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Abstract

In several applications of automatic diagnosis and active learning a central problem is
the evaluation of a discrete function by adaptively querying the values of its variables until
the values read uniquely determine the value of the function. In general, the process of
reading the value of a variable might involve some cost, computational or even a fee to
be paid for the experiment required for obtaining the value. This cost should be taken
into account when deciding the next variable to read. The goal is to design a strategy for
evaluating the function incurring little cost (in the worst case or in expectation according
to a prior distribution on the possible variables’ assignments).

Our algorithm builds a strategy (decision tree) which attains a logarithmic approxima-
tion simultaneously for the expected and worst cost spent. This is best possible under the
assumption that P # N'P.

1 Introduction

In order to introduce the problem we analyze in the paper, let us start with some motivating
examples.

In high frequency trading, an automatic agent decides the next action to be performed
as sending or canceling a buy/sell order, on the basis of some market variables as well as
private variables (e.g., stock price, traded volume, volatility, order books distributions as well
as complex relations among these variables). For instance in [32] the trading strategy is learned
in the form of a discrete function, described as a table, that has to be evaluated whenever a new
scenario is faced and an action (sell/buy) has to be taken. The rows of the table represent the
possible scenarios of the market and the columns represent the variables taken into account by
the agent to distinguish among the different scenarios. For each scenario, there is an associated
action. Every time an action need to be taken, the agent can identify the scenario by computing
the value of each single variable and proceed with the associated action. However, recomputing
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all the variable every time might be very expensive. By taking into account the structure of
the function/table together with information on the probability distribution on the scenarios
of the market and also the fact that some variables are more expensive (or time consuming)
to calculate than others, the algorithm could limit itself to recalculate only some variables
whose values determine the action to be taken. Such an approach can significantly speed up
the evaluation of the function. Since market conditions change on a millisecond basis, being
able to react very quickly to a new scenario is the key to a profitable strategy.

In a classical Bayesian active learning problem, the task is to select the right hypothesis
from a possibly very large set H = {h1,...,h,}. Each h € H is a mapping from a set X called
the query/test space to the set (of labels) {1,...,¢}. It is assumed that the functions in H are
unique, i.e., for each pair of them there is at least one point in X where they differ. There
is one function h* € H which provides the correct labeling of the space X and the task is
to identify it through queries/tests. A query/test coincides with an element z € X and the
result is the value h*(z). Each test x has an associated cost ¢(x) that must be paid in order to
acquire the response h*(x), since the process of labeling an example may be expensive either
in terms of time or money (e.g. annotating a document). The goal is to identify the correct
hypothesis spending as little as possible. For instance, in automatic diagnosis, H represents
the set of possible diagnoses and X the set of symptoms or medical tests, with A* being the
exact diagnosis that has to be achieved by reducing the cost of the examinations.

In [4], a more general variant of the problem was considered where rather than the diagnosis
it is important to identify the therapy (e.g., for cases of poisoning it is important to quickly
understand which antidote to administer rather than identifying the exact poisoning). This
problem can be modeled by defining a partition P on H with each class of P representing the
subset of diagnoses which requires the same therapy. The problem is then how to identify the
class of the exact h* rather than A* itself. This model has also been studied by Golovin et al.
[15] to tackle the problem of erroneous tests’ responses in Bayesian active learning.

The above examples can all be cast into the following general problem.

The Discrete Function Evaluation Problem (DFEP). An instance of the problem is de-
fined by a quintuple (S, C, T, p,c), where S = {s1,...,s,} is aset of objects, C = {C1,...,Cp}
is a partition of S into m classes, T' is a set of tests, p is a probability distribution on S, and
c is a cost function assigning to each test ¢ a cost ¢(t) € NT. A test ¢t € T', when applied to an
object s € S, incurs a cost ¢(t) and outputs a number ¢(s) in the set {1,...,¢}. It is assumed
that the set of tests is complete, in the sense that for any distinct s1, so € S there exists a test
t such that t(s1) # t(s2). The goal is to define a testing procedure which uses tests from 7" and
minimizes the testing cost (in expectation and/or in the worst case) for identifying the class
of an unknown object s* chosen according to the distribution p.

The DFEP can be rephrased in terms of minimizing the cost of evaluating a discrete function
that maps points (corresponding to objects) from some finite subset of {1, ... ,€}|T| into values
(corresponding to classes), where an object s € S corresponds to the point (t1(s),...,t7|(s))
obtained by applying each test of T' to s. This perspective motivates the name we chose for
the problem. However, for the sake of uniformity with more recent work [I5 4] we employ the
definition of the problem in terms of objects/tests/classes.

Decision Tree Optimization. Any testing procedure can be represented by a decision tree,
which is a tree where every internal node is associated with a test and every leaf is associated
with a set of objects that belong to the same class. More formally, a decision tree D for



Object | t1 | t2 | t3 | Class | Probability
1 1 {112 A 0.1
2 1] 21 A 0.2
3 21201 B 0.4
4 1212 C 0.25
5 21212 C 0.05

Figure 1: Decision tree for 5 objects presented in the table in the left, with ¢(t1) = 2, ¢(t2) =1
and ¢(t3) = 3. Letters and numbers in the leaves indicate, respectively, classes and objects.

(S,C,T,p,c) is a leaf associated with class i if every object of S belongs to the same class i.
Otherwise, the root r of D is associated with some test ¢ € T" and the children of r are decision
trees for the sets {S}, ..., Sf}, where S}, for i = 1,...,¢, is the subset of S that outputs i for
test t.

Given a decision tree D, rooted at r, we can identify the class of an unknown object s* by
following a path from r to a leaf as follows: first, we ask for the result of the test associated
with 7 when performed on s*; then, we follow the branch of r associated with the result of the
test to reach a child r; of r; next, we apply the same steps recursively for the decision tree
rooted at ;. The procedure ends when a leaf is reached, which determines the class of s*.

We define cost(D, s) as the sum of the tests’ cost on the root-to-leaf path from the root of
D to the leaf associated with object s. Then, the worst testing cost and the expected testing
cost of D are, respectively, defined as

costy (D) = I;leagi{cost(D, s)} (1)

costp(D) = Zcost(D, s)p(s) (2)

seS
Figure [I] shows an instance of the DFEP and a decision tree for it. The tree has worst
testing cost 1+3+2 = 6 and expected testing cost (1x0.1)+(6x0.2)+(6x0.4)+(4x0.3) = 4.9.

Our Results. Our main result is an algorithm that builds a decision tree whose expected
testing cost and worst testing cost are at most O(logn) times the minimum possible expected
testing cost and the minimum possible worst testing cost, respectively. In other words, the
decision tree built by our algorithm achieves simultaneously the best possible approximation
achievable with respect to both the expected testing cost and the worst testing cost. In fact,
for the special case where each object defines a distinct class—known as the identification
problem— both the minimization of the expected testing cost and the minimization of the
worst testing cost do not admit a sub-logarithmic approximation unless P = N P, as shown in
[5] and in [26], respectively. In addition, in Section we show that the same inapproximability
results holds in general for the case of exactly m classes for any m > 2.

It should be noted that in general there are instances for which the decision tree that
minimizes the expected testing cost has worst testing cost much larger than that achieved by
the decision tree with minimum worst testing cost. Also there are instances where the converse
happens. Therefore, it is reasonable to ask whether it is possible to construct decision trees that



are efficient with respect to both performance criteria. This might be important in practical
applications where only an estimate of the probability distribution is available which is not
very accurate. Also, in medical applications like the one depicted in [4], very high cost (or
equivalently significantly time consuming therapy identification) might have disastrous/deadly
consequences. In such cases, besides being able to minimize the expected testing cost, it is
important to guarantee that the worst testing cost also is not large (compared with the optimal
worst testing cost).

With respect to the minimization of the expected testing cost, our result improves upon
the previous O(log1/pmin) approximation shown in [I5] and [4], where pp, is the minimum
positive probability among the objects in S. From the result in these papers an O(logn)
approximation could be attained only for the particular case of uniform costs via a technique
used in [25].

From a high-level perspective, our method closely follows the one used by Gupta et al. [21]
for obtaining the O(logn) approximation for the expected testing cost in the identification
problem. Both constructions of the decision tree consist of building a path (backbone) that
splits the input instance into smaller ones, for which decision trees are recursively constructed
and attached as children of the nodes in the path.

A closer look, however, reveals that our algorithm is much simpler than the one presented
n [2I]. First, it is more transparently linked to the structure of the problem, which remained
somehow hidden in [21] where the result was obtained via an involved mapping from adaptive
TSP. Second, our algorithm avoids expensive computational steps as the Sviridenko procedure
[35] and some non-intuitive/redundant steps that are used to select the tests for the backbone
of the tree. In fact, we believe that providing an algorithm that is much simpler to implement
and an alternative proof of the result in [2I] is an additional contribution of this paper.

State of the art. The DFEP has been recently studied under the names of class equivalence
problem [15] and group identification problem [4] and long before it had been described in the
excellent survey by Moret [28]. Both [15] and [4] give O(log(1/pmin)) approximation algorithms
for the version of the DFEP where the expected testing cost has to be minimized and both the
probabilities and the testing costs are non-uniform. In addition, when the testing costs are uni-
form both algorithms can be converted into a O(logn) approximation algorithm via Kosaraju
approach [25]. The algorithm in [15] is more general because it addresses multiway tests rather
than binary ones. For the minimization of the worst testing cost, Moshkov has studied the
problem in the general case of multiway tests and non-uniform costs and provided an O(logn)-
approximation in [30]. In the same paper it is also proved that no o(logn)-approximation
algorithm is possible under standard the complexity assumption NP & DTIM E(no(log log ”)).
The minimization of the worst testing cost is also investigated in [20] under the framework of
covering and learning.

The particular case of the DFEP where each object belongs to a different class—known
as the identification problem—has been more extensively investigated [11), [I, [5, 6]. Both the
minimization of the worst and the expected testing cost do not admit a sublogarithmic ap-
proximation unless P = NP as proved by [26] and [5]. For the expected testing cost, in
the variant with multiway tests, non uniform probabilities and non uniform testing costs, an
O(log(1/Ppmin)) approximation is given by Guillory and Blimes in [I8]. Gupta et al. [21] im-
proved this result to O(logn) employing new techniques not relying on the Generalized Binary
Search (GBS)—the basis of all the previous strategies.

An O(log n) approximation algorithm for the minimization of the worst testing cost for the



identification problem has been given by Arkin et. al. [3] for binary tests and uniform cost and
by Hanneke [22] for case with mutiway tests and non-uniform testing costs.

In the case of Boolean functions, the DFEP is also known as Stochastic Boolean Func-
tion Evaluation (SBFE), where the distribution over the possible assignments is a product
distribution defined by assuming that variable x; has a given probability p(z;) of being one
independently of the value of the other variables. Another difference with respect to the DFEP
as it is presented here, is that in Stochastic Boolean Function Evaluation the common assump-
tion is that the complete set of associations between the assignments of the variables and the
value of the function is provided, directly or via a representation of the function, e.g., in terms
of its DNF or CNF. The present definition of DFEP considers the more general problem where
only a sample of the Boolean function is given and from this we want to construct a decision
tree with minimum expected costs and that exactly fits the sample.

Results on the exact solution of the SBFE for different classes of Boolean functions can
be found in the survey paper [37]. In a recent paper Deshpande et al. [12], provide a 3-
approximation algorithm for evaluating Boolean linear threshold formulas and an O(log kd)
approximation algorithm for the evaluation of CDNF formulas, where k£ and d is the number of
clauses of the input CNF and d is the number of terms of the input DNF. The same result had
been previously obtained by Kaplan et al. [24] for the case of monotone formulas and uniform
distribution (in a slightly different setting). Both algorithms of [12] are based on reducing
the problem to Stochastic Submodular Set Cover introduced by Golovin and Krause [16] and
providing a new algorithm for this latter problem.

Other special cases of the DFEP like the evaluation of AND/OR trees (a.k.a. read-once
formulas) and the evaluation of Game Trees (a central task in the design of game procedures)
are discussed in [36, B34, 17]. In [7], Charikar et al. considered discrete function evaluation
from the perspective of competitive analysis; results in this alternative setting are also given
in [24, 8]

2 Preliminaries

Given an instance I = (S,C, T, p, c) of the DFEP, we will denote by OPTg(I) (OPTw (1)) the
expected testing cost (worst testing cost) of a decision tree with minimum possible expected
testing cost (worst testing cost) over the instance I. When the instance I is clear from the
context, we will also use the notation OPTyy (S) (OPTg(S)) for the above quantity, referring
only to the set of objects involved. We use ppn to denote the smallest non-zero probability
among the objects in S.

Let (S,T,C,p,c) be an instance of DFEP and let S’ be a subset of S. In addition, let
C’, p’ and ¢’ be, respectively, the restrictions of C, p and c to the set S’. Our first observation
is that every decision tree D for (S,C,T,p,c) is also a decision tree for the instance I' =
(S',C", T,p',c’). The following proposition immediately follows.

Proposition 1. Let I = (S,C,T,p,c) be an instance of the DFEP and let S" be a subset of
S. Then, OPTg(I') < OPTg(I) and OPTw(I') < OPTw(I), where I' = (S',C',T,p',c') is
the restriction of I to S’.

One of the measures of progress of our strategy is expressed in terms of the number of pairs
of objects belonging to different classes which are present in the set of objects satisfying the
tests already performed. The following definition formalizes this concept of pairs for a given
set of objects.



Definition 1 (Pairs). Let I = (S,T,C,p,c) be an instance of the DFEP and G C S. We say
that two objects x,y € S constitute a pair of G if they both belong to G but come from different
classes. We denote by P(G) the number of pairs of G. In formulae, we have

m—1 m
PO =Y Y m(Gn(@

where for 1 <i < m and A C S, n;(A) denotes the number of objects in A belonging to class
C;.

As an example, for the set of objects S in Figure |1} we have P(S) = 8 and the following set
of pairs {(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)}.

We will use s* to denote the initially unknown object whose class we want to identify. Let
t be a sequence of tests applied to identify the class of s* (it corresponds to a path in the
decision tree) and let G be the set of objects that agree with the outcomes of all tests in t. If
P(G) = 0, then all objects in G belong to the same class, which must coincide with the class of
the selected object s*. Hence, P(G) = 0 indicates the identification of the class of the object
s*. Notice that s* might still be unknown when the condition P(G) = 0 is reached.

For each test t € T and for each i = 1,...,¢, let S} C S be the set of objects for which
the outcome of test ¢ is 7. For a test ¢, the outcome resulting in the largest number of pairs
is of special interest for our strategy. We denote with S} the set among S}, ..., S¢ such that
P(S;) = max{P(S}),...,P(S{)} (ties are broken arbitrarily). We denote with g (t) the set
of objects not included in Sy, i.e., we define og(t) = S\ S;. Whenever S is clear from the
context we use o(t) instead of og(t).

Given a set of objects S, each test produces a tripartition of the pairs in S: the ones with
both objects in o(t), those with both objects in S} and those with one object in o () and one
object in Sf. We say that the pairs in o(t) are kept by ¢ and the pairs with one object from
o(t) and one object from S} are separated by t. We also say that a pair is covered by the test
t if it is either kept or separated by ¢. Analogously, we say that a test ¢ covers an object s if
seo(t).

For any set of objects @ C S the probability of @ is p(Q) = ZseQ p(s).

3 Logarithmic approximation for the Expected Testing Cost
and the Worst Case Testing Cost

In this section, we describe our algorithm DecTree and analyze its performance. The concept
of the separation cost of a sequence of tests will turn useful for defining and analyzing our
algorithm.

The separation cost of a sequence of tests. Given an instance I = (5,C,T,p,c) of
the DFEP, for a sequence of tests t = t1,t,...,t;, we define the separation cost of t in the
instance I, denoted by sepcost(I,t), as follows: Fix an object x. If there exists j < ¢ such that
x € o(tj) then we set i(x) = min{j |z € o(t;)}. If v & o(t;) for each j =1,...,¢ — 1, then we
set i(x) = q. Let sepcost(I,t,z) = Z;(g c(t;) denote the cost of separating x in the instance I
by means of the sequence t. Then, the separation cost of t (in the instance I) is defined by

sepcost(I,t) = Zp(s)sepcost([,t, s). (3)
ses



In addition, we define totcost(I,t) as the total cost of the sequence t, i.e.,

totcost(I,t) = Zc(tj).

j=1
Lower bounds on the cost of an optimal decision tree for the DFEP. We denote by
sepcost*(I) the minimum separation cost in I attainable by a sequence of tests in 7' which
covers all the pairs in S and totcost™(I) as the minimum total cost attainable by a sequence
of tests in T" which covers all the pairs in S.

The following theorem shows lower bounds on both the expected testing cost and the worst
case testing cost of any instance I = (S,C, T, p, c) of the DFEP.

Theorem 1. For any instance I = (S,C,T,p,c) of the DEFP, it holds that sepcost*(I) <
OPTg(I) and totcost*(I) < OPTw (I).

Proof. Let D be a decision tree for the instance I. Let t¢1,t2,...,t,,[ be the nodes in the
root-to-leaf path in D such that for each i = 2,..., ¢, the node t; is on the branch stemming
from ¢; 1 which is associated with 57, and the leaf node [ is the child of ¢, associated with
the objects in Sf, .

Let t = t1,t2,...,t;. Abusing notation let us now denote with ¢; the test associated with
the node t; so that t is a sequence of tests. In particular, t is the sequence of tests performed
according to the strategy defined by D when the object s* whose class we want to identify, is
such that s* € S} holds for each test ¢t performed in the sequence.

Notice that, by construction, t is a sequence of tests covering all pairs of S.

Claim. For each object s it holds that sepcost(I,t,s) < cost(D,s).

If for each i = 1,...,q, we have that s € o(t;) then it holds that cost(D, s) = ;1-:1 c(tj) =
sepcost(I,t,s). Conversely, let t; be the first test in t for which s € o(¢;). Therefore, we have
that tq,ts,...,t; is a prefix of the root to leaf path followed when s is the object chosen. It
follows that cost(D,s) > Z;-:l c(tj) = sepcost(1,t,s). The claim is proved.

In order to prove the first statement of the theorem, we let D be a decision tree which
achieves the minimum possible expected cost, i.e., costp(D) = OPTg(I). Then, we have

sepcost™ (1) < sepcost(I,t) = Zp(s)sepcost([,t, s) < Zp(s)cost(D, s)=O0OPTg(I). (4)
s€S s€S

In order to prove the second statement of the theorem, we let D be a decision tree which
achieves the minimum possible worst testing cost, i.e., costy (D) = OPTw (D). Let s € S be
such that, for each j =1,...,¢—1, it holds that s ¢ o(¢;). Then, by the above claim it follows
that

totcost(I,t) = sepcost(I,t,s) < cost(D, s) < costy (D). (5)

Using , we have
totcost™ (1) < totcost(I,t) < costy (D) = OPTw (I). (6)
The proof is complete. O

The following subadditivity property will be useful.



Proposition 2 (Subadditivity). Let Si,S2,...,S5; be a partition of the object set S. We have
OPTg(S) > 25:1 OPTg(S;) and OPTw(S) > max?zl{OPTW(Sj)}, where OPTE(S;) and
OPTw (S;) are, respectively, the minimum expected testing cost and the worst case testing cost
when the set of objects is S;.

The optimization of submodular functions of sets of tests. Let I = (S,T,C,p,c) be
an instance of the DFEP. A set function f : 27 — R, is submodular non-decreasing if for
every RC R' C T and every t € T\ R', it holds that f(RU{t}) — f(R) > f(R'U{t}) — f(R)
(submodularity) and f(R) < f(R') (non-decreasing).

It is easy to verify that the functions

fi: RCT = P(S)—P([)5;)
teR

i RS T o p(s) —p([) )
teR

are non-negative non-decreasing submodular set functions. In words, fi is the function map-
ping a set of tests R into the number of pairs covered by the tests in R. The function fs,
instead, maps a set of tests R into the probability of the set of objects covered by the tests in
R.

Let B be a positive integer. Consider the following optimization problem defined over a
non-negative, non-decreasing, sub modular function f:

P(f,B,T,c):r}gax{f(R):Zc(t)<B}. (7)

cT
- teR

In [38], Wolsey studied the solution to the problem P provided by Algorithm [1| below,
called the adapted greedy heuristic.

Algorithm 1 Wolsey greedy algorithm
Procedure Adapted-Greedy(S,T, f,c, B)

spent + 0, A<+ 0, k+ 0
repeat
k< k+1
let ¢ be a test ¢ which maximizes W among all t € T s.t. ¢(t) < B

T + T\ {tx}, spent « spent + c(tx), A+ AU {tx}
until spent > Bor T =10
if f({tx}) > f(A\ {tx}) then Return {t;}
else Return {t1ty ... tg—1}

The following theorem summarizes results from [38][Theorems 2 and 3].

Theorem 2. [38] Let R* be the solution of the problem P and R be the set returned by
Algorithm [1.  Moreover, let e be the base of the natural logarithm and x be the solution of
eX = 2—x. Then we have that f(R) > (1—e X)f(R*) ~ 0.35f(R*). Moreover, if there exists c
such c(t) = c for eacht € T and c divides B, then we have f(R) > (1—1/e)f(R*) ~ 0.63f(R*).

Corollary 1. Lett =t1...tp_1tr be the sequence of all the tests selected by Adapted-Greedy,
i.e., the concatenation of the two possible outputs in line 7. Then, we have that the total cost
of the tests in t is at most 2B and f({t1,...,tg—1,tx}) > (1 — e X)f(R*) = 0.35f(R*).



Our algorithm for building a decision tree will employ this greedy heuristic for finding
approximate solutions to the optimization problem P over the submodular set functions f;
and fy defined in (7).

3.1 Achieving logarithmic approximation

We will show that Algorithm [2] attains a logarithmic approximation for DFEP. The algorithm
consists of 4 blocks. The first block (lines 1-2) is the basis of the recursion, which returns a
leaf if all objects belong to the same class (P(S) = 0). If P(S) =1, we have that |S| = 2 and
the algorithm returns a tree that consists of a root and two leaves, one for each object, where
the root is associated with the cheapest test that separates these two objects. Clearly, this
tree is optimal for both the expected testing cost and the worst testing cost.

The second block (line 3) calls procedure FindBudget to define the budget B allowed for
the tests selected in the third and fourth blocks. FindBudget finds the smallest B such that
Adapted-Greedy(S, T, f1,c, B) returns a set of tests R covering at least aP(S) pairs.

Algorithm 2
Procedure DecTree(S,T,C, p,c)

1: If P(S) =0 then return a single leaf | associated with S
2: If P(S) =1 then return a tree whose root is the cheapest test that separates the two objects in
S
B=FindBudget(S5,T,C,c), spent <+ 0, spents + 0, U+ S, k+ 1
while there is a test in T of cost < B — spent do

let i be a test which maximizes w among all tests t s.t. ¢ € T and ¢(t) < B — spent
If kK = 1 then make ¢; root of D else ¢, child of t;_1
for every i € {1,...,¢} such that (S} NU) # 0 and Sj, # S} do

Make D" < DecTree(S;, NU,T,C,p,c) child of
U<« UnNS;, spent < spent +c(ty) , T+ T\ {tx}, k< k+1
10: end while
11: repeat
12:  let tx be a test which maximizes w among all tests t € T s.t. ¢(t) < B
13:  Set tj as a child of t5_1
14:  for every i€ {1,...,¢} such that (S} NU) # 0 and S;_ # S} do
15: Make D? +DecTree(U N fk,T, C,p,c) child of t
16: U<« UNS;, spenty < spenty +c(ty) , T < T\ {tp}, k< k+1
17: until B — spents <0 or T =0
18: D' + DecTree(U,T,C,p,c); Make D’ a child of t;_
19: Return the decision tree D constructed by the algorithm

Procedure FindBudget(S,T,C,c)
1: Let f: RCT — P(S) = P((,epSf) and let a =1 —eX =~ 0.35
2: Do a binary search in the interval [1,57,.,¢(t)] to find the smallest B such that
Adapted-Greedy(S, T, f,c, B) returns a set of tests R covering at least aP(S) pairs
3: Return B

The third (lines 4-10) and the fourth (lines 11-17) blocks are responsible for the construction
of the backbone of the decision tree (see Fig. 2) as well as to call DecTree recursively to
construct the decision trees that are children of the nodes in the backbone.

The third block (the while loop in lines 4-10) constructs the first part of the backbone
(sequence t4 in Fig. 2) by iteratively selecting the test that covers the maximum uncovered



mass probability per unit of testing cost (line 5). The selected test ¢, induces a partition
(Utlk7 cee Ufk) on the set of objects U, which contains the objects that have not been covered
yet. In lines 7 and 8, the procedure is recursively called for each set of this partition but for
the one that is contained in the subset S . With reference to Figure 2, these calls will build
the subtrees rooted at nodes not in t4 which are children of some node in t*.

Similarly, the fourth block (the repeat-until loop) constructs the second part of the back-
bone (sequence t? in Fig. 2) by iteratively selecting the test that covers the maximum number
of uncovered pairs per unit of testing cost (line 12). The line [18is responsible for building a
decision tree for the objects that are not covered by the tests in the backbone.

We shall note that both the third and the fourth block of the algorithm are based on the
adapted greedy heuristic of Algorithm (1 In fact, p(U) — p(U N St ) in line [5| (third block)
corresponds to fo(AUty) — f2(A) in Algorithm [I| because, right before the selection of the k-th
test, A is the set of tests {t1,...,t5_1} and U = N5 fSt Thus,

f2(AU L) = p(S) — p(Ni=1SF) = p(S) — p(U N S},)
and
f2(A) = p(S) = p(NZ'S},) = p(S) = p(U)
so that
f2(AUt,) = f2(A) = p(U) —p(U N SY,).

A similar argument shows that P(U) — P(U N S}) in line 12| (fourth block) corresponds to
fi(AUtg) — fi(A) in Algorithm |1l These connections will allow us to apply both Theorem
and Corollary [1| to analyze the cost and the coverage of these sequences.

Figure 2: The structure of the decision tree built by DecTree: white nodes correspond to
recursive calls. In each white subtree, the number of pairs is at most P(S)/2, while in the
lowest-right gray subtree it is at most 8/9P(S) (see the proof of Theorem (4]).

Let t; denote the sequence of tests obtained by concatenating the tests selected in the
while loop and in the repeat-until loop of the execution of DecTree over instance I. We
delay to the next section the proof of the following key result.

Theorem 3. Let x be the solution of eX = 2 — x, and a« = 1 — eX =~ 0.35. There exists a
constant 0 > 1, such that for any instance I = (S,C,T,p,c) of the DFEP, the sequence tf
covers at least a®P(S) > $P(S) pairs, and it holds that sepcost(I,t;) < & - sepcost*(I) and
totcost(I,tr) < 3totcost*(I).

Applying Theorem [3] to each recursive call of DecTree we can prove the following theorem
about the approximation guaranteed by our algorithm both in terms of worst testing cost and
expected testing cost.

10



Theorem 4. For any instance I = (S,C, T, p,c) of the DFEP, the algorithm DecTree outputs
a decision tree with expected testing cost at most O(log(n)) - OPTg(I) and with worst testing
cost at most O(log(n)) - OPTy (I).

Proof. For any instance I, let D*(I) be the decision tree produced by the algorithm DecTree.
First, we prove an approximation for the expected testing cost. Let § be such that §log % =4,
where ¢ is the constant given in the statement of Theorem [3] Let us assume by induction that
the algorithm guarantees approximation 1+ log P(G), for the expected testing cost, for every
instance I’ on a set of objects G with 1 < P(G) < P(S).

Let Z be the set of instances on which the algorithm DecTree is recursively called in lines
8,15 and 18. We have that

costp(D*(I))  sepcost(I,tr) + > per costp(D*(I"))

OPTg(I) OPTg(I) ®)
sepcost(I,tr) i costg(D*(I")) )
=T O0PTe() P OPTR(I)
costp(DA(I"))
<O A o (1) (19
§5+I}}2%({1+BlogP(I')} (11)
<6+ 1+ plog8P(S)/9 =1+ Blog(P(S)). (12)

The first equality follows by the recursive way the algorithm DecTree builds the decision
tree. Inequality @ follows from by the subadditivity property (Proposition [2)) and simple
algebraic manipulations. The inequality in follows by Theorem |3| together with Theorem
yielding sepcost(I,t;) < § OPTg(I). The inequality follows by induction (we are using
P(I') to denote the number of pairs of instance I’).

To prove that the inequality in holds we have to argue that every instance I’ € Z has
at most %P(S) pairs. Let Utik = ka NU as in the lines 8 and 15. First we show that the number
of pairs of Uy, is at most P(S)/2. We have S; # S/ and S} is the set with the maximum
number of pairs in the partition {S},,..., ka}, induced by t; on the set S. It follows that
P(U}) < P(S}) < P(S)/2. Now it remains to show that the instance I, recursively called,
in line 18 has at most 8/9P(S) pairs. This is true because the number of pairs of I’ is equal
to the number of pairs not covered by t; which is bounded by (1 — a?)P(S) < 8P(S)/9 by
Theorem [3l

Now, we prove an approximation for the worst testing cost of the tree D*(I). Let p be such
that plog% = 3. Let us assume by induction that the worst testing cost of D*(I’) is at most
(1+plog P(G)-OPTw (I")) for every instance I’ on a set of objects G with 1 < P(G) < P(S).
We have that

costyy (D*(I)) < totcost(I,t;) + maxper{costy (D*(I'))}

OPTw(I) = OPTw (1) (13)
totcost(I,tr) ax costyy (D(I")) (14)
OPTw(I) 1'eT OPTw(I/)
totcost(I,tr) ax costyy (D(I")) (15)
~ totcost*(I) ez OPTw(I')
<3+ 1+ plog(8P(5)/9) =1+ plog(P(9)) (16)
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Inequality follows from the subadditivity property (Proposition [2|) for the worst testing
cost. The inequality follows by Theorem (1, The inequality follows from Theorem
the induction hypothesis (we are using P(I’) to denote the number of pairs of instance I’) and
from the fact mentioned above that every instance in Z has at most 8/9P(S) pairs.

Since P(S) < n? it follows that the algorithm provides an O(logn) approximation for both
the expected testing cost and the worst testing cost.

]

The previous theorem shows that algorithm DecTree provides simultaneously logarithmic
approximation for the minimization of expected testing cost and worst testing cost. We would
like to remark that this is an interesting feature of our algorithm. In this respect, let us consider
the following instance of the DFEPE Let S = {s1,...,sp;pi =2 fori=1,....n—1 and
pp, = 271D the set of tests is in one to one correspondence with the set of all binary strings
of length n so that the test corresponding to a binary string b outputs 0(1) for object s; if
and only if the ith bit of b is 0(1). Moreover, all tests have unitary costs. This instance is
also an instance of the problem of constructing an optimal prefix coding binary tree, which
can be solved by the Huffman’s algorithm [I0]. Let D}, and Dy, be, respectively, the decision
trees with minimum expected cost and minimum worst testing cost for this example. Using
Huffman’s algorithm, it is not difficult to verify that Costg(D},;) < 3 and Costy (D},) = n—1.
In addition, we have that Costg(Dy,) = Costw (D) = logn. This example shows that
the minimization of the expected testing cost may result in high worst testing cost and vice
versa the minimization of the worst testing cost may result in high expected testing cost.
Clearly, in real situations presenting such a dichotomy, the ability of our algorithm to optimize
simultaneously both measures of cost might provide a significant gain over strategies only
guaranteeing competitiveness with respect to one measure.

3.2 The proof of Theorem

We now return to the proof of Theorem [3| for which will go through three lemmas.

Lemma 1. For any instance I = (S,C,T,p,c) of the DFEP, the value B returned by the
procedure FindBudget(S, T, C, c) satisfies B < totcost*(I).

Proof. Let us consider the problem P in equation with the function f; that measures the
number of pairs covered by a set of tests. Let G(x) be the number of pairs covered by the
solution constructed with Adapted-Greedy when the budget—the righthand side of equation
(7)—is z. By construction, FindBudget finds the smallest B such that G(B) > aP(S).

Let t be a sequence that covers all pairs in S and that satisfies totcost(t) = totcost*(I).
Arguing by contradiction we can show that totcost(I,t) > B. Suppose that this was not the
case, then t would be the sequence which covers P(S) pairs using a sequence of tests of total
cost not larger than some B’ < B. By Theorem 2, the procedure Adapted-Greedy provides
an a-approximation of the maximum number of pairs covered with a given budget. Therefore,
when run with budget B’, Adapted-Greedy is guaranteed to produce a sequence of total cost
< B’ which covers at least aP(S) pairs. However, by the minimality of B it follows that such
a sequence does not exist. Since this contradiction follows by the hypothesis totcost(I,t) < B,
it must hold that totcost*(I) > totcost(I,t) > B, as desired. O

! This is also an instance of the identification problem mentioned in the introduction
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Given an instance I, for a sequence of tests t = ¢y, ..., t; and areal K > 0, let sepcosti (I, t)
be the separation cost of t when every non-covered object is charged K, that is,

sepcosty (I,t) = Z p(x)sepcost(I,t, ) + Z p(x) - K
. zes . zeS
z is covered by t « is not covered by t

The proofs of the following technical lemma is deferred to the appendix.

Lemma 2. Let t* be the sequence obtained by concatenating the tests selected in the while
loop of Algorithm @ Then, totcost(I,t4) < B and sepcostg(I,t*) < « - sepcost*(I), where y
18 a positive constant and B is the budget calculated at line 3.

Lemma 3. The sequence t; covers at least o> P(S) pairs and it holds that totcost(I,t;) < 3B.

Proof. The sequence t; can be decomposed into the sequences t# and tZ, that are constructed,
respectively, in the while and repeat-until loop of the algorithm DecTree (see also Fig. 2).

It follows from the definition of B that there is a sequence of tests, say t, of total cost not
larger than B that covers at least aP(.S) pairs for instance I. Let z be the number of pairs of
instance I covered by the sequence t4. Thus, the tests in t, that do not belong to t#, cover at
least aP(S) — z pairs in the set U = [,c¢a S; of objects not covered by t4.

The sequence t2 coincides with the concatenation of the two possible outputs of the pro-
cedure Adapted-Greedy (U, T —t4, f', ¢, B) (Algorithm 1), when it is executed on the instance
defined by: the objects in U (those not covered by t4); the tests that are not in t4; the sub-
modular set function f/: R C T —t4 +— P(S)— P(UN (Mier Si)) and bound B. By Corollary
we have that totcost(I,t?) < 2B and t” covers at least a(aP(S) — z) uncovered pairs.

Therefore, since totcost(I,t4) < B, altogether, we have that t; covers at least z+a(aP(S)—
2) > o?P(S) pairs and totcost(I,t;) < 3B. O

The proof of Theorem [3| will now follow by combining the previous three lemmas.

Proof of Theorem |3 First, it follows from Lemma [3|that t; covers at least a?P(S) pairs.
To prove that sepcost(I,t;) < sepcost*(I), we decompose t; into t4 = tf,...j;‘ and

t8 =B ..., tB, the sequences of tests selected in the while and in the repeat-until loop

of Algorithm [2] respectively. '
Fori =1,...,q, let m; = o(t}) \ (U;;ll U(tf)). In addition, let w4 be the set of objects
which are not covered by the tests in t4. Thus,

q 7

sepcost(I, t;) < Zp(ﬂ'i) Zc(tf) + 3B - p(ma)
i=1 j=1

< 3sepcostp(I,t™) < 3ysepcost™(I),
where the last inequality follows from Lemma
It remains to show that totcost(l,tr) < 3totcost*(I). This inequality holds because Lemma

assures that totcost(I,t;r) < 3B and Lemma [I| assures that totcost*(I) > B. The proof is
complete.
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4 O(logn) is the best possible approximation.

Let U = {u1,...,u,} be a set of n elements and F be a family of subsets of U. The minimum
set cover problem asks for a family 7' C F of minimum cardinality such that Jpcm F = U.
It is known that no sub logarithmic approximation is achievable for the minimum set cover
problem under the standard assumption that P # N P. More precisely, by the result of Raz
and Safra [33] it follows that there exists a constant k > 0 such that no k logan-approximation
algorithm for the minimum set cover problem exists unless P = NP [33], 13].

We will show that an o(logn) approximation algorithm for the minimization of the expected
testing cost DFEP with exact b classes for b > 2, implies that the same approximation can be
achieved for the Minimum Set Cover problem. This implies that one cannot expect to obtain
a sublogarithmic approximation for the DFEP unless P = NP. The reduction we present
can also be used to show the same inapproximability result for the minimization of the worst
testing cost version of the DFEP.

Given an instance Isc = (U, F) for the minimum set cover problem as defined above, we
construct an instance Iprrpp = (S,C, T, p,c) for the DFEP as follows: The set of objects is
S =UU{o1,...,0p—1}. The family of classes C = (Cp,...,Cp_1) is defined as follows: All
the objects of U belong to class Cy while the object o;, for i = 1,...,b — 1, belongs to class
C;. Notice that by and the objects of U belong to the same class. In order to define the set of
tests T', we proceed as follows: For each set F' € F we create a test tp such that ¢r has value
0 for the objects in F' and value 1 for the remaining objects. In addition, we create a test £
which has value 0 for objects in U and value ¢ — 1 for object 0; (1 < ¢ < b—1). For our later
purposes, we notice here that the test ¢ cannot distinguish between b; and the elements in U.

Each test has cost 1, i.e., the cost assignment c is given by ¢(t) = 1 for each ¢ € T. Finally,
we set the probability of o; to be equal to 1 — (n + b — 2)n and the probability of the other
objects equal to 7, for some fixed n < m.

Let D* be the decision tree with minimum expected testing cost for Ippgpp and let F* =
{F1,..., Fp} be a minimum set cover for instance Isc = (U, F), where h = |F*|.

We first argue that costgp(D*) < h+ 1. In fact, we can construct a decision tree D by
putting the test ¢y, associated with F} in the root of the tree, then the test ¢f, associated with
F» as the child of ¢, and so on. Notice that, for 7 = 1,...,h — 1 we have that ¢p, has two
children, one is tf,,, and the other is a leaf mapping to the class Cy. As for tph, one of its
children in again a leaf mapping to Cy, the other child is set to the test ¢, whose children are
all leaves.

The expected testing cost of D can be upper bounded by

OPTE(IDFEP) = COStE(D*) < COStE(D) < (h + 1) = OPT(Isc) +1 (17)

since we have cost(D,s) = (h + 1) for any s € {01,...,0p—1} and cost(D,s) < h + 1 for any
seU.

On the other hand, let D be a decision tree for Iprgp and let P be the path from the
root of D to the leaf where the object o1 lies. It is easy to realize that the subsets associated
with the tests on this path cover all the elements in U—in fact these tests separate o; from all
the other objects from U. Let T be the solution to the set cover problem provided by the sets
associated with the tests on the path P. We have that

tg(D
|T| < cost(D,o01) < costp(D)

ST tb-2) < 2costg(D), (18)
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. . . . 1
in the last inequality we are using the fact that n < H=2)

Now assume that there is an algorithm that for any instance I = (S5, C, T, p, ¢) of the DFEP
can guarantee a solution with approximation «log|S| for some a < k/8. Therefore, given an
instance Igc = (U, F) for set cover we can use this algorithm on the transformed instance
Iprpp defined above, where |S| = |U| 4+ b — 1. We obtain a decision tree D for Iprppp such
that

costg(D) < alog(n+b—1)OPTg(Iprep) < a(OPT(Isc)+1)log(n+b) < 4alognOPT(Isc)

where we upper bound OPT (Isc) + 1 < 20PT(Is¢) and log(n + b) < 2logn.

From D, as seen above we can construct a solution 7 for the set cover problem such that
|T| < 2costg(D). Hence, it would follow that 7 is an approximate solution for the set cover
instance satisfying:

|T] < 8alognOPT(Isc) < (k logn)OPT(Isc)
which by the result of [33] is not possible unless P = N P.

The same construction can be used for analyzing the case of the worst testing cost, in
which case we have that becomes OPTyw (Iprpp) < OPT(Igc) + 1 and becomes
|T| < costy (D), leading to the inapproximability of the DFEP w.r.t. the worst testing cost
within a factor of avlogn for any a < k /4. Notice that an analogous result regarding the worst
testing cost had been previously shown by Moshkov [29] based on the result of Feige [13].

Thus, we have the following theorem

Theorem 5. Both the minimization of the worst case and the expected case of the DFEP don’t
admit an o(logn) approximation unless P = N P.

5 Final remarks and Future Directions

We presented a new algorithm for the discrete function evaluation problem, a generalization
of the classical Bayesian active learning also studied under the names of Equivalence Class
Determination Problem [I5] and Group Based Active Query Selection problem of [4]. Our
algorithm builds a decision tree which asymptotically matches simultaneously for the expected
and the worst testing cost the best possible approximation achievable under standard complex-
ity assumptions P # N P. This way, we close the gap left open by the previous O(log 1/pmin)
approximation for the expected cost shown in[I5] and [4], where py,i, is the minimum posi-
tive probability among the objects in S and in addition we show that this can be done with
an algorithm that guarantees the best possible approximation also with respect to the worst
testing cost.

With regards to the broader context of learning, given a set of samples labeled according
to an unknown function, a standard task in machine learning is to find a good approximation
of the labeling function (hypothesis). In order to guarantee that the hypothesis chosen has
some generalization power w.r.t. to the set of samples, we should avoid overfitting. When the
learning is performed via decision tree induction this implies that we shall not have leaves
associated with a small number of samples so that we end up with a decision tree that have
leaves associated with more than one label. There are many strategies available in the literature
to induce such a tree.
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In the problem considered in this paper our aim is to over-fit the data because the function
is known a priori and we are interested in obtaining a decision tree that allows us to identify the
label of a new sample with the minimum possible cost (time/money). The theoretical results
we obtain for the "fitting” problem should be generalizable to the problem of approximating
the function. To this aim we could employ the framework of covering and learning from [20]
along the following lines: we would interrupt the recursive process in Algorithm 2 through
which we construct the tree as soon as we reach a certain level of learning (fitting) w.r.t. the
set of labeled samples. Then, it remains to show that our decision tree is at logarithmic factor
of the optimal one for that level of learning. This is an interesting direction for future research.
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A The proof of Lemma

Lemma Let t4 be the sequence obtained by concatenating the tests selected in the while
loop of Algorithm 2. Then, totcost(I,t) < B and sepcostp(I,t4) < - sepcost*(I), where ~
is a positive constant and B is the budget calculated at line[3.

Proof. Clearly, the Algorithm 2 in the while loop constructs a sequence t* such that
totcost(I,t4) < B.

In order to prove the second inequality in the statement of the lemma, it will be convenient
to perform the analysis in terms of a variant of our problem which is explicitly defined with
respect to the separation cost of a sequence of tests. We call this new problem the Pair
Separation Problem (PSP): The input to the PSP, as in the DFEP, is a 5-uple (S,C, X, p,c),
where S = {s1,...,s,} is a set of objects, C = {C1,...,Cy,} is a partition of S into m classes,
X is a family of subsets of S, p is a probability distribution on S, and c is a cost function
assigning to each X € X a cost ¢(X) € Q*. The only difference between the input of these
problems is that the set of tests T in the input of DFEP is replaced with a family X of subsets
of S. We say that X € X covers an object s iff s € X. Moreover, we say that X € X covers
a pair of objects (s, s') if at least one of the conditions hold: (i) s € X or (ii) s’ € X. We say
that a pair (s, s’) is covered by a sequence of tests if some test in the sequence covers (s, s').
The separation cost of a sequence X = XX ... X, in the instance Ip of PSP is given by:

i

sepcost (I, X) Zp X; \UX ZC(X]‘) +p - UX Zc (19)
7j=1 7j=1

j=1

The Pair Separation Problem consists of finding a sequence of subsets of X with minimum
separation cost, sepcost*(Ip), among those sequences that cover all pairs in S.

An instance I = (S,C, T, p, c) of the DFEP induces an instance Ip = (S,C, X, p, c) of the
PSP where |T| = |X| and for every test ¢ € T' we have a corresponding subset X (¢) € X such
that X (t) = og(t). Thus, in our discussion we will use the term test X to refer to a subset
X € X. In the body of this paper we implicitly work with the instance of the PSP induced
by the input instance of the DFEP. It is easy to realize that sepcost®(I) = sepcost*(Ip). In
addition, sepcostp(I,t4) = sepcostp(Ip,X4), where X4 is the sequence obtained from t4
when every t € t4 is replaced with X (¢). Thus, in order to establish the lemma it suffices to
prove that

sepcostg(Ip, X)) < ~ - sepcost™(Ip).

It is useful to observe that X is equal to the sequence seq returned by procedure GreedyPSP
in Algorithm 3| when it is executed on the instance (Ip, B). This algorithm corresponds to lines
4,5,9 and 10 of the While loop of Algorithm 2 In Algorithm [3] the greedy criteria consists
of choosing the test X that maximizes the ratio p(U N X)/c(X). This is equivalent to the
maximization of (p(U) — p(U N S}))/c(t) = (p(U Nog(t))/c(t) defining the greedy choice in
Algorithm

The proof consists of the following steps:

i We construct an instance I' = (S, C’, X', p’, ') of the PSP from Ip

19



Algorithm 3
Procedure GreedyPSP (Ip = (5,C, X, p): instance of PSP, B:Budget))

1: seq 0, U+ S, k«1

2: while there is a test in X of cost < B do

3:  let X be a test which maximizes p(g)m(i() among all tests X € X s.t. ¢(X) < B (%)
4:  Append Xj toseq, U+ U\ Xy, B+ B—c(Xy) , X« X\ {Xs}, k< k+1

5: end while

ii. We prove that the optimal separation cost for I’ is no larger than the optimal one for
Ip, that is, sepcost*(I') < sepcost*(Ip).

iii we prove that separation cost sepcost(I’,X’) of any sequence of tests X’ returned by the
above pseudo-code on the instance (I’, B) is at a constant factor of sepcost*(I’), that is,
sepcost(I',X') is O(sepcost*(I')).

iv. we prove that there exists a sequence of tests Z possibly returned by GreedyPSP when
executed on the instance (I’, B) such that sepcostp(Ip, X4) < 2sepcost(I', Z).

By chaining these inequalities, we conclude that sepcostp(Ip, X?) is O(sepcost*(Ip)). The
steps (ii), (iii) and (iv) are proved in Claims 1,2 and 3, respectively. We start with the
construction of instance I’.

Construction of instance I'. For every test X € X, we define n(X) = 2¢(X).

The instance I' = (S, C’, X', p’, ') is constructed from Ip = (S,C, X, p,c) as follows. Let
N = [[xexn(X). For each s € S we add N objects to ', each of them with probability
p(s)/N and with class equal to that of s. If an object s’ is added to set S” due to s, we say
that s’ is generated from s.

For every test X € X we add n(X) tests to the set X, each of them with cost 1/2. If a
test X’ is added to set X’ due to X, we say that X’ is generated from X.

It remains to define to which subset of S’ each test X' € X’ corresponds to. If s ¢ X
then s’ ¢ X' for every s’ generated from s and every X’ generated from X. Let X; =
{X1, ..., XI%[} be the set of tests that contains the object s € S. Note that the number of
tuples (A1, ...,01%]), where #* € X" is a test generated from X’ € X is [Ixex, n(X). Thus, we
create a one to one correspondence between these tuples and the numbers in the set Poss(s) =
{1, TIxex, n(X)}. For a test 6 € X', generated from X € X, let F(0) C Poss(s) be the
set of numbers that correspond to the tuples that includes 8. Note that

|F(0)] = < II n(Y)) /1(X). (20)

YeX;

In addition, we associate each object s’ € S’ generated from s, with a number f(s") € Poss(s)
in a balanced way so that each number in Poss(s) is associated with N/ [[ycx, n(X) objects.
Thus, a test 6 € X7, generated from X € X, covers an object s’ generated from s if and only
if £(s') € F(0).

For the instance I’ we have the following useful properties:

a if X € X covers object s € S then each test § € X’, generated from X, covers exactly
N/n(X) objects generated from s. Moreover, each object generated from s is covered by
exactly one test generated from X.
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b If a set of tests G’ C X’ covers all pairs of I’ then the set G = {X € X| all tests generated
from X belong to G’} covers all pairs of Ip.

Property (a) holds because a test 6 generated by X is associated with [F(0)| = [y, n(Y)/n(X)
numbers in Poss(s) and to each number in Poss(s) we have N/ [y, n(Y) objects associated
with.

To see that property (b) holds, let us assume that G’ covers all pairs of the instance I’ and
G does not cover a pair (s1,s2). Let X5, = {X{,..., X¥} and Xy, = {X3,..., X} be the set
of tests that covers s and sg, respectively. The fact that G does not cover (s1, s2) implies that
(X5, UXs,) NG = 0 so that for each X} € Xj,, there is a test %, generated from X%, that does
not belong to G’. Similarly, for each X; € X,,, there is a test 9@, generated from X%, that does
not belong to G’. Let s} be an object, generated from s, that is mapped, via function f(-),
into the number in Poss(s1) that corresponds to the tuple (61,...,60%). Moreover, let sh be
an object, generated from s, that is mapped, via function f(-), into the number in Poss(s2)
that corresponds to the tuple (63,...,65). The pair (s}, s}) is not covered by G, which is a
contradiction.

Claim 1. The optimal separation cost for I’ is no larger than the optimal separation cost for
Ip, i.e., sepcost*(I'") < sepcost*(Ip).

Given a sequence Xp for Ip that covers all P(S) pairs we can obtain a sequence X for I’
by replacing each test Xp € Xp with the n(Xp) = 2¢(Xp) tests in X’ that were generated
from X p, each of which has cost 1/2. It is easy to see that X covers all the pairs in I’ and the
separation cost of X is not larger than that of Xp. This establishes our claim.

Now let X’ be a sequence of tests returned by procedure GreedyPSP in Algorithm |3| when
it is executed on the instance (I', B).

Claim 2. The separation cost of the sequence X' is at most a constant factor of that of
X* = X{,..., X}, which is the sequence of tests with minimum separation cost among all
sequences of tests covering all the pairs, for the instance I’, i.e., sepcost(I', X') < Bsepcost*(I'),
for some constant 5.

Let p; (resp. p;) be the sum of the probabilities of the objects covered by the first j tests
in X’ (resp. X*). In particular, we have py = p§ = 0. In addition, let @ be the sum of the
probabilities of all objects in S’. Notice that, with the above notation, we can rewrite the

separation cost of the sequence X' = X{,..., X| as

s}

q
sepcost(I', X Zc QR —pj—1) Z (1/2) - (Q — pj—1)-

7=1 7j=1
Let ¢ be such that 261 < B < 2t — 1, where B is the budget in the statement of the lemma.
For j = 0,...,4, let i; = 272 _ 2 and i = 2/+1 " Furthermore, let PVl be the sum of the
probabilities of the objects covered by the first i; tests of X’. In formulae, Pl =y ( ijl X ,:/,) .
Analogously, let P,P I'be the sum of the probabilities of the objects covered by the first z; tests
in X*. In formulae, PV = D (U;j:1 X;;) . For the sake of definiteness, we set i1 = ¢*; =0

and PI-1 = pl-U = ¢
Then, we have
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q -1 i

sepcost(I', X') = 2(1/2) (Q —pi—1) < Z (1/2) - (@ — pr—1)

i=1 §=0 k=i;_1+1
i (-1
< Z Z (1/2)(Q — PV-1) < 27(Q — PV~
§=0 k=ij_1+1 j=0
-1 -2
< Q—FZ?j(Q—P[j_l]) <Q+ 27+1(Q — p[]])
j=1 j=0

where the first inequality holds because ¢ < 2B < 2¢t! — 2 = j,_; and the second one holds
because pp_1 > pli-1 = Pij_ for k>1;1 + 1.

We now devise a lower bound on the separation cost of X*. For this, we first note that the
length ¢* of X* is at least 2B > 2¢ = iy_,, for otherwise the property (b) of instance I’ would
guarantee the existence of a sequence of tests of total cost smaller than B that covers all pairs
for instance Ip (and for the instance I of the DFEP as well), which contradicts Lemma
Therefore, we can lower bound the the separation cost of the sequence X* as follows:

*

q
sepeost(I' X7 = 3 e(XE)(Q — piy) (21)
=1
> (1/2) (@ — piy +Z Z (1/2) - (Q — pi_1) (22)
i=1 j=1k= z _+1
> 2Q —p] +€_1(2 _9j- 1)(Q P[J]) + Z2J Q- P[J]) (23)
= Ty P

The inequality in follows from by considering in the summation on the right hand
side of only the first i;_; = W< B< q* tests.

The term (2Q) — p})/2 in the first inequality is the contribution of the first two tests
of the sequence X* to the separation cost. To prove that % > % in the last inequality, we
note that that pj < /2 because the probability covered by the first test X; of sequence X* is
p(X)/n(X) < Q/2¢(X) < Q/2, where X is the test that generates X{. In the last inequality
we used the fact that ¢(X) > 1 for all X € X.

Let S;, C S’ be the set of objects covered by the sequence of tests X{, X5, ..., X}, which
is the prefix of length k& of the sequence of tests X’. We shall note that for I > k + 1, the
subsequence X, IRTERRED. ¢ ; of X" coincides with the sequence of tests constructed through the

execution of Adapted-Greedy over the instance (5" \ S}, T, fo,c', B'), where
o T =X\ {X]|,X} ... , X1} is a set of tests, all of them with cost 1/2;

e the function fy maps a set of tests into the probability of the objects in S”\ S} that are
covered by the tests in the set;

o /=01
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Since the set { X7, X5,..., X;" .} —{X{,X),..., X}} is a feasible solution for this instance,
it follows from Theorem 2 that p; — pr, > &(p;_;, — pi), where & =1 — % By setting [ = 4; and
k =1;_1 we get that

pll _ plbi-11 > OA[(P*[J*H B P[j—l})‘
It follows that 4
Q- P <a(@-pPP )+ -a)Q-pri-l).

Thus, setting
—2

U=Q+> 2@ PY),

J=0

which is the upper bound we derived on the separation cost of the sequence X', we have

-2
U = Q+y 2(Q-PY)

7=0

f Q- P+ —a>§2f“<Q—P“—”>

<
-2 B -2
= Q+20Q+a) Q- P21 -a)Q+ (1 - &)Y PTQ- P
i=1 =1
Z {—3 ’
= Q+2Q+24) 2N Q- Py + 21— &) 2@ - PY))
=0 7=0
. {—3
< Q+2Q+44Q+23 ) 2N Q - Py 4201 - Zzﬂ“@ pll)
7j=1 7=0
-3 ) 3
= (1-201-a)+2+48)Q+4a> 2(Q - Py +201-a) [ @+ > 2+ (Q - PV)
7j=1 7=0
/—1 )
< (1+66)Q +46 > 2(Q— PPy +2(1-a)U
j=1

< (84 +4/3) sepcost(I', X*) +2(1 — &)U,
where the last inequality follows from equation Thus, we obtain

(86 +4/3)

t(I''X') <U <
sepcost(I', X") < U < 24 — 1

sepcost(I', X*).

For the last claim let X4 be the sequence obtained by GreedyPSP (Algorithm [3) when it
is executed on instance (Ip, B).

Claim 3. There exists an execution of procedure GreedyPSP (Algorithm [3)) on instance (I’, B)
which returns a sequence Z satisfying sepcostp(Ip, XA) < 2sepcost(I',Z).

Let X# be the i-th test of sequence X4 and let X7 +11 be the first test of XA that is not the
test Wthh maximizes p(U NX)/c(X) among all the tests in X in line (*) of Algorithm 3] Note
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that X7 | is chosen by Algorithm 3| rather than Y, the test which maximizes p(U N X)/c(X),
because Y has cost larger than remaining budget z = B — 22:1 (X JA) The case where

Xﬂ_1 does not exist is easier to handle and will be discussed at the end of the proof. Because
Xf‘, ..., XA is a prefix of X4 we have

sepcostp(Ip, X)) < sepcostp(Ip, (X, ..., X2).
Thus, to establish the claim it suffices to show that
sepcostp(Ip, (X, ..., X)) < 2sepcost(I', Z),

where Z is a possible output of GreedyPSP (Algorithm [3]) on instance (I, B).

For j = 1,...,r, let ZUl = <Z{j],...,ZE(]X]A)> be a sequence of tests defined by some

permutation of the n(XJA) tests in X', generated from X]A.
Let 2 = B — 37", c(X]A) and ZI+1 = <Z¥+H, Z[r+1}> be a sequence of 2z of the

ceey Ly,

n(Y) = 2¢(Y) > 2z tests in X’, generated from Y. The proof of the following proposition is
deferred to section [Bl

Proposition 3. Let Z = ZM Z2 .z ZIH1 pe the sequence obtained by the juataposition
of the sequences ZW, ... ZI'tY). Then, for Z the following conditions hold:

(i) foreach j=1,....,r+1 and K # " € {1,.. .,n(XJA) = QC(XJA)}, it holds that
ZWnzl =

(ii) For each j =1,...,7 4+ 1 and each test @Q in X', with X being the test in X from which
Q is generated, it holds that

p(@ - U UM 28 p(x — U xp)
(@) o(X)

114) 7 is a feasible output for GreedyPSP (Algorithm|3) on instance (I', B).
4 y g

First note that the sequence Z has length 2B and total cost B. This is easily verified
by recalling that: (i) each test in the sequence Z has cost 1/2; (ii) for each 7 = 1,...,r,
the subsequence ZU! has length n(X]A), hence totcost(I',ZU]) = n(X]A)/Z = c(XjA); (iii)
the subsequence Z[I+! has length 22 = 2B - 237 c(XJA) = 2(B - >, |ZV]|) hence
totcost(I',Z" 1) = 2 = B — 1 totcost(I', Zm).

Let Co=0,and for j =1,...,7r,let C; =Y 7_,; c(X#). By the observations in the previous
paragraph, we also have C; = totcost(I', < Z1 ... ZUl >) =37, Zn(:)il )c(Z,[f}).

K

By grouping objects which incur the same cost in X, we can write sepcostg(Ip, X f‘, cees X;f‘)
as follows
r j—1 r
SepcostB(Ip,<X{4,...,Xf>):ZCj‘p<XJA— UX?) +B-p|S-— UXJA (24)
j=1 i=1 j=1
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Analogously, we can compute sepcost(I’,Z) as follows:

) J— 1”XA) k—1
sepcost(I',Z) = Z Z D Z]]— U U Z[Z — (U ZE;]) <Cj1—|—/<;-;>
1

j=1 k=1 =1 k'= Kk'=1

2z T X k—1
+y |z - (U U A (U ZL’I*”) (CT +n~;>
k=1 i=1 w'=1 K=1
r n(XzA) ) 2z
+Bp|s (U U 27| - (U ZL’"*”) : (25)

i=1 k/'=1 k=1

where we have splitted Z into the objects covered by the subsequences ZW. ... ZI the ob jects
covered by the subsequence Z1 and the remaining objects. In the above expressions, the

term Z) — (U U Z[ZJ) - (Uz _11 Zm) represents the set of objects covered by z9 and
not covered by any of the preceding tests in Z. The cost of separating each of these objects is
the sum of the costs of all the tests performed up to Z,Lj], ie., Zf;ll totcost(I', Zm) +rK/2 =
Cj_l + I€/2.

Now, we notice that for each 7 = 1,...,7r+1and 1 < xk < min{n(XJA),%} the set of

objects covered by Z,Lj l'and not covered by the previous tests are

j—1n( XA) 1n(XA)
Zll — U U Z[Z] <UZ ) U U Z[l

i=1 k'=1 =1 k/=1

where the equality follows because by Proposition (3| (i) we have that A <U"i L ZU ]> 0.

K'=1

Moreover, by Proposition 3| (ii) we have that

j—1n(X7) p<X.A_UJf:1XA)
Z[J] B Zz] _ i =1 %
P\luy aX)

Finally, the set

r n( XA 2z
U U ZZ] _ (U Z}Lr+1}>
i=1 r/=1 k=1

that appears in the third term of the righthand side of can be spilt into the objects covered
by the tests generated from Y and the remaining ones. By using arguments similar to those

employed above one can realize that the objects covered by the tests generated from Y are
exactly those generated by the objects in Y — (Ji_; XZ-A that are not covered by the tests in

<UiZ:1 ZLTH]). Thus, their contribution to p(R) is <n(:()y_)2z> p(Y —Ui_; X#). On the other

hand, the contribution to p(R) of the remaining objects is p(S —Y — U;_; X JA)
Therefore, we can rewrite as follows
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sepcost(I',Z) =

1+K- o
j=1 k=1 n(XJA> 2
2z r A
p (Y — Uiy Xi ) 1
+ ,; n(Y) Cr+ kK 5

+m < UXA>-B—|—p S—Y—Oxf B (26)

J=1

Via simple algebraic manipulation on the first term in the right hand side of we have
that

n(X;") A A
1 1 n(X;') +1 (X

- o =0, ~J s O J
I;l TL(XJA) <C] 1t K 2> Cj 1+ 1 _C] 1+ 9 >

and, analogously, for the second term in the right hand side of we have

2z
1 1 2z 2z +1 2z B+C,
) = > .
n(r) 2= <Cr+"”” 2) () (C” 1 )nm 2

Hence, we have

sepcost(I',Z) > Zr: ( UXA> ( i+ ();A)> < UXA> 2z B;C

J=1

g U Ve IR CE R VER) EE
i=1

n( et

Finally, we observe that C;_1 + —5'= ( i > (/2 and (B + C;)/2 > B/2. Then, the sum of
the second and third term in the rlght hand side of (27) can be lower bounded with p(Y —
Uj=1 X]A) - B/2 and we get

r j—1 r r
; B
sepcost(I',Z) > g D (XJA - U XZA) % +p (Y - UX{L‘) 5l +p(S-Y — U XJA)B (28)
i=1

j=1 i=1 j=1

Putting together and we have the desired result
sepcost(I', Z) > 2sepcostp(Ip, < Xi',..., X2 >).

It remains to argue about the case where Xr "1 does not exist, which means that all tests
that maximize the greedy criteria in Algorithm [3 have cost smaller than the current budget
B. In this case, the analysis becomes simpler and be easily handled in the same way as above.
In fact, the only difference is that the last term in disappears, as well as all the terms
referring to Y and ZI"*+1,

The lemma follows from the correctness of the three claims. O
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B The Proof of Proposition

Proposition Let Z = ZzMZ2  Z[ 7+ pe the sequence obtained by the juztaposition
of the sequences ZW, ... ZI'tY). Then, for Z the following conditions hold:

(i) foreach j=1,....,r+1 and K # ' € {1,.. .,n(X]A) = QC(X]A)}, it holds that
ZW Nzl =g

(ii) For each j =1,...,7 + 1 and each test @Q in X', with X being the test in X from which
Q is generated, it holds that

Q- U U 2l px — Ul xp
) o(X)

(iii) Z is a feasible output for GreedyPSP (Algorithm[d) on instance (I', B).
Proof. Ttem (i) is a direct consequence of property (a) of the instance I'.

In order to prove (ii), we observe that, from the definition of the sequences ZU (i =1,...,r),
it follows that the elements of W = U U ,( 1 )ZE,] are all the elements in S’ which are
generated from Uf 11 X; A Therefore, the elements of Q — W are precisely the elements of Q
which are generated from X — J/~] XA.

For each s € X — UJ ! X; A there are precisely ( X) elements in @) that are generated from
s, and each one of them has probablhty p(s)/N. Hence we have

( U U iZ@) 1 N p(s) 1
@) “q@ X m N —aomm 2, P

sex—UIZ) x sex—Ji=) xA

from which we have (ii), since 1/¢(Q)n(X) = 2/n(X) = ¢(X).

In order to prove (iii) it is enough to show that the following claim holds.
Claim. For each j =1,...,r+1land k =1,..., min{2z,n(XJA)} we have that

p (2 — (UL U 28) - (U 28)) p(e- (U Ui 2) - (Ut 22)
c(Z,Lﬂ) - (@)

(29)
for any Q € X”.

This claim says that, foreach j =1,...,r+1land 1 <k < min{2z,n(XJA)}, if Z has been
constructed up to the test preceding Z,.[g ] then with respect to the tests already chosen, the test
Z,[g] satisfies the greedy criterium of procedure GreedyPSP. This implies that Z is a feasible

output for GreedyPSP, as desired.
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Proof of the Claim. Let R be the quantity on the right hand side of , and X be the test
in X from which @ is generated. Then we have

p(@- (UEIU 21))

< Q) (30)

_px _C%W) (31)
p Z,[ij]— U] 1u"(X )ZM

. B (U 29) o

) p(Z,Lj] B (U Seas ).ZM) N (UZ = Zm)) -

c(Z,.[@ﬁ)

Inequality holds since the set whose probability is considered at the numerator of the
right hand side of is a superset of the set whose probability is considered at the numerator
of the right hand side of .

Inequality follows from by property (ii) above.

In order to prove we consider two cases, according to whether j =r+1or j <r+ 1.

If j < r+1, the first inequality below follows from the greedy choice

pox— U ) e - Uy e (- (Ui Ul 20)
x) - ax e(2¥)

and the last equality follows from property (ii) of the proposition under analysis.
If j = r + 1 we have that, by deﬁnitio of Y and the sequence Z[*1 it holds that

p(X Ui xA) _pty Ui xpy e (2= (UE U 20))

xS WX (2

where the last equality follows from property (ii) above.
Finally, (33) follows from because of property (i) above, from which we have that

Z9 A (UH ! Zm) = () hence,

K'=1

p(28 = (UZ U 20) - (Ui 29)) = (22 - (UZ Uit 20)).

2Recall that Y is the test in X which maximizes the greedy criterium, but is not chosen because it exceeds
the available budget
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