are technically quite different from the graph-

based problems studied here; those problems are typically posed in the geometric plane,

amid obstacles that cause occlusion, and visibility is defined in terms of line-of-sight.

Contributions. In this paper, we introduce the concept of secluded connectivity and

study some of its complexity and algorithmic aspects. We first show that the Secluded

Path (and hence also Secluded Steiner Tree) problem is strongly inapproximable on

unweighted undirected graphs with unbounded degree (more specifically, is hard to ap-

proximate with ratio O(2log1−ε n), where n is the number of nodes in the graph G, assuming

NP 6⊆ DT IME
(
npoly logn

)
). Conversely, we devise a

√
∆ + 3 approximation algorithm

for the Secluded Path problem and a min{∆, n/k,
√

2n,O(log k · (k+
√

∆))} approxima-

tion algorithm for the Secluded Steiner Tree problem, where ∆ is the maximum degree

in the graph and k is the number of terminals.

One of our key results concerns bounded-degree graphs and reveals an interesting

dichotomy. On the one hand, we show that Secluded Path is NP-hard on the class of

node-weighted or directed bounded-degree graphs, even if the maximum degree is 4. In

4

contrast, we show that on the class of unweighted undirected bounded-degree graphs, the

Secluded Path problem admits an exact polynomial-time algorithm, which is based on

a complex dynamic programming and requires some nontrivial analysis. Likewise, the

Secluded Steiner Tree problem with fixed size terminal set is in P as well.

Finally, we consider some specific graph classes. We show that the Secluded Path and

Secluded Steiner Tree problems are polynomial for bounded-treewidth graphs. We also

show that the Secluded Path (resp., Secluded Steiner Tree) problem can be approx-

imated with ratio O(1) (resp., Θ(log k)) in polynomial time for hereditary graph classes

of bounded density. As an example, the Secluded Path problem has a 6 approximation

on planar graphs. (A more careful direct analysis of the planar case yields ratio 3.)

Preliminaries. Consider a node-weighted graph G(V,E,W), for some weight function

W : V → R≥0, with n nodes and maximum degree ∆. For a node u ∈ V , let N(u) =

{v ∈ V | (u, v) ∈ E} be the set of u’s neighbors and let N [u] = N(u) ∪ {u} be u’s

closed neighborhood, i.e., including u itself. A path is a sequence P = [u1, . . . , u`], oriented

from left to right, also termed a u1 − u` path. Let P [i] = ui for i ∈ {1, . . . , `}. Let

First(P) = u1 and Last(P) = u`. For a path P and nodes x, y on it, let P [x, y] be the

subpath of P from x to y. For a connected subgraph G′ ⊆ G and for ui, uj ∈ V (G′), let

distG′(ui, uj) be the distance between ui and uj in G′. Let N(G′) =
⋃
u∈G′ N(u) \ G′ be

the nodes that are strictly neighbors of G′ nodes and N [G′] =
⋃
u∈G′ N [u] be the set of

nodes in the 1-neighborhood of G′. Define the cost of G′ as

Cost(G′) =
∑

u∈N [G′]

W (u) . (1)

Note that if G is unweighted, then the cost of a subgraph G′ is simply the cardinality of

the set of G′ nodes and their neighbors, Cost(G′) = |N [G′]|.

We sometimes consider the neighbors of node u ∈ V (G) in different subgraphs. To

avoid confusion, we denote NG′(u) the neighbors of u restricted to graph G′.

For a subgraph G′ ⊆ G, let DegCost(G′) denote the sum of the degrees of the nodes of

G′. If G′ is a path, then this key parameter is closely related to our problem. It is not hard

to see that for any given path P , Cost(P) ≤ DegCost(P). The problem of finding an s− t
path P with minimum DegCost(P) is polynomial, making it a convenient starting-point

for various heuristics for the problem.

In this paper we consider two main connectivity problems. In the Secluded Path

problem we are given an unweighted graph G(V,E), a source node s and target node

t, and the objective is to find an s − t path P with minimum neighborhood size. A

5

generalization of this problem is the Secluded Steiner Tree problem, in which instead

of two terminals s and t we are given a set of k terminal nodes S and it is required

to find a tree T in G covering S, of minimum neighborhood size. If the given graph

G is weighted, then the weighted Secluded Path and Secluded Steiner Tree problems

require minimizing the neighborhood cost as given in Eq. (1). We now define these

tasks formally. For an s − t pair, let Ps,t = {P | P is a s-t path} be the set of all s − t
paths and let q∗s,t = min{Cost(P) | P ∈ Ps,t} be the minimum cost among these paths.

Then the objective of the Secluded Path problem is to find a P ∗ ∈ Ps,t that attains this

minimum, i.e., such that Cost(P ∗) = q∗s,t. For the Secluded Steiner Tree problem, let

T (S) = {T ⊆ G | S ⊆ V (T), T is a tree} be the set of all trees in G covering S, and let

q∗(S) be the minimum cost among these trees, i.e.,

q∗(S) = min{Cost(T) | T ∈ T (S)} . (2)

Then the solution for the problem is a tree T ∗ ∈ T (S) such that Cost(T ∗) = q∗(S).

Notation For a graph G = (V,E) and a set S of k terminals, let T be some Steiner tree

(spanning all terminals). Consider a decomposition of the tree into O(k) subpaths Σ(T)

defined as follows. Let B∗(T) = S ∪{u ∈ V (G) | |NT (u)| ≥ 3} be the set of terminals and

nodes with more than three neighbors in T (thus branching points in T). For a, b ∈ B∗(T),

let α = [a, b] be some maximal path in T such that V (α) ∩ B∗(T) = {a, b}, i.e., α is a

maximal subpath in T whose internal section is free of B∗(T) nodes. Since any internal

node in α is of degree at most 2, α is indeed a path in T . Let Σ(T) = {α = [a, b] | a, b ∈
B∗(T)} be the collection of these maximal subpaths. Note that |Σ(T)| ≤ 2k.

2 Unweighted Undirected Graphs with Unbounded

Degree

Hardness of approximation.

Theorem 2.1 On unweighted undirected graphs with unbounded degree, the Secluded

Path problem (and hence also the Secluded Steiner Tree problem) is strongly inap-

proximable. Specifically, unless NP ⊆ DT IME(npoly log(n)), the Secluded Path problem

cannot be approximated to within a factor O(2log1−ε n) for any ε > 0.

We show this for the simple case where S = {s, t}. The theorem is shown by a gap-

preserving reduction from the Red-Blue Set Cover (RBSC) problem [21]. An instance

6

of Red-Blue Set Cover consists of a set B = {b1, . . . , b|B|} of blue elements, a set R =

{r1, . . . , r|R|} of red elements, and a collection S = {S1, . . . , Sm} of subsets of B ∪ R.

The task is to choose a family of sets covering all blue elements but a minimum number

of red elements. In [4] it is shown that the Red-Blue Set Cover problem cannot be

approximated to within an O(2log1−ε n) ratio unless NP ⊆ DT IME(npoly log(n)), where

n = max{|R|, |B|, |S|}. Given a Red-Blue Set Cover instance, we construct a Secluded

Path instance (G, s, t) as follows. For each bi, let Si = {Sj ∈ S | bi ∈ Sj} be the sets

containing bi. For every i, j, add to G a node vi,j corresponding to Sj ∈ Si. Define

Vi =
⋃
Sj∈Si{vi,j} and V =

⋃
i Vi. Add edges so that the sets Vi and Vi+1 form a complete

bipartite graph for every 1 ≤ i < |B|. In addition, we connect a node s to all nodes

in V1, and connect a node t to all nodes in V|B|. So far, our construction contains X =∑
i |Vi|+ 2 ≤ n2 + 2 nodes (see Fig. 1).

We now turn to describing the representation of the red elements R. For every r` ∈ R,

let C` be a “supernode” consisting of n3 nodes (with no edges among them), and let

C =
⋃|R|
`=1 C` be the set of all supernodes. All n3 nodes of C` are connected to node vi,j if

r` ∈ Sj, for every ` ∈ {1, . . . , |R|}, i ∈ {1, . . . , |B|}, and j ∈ {1, . . . , |S|}. Finally, let H
be a “hypernode” consisting of n5 nodes (with no edges among them), all of which are

connected to all the constituent nodes of all supernodes. This completes the construction

of G. Overall, |V (G)| = O(n5).

By “visiting” a supernode or the hypernode, we mean visiting any of their constituent

nodes. We now make an immediate observation which allows us to restrict ourselves to

s− t paths P not visiting any supernode or the hypernode, i.e., with V (P) ⊆ V .

Claim 2.1 No ω(1/n)-approximate secluded path solution will visit any supernodes or the

hypernode, i.e., will satisfy V (P) ∩ C = ∅.

Proof: For every path P that goes through a node v ∈ C ∪H it holds that Cost(P) ≥ n5.

On the other hand, a path P ′ that visits only V nodes, i.e., V (P ′) ⊆ V costs only

Cost(P ′) ≤ X + |R| · n3 = O(n4). The claim follows.

Let Ĩ(P) = {i | Ci ⊆ N [P]} be the indices of the supernodes in the neighborhood of

path P . Then

Cost(P) = X + |Ĩ(P)| · n3.

We first show the correctness of the reduction and then consider gap-preservation.

Claim 2.2 There exists an s − t path of cost X + kn3 iff there exists an Red-Blue Set

7

Cover solution of cost k.

Proof: (⇒) By Claim 2.1, we restrict ourselves to paths not visiting any supernodes.

Thus, by the structure of the graph, any such s − t path visits one of the nodes vi,j for

each 1 ≤ i ≤ |B|, corresponding to the selection of Sj to cover bi. Since all X ordinary

nodes will be in N(P), kn3 of the cost is due to the size-n3 supernodes, which correspond

to k red elements covered in the Red-Blue Set Cover solution.

(⇐) Conversely, given a cost-k Red-Blue Set Cover solution, we construct the path

as follows. Starting from s, for every 1 ≤ i ≤ |B|, add to P a node vi,j such that Sj is in

the Red-Blue Set Cover solution, and then finally add t. The cost due to the ordinary

nodes is X and due to the k supernodes is kn3.

We now show that the reduction is gap-preserving. By Claim 2.2 it follows that

q∗s,t = X + |R∗| · n3, where |R∗| is the optimal Red-Blue Set Cover cost (the number of

red elements R∗ covered by the optimal solution). Assume that there exists an α > O(1/n)

approximation algorithm for the Secluded Steiner Tree problem. This would result in

path a P such that

Cost(P) = X + |Ĩ(P)| · n3 ≤ α(X + |R∗| · n3) ≤ 2α · |R∗| · n3 .

Thus |Ĩ(P)| ≤ 2α|R∗|, implying that (Cost(P)−X)/n3 is a 2α approximation to Red-Blue

Set Cover. Since |V (G)| = n5, and as Red-Blue Set Cover is inapproximable within a

factor of O(2log1−ε n) for every fixed ε, we get that Secluded Path is inapproximable within

a factor of O(2log1−ε′ n), where ε′ = f(ε) for some appropriate function f . This complete

the proof of Thm. 2.1

Corollary 2.2 The Secluded Path problem (and hence also the Secluded Steiner Tree

problem) is strongly inapproximable in directed acyclic graphs.

Proof: The proof is by gap-preserving reduction from Red-Blue Set Cover, very similar

to the general case. The key modifications from the general case are that the hypernode

of n5 nodes is not included and we add directions to the edges; directing the edges from

s toward the nodes of S1, namely, V1, from the nodes of Vi to the nodes of Vi+1 for

every i ∈ {1, . . . , |B|}, and from the nodes of V|B| to the node t. We also direct all the

supernodes edges towards the supernode elements. It can be verified that this directed

graph is acyclic. The rest of the analysis is as in the undirected case. The graph G

contains O(n3) nodes, thus the Secluded Path problem cannot be approximated within

an O(2log1−ε n) ratio. The corollary follows.

8

r1

H

r2 r3 r4 r5

s t
s1

s4

s5

s5

s1 s3

s4 s4

s2

s5

s5

s1

Figure 1: Example of the gap-preserving reduction from Red-Blue Set Cover to Secluded

Path. The Red-Blue Set Cover instance is given by S1 = {b1, b2, b3, r1, r3}, S2 =

{b4, r4}, S3 = {b3, r1, r5}, S4 = {b1, b3, b4, r2, r4}, S5 = {b1, b2, b4, b5, r3, r5}. The optimal

solution for Red-Blue Set Cover is {S1, S3, S5}, which covers 3 red elements. The cor-

responding s − t path is of cost 14 + 3 · 53 = 389. Note that an alternative solution of

{S1, S4} is of higher cost, covering 4 red elements, and the corresponding s− t path is of cost

14 + 4 · 53 = 514.

2.1 Approximation

Theorem 2.3 The Secluded Path problem in unweighted undirected graphs can be ap-

proximated within a ratio of
√

∆ + 3.

Proof: Given an instance of the Secluded Path problem, let P ∗ be an s − t path that

minimizes Cost(P ∗). Note that we may assume without loss of generality that for every

node u in P ∗, the only neighbors of u in G from among the nodes of V (P ∗) are the nodes

adjacent to u in P ∗. To see this, note that otherwise, if u had an edges to some neighbor

u′ ∈ V (P ∗) such that e is not on P ∗, we could have shortened the path P ∗ (by replacing

the subpath from u to u′ with the edge e) and obtained a shorter path with at most the

same cost as P ∗.

Recall that DegCost(P) denotes the sum of the node degrees of the path P , and that

Cost(P) ≤ DegCost(P) for any P . Recall also that the problem of finding an s− t path P

with minimum DegCost(P) is polynomial. We claim that the algorithm that returns the

path Q∗ minimizing DegCost(Q∗) yields a (
√

∆+3) approximation ratio for the Secluded

Path problem.

9

In order to prove this, we show there exists a path Q such that DegCost(Q) ≤ (
√

∆ +

3) · Cost(P ∗). This implies that DegCost(Q∗) ≤ DegCost(Q) ≤ (
√

∆ + 3) · Cost(P ∗), as

required.

The path Q is constructed by the following iterative process. Initially, all nodes are

unmarked and we set Q = P ∗. While there exists a node with more than
√

∆ + 3

unmarked neighbors on the path Q, pick such a node x. Let y be the first (closest to

s) neighbor of x in Q and let z be the last (closest to t) neighbor of x in Q. Replace

the subpath Q[y, z] in Q with the path [y, x, z] and mark the node x. We now show that

DegCost(Q) ≤ (
√

∆+3) ·Cost(P ∗). Let X = {x1, . . . x`} be the set of marked nodes in Q,

where xi is the node marked in iteration i. Note that ` = |X| is the number of iterations

in the entire process.

For the sake of analysis, partitionN [P ∗] into two sets: S1, those that have no unmarked

neighbor in Q, and S2, those that do. We claim that |S1| ≥ ` ·
√

∆.

For each xi ∈ X, let P (xi) be the path that was replaced by the process of constructing

Q in iteration i, and let Q(xi) be the path Q in the beginning of that iteration. Since xi

has more than
√

∆ + 3 unmarked neighbors in Q(xi), we get that |P (xi)∩P ∗| ≥
√

∆ + 4.

Let P−(xi) be the path obtained by removing the first two nodes and last two nodes

from P (xi). Note that |P−(xi) ∩ P ∗| ≥
√

∆. In addition, the sets P−(xi) ∩ P ∗ for

i = {1, . . . , `} are pairwise disjoint, and moreover, none of the nodes in Q has a neighbor in

P−(xi)∩P ∗. We thus get that P−(xi)∩P ∗ ⊆ S1. Note that Cost(P ∗) = |S1|+|S2| and that

` ≤ |S1|/
√

∆. We get that DegCost(Q) ≤ |S2|·(
√

∆+3)+`·∆ ≤ |S2|·(
√

∆+3)+|S1|·
√

∆ ≤
(|S2|+ |S1|) · (

√
∆ + 3) = Cost(P ∗) · (

√
∆ + 3).

In addition, for the Secluded Steiner Tree problem with k terminals, we establish

the following.

Theorem 2.4 The Secluded Steiner Tree problem in unweighted undirected graphs can

be approximated within a ratio of min{∆, n/k,
√

2n,O(log k · (k +
√

∆))}.

Recall that DegCost(T) is the sum of degrees in the tree T and let DegCost∗(S) =

min{DegCost(T) | T ⊆ G spans S}. Clearly, Cost(T) ≤ DegCost(T).

The Min Degree Steiner Tree problem is defined as follows. Given a graph G = (V,E)

and a set of terminals S, the objective is to find a Steiner tree T of minimal DegCost(T),

i.e., such that DegCost(T) = DegCost∗(S).

Claim 2.3 The Min Degree Steiner Tree problem is NP -hard for arbitrary k = |S|

10

and can be approximated within a ratio of Θ(log k). If k is constant, then Min Degree Steiner Tree

is polynomial.

Proof: We first present an O(log k) approximation algorithm. In the Node Weighted

Steiner Tree problem, nonnegative costs are assigned to nodes as well as to edges. The

cost of subgraph G′ ⊆ G that contains the terminals S is the sum of the costs of its nodes

and edges. While constant factor approximations exists for the standard Steiner Tree

problem (of edge-weighted graphs), the Node Weighted Steiner Tree problem can-

not be approximated to within less than a logarithmic factor O(log k) assuming that

NP * DTIME(nO(log logn)), by a reduction from Set Cover [8, 14]. Using the O(log k)-

approximation algorithm of [8], the Min Degree Steiner Tree problem can be solved as

follows. Set the weight of each vertex to be its degree, that is W (v) = |N(v)|, for every

v ∈ V (G), and set zero weights to the edges. The optimal Node Weighted Steiner Tree

tree with these weights corresponds to the optimal Min Degree Steiner Tree tree. Since

Node Weighted Steiner Tree is polynomial for fixed k, so is Min Degree Steiner Tree

[14].

We now show that this approximation is tight. For brevity, let Π denote the special

case of the Node Weighted Steiner Tree problem in which edges have zero weights and

Π′ denote the Min Degree Steiner Tree task. The approximation-preserving reduction

from Set Cover presented in [14] assigns zero weights to the edges, and hence Π is inap-

proximable within logarithmic factor. By reducing from Π to Π′ we will show that Π′ is

inapproximable within logarithmic factor as well. Given a Π instance graph G(V,E,W)

and terminal set S, where W (vi) ≥ 0, we transform it into an instance G′,S of Π′. We

assume that the weights are polynomial. To obtain G′, the weights W are scaled (multi-

plied by a common large enough factor X) to weights W ′ such that W ′(vi) ≥ |NG(vi)| for

every node vi ∈ V . Next, define the residual of vertex vi as Res(vi) = W ′(vi)− |NG(vi)|.
The scaling step guarantees that Res(vi) ≥ 0. Next, add to each vertex vi a disjoint

set Υ(vi) = {vji , j ∈ [1, Res(vi)]} consisting of 1-weight Res(vi) neighbors. Formally,

G′ = (V ′, E ′,W ′), where V ′ = V ∪vi∈V Υ(vi) and E ′ = E ∪ {(vi, vji), v
j
i ∈ Υ(vi), vi ∈ V }.

Finally, W ′(vi) = |NG′(vi)| for every vi ∈ V and W ′(u) = 1 for every u ∈ V ′ \ V . It is

easy to see that optimal solution of Π′ in G′ corresponds to an optimal solution for Π in

G. Since the weights W are polynomial (hence so is X) it follows that a Ω(log k) approx-

imation for Π′ in G′ would imply an Ω(log k) approximation for Π in G, in contradiction

to the logarithmic inapproximability of Π′ due to [14].

We now show the following.

11

Lemma 2.5 DegCost∗(S) = Θ(
√

∆ + k) · q∗(S).

Proof: Let T ∗ be an optimal secluded Steiner tree, meaning Cost(T ∗) = q∗(S). Starting

with T ∗ we will perform a set of operations on it, ending with a spanning S tree T̂ for

which DegCost(T̂) ≤ Θ(
√

∆ + k)Cost(T ∗). Since DegCost(T̂) ≥ DegCost∗(S) this would

establish that DegCost∗(S) < O(
√

∆ + k) · q∗(S). We begin by describing the procedure

for obtaining T̂ from T ∗ and then analyze its cost, i.e., DegCost(T̂). Note that as we do

not know T ∗; this procedure is only theoretical to aid the analysis and is not meant for

implementation.

Let ∆∗ =
√

∆ + 4k. Throughout, we assume that ∆ > ∆∗. Else, any O(1)-

approximation algorithm for the Steiner Tree problem is a O(∆)-approximation algo-

rithm to the Secluded Steiner Tree problem. Initially, let all nodes in T ∗ be unmarked

and set T̂ = T ∗. A node u is high-degree with respect to T̂ if it has at least ∆∗ unmarked

neighbors in T̂ . While there is a high-degree node x with respect to T̂ , do the following.

For each subpath α = [a, b] ∈ Σ(T ∗) such that |N(x) ∩ V (α)| ≥ 2, i.e., x has at least two

neighbors in α, replace the following subpaths. Let y1 (respectively, y2) be the neighbor of

x closest to a (respectively, b) on T ∗. Replace the subpath [y1, y2] ⊆ α with the subpath

[y1, x, y2] and mark the node x.

We now show that DegCost(T̂) ≤ O(
√

∆ + k)q∗(S). Let M = {u1, . . . , uy} be the set

of marked nodes in T̂ . This implies that the procedure consists of |M | = y iterations. Let

T0 = T ∗ and Ti be the spanning S subgraph at the end of iteration i for i = 1, ..., |M |
(thus Ty = T̂). The node ui ∈ M is the high-degree node with respect to Ti−1 that was

observed at iteration i. Let M = V (T̂) \M be the unmarked nodes in the final subgraph

T̂ . Note that T̂ might not be a tree (due to cycle introduced by the marked nodes), but

clearly, a subgraph of it is a tree spanning all terminals. By definition, the DegCost of T̂

is given by

DegCost(T̂) = DegCost(M) + DegCost(M) , (3)

where DegCost(U), for U ⊆ V , is given by DegCost(U) =
∑

u∈U |NG(u)|. Let Mi =

{uj | j ≤ i} be the set of marked nodes at the end of iteration i. Given a path P =

[x1, x2, . . . , xq−1, xq], let P− = [x2, . . . , xq−1] denote its internal subpath. For every marked

node ui and a subpath α ∈ Σ(T ∗) for which ui has at least 3 unmarked neighbors in α

at iteration i, let Pi(α) be the subpath in Ti−1 that was shortcut in Ti by introducing ui;

otherwise let Pi(α) = ∅. Let N−(ui) = NTi−1
(ui) \Mi−1 be the unmarked neighbors of

ui at iteration i and define Ψ(ui) =
⋃
α∈Σ(T ∗) N

−(ui) ∩ V (P−i (α)), the set of “internal”

unmarked neighbors of ui in Ti−1 (the nodes that are removed from Ti−1 due to path

12

replacements).

We now make two observations. (A) |Ψ(ui)| ≥
√

∆ for every node ui ∈ M , and (B)

Ψ(u1), ...,Ψ(uy) are pairwise disjoint. We start with (A). Note that for every α ∈ Σ(T ∗)

on which ui has unmarked neighbors, we ignore at most 2 nodes in Ψ(ui) (corresponding

to the endpoints of the replaced path, Pi(α)). Since there are at most 2k subpaths in

Σ(T ∗), there are at most 4k unmarked neighbors of u in Ti−1 that are ignored in Ψ(ui).

As ui has ∆∗ unmarked neighbors in Ti−1, we get that |Ψ(ui)| ≥ ∆∗ − 4k ≥
√

∆, which

establishes (A). Note that (B) holds since each set Ψ(ui) ⊆ V (Ti−1) is part of the tree

in iteration i but is not part of the tree in iteration i + 1, i.e. Ψ(ui) /∈ V (Ti) (due to

the subpath replacement step). We now refer to Eq. (3) and bound DegCost(M) and

DegCost(M). First, observe that DegCost(M) ≤
√

∆ · q∗(S). This holds since every node

ui ∈M corresponds to a disjoint set Ψ(ui) ⊆ V (T ∗) of at least
√

∆ nodes of the optimal

tree T ∗. Thus, |M | ≤ V (T ∗)/
√

∆ and |M | ≤ q∗(S)/
√

∆. Since the degree of each marked

node is bounded by ∆, it follows that

DegCost(M) ≤
√

∆ · q∗(S) . (4)

We now bound the degree of the unmarked nodes M̂ of T̂ . Let N∗ = NG[M̂]. Since

M̂ ⊆ V (T ∗), it follows that N∗ ⊆ N [T ∗] and hence |N∗| ≤ q∗(S). By the stopping

criteria, it follows that any node in N∗ has at most ∆∗ neighbors in M̂ . Hence

DegCost(M̂) ≤ ∆∗ · q∗(S). (5)

Combining Eqs. (3), (4), and (5), it follows that DegCost∗(S) = O(
√

∆ + k) ·
q∗(S). Finally, we show that there exists a graph G and a set of terminals S for which

DegCost∗(S) = Ω(
√

∆ + k) · q∗(S). Set 3 < ∆ < k, graph G consists of 2k+ ∆− 5 nodes.

Let S = {v0, ..., vk−1}. The skeleton for graph G is a path P = [v0, u1, . . . , uk−2, vk−1].

Then, for every i ∈ [1, k − 2], connect ui to the terminal vi. In addition, connect each of

the ui nodes to the set of nodes Z = {z1, . . . , z∆−3}. The graph G is presented in Fig.

2. Clearly, the optimal tree T ∗ under both measures, i.e., Cost(T ∗) and DegCost(T ∗), is

given by the subgraph induced by G(V \Z). Since every Z node is counted k−2 times in

DegCost(T ∗) instead of one time in Cost(T ∗), it follows that DegCost(T ∗) = ∆ ·(k−2)+k

and Cost(T ∗) = 2k+∆−5. Since k ≥ ∆, we get that DegCost(T ∗) = Ω(
√

∆+k)Cost(T ∗).

The lemma follows.

Claim 2.4 The Secluded Steiner Tree problem on unweighted undirected graphs can

be approximated within
√

2n.

13

Proof: Let g be a guess for q∗(S), the solution of the optimal secluded Steiner tree. A

Steiner tree Tg is constructed for each for each guess g ∈ {1, . . . , n} as follows. Remove

from G all vertices with degree ≥ g and let Tg be a 2-approximation for the optimal

Steiner tree (with minimum number of edges). Let T ′ = Tg∗ for g∗ = q∗(S), i.e., the

2-approximation Steiner tree (where the objective is to minimize the number of edges)

computed when considering the correct guess. We show that Cost(T ′) ≤
√

2n ·q∗(S ′). Let

L be the cost of the optimal Steiner tree (i.e., number of edges in the tree). Then clearly

q∗(S) ≥ L. In addition, Cost(T ′) ≤ 2L · q∗(S). This follows, since our approximated

Steiner tree T ′ contains at most twice the edges of the optimal one, and the degree of each

vertex is bounded by q∗(S). Finally, since the cost of any secluded Steiner tree is bounded

by the number of nodes n, we get that Cost(T ′)/q∗(S) = min{n/q∗(S), 2 · q∗(S)} ≤
√

2n.

We are now ready to complete the proof for Thm. 2.3.

Proof: First note that anyO(1)-approximation algorithm to the Steiner Tree problem is

an O(∆)-approximation algorithm to Secluded Steiner Tree. Next, note that obtaining

an n/k approximation is trivial, since Cost(T) ≤ n for any spanning tree T and q∗(S) ≥ k.

The approximation of
√

2n is thanks to Claim 2.4 and that of Θ(log k(
√

∆ + k)) is due

to Claims 2.5 and 2.3. Specifically, let A be an Θ(log k) approximation algorithm for the

Min Degree Steiner Tree problem, and let T be the resulting spanning S tree output

by algorithm A given graph G and S as input. Due to Claim 2.3, such an A exists,

and hence DegCost(T) < Θ(log k)DegCost∗(S). Combining this with 2.5, we get that

DegCost(T) ≤ Θ(log k(
√

∆ + k)) · q∗(S), as required. The theorem follows.

3 Bounded-Degree Graphs

In this section we show that the Secluded Path problem (and thus also the Secluded

Steiner Tree problem) is NP -hard on both directed graphs and weighted graphs, even

if the maximum node degree is 4. We have the following.

Lemma 3.1 The Secluded Path problem is NP-complete even for graphs of maximum

degree 4 if they are either (a) node-weighted, or (b) directed.

We start with (a). We present a reduction from Vertex Cover of the weighted Secluded

Steiner Tree problem. Throughout we consider the special case of the weighted Secluded

Steiner Tree problem, where S = {s, t}, namely, the Secluded Path problem. In [10]

14

…

O(∆)

Figure 2: Illustration of the gap between q∗(S) and DegCost∗(S). The light purple nodes

correspond to the set of terminals S.

it was shown that the Vertex Cover problem is NP-complete even for planar graphs

with maximum degree 3. Given a Vertex Cover instance in the form of a bounded-

degree graph G(V,E), the instance (G′(V ′, E ′,W), s, t) to the weighted Secluded Path

is constructed as follows. We add a “heavy” weight neighbor v̂ to every node v ∈ V (G).

In addition, every edge e ∈ E is replaced by a gadget g(e) consisting of four nodes,

V (g(e)) = {U(e), D(e), L(e), R(e)} forming a diamond graph. Let S =
⋃
e∈E V (g(e))

and V̂ =
⋃
v∈V {v̂}. The set of nodes of G′ is given by V ′ = V ∪ V̂ ∪ S ∪ {s, t}. The

weight function W : V → R>0 is defined as follows: W (v) = 1 if v ∈ V ′ \ V̂ , and

W (v) = |V (G)|+ 4|E| otherwise.

We now describe the gadget construction. Each edge e = (u, v) is replaced by a

diamond graph g(e) consisting of the edges

E(g(e)) = {(u, L(e)), (R(e), v), (L(e), U(e)), (L(e), D(e)), (U(e), R(e)), (D(e), R(e))}

used to connect u and v in G′. (See Fig 3(a).) In addition, the new node s (respectively,

t) is connected to the node U(e′) (respectively, D(e′′)) for some arbitrary edges e′, e′′,

for e′ 6= e′′. Finally, fix some ordering e1, . . . , em on the edges of E that starts with

e1 = e′ and ends with em = e′′. Now, for every i ∈ {1, . . . ,m − 1} connect D(ei) with

U(ei+1), creating a “tour” from s to t via the gadgets. This completes the description

of the instance (G′(V ′, E ′,W), s, t). For a path P and set of nodes W , denote the set of

neighbors of P ’s nodes in W by NW [P] = N [P] ∩W . We now show that NV (G)[P] is an

optimal vertex cover for G iff P is an optimal s− t secluded path in the weighted graph

G′. We begin by making an immediate observation.

15

Observation 3.2 For every optimal s− t secluded path P , V (P) ∩ V (G) = ∅.

Proof: Assume the contrary, and let P be an optimal secluded path with at least one

node v ∈ V (G). Since v has a heavy neighbor v̂, it holds that Cost(P) ≥ 4E + V + 1.

Consider next an alternative path P ′ that goes strictly through the nodes in S, i.e., follows

the tour through the gadgets g(e). Since N [P ′] ⊆
⋃
w∈S N [w] ⊆ S ∪ V (G), we get that

Cost(P) > 4E + V ≥ Cost(P ′), in contradiction to the optimality of P .

Consequently, in the rest of the proof, we consider only secluded paths P that do not

visit nodes of V (G). Note that every such s − t path is of length 3|E| and the set of S

nodes is fully contained in neighbors of this path, i.e., NS[P] = S. It therefore holds that,

Cost(P) = |S|+ |NV (G)[P]| . (6)

The main factor determining the quality of an efficient path, among all paths that do

not visit V (G), is the number of path neighbors in V (G), i.e., |NV (G)[P]|. That is, by

choosing between the u-side (respectively, v-side) in every gadget g(e), for e = (u, v), the

resulting path has u (respectively, v) in its neighborhood, i.e., NV (G)[P]. Overall, there

are |E| such decisions to be made. Let V C(G) be an optimal vertex cover for G. We

show the following.

Claim 3.1 q∗s,t = 4|E|+ |V C(G)|.

Proof: We begin by showing that Cost(P) ≥ 4|E|+ |V C(G)| for every s− t path P that

does not go through the nodes of V (G). Let N∗ = NV (G)(P). We now show that N∗ is a

legal vertex cover of G, hence |V C(G)| ≤ |N∗| and by Eq. (6), Cost(P) ≥ 4|E|+ |V C(G)|
as required. Assume for contradiction that there exists an edge e = (u, v) ∈ E not covered

by the nodes of N∗, i.e., both u, v /∈ N∗. Consider the gadget g(e). Since P does not

go through the nodes of V (G), it passes through U(e) and D(e). In particular, when

reaching U(e), a decision is made between passing through the u side L(e) or through

the v side R(e). Without loss of generality assume that P passes through L(e), i.e.,

P = [s, . . . , U(e), L(e), D(e), . . . , t]. Then, since u is a neighbor of L(e), it is in N∗ and

we end with contradiction.

Conversely, we now show that for every legal vertex cover C of G, there exists an s− t
secluded path P whose cost satisfies Cost(P) ≤ |C|+ 4E. The path P is constructed as

follows. Start from s and traverse the gadgets g(e) in order, from g(e1) to g(em). Within

each gadget g(e), for e = (u, v) such that (u, L(e)) ∈ E ′ and (v,R(e)) ∈ E ′, move from

U(e) to D(e) through L(e) if u ∈ C and through R(e) otherwise. One of these choices

16

must hold, since C is a legal vertex cover, so it must contain at least one of the nodes u

and v. Hence, the path P “pays” for a node v in V (G) only if v ∈ C. Formally, we get

that N∗ ⊆ C. Hence, combining with Eq. (6), Cost(P) ≤ 4E + |C|. The claim follows.

Part (a) of the lemma follows. Finally, we now turn consider Lemma 3.1(b). It is

sufficient to show a directed version for the reduction such that Obs. 3.2 still holds. Note

that the main essence is to prevent any optimal path from visiting the nodes of V (G)

(and hence to visit every g(e)). In the weighted case, this goal is achieved by adding a

“heavy” unique neighbor to every node in V (G) (the black nodes in Fig. 3(a)). In the

directed case, this property is achieved by directing the edges E ′ in the following manner.

Recall the ordering e1, . . . , em on the edges E, which imposes a direction for each edge

in our construction as follows. We include the arcs (s, U(e1)), (D(em), t), (U(ei), L(ei)),

(U(ei), R(ei)), (L(ei), D(ei)), (R(ei), D(ei)), and in addition, (D(ei), U(ei+1)) for every

i ∈ {1, . . . ,m− 1}. Finally, the edges between L(ei) and R(ei) to the nodes of V (G) are

directed towards the nodes of V (G) (see Fig. 3(b)). This forces any s − t path in G′ to

go through strictly the nodes in S. Obs. 3.2 now holds for the directed case, and the rest

follows as in the weighted case. The lemma follows.

s t

u V

U(e)

D(e)

L(e) R(e)

s t

u V

U(e)

D(e)

L(e) R(e)

Figure 3: Illustration of the reduction from Vertex Cover. (a) The weighted case. Top:

the graph G with the diamond graph gadgets g(e). The black nodes correspond to the heavy

neighbor attached to each node v ∈ V (G). Bottom: zoom into a single gadget. (b) The

directed case. Directionality enforces visiting the gadgets in order, precluding the tour in V (G)

nodes.

17

3.1 Polynomial-time algorithm for the unweighted undirected

case.

In contrast, for unweighted undirected case of bounded-degree graphs, we show that the

Secluded Path problem is polynomial. For two subpaths P1, P2, define their asymmetric

difference as

Diff(P1, P2) = |N [P1] \N [P2]| .

Observation 3.3 (a) Diff(P1, P2) ≤ Diff(P1, P
′) for every P ′ ⊆ P2.

(b) Cost(P1 ◦ P2) = Cost(P1) + Diff(P2, P1).

Proof: Part (a) simply follows as N [P ′] ⊆ N [P2]. Part (b) follows by definition.

We have the following.

Theorem 3.4 The Secluded Path problem is polynomial on unweighted undirected degree-

bounded graphs.

Note that in the previous section we showed that if the graph is either weighted or directed

then the Secluded Path problem (i.e., the special case of Secluded Steiner Tree with

two terminals) is NP-hard. In addition, it is noteworthy that the related problem of

Minimum Labeled Path problem [23, 11] is NP-hard even for unweighted planar graph

with max degree 4 (this follows from a straightforward reduction from Vertex Cover).

We begin with notation and couple of key observations in this context. For a given

path P , let dP (s, u) be the distance in edges between s and u in the path P . Recall, that

∆ is the maximum degree in graph G.

Observation 3.5 Let u, v be two nodes in some optimal s−t path P ∗ that share a common

neighbor, i.e., N(u) ∩N(v) 6= ∅. Then dP ∗(u, v) ≤ ∆ + 1.

Proof: Assume for contradiction that there exists an optimal s − t path P ∗ such that

N(u) ∩ N(v) 6= ∅ where u = P ∗[i] and v = P ∗[j], 1 < i < j for (i − j) ≥ ∆ + 2. Recall

that due to the optimality of P ∗, for every node u in P ∗, the only neighbors of u in G

from among the nodes of V (P ∗) are the nodes adjacent to u in P ∗ (otherwise the path

can be shortcut). Let w ∈ N(u) ∩N(v) be the mutual neighbor of u and v and consider

the alternative s− t path P̂ obtained from P ∗ by replacing the subpath Q = P [i, . . . , j] by

the subpath P ′ = [u,w, v]. Let Q− = P [i+ 2, . . . , j − 2] be an length-`′ internal subpath

18

of Q where `′ ≥ ∆− 1. Then since the degree of w is at most ∆, it follows that

Cost(P̂) ≤ N [V (P) \ V (Q−)] + ∆− 2 , (7)

where ∆ − 2 is an upper bound on the number w′s neighbors other than u and v. In

addition, note that by the optimality of P ∗ it contains no shortcut and hence V (Q−) ∩
(N [V (P) \ V (Q−)]) = ∅ (i.e., for node P [i] the only neighbors on the path P are P [i− 1]

and P [i+ 1]). Thus,

Cost(P ∗) ≥ N [V (P) \ V (Q−)] + |V (Q−)|
≥ N [V (P) \ V (Q−)] + ∆− 1 > Cost(P̂) ,

where the last inequality follows from Eq. (7), contradicting the optimality of P ∗. The

observation follows.

In other words, the observation says that two vertices on the optimal path at distance

∆ + 2 (which is constant for bounded-degree graphs) or more have no common neighbors.

This key observation is at the heart of our dynamic program, as it enables the necessary

subproblem independence property. The difficulty is that this observation applies only to

optimal paths, and so a delicate analysis is needed to justify why the dynamic program

works. Note that the main difficulty of computing the optimal secluded path P ∗ is that

the cost function Cost(P ∗) is not a linear function of path’s components as in the related

DegCost measure. Instead, the residual cost of the ith vertex in the path depends on the

neighborhood of the length-(i−1) prefix of P ∗. This dependency implies that the secluded

path computation cannot be simply decomposed into independent subtasks. However, in

contrast to suboptimal s − t paths, the dependency (due to mutual neighbors) between

the components of an optimal path is limited by the maximum degree ∆ of the graph.

The limited dependency exhibited by any s− t′ optimal path facilitates the correctness of

the dynamic programming approach. Essentially, in the dynamic program, entries that

correspond to subsolution σ of any optimal s− t′ path enjoy the limited dependency, and

hence the values computed for these entries correspond to the exact cost of an optimal

path that starts with s and ends with σ. In contrast, entries of subpaths σ that do not

participate in any optimal s− t′ path, correspond to an upper bound on the cost of some

path P that starts with s and ends with σ. This is due to the fact that the value of the

entry is computed under the limited dependency assumption, and thus does not take into

account the possible double counting of mutual neighbors between distant vertices in the

path. Therefore, the possibly “falsified” entries cannot compete with the exact values,

which are guaranteed to be computed for the entries that hold the subpaths of the optimal

path. This informal intuition is formalized below.

19

For a path P of length ` ≥ ∆ + 1, let Suff(P) = 〈v`−∆, . . . , v`〉 be the (∆ + 1)-suffix of

P .

Lemma 3.6 Let P ∗ be an optimal s − t′ path of length ≥ ∆ + 1. Let P ∗ = P1 ◦ P2

be some partition of P ∗ into two subpaths such that |P1| ≥ ∆ + 1. Then Diff(P2, P1) =

Diff(P2, Suff(P1)).

Proof: For ease of notation, let ` = |P1|, P ′ = P1[1, . . . , ` − (∆ + 1)], and σ = Suff(P1).

By definition, Diff(P2, P1) = | (N [P2] \N [σ]) \N [P ′]|. In the same manner, Diff(P2, σ) =

| (N [P2] \N [σ]) |. Assume for contradiction that the lemma does, namely, Diff(P2, σ) 6=
Diff(P2, P

′ ◦ σ). Then by Obs. 3.3(a) we have that Diff(P2, σ) > Diff(P2, P
′ ◦ σ). This

implies that N [P2] ∩N [P ′] 6= ∅. Let u ∈ N [P2] ∩N [P ′]. There are two cases to consider:

(a) u ∈ P ′, and (b) u has a neighbor v1 in P ′. We handle case (a) by further dividing it

into two subcases: (a1) u ∈ P2, i.e., u occurs at least twice in P ∗, once in P ′ and once in

P2, and (a2) u has a neighbor v2 in P2. Note that in both subcases, there exists a shortcut

of P ∗, obtained in subcase (a1) by cutting the subpath between the two duplicates of u

and in subcase (a2) by shortcutting from u to v2. This shortcut results in a strictly lower

cost path, in contradiction to the optimality of P ∗. We proceed with case (b). Let v2 ∈ P2

be such that u ∈ N [v2]. If v2 = u, then clearly the path can be shortcut by going from

v1 ∈ P ′ directly to u ∈ P2, resulting in a lower cost path, in contradiction to the optimality

of P ∗. If v2 6= u, then dP ∗(v1, v2) ≥ ∆ + 2 (since |σ| ≥ ∆ + 1) and N [v1] ∩ N(v2) 6= ∅,
which in contradiction to Obs. 3.5. The Lemma follows.

Corollary 3.7 Let P ∗ be an optimal s − t′ path of length ≥ ∆ + 1. Let P ∗ = P1 ◦ P2

be some partition of P ∗ into two subpaths such that |P1| ≥ ∆ + 1. Then Cost(P ∗) =

Cost(P1) + Diff(P2, Suff(P1)).

For clarity of representation, we describe a polynomial algorithm for the Secluded Path

problem, i.e., where S = {s, t} and in addition ∆ ≤ 3, in which case Suff(P) =

〈v`−3, . . . , v`〉. The general case of ∆(G) = O(1) is immediate by the description for

the special case of ∆ = 3. The case of Secluded Steiner Tree with a fixed number of

terminals |S| = O(1) is described in Subsection 3.2.

The algorithm we present is based on dynamic programming. For each 4 ≤ i ≤ n,

and every length-4 subpath given by a quartet of nodes σ ⊆ V (G), it computes a length-i

path π(σ, i) that starts with s and ends with σ (if such exists) and an upper bound f(σ, i)

on the cost of this path, f(σ, i) ≥ Cost(π(σ, i)). These values are computed inductively,

using the values previously computed for other σ’s and i − 1. In contrast to the general

20

framework of dynamic programming, the interpretation of the computed values f(σ, i) and

π(σ, i), namely, the relation between the dynamic programming values f(σ, i) and π(σ, i)

and some “optimal” counterparts is more involved. In general, for arbitrary σ and i, the

path π(σ, i) is not guaranteed to be optimal in any sense and neither is its corresponding

value f(σ, i) (as f(σ, i) ≥ Cost(π(σ, i))). However, quite interestingly, there is a subset

of quartets for which a useful characterization of f(σ, i) and π(σ, i) can be established.

Specifically, for every 4 ≤ i ≤ n, there is a subclass of quartets Ψ∗i , for which the computed

values are in fact “optimal”, in the sense that for every σ ∈ Ψ∗i , the length-i path π(σ, i)

is of minimal cost among all other length-i paths that start with s and end with σ. We

call such a path a semi-optimal path, since it is optimal only restricted to the length and

specific suffix requirements. It turns out that for the special class of quartets Ψ∗i , every

semi-optimal path of σ ∈ Ψ∗i is also a prefix of some optimal s − t′ path. This property

allows one to apply Cor. 3.7, which constitutes the key ingredient in our technique. In

particular, it allows us to establish that f(σ, i) = Cost(π(σ, i)). This is sufficient for

our purposes since the set
⋃n
i=1 Ψ∗i contains any quartet that occurs in some optimal

secluded s − t path P ∗. Specifically, for every s − t optimal path P ∗, it holds that the

quartet Suff(P ∗) = P ∗[i − 3, i] satisfies Suff(P ∗) ∈ Ψ∗i . The correctness of the dynamic

programming is established by the fact that the values computed for quartets that occur

in optimal paths in fact correspond to optimal values as required (despite the fact the

these values are “useless” for other quartets).

3.1.1 The algorithm

If the shortest path between s and t is less than 3, then the optimal Secluded Path can

be found by an exhaustive search, so we assume throughout that dG(s, t) ≥ 3. Let Ψ be

the set of all length-4 subpaths σ in G. That is, for every σ ∈ Ψ, we have V (σ) ⊆ V (G)

and (σ[i], σ[i + 1]) ∈ E(G) for every i ∈ [1, 3]. For σ ∈ Ψ, define the collection of shifted

successor of G as Next(σ) = {〈σ[2], . . . , σ[4], u〉 | u ∈ (N [σ[4]] \ σ)}. For every pair (σ, i),

where σ ∈ Ψ and i ∈ {1, . . . , n}, the algorithm computes a value f(σ, i) and length-i

path π(σ, i) ending with σ (i.e., π(σ, i)[i − 3, . . . , i] = σ). These values are computed

inductively. For i = 4, let π(σ, 4) = σ and

f(σ, 4) =

Cost(σ), if σ[1] = s

∞, otherwise

21

Once the algorithm has computed f(σ, j) for every 4 ≤ j ≤ i − 1 and every σ ∈ Ψ, in

step i ∈ {5, n} it computes

f(σ, i) = min{f(σ′, i− 1) + Diff(σ, σ′) | σ ∈ Next(σ′)}. (8)

Note that

Diff(σ, σ′) = Diff(σ[4], σ′) = |N [σ[4]] \N [σ′]|. (9)

Let σ′ ∈ Ψ such that σ ∈ Next(σ′) and σ′ achieves the minimum value in Eq. (8). Then

define Pred(σ) = σ′ and let

π(σ, i) = π(Pred(σ), i− 1) ◦ σ[4]. (10)

Let q∗s,t = min{f(σ, i) | i ∈ {4, . . . , n}, Last(π(σ, i)) = t}, and set P ∗ = π(σ∗, i∗) for σ∗, i∗

such that f(σ∗, i∗) = q∗s,t. Note that there are at most O(n4 · n) entries f(σ, i), each

computed in constant time, and so the overall running time is O(n5).

Analysis. Throughout this section we make use of two notions of optimality for secluded

paths. The two notions are parameterized by σ ∈ Ψ and by an index i ∈ {1, . . . , n}. Let

P(σ, i) be the set of length-i paths P starting at P [1] = s and ending with Suff(P) = σ for

P ∈ P(σ, i). Denote the minimum cost of a path in P(σ, i) by q∗(σ, i) = min{Cost(P) |
P ∈ P(σ, i)} and denote the set of paths attaining this minimum cost by Qsemi(σ, i) =

{P ∈ P(σ, i) | Cost(P) = q∗(σ, i)}. We refer to paths inQsemi(σ, i) as semi-optimal paths,

since they are optimal only among length-i paths ending with σ. Note that in general, a

semi-optimal path P ∈ Qsemi(σ, i) is not necessarily an optimal secluded path from s to

P [i], nor is it a prefix of an optimal secluded path from s to any t′, and thus Cor. 3.7

cannot be applied. However, we next argue that there exists a subset of quartets σ∗ ∈ Ψ

for which every path P ∈ Qsemi(σ, i) is a prefix of an optimal s − t′ secluded path, and

since Obs. 3.5 holds for any subpath of some optimal s− t′ path, we can apply it for this

subset of sequences. Let Q∗t′ = {P ∈ Ps,t′ | Cost(P) = q∗s,t′} be the set of all optimal s− t′

paths for t′ ∈ V (G)\{s}. A path P that is a prefix of some optimal s−t′ path is hereafter

referred to as a pref-optimal path. Let Q∗(σ, i) = {P ∈
⋃
t′∈V (G)\{s}Q∗t′ | P [i−3, i] = σ}.

That is, Q∗(σ, i) is the set of all optimal secluded paths in which the subpath in positions

(i− 3) to i is equal to σ. Note that in contrast to the set Qsemi(σ, i), which is nonempty

for every σ ∈ Ψ, and might contain suboptimal secluded paths, the set Q∗(σ, i) might be

empty for many choices of σ, but every path P ∈ Q∗(σ, i) is indeed optimal.

Define the subset of subpaths for which Q∗(σ, i) is nonempty, for i ∈ {4, . . . , n}, as

Ψ∗i = {σ ∈ Ψ | Q∗(σ, i) 6= ∅}.

22

We next establish some useful properties for σ ∈ Ψ∗i . Let QT (σ, i) correspond to the set of

paths in Q∗(σ, i) but truncated at position i, that is, QT (σ, i) = {P [1, i] | P ∈ Q∗(σ, i)}.
Clearly, every path P in QT (σ, i) is of length i. Moreover, since Q∗(σ, i)} contains op-

timal paths, QT (σ, i) consists of pref-optimal paths. It is important to understand the

distinction between the set QT (σ, i) and the set Qsemi(σ, i). Both sets contain length-i

paths that start with s and end with σ. However, while P1 ∈ QT (σ, i) (if it exists) corre-

sponds to a prefix of some s− t′ optimal path, a path P2 ∈ Qsemi(σ, i) is not necessarily a

prefix of some optimal path; it is only optimal among paths of length i ending with σ. In

particular, this difference implies that Cor. 3.7 can be safely applied to paths in QT (σ, i).

We first provide a general observation regarding the computed values f(σ, i) and

π(σ, i).

Observation 3.8 For every σ ∈ Ψ and i ∈ {1, . . . , n}, if P ∗ ∈ Qsemi(σ, i) then Cost(P ∗) ≤
Cost(π(σ, i)) ≤ f(σ, i).

Proof: The left inequality follows immediately, since both π(σ, i) and P ∗ are in P(σ, i)

and P ∗ is a semi-optimal path, i.e., it has the lowest cost among these paths. The right

inequality is proved by induction on i. for i = 4, the claim holds trivially. Assume it

holds for every σ and every j ≤ i − 1, and consider a fixed σ and i. Let σ′ = Pred(σ).

Then

Cost(π(σ, i)) = Cost(π(σ′, i− 1) ◦ σ[4])

= Cost(π(σ′, i− 1)) + Diff(σ[4], π(σ′, i− 1)) (11)

≤ f(σ′, i− 1) + Diff(σ[4], σ′) (12)

= f(σ′, i− 1) + Diff(σ, σ′) (13)

= f(σ, i) , (14)

where Ineq. (11) follows from Obs. 3.3(b), Ineq. (12) follows from the inductive assump-

tion, Eq. (13) follows from Eq. (9) and Eq. (11) follows from Eq. (8). The observation

follows.

It turns out that for the set of special quartets that occur on some optimal s− t path,

a stronger characterization of π(σ, i) and f(σ, i) can be established.

Lemma 3.9 For every i and σ ∈ Ψ∗i ,

(a) π(σ, i) ∈ Qsemi(σ, i), and

(b) f(σ, i) = Cost(π(σ, i)).

23

Let P ∗ be some optimal secluded path and let σ = Suff(P ∗). Since σ ∈ Ψ∗|P ∗|, by Lemma

3.9 we get that the computed path π(σ, |P ∗|) is indeed an optimal s − t path of cost

f(σ, |P ∗|). Our remaining goal is therefore to establish Lemma 3.9.

Proof Sketch. We prove that the inequalities of Obs. 3.8 are in fact equalities for every

4 ≤ i ≤ n and every σ ∈ Ψ∗i . The proof, by induction on i, is not immediate and requires

several properties to be established and to come into play together. To begin, assume that

both parts of Lemma 3.9 hold for every σ ∈ Ψ∗i for every 4 ≤ i ≤ `− 1 and consider some

σ ∈ Ψ∗` . In addition to the inductive assumption, we assume that Pred(σ) ∈ Ψ∗`−1 (which

would be established later on). Given these assumptions, for part (a) of the lemma we

show that π(σ, `) = π(Pred(σ), `−1)◦σ[4] ∈ Qsemi(σ, `). Next, to show that part (b) also

holds, i.e., that f(σ, `) = Cost(π(σ, `)), we would like to show that π(σ, `) is a pref-optimal

path and thus Cor. 3.7 can be applied. Our argumentation can be sketched as follows. We

prove that for every σ ∈ Ψ∗(`) it holds that (a) every semi-optimal path P ∈ Qsemi(σ, `)
is pref-optimal, and (b) there is a set of quartets denoted by Parent(σ, `) ⊆ Ψ∗`−1, for

which the following holds for every σ′ ∈ Parent(σ, `): (b1) P ′ = P ◦σ[4] ∈ Qsemi(σ, `) for

every P ∈ Qsemi(σ′, `−1), and hence P ′ is pref-optimal, and (b2) Pred(σ) ∈ Parent(σ, `)
and thus the inductive hypothesis can be established.

Detailed analysis. We proceed by showing that every semi-optimal length-i path P ∈
Qsemi(σ, i) for σ ∈ Ψ∗i , i ∈ {4, . . . , n} is a pref-optimal path.

Lemma 3.10 For every σ ∈ Ψ∗i , QT (σ, i) = Qsemi(σ, i).

Proof: We first show that QT (σ, i) ⊆ Qsemi(σ, i). To do that, we consider a path P1 ∈
Q∗(σ, i) for which P1[1, i] ∈ QT (σ, i), and show that Cost(P1[1, i]) ≤ q∗(σ, i). Thus

P1[1, i] ∈ Qsemi(σ, i). Let ` = |P1| and t′ = Last(P1), thus P1 is an optimal s − t′

path. Assume for contradiction that Cost(P1[1, i]) > q∗(σ, i). Let P2 ∈ Qsemi(σ, i), i.e.,

Cost(P2) = q∗(σ, i). Consider an alternative s− t′ path P3 = P2 ◦ P1[i + 1, `]. Note that

P3 is indeed a legal s− t′ path since P2[i] = P1[i]. We now compute its cost and compare

it to that of P1.

Cost(P3) = Cost(P2) + Diff(P1[i+ 1, `], P2) (15)

≤ Cost(P2) + Diff(P1[i+ 1, `], σ) (16)

< Cost(P1[1, i]) + Diff(P1[i+ 1, `], σ) (17)

= Cost(P1), (18)

24

where Ineq. (15) and (16) follow by parts (b) and (a) of Obs. 3.3 and Ineq. (17) is by the

contradiction assumption. Eq. (18) follows from the fact that P1 is an optimal s− t′ path

and thus Cor. 3.7 can be safely applied. We therefore get that Cost(P3) < Cost(P1), in

contradiction to the optimality of P1.

Conversely, we now prove that Qsemi(σ, i) ⊆ QT (σ, i). Let P1 ∈ Qsemi(σ, i) and

P2 ∈ Q∗(σ, i). Let ` = |P2| and t′ = Last(P2). Consider the path P3 = P1 ◦ P2[i + 1, `]

obtained by replacing the length-i prefix of P2 with P1. We show that P3 has the same

cost, Cost(P3) = Cost(P2), hence P3 is also an optimal s − t′ path. This would imply

that P3 ∈ Q∗(σ, i) and P1 ∈ QT (σ, i), establishing the lemma.

Cost(P3) = Cost(P1 ◦ P2[i+ 1, `]) = Cost(P1) + Diff(P2[i+ 1, `], P1)

≤ Cost(P1) + Diff(P2[i+ 1, `], σ)

≤ Cost(P2[1, i]) + Diff(P2[i+ 1, `], σ) (19)

= Cost(P2) , (20)

where Ineq. (19) follows from the fact that both P1 and P2[1, i] are in P(σ, i), i.e., both

are length-i paths starting at s and ending with σ and P1 is semi-optimal. Ineq. (20)

follows from the fact that P2 is an optimal s− t′ path, thus Cor. 3.7 can be safely applied.

The fact that P2 is optimal necessitates equality. The lemma follows.

For σ ∈ Ψ∗i and i ∈ {5, . . . , n}, define

Parent(σ, i) = {σ′ = 〈u, σ[1], . . . , σ[3]〉 | ∃P ∈ Q∗(σ, i), P [i− 4, i] = u ◦ σ}.

That is, σ′ ∈ Parent(σ, i) iff there exist some t′ ∈ V (G) \ {s} and an optimal s− t′ path

P ∗ such that P ∗[i − 4, i] = σ′(1) ◦ σ. Note that by the definition of Ψ∗i , there exists at

least one pref-optimal path P of length i that ends with σ. In addition, since i ≥ 5 there

exists at least one σ′ ∈ Parent(σ, i) corresponding to σ′ = P [i− 4, i− 1]. In other words,

Parent(σ, i) 6= ∅ for every i ≥ 5 and σ ∈ Ψ∗i . Lemma 3.10 implies that the following holds

for every σ ∈ Ψ∗i .

Observation 3.11 If σ ∈ Ψ∗i then

(a) for every σ′ ∈ Parent(σ, i) there exists a semi-optimal path P ∗ ∈ Qsemi(σ, i), which

is also a pref-optimal path, such that P ∗[i− 4, i] = σ′ ◦ σ[4].

(b) Parent(σ, i) ⊆ Ψ∗i−1.

We first provide an auxiliary claim that holds for every i ∈ {1, . . . , n}. Let σ, σ′ be such

that (a) σ ∈ Ψ∗i and (b) σ′ ∈ Parent(σ, i).

25

Claim 3.2 For every P̂ ∈ Qsemi(σ′, i− 1), P̂ ◦ σ[4] ∈ Qsemi(σ, i)

Proof: Let P ∈ Qsemi(σ, i) such that σ′ = P [i−4, i−1]. Note that since σ′ ∈ Parent(σ, i),
by Obs. 3.11(a), such a P is guaranteed to exist. Let P̂ ∈ Qsemi(σ′, i − 1) and let

P ′′ = P̂ ◦ σ[4]. We now prove that Cost(P ′′) ≤ Cost(P) and therefore P ′′ ∈ Qsemi(σ, i).

Cost(P ′′) = Cost(P̂ ◦ σ[4]) = Cost(P̂) + Diff(σ[4], P̂)

≤ Cost(P̂) + Diff(σ[4], σ′) (21)

≤ Cost(P [1, i− 1]) + Diff(σ[4], σ′) (22)

= Cost(P) , (23)

where Ineq. (21) follows from Obs. 3.3(a), Ineq. (22) follows from the fact that both

P [1, i− 1], P̂ ∈ P(σ′, i− 1) and P̂ , being semi-optimal, has the minimal cost in this set.

Eq. (23) follows from the fact that P ∈ Qsemi(σ, i) and since σ ∈ Ψ∗i , Lemma 3.10 implies

that P is a pref-optimal, i.e., a prefix of some optimal secluded path, i.e., P ∈ QT (σ, i).

Therefore, Cor. 3.7 can be applied.

We now turn to proving Lemma 3.9, showing that for every i, and every σ ∈ Ψ∗i , the

inequalities of Obs. 3.8 become equalities.

Proof of Lemma 3.9: The lemma is proven by induction on i. For i = 4, both claims

clearly hold. Assume the claims hold for i ≤ `− 1 and consider `. Let σ′ = Pred(σ). To

be able to apply the inductive hypothesis to σ′, we first show the following.

Claim 3.3 σ′ ∈ Parent(σ, `).

Proof: Note that since σ ∈ Ψ∗` , it holds that Parent(σ, `) 6= ∅, and also Parent(σ, `) ⊆
Ψ∗`−1 by Obs. 3.11(b). Let σ∗ ∈ Parent(σ, `), thus σ∗ ∈ Ψ∗`−1. By Lemma 3.10, QT (σ, `) =

Qsemi(σ, `) andQT (σ∗, `−1) = Qsemi(σ∗, `−1). Let us pick three arbitrary representatives

P ∗(σ∗, ` − 1) ∈ Qsemi(σ∗, ` − 1), P ∗(σ′, ` − 1) ∈ Qsemi(σ′, ` − 1), P ∗(σ, `) ∈ Qsemi(σ, `).
Recall that due to Lemma 3.10, P ∗(σ∗, ` − 1) and P ∗(σ, `) are pref-optimal paths and

therefore Cor. 3.7 can be safely applied for them. We first show that

Cost(P ∗(σ, `)) = Cost(P ∗(σ∗, `− 1)) + Diff(σ, σ∗). (24)

To see this, let P ′ = P ∗(σ∗, ` − 1) ◦ σ[4]. Then by Claim 3.2, P ′ ∈ Qsemi(σ, `). In

addition, by Lemma 3.10, P ′ ∈ QT (σ, `) and therefore Cor. 3.7 can be safely applied,

so Eq. (24) is established. We next show that P ′′ = P ∗(σ′, ` − 1) ◦ σ[4] ∈ Qsemi(σ, `).
Clearly, P ′′ ∈ P(σ, `), so it suffices to show that Cost(P ′′) ≤ Cost(P ∗(σ, `)) as P ∗(σ, `) is

26

semi-optimal. Indeed,

Cost(P ′′) = Cost(P ∗(σ′, `− 1)) + Diff(σ[4], P ∗(σ′, `− 1))

≤ Cost(P ∗(σ′, `− 1)) + Diff(σ[4], σ′) (25)

≤ f(σ′, `− 1) + Diff(σ, σ′) (26)

≤ f(σ∗, `− 1) + Diff(σ, σ∗) (27)

= Cost(π(σ∗, `− 1)) + Diff(σ, σ∗) (28)

= Cost(P ∗(σ∗, `− 1)) + Diff(σ, σ∗) = Cost(P ∗(σ, `)) (29)

where Ineq. (25) follows from Obs. 3.3(a) and Ineq. (26) follows from Lemma 3.8 and

Eq. (9). Ineq. (27) follows from the fact that σ ∈ Next(σ′)∩Next(σ∗) and σ′ attains the

minimum value of Eq. (8). Eq. (28) follows from part (b) of the inductive assumption

for ` − 1. In Eq. (29) the first equality follows from the fact that both π(σ∗, ` − 1) and

P ∗(σ∗, `− 1) are in Qsemi(σ∗, `− 1), and thus Cost(P ∗(σ∗, `− 1)) = Cost(π(σ∗, `− 1)) =

q∗(σ∗, `− 1), and the second equality follows from Eq. (24).

We therefore get that P ′′ ∈ Qsemi(σ, `) and since σ ∈ Ψ∗` , by Lemma 3.10 it holds that

P ′′ ∈ QT (σ, `), i.e., P ′′ = P ∗(σ′, `− 1) ◦σ[4] is also a pref-optimal path. This implies that

σ′ ∈ Parent(σ, `), as required.

By Claim 3.3 and Obs. 3.11(b), σ′ ∈ Ψ∗`−1. It follows that the inductive hypothesis

can be applied to σ′. By part (a) of the inductive assumption for ` − 1, it holds that

π(σ′, ` − 1) ∈ Qsemi(σ′, ` − 1). Finally, by Claim 3.2 we get that the path π(σ, `) chosen

by the algorithm satisfies π(σ, `) = π(σ′, `− 1) ◦ σ[4] ∈ Qsemi(σ, `), which establishes (a).

We now consider (b). Note that

f(σ, `) = f(σ′, `− 1) + Diff(σ, σ′)

= Cost(π(σ′, `− 1)) + Diff(σ, σ′) (30)

= Cost(π(σ′, `− 1) ◦ σ[4]) , (31)

where Eq. (30) follows from the inductive hypothesis for `−1 and Eq. (31) follows from the

fact that π(σ′, `−1)◦σ[4] ∈ QT (σ, `) and thus Cor. 3.7 can be applied. This completes the

proof of Lemma 3.9. We are now ready to complete the correctness proof of the algorithm.

Let P ∗ be an optimal s− t path of length `. Then P ∗[`−3, `] ∈ Ψ∗` . Therefore, by Lemma

3.9, P ∗[1, `] ∈ Qsemi(P ∗[`− 3, `], `), and so f(P ∗[`− 3, `], `) = Cost(P ∗), and by Lemma

3.8, the cost of any other σ such that t ∈ σ, and every i, satisfies f(σ, i) ≥ π(σ, i) ≥ t.

Thm. 3.4 is established.

Corollary 3.12 The Secluded Path problem can be solved in O(n∆+3) time.

27

This follows since there are O(n∆+1) distinct length-(∆ + 1) subpaths, and the length of

the path is bounded by n. Hence, overall there are O(n∆+2) entries and the value for each

entry is computed in O(∆) time. For the Secluded Steiner Tree problem, we show the

following.

Theorem 3.13 On unweighted undirected degree-bounded graphs, we have the following:

(a) for arbitrary k, the Secluded Steiner Tree problem is NP-hard; (b) for k = O(1),

the Secluded Steiner Tree problem is polynomial.

Proof: We start with (a). We prove this by reduction from Vertex Cover. By [10], we

know that Vertex Cover is NP-complete even for planar graphs with maximum degree

3. Given an instance of the Vertex Cover problem consists of a bounded-degree graph

G = (V,E), we transform it into an instance of the Secluded Steiner Tree problem that

consists of a bounded-degree graph Ĝ and a set of terminal S. Let B̂ be a complete binary

tree with n leaves L = {`1, . . . , `n}. Consider some ordering on V (G) and connect `i to

vi, for every i ∈ {1, . . . , n}. In addition, for each vertex vi ∈ V (G), add a single neighbor

v̂i in Ĝ. Next, for each edge e = (vi, vj) ∈ E(G), add a vertex v′e. Every edge e ∈ E(G)

is replaced by the two edges (v′e, vi) and (v′e, vj) in Ĝ. In sum, the graph Ĝ is defined by

V (Ĝ) = V (G) ∪ V (B̂) ∪
⋃

vi∈V (G)

{v̂i} ∪
⋃

e∈E(G)

{v′e},

and

E(Ĝ) = E(B̂) ∪
n⋃
i=1

{(`i, vi), (v̂i, vi)} ∪
⋃

e∈E(G)

{(v′e, vi), (v′e, vj)}.

Note that the maximum degree ∆(Ĝ) in Ĝ is at most ∆(G) + 1. Hence Ĝ is a bounded-

degree graph as well. The terminal set S =
⋃
e∈E(G){v′e} ∪ V (B̂) includes the v′e nodes

and the nodes of the binary tree V (B̂). We now show that G has vertex cover of size k iff

there exists a secluded Steiner tree T in Ĝ of cost |S| + |V (G)| + k. Recall that V C(G)

is some optimal vertex cover in G and q∗(S) is the cost of the optimal secluded Steiner

tree in Ĝ. We now show that

q∗(S) = |S|+ |V (G)|+ |V C(G)| .

We begin by showing that q∗(S) ≤ |S|+ |V (G)|+ |V C(G)|. Given a vertex cover C ′ for G,

we show that there exists a Steiner tree T ⊆ Ĝ of cost Cost(T) ≤ |S|+ |V (G)|+ |C ′|. The

tree T is given by V (T) = S ∪ C ′ and E(T) = E(B̂) ∪ {(`i, vi) | vi ∈ C ′} ∪ {(v′e, vi), e =

(vi, vj) ∈ E(G), vi ∈ V C(G)}. Since C ′ is a legal vertex cover in G, it follows that every

28

terminal v′e has at least one neighbor vi (corresponding to the endpoints of e in G) that

connects it to the tree T . Hence, T is a valid Steiner tree. We now analyze its cost. The

cost of T consists of the set V1 = S ∪ V (G) of the terminals and their neighbors, and the

set V2 = {v̂i | vi ∈ C ′}. Therefore, Cost(T) = |V1| + |V2| = |S| + |V (G)| + |C ′| and thus

q∗(S) ≤ |S|+ |V (G)|+ |V C(G)| as required.

It remains to show that |V C(G)| ≤ q∗(S)− (|S|+ |V (G)|). Given a Steiner tree T in

Ĝ, we show how to obtain a legal vertex cover C such that |C| ≤ Cost(T)−(|S|+ |V (G)|).
Let C = V (T)∩V (G). First, note that C is a vertex cover. Assume for contradiction that

it is not, and let e = (vi, vj) be a non-covered edge by C. Since neither vi nor vj in C,

we get that v′e is disconnected in T , in contradiction to the fact that T is a Steiner tree.

Finally, observe that Cost(T) = |S|+ |V (G)|+ |V (G)∩V (T)|. Since C = |V (G)∩V (T)|,
part (a) of the theorem is established. We now turn to prove Thm. 3.4(b) and show

that there exists a polynomial-time algorithm if the number of terminals is bounded by a

constant.

3.2 Polynomial-time algorithm for Secluded Steiner Tree with

|S| = O(1).

For simplicity we present the algorithm for maximum degree three (and note that the

proof works for any fixed bounded degree). Let k = |S|. We note that the main difference

with Secluded Steiner Tree problem is that here we also need to take into account the

“skeleton” of the tree. We iterate over possible skeletons of trees, where by skeleton of a

tree we mean the following. Consider some tree T and contract every path P ∈ Σ(T) such

that all nodes in P but the endpoints are of degree 2 and are not terminal into a single

edge. The resulting graph is the skeleton of the tree T . Note that it is enough to look on

trees T such that all leaves are terminals (as otherwise we can take a subtree of the tree

spanning all terminals). Note that the skeleton may contain at most k nodes that are

not terminals. Given the (at most k) nodes that are not terminals, an upper bound on

the number of different skeletons is the number of different trees with at most 2k nodes,

which is O((2k)2k−2). There are O(nk) options to choose the nonterminal nodes in the

skeleton. We thus get that there are at most O(nk(2k)2k−2) different skeletons.

A subtree S+ is an extended skeleton of the skeleton S if it obtained by replacing each

edge ei = (xi, yi) in the skeleton S with a path Pi of the following form. Either the path

Pi is a path of G of length at most 9 (and contains at most 8 internal nodes), or the prefix

of the path Pi is a subpath of length 4 in G from xi to some node zi and the suffix of Pi

29

is a subpath of length 4 in G from some node wi to yi, the nodes zi and wi are connected

by an imaginary edge (which will be replaced later by a path from G).

The algorithm for finding the tree with the lowest cost is as follows. Iterate over all

possible skeletons S and for each skeleton S iterate over all possible extended skeleton

S+. For each S+ do the following. Let V (S+) be the set of nodes in S+. For each

imaginary edge (x, y) in S+, consider the graph G′(x, y) that is obtained by removing all

nodes V (S+) \ {x, y} from G. Find the lowest cost Secluded Path P̂ (x, y) from x to y

in G′(x, y). For each imaginary edge (x, y) in S+, replace the edge with the path P̂ (x, y).

Let T (S+) be the tree obtained through this process. Finally, return the tree T (Ŝ+) with

the lowest cost. Let Talg be the returned tree.

We call nodes in a tree T splitting nodes if their degree in T is greater than 2. We

call a node special in T if it is either a splitting node or a terminal. Consider the optimal

tree T ∗ and let S∗ be its skeleton and S∗+ be its extended skeleton. We claim that

Cost(T (S∗+)) = Cost(T ∗), this will imply the correctness of the algorithm.

As in the Secluded Path problem we may restrict ourselves only to trees such that all

nodes that their parent are not special do not have edges to nodes on the tree that are

not in their subtree, similarly, every node that none of whose children is special has no

edges to nodes in its subtree (otherwise we can find a different tree with a subset of the

nodes of T ∗). In other words, all nodes in T ∗ that are neither special nor have a neighbor

in T that is special have no edges in G to other nodes in T ∗ that are not adjacent to them

in T ∗.

The following observation is an extension of Obs. 3.5 and is crucial for the algorithm.

Observation 3.14 Consider an edge e1 in the skeleton S∗ and their corresponding path

P1 = (z1, ..., zr1) ∈ Σ(T ∗). The node zi for 6 ≤ i ≤ r1−6 cannot have a common neighbor

with any other node z ∈ T ∗ \ P1.

Lemma 3.15 Cost(T (S∗+)) = Cost(T ∗)

Proof: The proof follows from Obs. 3.14. Note that in the optimal solution T ∗, N [S∗+] ⊆
N [T ∗]. Consider an imaginary edge (x, y) in S∗+. Let P ∗(x, y) be the subpath from x to

y in T ∗. Note that the subpath P ∗(x′, y′) are disjoint for all imaginary edges (x′, y′) in

S∗+ . Let c∗(x′, y′) = |N [P ∗(x′, y′)] \ N [S∗+]|. Note that Cost(T ∗) =
∑

(x′,y′) c
∗(x′, y′) +

|N [S∗+]|. Note also that |N [P̂ (x, y), G′(x, y)]| ≤ c∗(x′, y′). We get that Cost(T (S∗+)) ≤

30

∑
(x,y) |N [P̂ (x, y), G′(x, y)]|+ |N [S∗+]| ≤ Cost(T ∗).

4 Secluded Connectivity for Specific Graph Families

Bounded-treewidth graphs. For a graph G(V,E), let TW (G) denote the treewidth of

G. In this section, we consider graphs G of constant treewidth, i.e. TW (G) = O(1). A

separation of a graph G = (V,E) is a triplet (A,B, S) where A ∪B ∪ S = V , A ∩B ⊂ S

and (u, v) /∈ E for every u ∈ A \ S and v ∈ B \ S. The set S then separates A \ S and

B\S in G. The concept of treewidth was introduced by Robertson and Seymour [22] using

tree-decompositions. (See [2, 3] for an in-depth introduction to this topic.) For a graph

G = (V,E), a tree decomposition is a pair (T ,X) consisting of a tree T = (I, A) and a

collection X = {Xi}i∈I of vertex subsets (called bags) with the following properties: (T1)

Every vertex v ∈ V (G) is contained in the least one bag Xi. For every edge (u, v) ∈ E
there is at least one bag Xi containing both vertices u, v. (T2) For every vertex v ∈ V (G),

the nodes i of T with v ∈ Xi form a subtree of T .

To avoid confusion, the elements of I are referred to as nodes and the elements of

V (G) are referred to as vertices. In addition, we may informally refer to the node Xi by

its index i. Let X+
i be the set containing the vertices of node i itself, and the vertices in

the bags of its descendants in T . Let Ui (respectively, U+
i) be the set of terminals in Xi

(respectively, X+
i). Let ω be some upper bound on TW (G) such that |Xi| ≤ ω − 1 for

every i ∈ I. Let U+
i be the set of terminals in X+

i . We show the following.

Theorem 4.1 The Secluded Steiner Tree problem (and hence also the Secluded Path prob-

lem) can be solved in linear time for graphs with fixed treewidth. In addition, given the

tree decomposition of G, the Secluded Steiner Tree problem is solvable in Õ(n3) if

TW (G) = O(log n/ log log n). This holds even for weighted and directed graphs.

If the tree decomposition is not known, then for fixed treewidth graphs it can be computed

in linear time [1]. For simplicity, we consider the unweighted undirected case. The

weighted and directed cases are considered by the end of the analysis. Given a tree

T in G and a separation (A,B, S) in G, let FA = T (A) (respectively, FB = T (B))

be the forest obtained by considering the edges of T restricted to A (respectively, B)

nodes. Let Diff(A, S) = N [T] ∩ (A \ S) and Diff(B, S) = N [T] ∩ (B \ S). Finally, let

Cost(T, S) = N [T] ∩ S. Since (A,B, S) is a separation, it follows that

Cost(T) = Diff(A, S) + Diff(B, S) + Cost(T, S). (32)

31

Such decomposition of the cost function Cost(G′) holds for any connectivity construct

G′ ⊆ G. Indeed, the correctness of the dynamic programming applied on the tree-

decomposition of G is established due to this cost independency property of Eq. (32).

4.0.1 Algorithm

The Secluded Steiner Tree algorithm is an extension of the algorithm of [6] for comput-

ing an optimal Steiner Tree in a bounded-treewidth graph. The input to the algorithm

is a connected graph G = (V,E), a set of terminals S and a tree decomposition T = (I, A)

of G. For ease of analysis, we assume that the tree decomposition T is nice in the sense

that every node i ∈ I has at most two children i1, i2 ∈ I in the tree decomposition T (as

in [6]).

Initially choose any root node r ∈ I that contains at least one terminal, i.e. Xr∩S 6= ∅,
and direct the tree T such that r is the root. For each i ∈ I we maintain a table tb(i).

Each entry κi ∈ tb(i) in the table represents a configuration, implicitly corresponding to

a subsolution. Such a subsolution is a forest F ⊆ G that when imposed on the nodes of

X+
i , resulting in F (X+

i), spans the terminals U+
i in X+

i , and F (X+
i) may be extended

into a tree that spans all the terminals. Specifically, the configurations define a collection

of disjoint subsets of the vertices of Xi and a collection of edges between vertices in Xi. In

addition, it specifies the vertices ṽ ∈ Xi that are neighbors of the forest F (note that for

such ṽ, its neighbor in F is not necessarily in Xi; it might be in an ancestor of Xi in T) .

We follow the representation scheme of [6] where each subsolution is represented by a color

assignment κi to the vertices of Xi, and extend it by adding an additional color ω that

represents the status of being a neighbor. We refer to this coloring as a configuration. The

interpretation of the colors is representing connected components in F (X+
i) (the forest F

restricted to the vertices of X+
i) and vertices in Xi that have neighbors in F , i.e., vertices

u ∈ Xi with the same color κi(u) = c ∈ [1, ω−1] belong to the same connected component

in the subsolution forest F (X+
i). The vertices u such that κi(u) = ω do not participate in

the forest but have at least one neighbor in F . Finally, vertices u with κi(u) = 0 neither

belong to the subsolution represented by κi nor have a neighbor that belongs to it. The

idea behind this representation is the following. We assume that there is a Steiner tree

T in G. The forest T (X+
i) is obtained by restricting the 1-neighborhood of the tree T to

the vertices in X+
i . This restriction of N [T] ∩X+

i is encoded by the configuration κi. In

particular, for a Steiner tree T , there is a unique configuration κi for each bag Xi that

is consistent with T (as formally defined later). Overall, each table Xi has at most Bk′

entries, for k′ = ω + 1, where B′k = O(k′!) is the Bell-number [6], corresponding to the

32

number of partitions of at most ω elements into ω + 1 classes.

Legal Configuration. Let A(κi) = {u ∈ Xi | κi(u) > 0} denote the set of active vertices

in the configuration κi. A configuration κi is legal if it satisfies (L1) every terminal u ∈ Ui
is assigned a color in the range κi(u) ∈ [1, ω], and (L2) N [A(κi)] ∩Xi ⊆ A(κi).

The algorithm proceeds by computing, for each legal configuration κi ∈ tb(i), a value

V al(κi) that represents the minimum number of vertices in X+
i that belongs to the neigh-

borhood of a forest F that respects the configuration. These values are computed bottom-

up. Before we proceed, we first define the notion of compatible configurations.

Compatible configurations. Let i be parent of j in the tree T . Then κi ∈ tb(i) is

compatible with κj ∈ tb(j), denoted as κi ∼ κj if the following four properties hold:

(Q1) κi and κj agree on their mutual vertices X ′ = Xi∩Xj. For any u ∈ X ′, κi(u) = ω iff

κj(u) = ω. In addition, for any pair u, v ∈ X ′ that are in the same connected component,

κj(u) = κj(v) ∈ [1, ω − 1], it holds that u and v are connected in κi as well. (Note

that some components in the child j might be connected in the parent i, and thus the

converse does not hold.) (Q2) If κi connects two connected components of κj, then this is

supported by the graph G edges (i.e., the the edges required for the connectivity exist).

(Q3) Any terminal of Xj is connected to some connected component in the forest repre-

sented by κi. Hence, κi contains at most |Xi| connected components and for each terminal

u ∈ Xj there exists some v ∈ Xi ∩Xj such that κj(v) = κj(u) and κi(u) ∈ [1, ω − 1].

(Q4) N [A(κj)] ∩Xi ⊆ A(κi).

The value V al(κi) of the coloring κi ∈ tb(i) is computed bottom-up. Let Xi be a leaf.

Then for every legal κi ∈ tb(i), set V al(κi) = |A(κi)| and V al(κi) =∞ if the configuration

is invalid. Consider a non-leaf node Xi with children Xi1 and Xi2 . Let Ψ = (κi, κi1 , κi2)

be a triple of compatible configurations, such that κi1 ∈ tb(i1) and κi2 ∈ tb(i2). Define

V al(Ψ) = V al(κi1 , κi) + V al(κi2 , κi) + |A(κi)| , (33)

where, for j ∈ {i1, i2}

V al(κj, κi) = V al(κj)− |A(κi) ∩ A(κj)| . (34)

Since (X+
i1
, X+

i2
, Xi) is a separation in the graph G(X+

i), the correctness of Eq. (33) follows

from Eq. (32). Finally, for each entry κi ∈ tb(i), maintain the minimum cost over any set

of compatible triples. Define,

V al(κi) = min
Ψ=(κi,κi1 ,κi2)

{V al(Ψ) | κi1 ∈ tb(i1), κi2 ∈ tb(i2), κi1 ∼ κi, κi2 ∼ κi} . (35)

33

The optimal solution value for the whole graph can be found in the root bag Xr of T ,

identifying a cheapest solution where all vertices with color 6= 0 are contained in the same

connected component (i.e., have the same color). Computing the optimal solution (which

is sufficiently represented by the set of nodes in the final tree) is possible by backtracking

or by storing the set of edges for each row and each bag.

4.0.2 Analysis

For a given configuration entry κi ∈ tb(i), the forest F agrees with κi if the following four

properties hold:

(Z1) F (X+
i) has C connected components where C = |{κ(u) ∈ [1, ω − 1], u ∈ Xi}| is the

number of distinct colors in the coloring κi.

(Z2) All vertices u ∈ Xi of the same color, κi(u) are in the same connected component in

F (X+
i).

(Z3) The Xi neighbors of the forest are active, N [F] ∩Xi = A(κi).

(Z4) The terminals U+
i are connected in F (X+

i) in the following manner. Any terminal

u ∈ U+
i \ Xi is in non-singleton component in F . Specifically, it is connected to some

node v ∈ Xi. In addition, the terminals of U+
i ∩Xi, are in some connected component in

F .

For a legal configuration κi define the family of all forests in G that agree with κi as

F(κi) = {F ⊆ G | F agree with κi} (36)

Let

V al(F,Xi) = |N [F] ∩X+
i | (37)

and V al∗(κi) = min{V al(F,Xi) | F ∈ F(κi)} be the minimum value of any forest F ∈
F(κi).

Lemma 4.2 V al(κi) = V al∗(κi).

Proof: This can be shown by a straightforward inductive proof on the decomposition

tree. The base cases are leaf nodes where the hypothesis clearly holds. Consider i ≥ 1

and assume the induction assumption holds for all descendants of bag Xi. Let F ∗ ∈ F(κi)

be the forest that attains the minimum value in the family F(κi), i.e., V al(F ∗, Xi) =

V al∗(κi). Let X1, X2 be the children of Xi in T and let κ1 ∈ tb(1), κ2 ∈ tb(2) be the

two compatible entries such that F ∗ ∈ F(κ1) ∩ F(κ2), hence N [F ∗] ∩ Xj = A(κj) for

34

j ∈ {1, 2, i}. For a forest F ∈ F(κj) and j ∈ {1, 2, i}, define

Diff(F,Xj, Xi) = |N [F] ∩ (X+
j \Xi)|. (38)

Since (X+
1 , X

+
2 , Xi) is a separation in G(X+

i) and by Property (Q4) we have the

following.

Claim 4.1 Diff(F,Xj, Xi) = V al(F,Xj) − |A(κi) ∩ A(κj)| for every F ∈ F(κj), where

j ∈ {1, 2}.

In addition, since (X+
1 , X

+
2 , Xi) is a separation in G(X+

i) by Eq. (32), it follows that

V al(F ∗, Xi) = Diff(F ∗, X1, Xi) + Diff(F ∗, X2, Xi) + |A(κi)| . (39)

For j ∈ {1, 2}, let F ∗j ∈ F(κj) be the forest that attains the minimum value of V al(F ∗j , κj)

in their family, i.e., V al∗(κj) = V al(F ∗j , κj). By induction assumption, V al(κj) =

V al(F ∗j , κj). By Eq. (34) and Claim 4.1, we get that

V al(κj, κi) = V al(κj)− |A(κi) ∩ A(κj)| (40)

= V al(F ∗j , κj)− |A(κi) ∩ A(κj)| (41)

= Diff(F ∗j , Xj, Xi) , (42)

where Ineq. (40) follows from Eq. (34), Ineq. (41) follows from induction assumption

and Ineq. (42) follows from Claim 4.1. Thus since the triple Ψ = (κi, κ1, κ2) consists of

compatible configurations, by Eq. (33), Eq. (34), Eq. (35) and Eq. (40) we get that

V al(κi) ≤ V al(Ψ) = Diff(F ∗1 , X1, Xi) + Diff(F ∗2 , X2, Xi) + |A(κi)| . (43)

Assume for contradiction that V al(κi) > V al∗(κi). Then, by Eq. (43) and Eq. (39), we

get that there exists j ∈ {1, 2} such that

Diff(F ∗j , Xj, Xi) > Diff(F ∗, Xj, Xi). (44)

Without loss of generality let j = 1. Combining Claim 4.1 and Ineq. (44), we get

that V al(F ∗, X1) < V al(F ∗1 , X1), and since F ∗ ∈ F(κ1), we end with contradiction

to the induction assumption. We therefore get that V al(F ∗, X1) = V al(F ∗1 , X1) and

V al(F ∗, X2) = V al(F ∗2 , X2). The lemma follows.

We now complete the proof of Thm. 4.1

35

Proof: Let Υ = {κr ∈ tb(r) | κr(u) ∈ {0, 1, ω},∀u ∈ Xr} be set of configurations in the

root r of T , in which all vertices are in a single connected component. Note that there

exists a configuration κr such that the optimal secluded tree T ∗ ∈ F(κr). Let κ∗r ∈ Υ

be the configuration that attains the minimum value V al(κ∗r) in the set. It then follows,

by Lemma 4.2, V al(κ∗r) = V al∗(κ∗r) = q∗(S). The Steiner tree can be computed by a

brute-force backtracking procedure.

We now turn to running time. The size of any table tb(i) is bounded by O(ω! · ω).

During the bottom-up traversal of T we consider all possible row combinations for at

most 3 tables. The merge operation can be done in O(ω) time, and hence requires overall

O(B3
ω+1 · ω). All other operations for entry processing are linear in the size of the bag,

O(ω). Note that computing the values of subsolution κi are linear in the treewidth. Thus

our time complexity is of the same as order as that of [6]. In particular, it is linear for

graphs with fixed treewidth, in this case the tree decomposition can also be computed in

linear time and hence the total complexity is linear. If TW (G) = O(log n/ log log n) then

given the tree decomposition T for G, the running time is Õ(n3).

Note that the algorithm extends also to directed and node-weighted graphs. We

now outline the modifications needed for these extensions. The extension to weighted

graph is immediate. The only modification needed is to define Diff(A, S), Diff(B, S) and

Cost(T, S) according to the weighted cost as in Eq. (1) instead of the unweighted cost,

and apply a similar analysis.

The extension to directed graphs is a bit more involved. Note that in the directed case

it is not enough to store configurations that represent the different connected components

since in order to construct a valid tree we need to make sure that every node has only

one parent. Therefore it is important to “keep track” of the roots of these connected

components. For each connected component C we store as part of the configuration the

root r(C) of this connected component. Namely, we add to each configuration a root for

each color. In order to merge two connected components C1 and C2 to single tree with

root r(C1), we only consider edges from r(C2) to C1. However, note that the root of a

component does not necessarily have to be from the current bag and hence the number of

different configurations might be too large. To overcome this issue we use the following

observation. Consider a bag Xi and a configuration κi ∈ tb(i). Note that it cannot be that

two different connected components in κi would have both roots that are not from Xi. To

see this, consider a subtree whose root r is not in Xi, since Xi is a separator then r does

not have edges to nodes in V \ X+
i forcing r to be the root of the final tree. Therefore,

there could be at most one such component. We thus restrict ourselves to configurations

36

where there is at most one connected component with a root not in Xi (otherwise the

configuration is invalid). Notice that the number of valid configurations might increase

by at most a factor of n (for all options of the root not in Xi). Hence, the running time

increases by a factor of n. The rest of the analysis is similar and thus is omitted from this

version.

Bounded Density Graphs. Let DegCost∗(S) = min{DegCost(T) | T ∈ T (S)}. We

show the following.

Proposition 4.3 Let G be a hereditary class of graphs with a linear number of edges, i.e.,

a set of graphs such that for each G ∈ G, |E(G)| ≤ `·|V (G)| for some constant `, and where

G ∈ G implies that G′ ∈ G for each subgraph G′ of G. Then DegCost∗(S) ≤ 2` · q∗(S).

Proof: Note that for every Steiner tree T in G, it holds that

Cost(T) ≤ DegCost(T) ≤ 2` · Cost(T). (45)

The left inequality is immediate. We now prove the right inequality. Let N = N [T] be

the neighborhood of T and let G(N) be the subgraph of G induced by N and E(N) be

its edge set. We have that

DegCost(T) = 2|E(N)| ≤ 2`|N | = 2` · Cost(T) ,

where the first equality follows by definition, the second inequality follows from the hered-

itariness of GG and the third equality follows by the definition of Cost(T). Hence, Eq.

45 holds. In particular, for the optimal secluded tree T ∗, we get that

Cost(T ∗) = q∗(S) ≤ 2` · DegCost(T ∗) ≤ 2` · DegCost∗(S).

The proposition holds.

An example of such a class of graphs is the family of planar graphs. For this family,

the above proposition yields a 6-approximation for the Secluded Path problem. (A more

careful direct analysis for planar graphs yields a 3-approximation, however) Finally, note

that whereas computing DegCost∗(S) for a constant number of terminals k is polynomial,

for arbitrary k, computing DegCost∗(S) is NP-hard but can be approximated to within

a ratio of Θ(log k) thanks to Claim 2.3. Thus, for the class of bounded density graphs,

by Prop. 4.3, the Secluded Path problem has a constant ratio approximation and the

Secluded Steiner Tree problem has an Θ(log k) ratio approximation.

Theorem 4.4 For the class of bounded-density graphs, the Secluded Path (respectively,

Secluded Steiner Tree) problem is approximated within a ratio of O(1) (resp., Θ(log k)).

37

References

[1] H.L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.

In STOC, 226–234, 1993.

[2] H.L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11:1–22, 1993.

[3] H.L. Bodlaender. Treewidth: Structure and algorithms. In SIROCCO, 11–25, 2007.

[4] R.D. Carr, S. Doddi, G. Konjevod, and M.V. Marathe. On the red-blue set cover problem.

In SODA, 345–353, 2000.

[5] A. Chen, S. Kumar, and T.-H. Lai. Local barrier coverage in wireless sensor networks.

IEEE Tr. Mob. Comput., 9:491–504, 2010.

[6] M. Chimani, P. Mutzel, and B. Zey. Improved steiner tree algorithms for bounded treewidth.

In IWOCA, 374–386, 2011.

[7] I. Dinur and S. Safra. On the hardness of approximating label-cover. IPL, 89:247–254,

2004.

[8] U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45:634–652, 1998.

[9] M.R. Fellows, J. Guo, and I.A. Kanj. The parameterized complexity of some minimum

label problems. JCSS, 76:727–740, 2010.

[10] M.R. Garey and D.S. Johnson. The Rectilinear Steiner Tree Problem is NP-Complete.

SIAM J. Appl. Math., 32:826–834, 1977.

[11] R. Hassin, J. Monnot, and D. Segev. Approximation algorithms and hardness results for

labeled connectivity problems. J. Comb. Optim., 14:437–453, 2007.

[12] A. Johansson and P. Dell’Acqua. Knowledge-based probability maps for covert pathfinding.

In MIG, 339–350, 2010.

[13] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W. Thatcher,

Eds, Complexity of Computer Computations, 85–103. Plenum Press, NY, 1972.

[14] P.N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted

steiner trees. J. Algo., 19:104–115, 1995.

[15] S.O. Krumke and H.-C. Wirth. On the minimum label spanning tree problem. IPL, 66:81–

85, 1998.

[16] B. Liu, O. Dousse, J. Wang, and A. Saipulla. Strong barrier coverage of wireless sensor

networks. In MobiHoc, 411–420, 2008.

38

[17] M. Marzouqi and R. Jarvis. New visibility-based path-planning approach for covert robotic

navigation. Robotica, 24:759–773, 2006.

[18] M. Marzouqi and R. Jarvis. Robotic covert path planning: A survey. In RAM, 77–82, 2011.

[19] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M.B. Srivastava. Coverage problems

in wireless ad-hoc sensor networks. In INFOCOM, 1380–1387, 2001.

[20] J. Monnot. The labeled perfect matching in bipartite graphs. IPL, 96:81–88, 2005.

[21] D. Peleg. Approximation algorithms for the label-covermax and red-blue set cover problems.

J. Discrete Algo., 5:55–64, 2007.

[22] N. Robertson and P.D. Seymour. Graph minors. ii. algorithmic aspects of tree-width. J.

Algo., 7:309–322, 1986.

[23] S. Yuan, S. Varma, and J.P. Jue. Minimum-color path problems for reliability in mesh

networks. In INFOCOM, 2658–2669, 2005.

[24] P. Zhang, J.Y. Cai, L. Tang, and W. Zhao. Approximation and hardness results for label

cut and related problems. J. Comb. Optim., 21:192–208, 2011.

39

	1 Introduction
	2 Unweighted Undirected Graphs with Unbounded Degree
	2.1 Approximation

	3 Bounded-Degree Graphs
	3.1 Polynomial-time algorithm for the unweighted undirected case.
	3.1.1 The algorithm

	3.2 Polynomial-time algorithm for Secluded Steiner Tree with |S|=O(1).

	4 Secluded Connectivity for Specific Graph Families
	4.0.1 Algorithm
	4.0.2 Analysis

