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Abstract. A graph with n vertices is 1-planar if it can be drawn in the
plane such that each edge is crossed at most once, and is optimal if it
has the maximum of 4n− 8 edges.
We show that optimal 1-planar graphs can be recognized in linear time.
Our algorithm implements a graph reduction system with two rules,
which can be used to reduce every optimal 1-planar graph to an ir-
reducible extended wheel graph. The graph reduction system is non-
deterministic, constraint, and non-confluent.

1 Introduction

There has been recent interest in beyond planar graphs that extend planar graphs
by restrictions on crossings. A particular example is 1-planar graphs, which were
introduced by Ringel [32] and appear when a planar graph and its dual are drawn
simultaneously. A graph is 1-planar if it can be drawn in the plane with at most
one crossing per edge. In his introductory paper on 1-planar graphs, Ringel
studied the coloring problem and observed that a pair of crossing edges can
be completed to K4 by adding planar edges. 1-planar graphs generalize 4-map
graphs, which are the graphs of adjacencies of nations of a map [16, 17]. Two
nations are adjacent if they share a common border or if there is a quadripoint
where four countries meet, which results in a K4 in the 4-map graph.

The first study of structural properties of 1-planar graphs is by Bodendiek,
Schumacher, and Wagner [7,8]. They showed that 1-planar graphs with n vertices
have at most 4n− 8 edges and that there are such graphs for n = 8 and for all
n ≥ 10, and not for n ≤ 7 and n = 9. They called 1-planar graphs with 4n − 8
edges optimal and observed that optimal 1-planar graphs can be obtained from
planar 3-connected quadrangulations by adding a pair of crossing edges in each
quadrangular face. In fact, this is a characterization and a basis of our recognition
algorithm.

As usual, graphs are simple without self-loops and multiple edges, and paths
and cycles are simple, too. The degree of a vertex is the number of incident edges
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or neighbors, and the local degree is the number of incident edges or neighbors
when restricted to a particular induced subgraph. 1-planar graphs are special
concerning their density, which is taken as an upper bound on the number of
edges in relation to the number of vertices. There are three versions. A 1-planar
graph G is maximally dense or maximum [35] if there is no 1-planar graph of
the same size with more edges. It is maximal 1-planar if the addition of any
edge destroys 1-planarity and planar maximal or triangulated [17] if no further
edge can be added without introducing a crossing. Clearly, maximally dense
1-planar graphs are maximal, which in turn are optimal, but not conversely.
Suzuki [35] gave all maximally dense graphs that are not optimal, namely, the
complete graphs for n ≤ 6, K7 − 2e and six graphs with 9 vertices and 27
edges. Brandenburg et al. [13] showed that there are sparse maximal 1-planar
graphs with only 45

17n−
84
17 edges, which is less than the 3n−6 bound for maximal

planar graphs. Such sparse maximal 1-planar graphs have many vertices of degree
two, whereas optimal 1-planar graphs have degree at least six [8]. Clearly, every
maximal planar graph is planar maximal 1-planar, however, a planar edge can
be added to K5 − e if K5 − e is drawn with a pair of crossing edges. Note that
the terms planar maximal, maximal, maximally dense, and optimal coincide for
planar graphs.

An embedding (drawing) E(G) of a graph is a mapping of G into the plane
such that the vertices are mapped to distinct points and the edges to simple
Jordan curves between the endpoints. It is planar if (the Jordan curves of the)
edges do not cross and 1-planar if each edge is crossed at most once. An embed-
ding is a witness for planarity and 1-planarity, respectively. For an algorithmic
treatment, a planar embedding is given by a rotation system, which describes
the cyclic ordering of the edges incident to each vertex, or by the sets of vertices,
edges, and faces. A 1-planar embedding E(G) is given by an embedding of the
planarization of G, which is obtained by taking the crossing points of edges as
virtual vertices [21].

A planar embedding of a planar graph can be computed in linear time as part
(or extension) of a planarity test algorithm, see [31]. Accordingly, 1-planarity
of an embedding can be tested in linear time via the planarization. However,
computing a 1-planar embedding of a 1-planar graph is NP-hard. The rela-
tionship between planar graphs and their embeddings is well-understood. Every
3-connected planar graph has a unique embedding on the sphere and in the plane
if the outer face is fixed [36]. The set of all embeddings of a planar graph can be
computed in linear time and is stored in a SPQR-tree [19,25]. Accordingly, one
often uses a planar graph and one of its embeddings interchangeably.

A 1-planar embedding partitions the edges into planar and crossing edges.
We color the planar edges black and the crossing ones red. Other color schemes
were used in [20–22, 27]. The black or planar skeleton P (E(G)) consists of the
black edges and inherits its embedding from the given 1-planar embedding. Ver-
tex u is called a black (red) neighbor of vertex v if the edge (u, v) is black (red)
in a 1-planar embedding. A kite is a 1-planar embedding of K4 with a pair of
crossing edges and no other vertices in the inner (or outer) face defined by the
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black edges. A K4 has one planar and four non-planar embeddings which differ
by the edge coloring and the rotation system [29], see Fig. 1.

1-planar embeddings are quite flexible, as the five embeddings of K4 [29] and
the NP-hardness proof of [3] show. There is an extension of Whitney’s theorem
by Schumacher [34] who proved that every 5-connected optimal 1-planar graph
has a unique 1-planar embedding with the exception of the extended wheel
graphs, which have two embeddings for graphs of size at least ten and six for
the minimum optimal 1-planar graph with eight vertices. The extended wheel
graphs XW2k will be described in Section 2. Suzuki [35] improved this result
and dropped the 5-connectivity precondition.

(a) planar (b) crossed as a kite

Fig. 1. 1-planar embeddings of K4

A serious drawback of (most classes of) beyond planar graphs is the general
NP-hardness of their recognition. For 1-planarity this was proved by Grigoriev
and Bodlaender [24] and by Korzhik and Mohar [28], and improved to hold
for graphs of bounded bandwidth, pathwidth, or treewidth [4], for near planar
graphs [15], and for 3-connected 1-planar graphs with a given rotation system [3].
Moreover, the recognition of right angle crossing graphs (RAC) [1] and of fan-
planar graphs [5,6] is NP-hard. On the other hand, Eades et al. [21] introduced a
linear time testing algorithm for (planar) maximal 1-planar graphs that are given
with a rotation system. As aforesaid, 1-planarity of an embedding can be tested
in linear time. In addition, there are linear time recognition algorithms if all
vertices are in the outer face. The resulting graphs are called outer 1-planar and
were first studied by Eggleton [23]. It is not obvious that outer 1-planar graphs
are planar [2]. Independently, Auer at al. [2] and Hong et al. [26] developed linear
time recognition algorithms for outer 1-planar graphs. Also, maximal outer-fan-
planar graphs can be recognized in linear time [5]. Chen et al. [17] developed a
cubic-time recognition algorithm for hole-free 4-map graphs and observed that
the 3-connected planar maximal 1-planar graphs are exactly the 3-connected
hole-free 4-map graphs [16]. The optimal 1-planar graphs are exactly the hole-
free 4-map graphs with 4n−8 edges and thus recognizable in cubic time. Recently,
Brandenburg [10] showed that maximal and planar maximal 1-planar graphs can
be recognized in O(n5) time.

Schumacher [34] defined a single-rule graph transformation system on 1-
planar embeddings and proved that every 5-connected optimal 1-planar graph
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is reducible to an extended wheel graph which is irreducible. His result was
generalized by Suzuki [35] who added a second rule and thereby removed the 5-
connectivity restriction. The reduction rules are defined on an embedding and ex-
tend the reduction rules for planar 3-connected quadrangulations of Brinkmann
et al. [14].

In this paper we translate the reduction rules of Schumacher and Suzuki
from 1-planar embeddings to 1-planar graphs and show how to implement them
efficiently. In consequence, the proof of existence for a reduction of an optimal
1-planar graph to an irreducible extended wheel graph by Schumacher [34] and
Suzuki [35] is transformed into an efficient algorithm. These proofs say that a
(5-connected) graph G is optimal 1-planar if and only if there exists a natural
number k and a computation by a sequence of applications of reductions such
that an extended wheel graph XW2k is obtained from G, in symbols, G →∗
XW2k. Suzuki reverses direction and expands XW2k into G. Again, one must
guess the start k or XW2k and the expansion process.

We show that the usability of a reduction rule can be checked in O(1) time
on graphs. According to Brinkmann et. al. [14], a feasible use of a reduction
must preserve the given class, i.e., the optimal 1-planar graphs. Thereby, we
obtain a simple quadratic-time recognition algorithm of optimal 1-planar graphs
which is improved to a linear time algorithm by a bookkeeping technique. It can
be extended to maximally dense 1-planar graphs and specialized to 5-connected
optimal 1-planar graphs. Our algorithm improves upon the cubic running time
algorithm of Chen et al. [17], which solves a more general problem and searches 4-
cycles and other types of separators. Combinatorial properties of the reductions
are explored in [11].

The paper is organized as follows: In the next Section we recall some basic
properties of optimal 1-planar graphs. In Section 3 we introduce the reductions
rules and show how to apply them to graphs. The linear recognition algorithm
for optimal 1-planar graphs is established in Section 4, and we conclude with
some open problems on 1-planar graphs.

2 Preliminaries

Optimal 1-planar graphs have special properties. Schumacher [34] observed that
there is a one-to-one correspondence between optimal 1-planar graphs and their
planar skeletons which are 3-connected quadrangulations. An optimal 1-planar
graph is obtained from a 3-connected quadrangulation by adding a pair of cross-
ing edges in each quadrilateral face to form a kite. Thus the red edges are added
to the black ones. A formal proof was given by Suzuki [35]. All vertices of an
optimal 1-planar graph have an even degree of at least six and there are at least
eight vertices of degree six, since in total there are 4n − 8 edges if the given
graph has n vertices. The planar and the crossing edges alternate in the rotation
system of a 1-planar embedding of an optimal 1-planar graph. Consider, for ex-
ample, graph B17 in Fig. 2 which has 17 vertices, 60 edges and an even degree
of at least six at each vertex. Is B17 optimal 1-planar?
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Fig. 2. A candidate graph B17 with 17 vertices and 60 edges

The exact number of optimal 1-planar graphs is known for graphs of size
up to 36. Bodendiek et al. [8] showed that K6 is 1-planar but is not optimal
and that there are no optimal 1-planar graphs with seven and nine vertices.
There is a unique optimal 1-planar graph for n = 8, 10, 11, and there are three
optimal 1-planar graphs for n = 12, 13. For n = 14, they found 11 optimal 1-
planar graphs, but one is missing. Brinkmann et al. [14] developed recurrence
relations for the enumeration of quadrangulations and computed the number of
3-connected quadrangulations up to size 36. For example, there are 12 for n = 14
and 3000183106119 quadrangulations and optimal 1-planar graphs of size 36.

The pseudo-double wheels [14] and the extended wheel graphs XW2k play a
particular role for quadrangulations and optimal 1-planar graphs, respectively,
since thes are the irreducible or minimum graphs under two graph reduction
rules. For k ≥ 3, a pseudo-double wheel W2k is a quadrangulation with two
distinguished vertices p and q, called poles, a cycle of even length with vertices
v1, . . . , v2k and edges (vi, vi+1) in circular order and further edges (p, v2i) and
(q, v2i−1) for i = 1, . . . , k. Thus p is connected with the vertices at even and q
with the vertices at odd positions on the cycle. W2k has n = 2k + 2 vertices,
2n − 4 edges and n − 2 faces. The extended wheel graph XW2k additionally
contains all possible pairs of 1-planar crossing edges (p, v2i−1), (v2i, v2i+2) and
(q, v2i), (v2i−1, v2i+1) in circular order. This is the augmentation of W2k by kites,
see Fig. 3. The two poles of XW2k have degree 2k and each of the 2k vertices on
the cycle has degree six. If k ≥ 4, then the edges (vi, vi+1) on the cycle are black
and the edges (v2i, v2i+2) and (v2i−1, v2i+1) are red. In addition, a graph is an
extended wheel graph if it is optimal 1-planar and has a vertex of degree n−2 [8].
The second degree n− 2 vertex is implied. Moreover, an optimal 1-planar graph
is an extended wheel graph if the vertices of degree six form a cycle [8].

The notation XW2k for graphs of size 2k + 2 is taken from Suzuki [35] and
is related to Schumacher’s 2 ∗ Ĉ2k notation.

We summarize some basic properties of optimal 1-planar graphs from [7,8,35].



6 Franz J. Brandenburg

(a) The minimum extended
wheel graph XW6 drawn as
a crossed cube
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(b) The extended wheel graph XW10

with poles p and q and with hexagons
for vertices of degree 6

Fig. 3. Extended wheel graphs XW6 and XW10. Any two non-adjacent vertices
p and q of XW6 can be taken as poles. In larger extended wheel graphs, if poles p
and q change places this swaps the coloring of the incident edges. Edges between
consecutive vertices on the cycle are always planar and are colored black.

Proposition 1. Every optimal 1-planar graph G = (V,E) consists of a planar
quadrangulation GP = (V,EP ) and a pair of crossing edges e, f in each face of
GP forming a kite such that E = EP ∪EC , where EC is the set of crossing edges.
GP is 3-connected and bipartite. G has a unique embedding, except if G is an
extended wheel graph XW2k, which has two inequivalent embeddings for k ≥ 4
in which the planar and crossing edges incident to a pole are interchanged and
their colors swap. The minimum extended wheel graph XW6 has six inequivalent
1-planar embeddings.

From the fact that GP is bipartite, we can conclude:

Lemma 1. Every cycle of odd length in an optimal 1-planar graph contains at
least one red edge. If C is a cycle of length four and three of its edges are black,
then all edges of C are black.

Schumacher [34] defined a relation on 1-planar embeddings and used it to
characterize 5-connected optimal 1-planar graphs.

Definition 1. Two 1-planar embeddings E(G) and E(G′) are related, E(G) ↪→
E(G′), if there is a planar quadrangle (v1, v2, v3, v4) in the planar skeleton P (E(G))
such that

(*) all paths from v1 to v3 of length four in P (E(G)) pass through v2 or v4.
Then E(G′) is obtained from E(G) by merging v1 and v3 and removing parallel
edges. For graphs G and G′, let G ↪→ G′ if there exist embeddings such that
E(G) ↪→ E(G′) and denote the transitive closure by “↪→∗”.
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The paths of (*) from v1 to v3 are simple and use only planar (black) edges.
The embedding E(G) must satisfy special properties such that the planar quad-
rangle (v1, v2, v3, v4) coincides with (x, x3, x4, x5) in Fig. 5. Note that each quad-
rangle in an extended wheel graph has a path of length four between opposite
vertices (vi−1, vi+1) of a planar quadrangle through one of the poles, such that
(*) is violated. In consequence, the “↪→”-relation is not applicable.

Proposition 2. [34] Every 5-connected optimal 1-planar graph G can be re-
duced to an extended wheel graph XW2k for some k ≥ 3, i.e., G ↪→∗ XW2k.
The extended wheel graphs are irreducible (or minimum) elements under the
“↪→”-relation.

By the restriction to 5-connected graphs, Schumacher excluded graphs with
separating 4-cycles. Separating 4-cycles play a similar role in optimal 1-planar
graphs as separating triangles do in triangulated planar graphs. In fact, every
non-irreducible 5-connected optimal 1-planar graph can be reduced to XW8 [11].

Brinkmann et al. [14] introduced two graph transformations, called P1- and
P3-expansions, for the generation and characterization of (planar) 3-connected
quadrangulations. We consider their inverse as reductions.

Definition 2. The P1-reduction on a quadrangulation consists of a contraction
of a face f = (u, x, v, z) at x, z, where x has degree 3 and u, v, z have degree at
least 3. It is shown in Fig. 4 and in an augmented version in Fig. 5 with the
restriction to planar (black) edges. The P3-reduction removes the vertices of the
inner cycle of a planar cube, where the inner cycle is empty and the vertices of
the outer cycle have degree at least 4, see Fig. 6 restriced to planar (black) edges.

The reductions must be applied such that they preserve the class of 3-connected
quadrangulations.

By the one-to-one correspondence between 3-connected quadrangulations
and optimal 1-planar graphs, the P1- and P3-reductions are extended straight-
forwardly to embedded 1-planar graphs, called vertex and face contraction by
Suzuki [35]. Their inverse is called Qv-splitting and Q4-cycle addition, respec-
tively, and are used from right to left. The illustration in Fig. 4 is taken from [35].
A Q4-cycle addition removes the pair of crossing edges of a kite and inserts five
new kites as illustrated in Fig. 6. Suzuki [35] observed that Schumacher’s “↪→”-
relation coincides with his face contraction and defines the P1-reduction on the
planar skeleton of an embedded 1-planar graph.

The distinction between graphs and embeddings is not important for the
P1- and P3-reductions of Brinkmann et. al., since there is a one-to-one corre-
spondence on 3-connected planar graphs. They point out that the reductions
must be used with care such that the given class of graphs is preserved. It is not
specified, however, how this is achieved. On the other hand, the “↪→”-relation
of Schumacher and the Qv-splitting and Q4-cycle addition and the inverse Qf -
contraction and Q4-removal of Suzuki need a 1-planar embedding and the dis-
tinction between planar (black) and crossing (red) edges. It is not immediately
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Fig. 4. Face contraction or vertex splitting on 1-planar embeddings with planar
(black and thick) and crossing (red and thin) edges

clear how to apply these rules to graphs that are given without an embedding or
an edge coloring. Nevertheless they characterize the respective graphs, as stated
in Propositions 3 and 4.

3 Reduction Rules and Their Application

For the translation of the reduction rules from embeddings to graphs and an
efficient check of their usability, we use the uniqueness of 1-planar embeddings
of reducible optimal 1-planar graphs and the local environment of a reduction.
In consequence, a reduction is applied to a subgraph which has (almost) a fixed
embedding. A primary goal is to compute the embedding and to check the fea-
sibility of the application of a reduction. The correctness follows from the works
of Brinkmann et al. [14], Schumacher [34], and Suzuki [35].

Transformations on graphs and graph replacement systems have been studied
in the theory of graph grammars [33]. In general, a graph transformation is a
pair of left-hand and right-hand side graphs α = (L,R). An application of α to
a graph G replaces an occurrence of L in G by an occurrence of R while the
remainder G − L is preserved. It results in a graph G′ = G − L + R. A graph
L occurs in G and L is said to match a subgraph H of G if there is a graph
homomorphism between L and H, which is one-to-one and onto on the vertices
and one-to-one but not necessarily onto for the edges, and similarly for R and
G′. Unmatched edges of H remain in G − L and are kept for G − L + R. This
is elaborated in the algebraic approach to graph transformations [18]. In this
particular case, the general approach does not really help, since the complexity
of the element problem of graph grammars is PSPACE hard [9].

We reverse the expansions of Brinkmann et al. and Suzuki and call them SR-
reduction (Schumacher reduction) and CR-reduction (crossed cube reduction),
and the graphs of the left-hand sides CS (crossed star) and CC (crossed cube),
respectively. The SR-reduction augments the vertex splitting of Suzuki and in-
cludes the subgraph induced by the center x. The reductions are shown in Figs.
5 and 6 including a 1-planar embedding and an edge coloring. The tiny strokes
at the outer vertices indicate further edges, which are necessary. These vertices
may have even more edges to outer vertices.
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Following Brinkmann et al. [14], the given class, here the optimal 1-planar
graphs, must be preserved and therefore an application of a reduction is con-
strained. An infeasible application may destroy the 3-connectivity of the under-
lying planar skeleton or introduce multiple edges, which ultimately leads to a
violation of 3-connectivity.
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Fig. 5. The reduction SR(x 7→ x4) for optimal 1-planar graphs. A candidate
is drawn as a hexagon and other vertices as circles. Good candidates are light
green and bad ones orange. Planar edges are drawn black and thick and crossing
edges red and thin. The tiny strokes at the outside indicate further necessary
edges. The left graph is CS together with its embedding.
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Fig. 6. The reduction CR(x1, x2, x3, x4) for optimal 1-planar graphs with can-
didates x1, x2, x3, x4. The reduction is good and the candidates are colored light
green if there is no edge (v1, v3) or (v2, v4) in the outer face. The graph on the
left is CC together with its embedding.

The main task of our algorithm is an efficient and feasible use of the reduction
rules such that optimal 1-planar graphs are preserved. An obstacle is the gap
between the graphs CS and CC of the left-hand side of the reductions, which
come with an embedding, and the matched subgraph H, which comes as a part
of G. A matched subgraph H(x) of a SR-reduction is a subgraph induced by a
vertex x of degree six and its neighbors. There are three red and three black
neighbors which alternate in the circular order around x. For a CR-reduction
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there is a subgraph of eight vertices. A matched subgraph may have further edges,
since the matching is not onto for the edges. This introduces so-called blocking
edges and is discussed later on. We grant 3-connectivity of the underlying planar
skeleton by the absence of a blocking vertex, which has degree six. For example,
vertices x3 or x5 are blocking vertices of SR(x 7→ x4) in Fig. 5 if they have
degree six. In case of a CR-reduction, a vertex is blocking if it is matched by a
vertex from the outer cycle of CC and has degree six. Multiple edges are avoided
by the absence of blocking edges, which can be planar or crossing, i.e., black or
red. A blocking edge is always related to a reduction and it may be blocking
for many reductions. Blocking black edges occur in separating 4-cycles, and red
and black blocking edges are treated differently. Blocking vertices and planar
blocking edges can also appear in the planar case, whereas blocking red edges
are exclusive to 1-planar graphs. They also cover the case of blocking vertices,
since a blocking vertex implies a blocking red edge. The converse does not hold.

A matching of CS or CC with a subgraph H shall classify the edges of H as
planar and crossing and color them black and red, respectively. It shall determine
the circular order of the vertices in the outer face of CS and CC, and thus an
embedding of H. However, this is not always the case. Graph CS has several
1-planar embeddings, since some K4’s may be drawn planar or as a kite. In fact,
CS is a planar graph, however, as a subgraph of a 1-planar graph it must be
embedded with crossings as shown in Fig. 5, since reducible optimal 1-planar
graphs have a unique embedding. Furthermore, if the matched graph of CS also
has edges (x2, x6) and (x3, x6), then it has two 1-planar embeddings in which x1
and x6 may change places, which implies a color change of the incident edges,
just as in the case of extended wheel graphs. If edges (x2, x4), (x2, x6 and (x4, x6)
exists in addition to the edges of CS, then the situation is even worse and any
circular order of the neighbors of x is possible. Fortunately, these possibilities
are represented by the degree vectors which are defined below.

The usability of a reduction is linked to one or four vertices of degree six and
some conditions. A SR-reduction is applied to a vertex x of degree six, which
is the image of the central vertex and the corner of three kites of CS. For the
right-hand side, x is merged with a target, which is a red vertex v of the outer
cycle, denoted SR(x 7→ v), and SR(x 7→ x4) is shown in Fig. 5. A given optimal
1-planar graph may have several places for the application of a reduction, even
at a single candidate, and the next reduction is chosen nondeterministically.
There are candidates where a reduction is feasible and others where a reduction
is infeasible. An application of a CR-reduction is linked to (one of) four vertices
x1, x2, x3, x4 of degree six, which are all infeasible for a SR-reduction, and is
denoted CR(x1, x2, x3, x4). The vertices are on the inner cycle of CC and are
removed and replaced by a pair of crossing edges, such that the vertices from
the outer cycle form a kite. In a drawing, the inner cycle may be at the outside.

For convenience, we say that SR is applied to vertex x of the given graph
if SR(x 7→ v) is feasible and call v the target of x, and similarly, that CR is
applied to (x1, x2, x3, x4) or just to xi for some i = 1, 2, 3, 4. In addition, we
shall identify the vertices and edges of the left-hand sides CS or CC with those
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of the matched subgraph H, although the embedding and edge coloring of H is
not yet fixed and some vertices might change places. In general, the matching
and embedding will be clear. Sometimes, it would be good to increase the degree
of a vertex u, e.g., to avoid that u is a blocking vertex for another reduction. The
simplest way is to apply the inverse of CR, i.e., the Q4-cycle addition of [35], and
insert a new 4-cycle together with five pairs of crossing edges in a quadrangular
face at u that is left if a pair of crossing edges is removed.

Definition 3. A vertex x (of an optimal 1-planar graph G) of degree six is called
a candidate.

A candidate x is “good” if there is a feasible application of a reduction at
x. Then the reduction is used as given in Figs. 5 and 6 and the class of optimal
1-planar graphs is preserved. A good candidate is drawn as a light green hexagon.
In case of SR, x is the center of a subgraph H(x) of G that matches CS and
there is some red neighbor v, called a target, such that SR can be applied by
merging x with v, denoted SR(x 7→ v). Then SR(x 7→ v) is “good” and can
feasibly be applied to x. There are three targets in H(x) for a SR-reduction. In
case of a CR-reduction, vertex x belongs to the inner cycle of a subgraph H that
matches CC, and CS is applied to any vertex of the inner cycle.

Otherwise, x is a “bad” candidate and is drawn as an orange hexagon. Then
the reductions SR(x 7→ v) are bad for all three red neighbors of x. The usage
is illegal. A bad reduction SR(x 7→ v) is blocked by a vertex u if u is a black
neighbor of x and v of degree six and if u is any vertex on the outer cycle of
degree six in case of CR, respectively. An edge e = (u, v) of H(x) is a blocking
red edge of SR(x 7→ v) if u is a red neighbors of x. Edge e is a blocking black
edge if u is a black neighbor and e is not matched by an edge of CS. If the outer
cycle of CC matches (v1, v2, v3, v4), then edges (v1, v3) and (v2, v4) are blocking
red edges of a CR-reduction.

A subgraph H(x) with neighbors (x1, . . . , x6) of x in circular order may have
up to three blocking red edges, namely (x2, x4), (x4, x6) and (x6, x2) if x2, x4, x6
are the red neighbors of x, see Fig. 7. There may be none. Blocking red edges
are associated in pairs with SR-reductions, and each blocking red edge (u, v)
is associated with two SR-reductions, SR(x 7→ u) and SR(x 7→ v). The edges
must be red by Lemma 1. Accordingly, a blocking black edge (u, v) of SR(x 7→ v)
connects v with the vertex at the opposite side of CS, since it is not matched,
and, again, it must be black by Lemma 1, see Fig. 7. There are up to three
blocking black edges in H(x), and each SR-reduction has at most one blocking
black edge, since blocking black edges do not cross. There are two blocking red
edges in case a CR-reduction, however, at most one of them can occur in an
optimal 1-planar graph that is not the minimum extended wheel graph XW6.
By Lemma 1, blocking black edges are excluded in this case.

An application of a reduction with a blocking vertex would decrease the
degree of the blocking vertex to four, which would violate the 3-connectivity of
the planar skeleton. The resulting graph would no longer be optimal 1-planar.
The application of a reduction with a blocking edge would introduce a multiple
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(b) Graph CS with a
blocking black edge and
two blocking red edges

Fig. 7. Blocking edges added to CS

edge, whose endpoints are a separation pair of the planar skeleton. This again
leads to a violation of the 3-connectivity of the planar skeleton. Note that the
case of a blocking vertex is covered by a blocking red edge between the black
neighbors of the blocking vertex on the outer cycle. The converse is not true,
since the blocking edge may enclose a (larger) subgraph. For example, add a
forth vertex and then apply the inverse of CR.

Example 1. Consider graph G17 which is optimal 1-planar by the 1-planar em-
bedding displayed in Fig. 10(a). Vertices a, c, d, h, r, s, t, u, v, y, z are candidates,
where a, c, h, s, t are good for a SR-reduction, whereas d and r are bad candi-
dates, and therefore are colored orange. Vertices u, v, y, z are good for a CR-
reduction. A good SR-reduction SR(x 7→ v) is indicated by an arrowhead on
the red edge from x to v. Vertex x moves along that edge and is merged with v.
For example, SR(a 7→ b) is good, whereas SR(a 7→ c) and SR(a 7→ h) are bad,
since d is a blocking vertex and (c, h) is a blocking red edge.

As another example, consider extended wheel graphs as in Fig. 3. Every
vertex on the cycle of XW2k is a candidate which, however, is blocked by its
neighbors on the cycle. In addition, all vertices of XW6 are blocked candidates.
Hence, all SR-reductions are bad and the extended wheel graphs are irreducible.

Definition 4. Every reduction α has a pair {e, f} of associated red blocking
edges. If α = SR(x 7→ v), then e = (u, v) and f = (w, v), where u, v and w are
the red neighbors of x. If α is a CR-reduction, then e and f are the two blocking
red edges of CC.

Recall that SR is Schumacher’s “↪→”-relation and the reverse of Suzuki’s
vertex splitting Qv [35], and CR is the reverse of the Q4-cycle addition, and
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the P1- and P3-expansions of Brinkmann et al. are the restrictions to planar
quadrangulations. The existential foundations for the reductions are:

Proposition 3. [14] The class Q3 of all 3-connected quadrangulations of the
sphere is generated from the pseudo-double wheels by the P1(Q3)- and P3(Q3)-
expansions.

Proposition 4. [35] Every optimal 1-planar graph can be obtained from an
extended wheel graph by a sequence of Qv-splittings and Q4-cycle additions.

3.1 Application of the Reduction Rules

For an application of a reduction one must find a matching of CS and CC and a
subgraph H that preserves the coloring and the 1-planar embedding of CS and
CC, respectively, and check whether the reduction is good or bad. In addition,
the reason for a bad reduction must be known for the linear time algorithm in
Section 4. Fortunately, the degree vector and the local degrees of the vertices of
the matched subgraph provide the necessary information, as stated in Table 1.

Definition 5. Let x be a candidate of graph G, and let H(x) be the subgraph in-

duced by x and its six neighbors. Let
−−−→
H(x) = (d1, . . . , d7) be the lexicographically

ordered 7-tuple with the local degrees of the vertices of H(x), called the degree
vector of x, and call τ(x) = d1 the type of x.

Lemma 2. If x is a candidate of an optimal 1-planar graph, then

1. 3 ≤ τ(x) ≤ 5
2. H(x) has between 15 and 18 edges, and

3.
−−−→
H(x) ∈ {(3, 3, 3, 5, 5, 5, 6), (3, 3, 4, 5, 5, 6, 6), (3, 4, 4, 5, 5, 5, 6), (3, 4, 5, 5, 5, 6, 6),

(4, 4, 5, 5, 5, 5, 6), (4, 4, 5, 5, 6, 6, 6), (5, 5, 5, 5, 5, 5, 6)}.

Proof. The first tuple for
−−−→
H(x) is the degree vector of CS and any sparser sub-

graph cannot match CS. As x is the corner of three kites, one can add at most
three extra edges in the outer face of CS, namely (x2, x4), (x2, x6), (x6, x4) with
−−−→
H(x) = (5, 5, 5, 5, 5, 5, 6) and (x2, x4), (x2, x6), (x2, x5) with

−−−→
H(x) = (4, 4, 5, 5, 6, 6, 6),

where e.g., (x2, x5) must be black and the other edges are red. The other degree
vectors result from one or two edges added to CS. ut

Obviously,
−−−→
H(a) = (3, 4, 4, 5, 5, 5, 6) for vertex a of G17 in Fig. 10(a) and

vertex b has local degree 3. Moreover,
−−−→
H(x) = (4, 4, 5, 5, 5, 5, 6) if x is on the

inner cycle of CC and the CR-reduction is good, such as u, v, y, z in G17, and
if x is on the cycle of an extended wheel graph XW2k for k ≥ 4. Finally, the

maximum degree vector
−−−→
H(x) = (5, 5, 5, 5, 5, 5, 6) appears at every vertex of

XW6 and at two candidates of CC if there is a blocking red edge, e.g., (b, g) in
Fig. 11(b).
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Definition 6. The subgraph H(x) of a candidate x of an optimal 1-planar graph
is fixed if its embedding and coloring is uniquely determined. It has a partial
coloring if two neighbors of x may change places and the coloring of the incident
edges is open, and, finally, H(x) is unclear if the coloring of the edges of H(x)
is undecided.

Lemma 3. Let x be a candidate of an optimal 1-planar graph G and H(x) the
subgraph induced by x and its neighbors.

1. If τ(x) = 3, then the coloring of H(x) is fixed except for
−−−→
H(x) = (3, 4, 5, 5, 5, 6, 6),

where there is a partial coloring.
2. If τ(x) = 4, then there is a partial coloring.
3. If τ(x) = 5, then the edge coloring is unclear.

Proof. First, a black neighbor of x has local degree at least 5.
If τ(x) = 3 and x4 has local degree 3, then x4 is a red neighbor of x and has

two more neighbors, say x3 and x5, that are black neighbors of x and x4. Then
the subgraph induced by (x, x3, x4, x5) must form a kite, since it is K4 and the
embedding is unique by Proposition 1. If there is another vertex with local degree
3, then the above applies again, such that the circular order of the neighbors
of x, the edge coloring and the embedding of H(x) are uniquely determined. If
d2 = d3 = 4, then the two vertices with local degree 4 are red neighbors of x
and they have a red edge in between, whose removal leaves two vertices with

local degree 3. Again, H(x) is uniquely determined. Finally, consider
−−−→
H(x) =

(3, 4, 5, 5, 5, 6, 6) with x4 of local degree 3 and x2 of local degree 4. Vertex x4
determines x3 and x5 as its black neighbors on the cycle. There are no edges
(x2, x4) and (x2, x5) such that x2 is opposite of x5. Vertices x2 and x4 have x3
as common neighbor and x3 is a black neighbor of x, x2 and x4. However, the
roles of x1 and x6 are undecided in H(x). They may change places in the circular
order around x, but the edge (x1, x6) is black, see Fig. 8. Thus there is a partial
coloring of H(x).

If τ(x) = 4, there are two vertices of local degree 4 by Lemma 2. Let x2
and x4 be these vertices, which are red neighbors of x. The third red neighbor
of x has local degree at least 5. Hence, edge (x2, x4) is missing in H(x). There
is a vertex of local degree 5 that is not adjacent to x4 and is opposite of x4
and similarly for x2. Let x1 and x5 be the respective vertices, which are black
neighbors of x. Edges (x1, x2) and (x4, x5) are black, and the subgraph induced
by {x, x1, x3, x4, x6} is fixed. However, x3 and x6 may change places and there
is a partial edge coloring. Finally, the neighbors of x are indistinguishable and
the edge coloring is unclear if τ(x) = 5. ut

Fortunately, neighboring candidates help each other in determining the edge
coloring. Consider the candidates x1, x2, x3, x4 of the inner cycle of CC, as
given in Fig. 6, and assume that the graph is not XW6. Then τ(xi) ≥ 4

and τ(xi) = 4 for two of them, say x1 and x3. Then
−−−−→
H(x1) determines that

(x1, x2), (x1, x4), (x2, v2) and (x4, v4) are black, whereas v1 and x3 may change
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(b) The incorrect 1-planar drawing with a
new edge coloring. For a correct drawing
swap x1 and x6.

Fig. 8. An ambiguous case where the embedding of x1 and x6 is not yet fixed.

places. Similarly,
−−−−→
H(x3) determines the black edges (x3, x2), (x2, v2), (x3, x3),

(x4, v4). If τ(x2) = 5 then τ(x4) = 5 and their coloring is unclear. However, the
black neighbors of x2 are x1, v2, x3 and v1 is a red neighbor, which implies that
v1 is a black neighbor of x1 and the case is decided. Hence, the coloring of a
subgraph matching CC is fixed and its embedding is unique.

In fact, we have the following situation:

Lemma 4. Let H be a (sub-) graph of size 7 with a vertex x of degree 6. Then

H is unique and is maximal planar if
−−−→
H(x) = (3, 3, 3, 5, 5, 5, 6). There are (at

least) two graphs H1 and H2 if
−−−→
H(x) = (3, 4, 4, 5, 5, 5, 6), and H1 and H2 are

non-planar and 1-planar.

Proof. Let {x, v1, . . . , v6} be the vertices ofH, where x has degree 6, and v2, v4, v6
have local degree 3. If each of v2, v4, v6 has two vertices of v1, v3, v5 as neighbors,
then H = CS. Clearly, CS satisfies the assumptions and is planar. For a contra-
diction, suppose that there is an edge (v2, v4) and let u, v be the two remaining
neighbors of v2 and v4. Then v1, v3 and v5 cannot have local degree 5 and there
is no graph as required.

Let H1 be obtained from CS by adding edge (x2, x4), and let H2 be the
graph displayed in Fig. 9. There is an edge from the vertex of degree 3 to a
vertex of degree 4 in H2, which does not exist in H1. The graphs are non-planar,
since there are 7 vertices and 16 edges and they are 1-planar, as shown by the
figures. ut

Similarly, there is a unique subgraph that matches CC if CR is good. The
unique embedding is obtained from pairs of vertices that are placed opposite
each other on the inner and outer cycles.

Lemma 5. There is a unique graph H that matches CC if H has four mu-

tually neighbored candidates x1, x2, x3, x4 with
−−−→
H(xi) = (4, 4, 5, 5, 5, 5, 6) for

i = 1, 2, 3, 4.
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Fig. 9. Graph H2 from Lemma 4 with vertices labeled by degree

Proof. Let v1, v2, v3, v4 be the remaining vertices of H. Each vertex of the inner
cycle of CC excludes exactly one vertex of the outer cycle as a neighbor. Assume
this does not hold inH and let e.g., x1 and x2 both exclude v1 as a neighbor. Since
x1 and x2 are candidates, vertices v2, v3, v4 are their neighbors, and both x1 and

x2 contribute a 6 in the degree vector of the other such that
−−−−→
H(x1) = (. . . , 6, 6),

a contradiction. ut

The usability of a reduction is completely determined by the degree vector
of a candidate and the type distinguishes between a SR- and a CR-reduction.

Lemma 6. A candidate x of an optimal 1-planar graph is good for SR if and
only if τ(x) = 3 and SR(x 7→ v) is good if v has local degree 3.

Proof. Let H(x) be the subgraph matching CR and let {x, x1, . . . , x6} be the
vertices of H(x). Then H(x) has a unique embedding matching the embedding

of CS as shown in Lemma 3 if τ(x) = 3 and
−−−→
H(x) 6= (3, 4, 5, 5, 5, 6, 6). Then

SR(x 7→ x4) is good if x4 has local degree 3. Otherwise, there is a partial
coloring and x1 and x6 may change places if x4 has local degree 3 and x2 has
local degree 4. This ambiguity does not hinder using SR(x 7→ x4), which removes
x and the edge (x3, x5) and inserts the edges (x1, x4), (x6, x4) and the red edge
(x2, x4). Then the color of the edges incident to x1 and x6 remains open.

If τ(x) ≥ 4, then every red neighbor of x has a blocking red edge and there
is no good SR-reduction. ut

Lemma 7. A candidate x1 of an optimal 1-planar graph is good for CR if and

only if τ(x1) = 4 and there are three more candidates x2, x3, x4 with
−−−→
H(xi) =

(4, 4, 5, 5, 5, 5, 6), and CC matches the subgraph induced by x1, x2, x3, x4 and its
four common neighbors.

Proof. If CR is good, then the degree vector of the four vertices that match
the vertices of the inner cycle of CC is (4, 4, 5, 5, 5, 5, 6). The degree vector

(5, 5, 5, 5, 5, 6, 6) implies a blocking red edge and
−−−→
H(x) = (4, 4, 5, 5, 6, 6, 6) im-

plies a black edge between two opposite neighbors of a center, which violates
CC.
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−−−→
H(x) coloring reductions blocking edges storing

(3, 3, 3, 5, 5, 5, 6) fixed SR(x 7→ x2) none GOODe, GOODg

SR(x 7→ x4) none GOODe, GOODf

SR(x 7→ x6) none GOODf , GOODg

(3, 3, 4, 5, 5, 6, 6) fixed SR(x 7→ x2) none GOODe, GOODg

SR(x 7→ x4) none GOODe, GOODf

SR(x 7→ x6) black none
(3, 4, 4, 5, 5, 5, 6) fixed SR(x 7→ x2) g WAITe, BADg

SR(x 7→ x4) none GOODe, GOODf

SR(x 7→ x6) g WAITf , BADg

(3, 4, 5, 5, 5, 6, 6) partial SR(x 7→ x2) g WAITe, BADg

SR(x 7→ x4) none GOODe, GOODf

SR(x 7→ x6) black none
(4, 4, 5, 5, 5, 5, 6) fixed CR none GOODd, GOODd′

(4, 4, 5, 5, 6, 6, 6) fixed CR d BADd,WAITd′

(5, 5, 5, 5, 5, 5, 6) unclear infeasible

Table 1. Degree vectors and their impact on reductions

Conversely, there is a unique subgraph matching CC by Lemma 5 if the

degree vector of the candidates is
−−−→
H(x) = (4, 4, 5, 5, 6, 6, 6), and there is no

blocking edge. ut

Corollary 1. For each candidate x of a graph G it can be checked in O(1) time
whether x is good or bad. It can be determined which reduction applies if x is
good. The reduction takes O(1) time including a (partial) coloring of the edges.

Proof. The type of x decides which reduction may apply and the degree vector(s)
and the local degrees tell whether the reduction is good. The reductions operate
on subgraphs with six resp. eight vertices. They remove one or four vertices and
one more edge and insert three or two edges. This can be accomplished in O(1)
time. ut

We summarize the degree vectors and their impact on an edge coloring, re-
ductions and their blocking edges, and storing the reductions in the linear-time
algorithm in Section 4 in Table 1. For convenience, assume that the circular or-
der of the neighbors of candidate x is (x1, . . . x6) as in Fig. 5, where x2, x4 and x6
are red neighbors and x4 ≤ x2 ≤ x6 if the vertices are ordered by local degree.
Let e = (x2, x4), f = (x6, x4), g = (x2, x6) and let d and d′ be the diagonals
(v1, v3) and (v2, v4) in case of CC and a CR-reduction.

The existence of a good candidate is granted unless all candidates are blocked,
as in an extended wheel graph, or if the graph is not optimal 1-planar.

Lemma 8. If G is a reducible optimal 1-planar graph, then G has a good can-
didate.
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Proof. According to Brinkmann et al. [14] there is a good candidate for their P1-
and P3-reductions (or expansions) on 3-connected quadrangulations unless the
graph is a double-wheel graph, and thus irreducible. In Lemma 4 [14] they prove
that a good candidate lies in the innermost (or outermost) separating 4-cycle.
By the one-to-one correspondence between planar 3-connected quadrangulations
and optimal 1-planar graphs, this generalizes to optimal 1-planar graphs. ut

As a final step, we consider the recognition of extended wheel graphs.

Lemma 9. There is a linear time algorithm to test whether a graph is an ex-
tended wheel graph XW2k.

Proof. If the input graph G has eight vertices, we check G = XW6 by inspection.

Here, each vertex x is a candidate with
−−−→
H(x) = (5, 5, 5, 5, 5, 5, 6).

For k ≥ 4, an extended wheel graph XW2k has two poles p and q of degree 2k
as distinguished vertices and a cycle of 2k vertices of degree six. This is checked
in a preprocessing step on the given graph and takes en passant O(1) time. For a
final check, we remove the poles and restrict ourselves to the subgraph induced
by the vertices of degree six. Each such vertex v has four neighbors and the cyclic
ordering of these vertices is determined as (v−2, v−1, v, v+1, v+2) by the missing
edges (v−2, v+1), (v−2, v+2) and (v−1, v+2). So we determine the cycle and then
check for XW2k. Altogether, the tests take O(2k) time. ut

From the above observations, we obtain a simple quadratic-time algorithm
for the recognition of optimal 1-planar graphs. The algorithm scans the actual
graph and searches a single candidate for SR or a cluster of four candidates
for CR and checks in O(1) time whether the reduction is good or bad. Each
reduction removes one or four vertices. Hence, there are at most n − 2k − 2
reductions from a graph of size n to an extended wheel graph XW2k.

Theorem 1. There is a quadratic-time recognition algorithm for optimal 1-
planar graphs.

Example 2. For an explanation of the reductions consider the input graph G17 as
shown in Fig. 10(a) with a 1-planar embedding. Vertices a, c, h, s, t are good for
an SR-reduction, and u, v, y, z are good for a CR-reduction. If the CR-reduction
is applied first, we obtain the graph in Fig. 10(b) and SR(h 7→ q) then yields
XW10.

Alternatively, using SR(a 7→ b), SR(h 7→ q), SR(g 7→ d), SR(c 7→ b), SR(d 7→
i) and finally CR(u, v, y, z) ends up at XW6. This computation is illustrated in
Figs. 11(a) to 11(f). Note that the cluster u, v, y, z flips from good to bad if there
is an outer neighbor of degree six, which is blocking and induces a blocking red
edge.

Also, XW8 can be obtained by SR(a 7→ b), SR(h 7→ q), SR(g 7→ d), and
finally CR(u, v, y, z).

Graph G17 in Example 2 can be reduced to different extended wheel graphs
which are irreducible. In consequence, the graph reduction system with the rules
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(a) A 1-planar embedding of G17. Candidates are drawn as hexagons which are
light green for good candidates and orange for bad candidates. Non-candidates of
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Fig. 10. A reduction of an input graph to an extended wheel graph.
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(f) and finally CR(u, v, y, z)
yields XW6

Fig. 11. A alternative reduction of an input graph to XW6.
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SR and CR cannot be confluent, since confluence implies a unique irreducible
representative. A rewriting system is confluent if x →∗ u and x →∗ v implies
that there is a common descendant z with u→∗ z and y →∗ z. In consequence,
if two rules can be applied at different places of x starting two reductions, then
the reductions join at a common descendant. This is not the case for SR and
CR. More properties are elaborated in [11].

Corollary 2. The reduction system with the rules SR and CR is non-confluent
on optimal 1-planar graphs.

4 A Linear Time Algorithm

Example 2 shows that a reduction may change the role of other candidates and
reductions. In particular, SR(x 7→ x4) increases the degree of x4 by two. If x4
was a candidate before, it is no longer. If x4 blocked another reduction, it does
no longer. On the other hand, the degree of x3 and x5 decreases by two and they
may become new candidates, which may turn their neighbor candidates from
good to bad. Accordingly, a CR-reduction decreases the degree of the vertices
on the outer cycle by two, which may introduce some of them as candidates with
an impact on candidates in their neighborhood. However, vertices at distance at
least three from the vertex of the application of a rule are not affected. Hence,
a reduction operates locally. However, a reduction may have a global effect and
introduce or remove a blocking edge for many other reductions and candidates.
This is illustrated in Figs. 12 and 13. Thus it may be advantageous to maintain
lists with all reductions that are or may be blocked by an edge. There is a
separating 4-cycle if an edge blocks two or more reductions. Clearly, there is a
separating 4-cycle at a CR-reduction. If two SR-reductions are blocked by an
edge e = (u, v), then the centers of the reductions have degree 6 and have u and
v as common neighbors and there is a separating 4-cycle through u and v which
includes e if the blocking edge is black.

We shall assume throughout that the given graph G is reducible, i.e., not an
extended wheel graph, and that x is a candidate of a SR-reduction or x is one
of four candidates of a CR-reduction.

The degree vector of a candidate x does not determine the coloring of H(x),
but it tells which reduction is applicable, see Lemmas 3 - 7. Infeasible applications
can be restricted even further.

First, observe that τ(x) ≤ 4 if x is a candidate of a reducible optimal 1-planar

graph. Otherwise,
−−−→
H(x) = (5, 5, 5, 5, 5, 5, 6) implies H(x) = K6, but K6 is not a

proper subgraph of a 5-connected 1-planar graph [8].
Second, both blocking edges of a CR-reduction cannot occur simultaneously,

since the induced subgraph would have a separation pair violating 4-connectivity.
Finally, suppose there is a blocking black edge for an SR-reduction at candi-

date x, say edge (x3, x6). Then
−−−→
H(x) = (3, 3, 4, 5, 5, 6, 6) or

−−−→
H(x) = (3, 4, 5, 5, 5, 6, 6)

by Lemma 2. If vertex x4 has local degree three, then SR(x 7→ x4) is appli-
cable, whereas SR(x 7→ x6) is not. Suppose the coloring is fixed as in Fig.
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5, otherwise one must also consider cases with x1 and x6 exchanged. Then
(x1, x2, x3, x6) and (x1, x6, x4, x3) are separating 4-cycles which separates x from
further black neighbors of x2 and x4, respectively. The blocking black edge
(x3, x6) for SR(x 7→ x6) cannot be removed if x remains as a candidate. Then
another reduction must remove the edge. A black edge is removed by a reduc-
tion if it is incident to a candidate. However, if x is a candidate and there is
the edge (x3, x6), then x3 has degree at least eight and the degree of x3 can-
not be decreased to six since x is a blocking neighbor. Consider the 4-cycle
C = (x1, x2, x3, x6) and suppose that x is in the outer face of C, the other case
is similar. Then x2 has at least one more black neighbor w besides x1 and x3.
If x6 had local degree six, then the red edge (x6, w) were crossed by (x1, x3),
which were a multiple edge. Hence, also x6 has degree at least eight and is not a
candidate. Hence, the black prohibited edge (x3, x6) remains if x remains. How-
ever, if SR(x 7→ x2) or SR(x 7→ x4) can be applied, then x is removed and also
SR(x 7→ x6). In consequence, a reduction SR(x 7→ v) can never be used if there
is a blocking black edge incident to v, and we add “none” in the last column of
Table 1.

We summarize these facts:

Lemma 10. For a reducible optimal 1-planar graph the following holds:

1. If x is a candidate, then H(x) is fixed or has a partial coloring for an SR-
reduction.

2. The subgraph matched by CC has at most one blocking red edge.
3. A reduction SR(x 7→ v) is infeasible if there is a blocking black edge incident

to v.

Next, consider the interaction between SR- and CR-reductions. Their us-
ability is distinguished by the type of the candidates. The vertices of the inner
cycle of CC mutually block each other for a SR-reduction. These vertices are a
“black hole” for SR-reductions, since they can never take the role of the center
of a good SR-reduction. However, vertex x of the inner cycle of CC may be the
target of a SR-reduction SR(w 7→ x), whose use absorbs vertex w. In that case,
the CR-reduction is bad and is blocked by w. The vertices of the inner cycle can
only be removed by a CR-reduction, or they remain for the final extended wheel
graph.

Lemma 11. A SR-reduction never applies to a candidate xi if a CR-reduction
applies to candidates x1, x2, x3, x4 for i = 1, 2, 3, 4.

Proof. If CR applies to x1, x2, x3, x4, then
−−−→
H(xi) = (4, 4, 5, 5, 5, 5, 6) for i =

1, 2, 3, 4 if the reduction is good and
−−−→
H(xi) = (5, 5, 5, 5, 5, 5, 6) for two vertices

if the reduction is bad by Lemma 7. The matching subgraph has a unique em-
bedding. Vertices xi on the inner cycle of CC mutually block each other and
τ(xi) ≥ 4 excludes the use of a SR-reduction, which needs τ(xi) = 3 by Lemma
6. ut
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Finally, consider the relationship between reductions and blocking edges. A
reduction may introduce a blocking edge for many reductions, and it may be
blocked by several blocking edges. It is a many-to-many relation, say (j : k),
where k may be linear in the size of the graph. By Lemma 10 it suffices to
consider reductions with a fixed or a partial coloring, and a reduction with a
blocking black edge can be discarded. Hence, a candidate x may allow for three
SR-reductions towards its red neighbors if H(x) is fixed. Each SR-reduction
has zero, one, or two blocking red edges, where zero means that the reduction is
good. Therefore, j ≤ 2 suffices. There are two bad SR-reductions for a candidate
x if there is a single blocking red edge, and x is bad if and only if there are two
blocking red edges or the graph is XW6.

A SR-reduction SR(x 7→ x4) introduces the planar edge (x1, x4), which
simultaneously may close many 4-cycles and then may block many other candi-
dates and their SR-reduction towards x4, see Fig. 12. Similarly, edges (x2, x4)
and (x6, x4) or the diagonals in CR may be blocking red edges for many other
reductions, as Fig. 13 illustrates. Such edges may be removed by another reduc-
tion, and then they can reappear after a further reduction.
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Fig. 12. A conflict among good candidates x1, . . . , xr and their SR-reduction
SR(xi 7→ x4). The first such reduction generates a blocking black edge and
blocks the other reductions.

A direct treatment of all candidates and their reductions may lead to a
quadratic running time. We use lists for the reductions that a red edge may
block. For example, all reductions SR(xi 7→ x4) and SR(x 7→ x4) in Fig. 13 are
collected in a list BADe if edge e = (x2, x4) exists. The existence of a blocking
red edge associated with a SR-reduction is determined by the degree vector
and the local degree of the vertices. The outcome is given in Table 1 and is a
consequence of Lemmas 6, 7 and 10.

To manage the reductions efficiently, we split each pair of associated block-
ing red edges of a reduction and treat each edge separately. For each red edge
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Fig. 13. Illustration of a blocking red edge (x2, x4) with many conflicts. There
must be subgraphs in the shaded areas. If edge e = (x2, x4) is introduced, e.g.,
by SR(x 7→ v4), then e blocks the reductions SR(xi 7→ x4) for i = 1, . . . , r. If
e is removed thereafter, it can be reintroduced by SR(xj 7→ x4) for some j and
then it blocks the remaining SR-reductions again.

that occurs in H(x) for some candidate x, there are three lists of reductions
GOODe, BADe and WAITe and two entries of each reduction as given in Table
1. Hence, there are up to six entries of SR-reductions at a candidate. A reduction
α is good if and only if α is not blocked by an edge if and only if α is stored
in GOODe and in GOODf or WAITf and α is not blocked by a black edge.
Here e and f are the blocking red edges associated with α. If α is blocked by f
and is not blocked by e, then α is stored in WAITe and in BADf and, finally,
α is stored in BADe and in BADf if both associated edges are blocking. In
consequence, BADe is empty if edge e does not exist and, conversely, GOODe

and WAITe are empty if e exists.

However, it may happen that reduction α appears in GOODe although α
is blocked by the other blocking red edge f , and, conversely, that α appears in
WAITe although α is good. This happens unnoticed to e and GOODe if edge
f is (re)introduced or is removed, as indicated in Fig. 13. If α is accessed via
GOODe and α is bad, then there is an unsuccessful access, and α is moved from
GOODe to WAITe.

CR-reductions have a higher priority than SR-reductions. If it is encountered
that a candidate x has become a vertex of the inner cycle of CC, then its SR-
reductions are removed from the lists and are replaced by the CR-reduction.
This situation is detected as described in Lemma 7 and is justified by Lemma
11. In other words, CR overrules SR.

In the next step of a computation a α is accessed via GOODe for some edge
e. Then it is checked whether α is good and if so, α is applied and some further
actions are taken. Otherwise, there is an unsuccessful access. Then α is moved
from GOODe to WAITe if there is the other blocking red edge f , and α is
removed from the lists if α = SR(x 7→ v) and there is a blocking black edge
incident to v.



Recognizing Optimal 1-Planar Graphs in Linear Time 25

Suppose a reduction SR(x 7→ x4) is good and is applied as shown in Figs.
5 or 14. The case of a CR-reduction is similar, and even simpler. The actual
graph is modified as described by the SR-reduction. Vertex x is removed and so
are all reductions at x that are stored in the lists GOODe, BADe, and WAITe.
Also all lists with a red edge e = (x, y) for some y are removed. There are three
vertices y, since x is a candidate, and these removals take constant time. If x4
was a candidate before, all reductions at x4 are removed, since x4 is no longer a
candidate.

The SR-reduction removes edge e = (x3, x5). Therefore, BADe is renamed
to GOODe. This makes the stored reductions accessible in the next step. Con-
versely, GOODe and WAITe are renamed to BADe for e = (x2, x4) and e =
(x6, x4), since these edges are introduced and may be blocking red edges for
other reductions. Edge h = (x1, x4) may become a blocking black edge, see Fig.
12. Here, no action is taken and reductions blocked by h are removed at an
unsuccessful access or if one of x1 or x4 is removed. Finally, vertices x3 and x5
may change their status and become a candidate. We consider x3; the case of x5
is similar. If vertex x3 has become a candidate, then the possible reductions on
x3 are computed and are added to the respective lists GOODe, BADe,WAITe
and GOODf , BADf ,WAITf for the pair of associated red edges e and f . Here
CR may overrule SR.

A change of the status of x4 to a non-candidate and of x3 and x5 to a
candidate has side effects on their neighbors if they were candidates, too. This is
illustrated by the color change of candidates in Figs. 11(a) to 11(f) and in Fig.
14. However, there is no need for a special treatment, since everything is done
by renaming the lists.
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Fig. 14. An update by SR(x 7→ x4) with candidates in the neighborhood.

Our linear time algorithm operates in three phases. First, it makes a static
check that all vertices of the input graph G of size n have even degree at least six
and that there are 4n− 8 edges. Then it sweeps the given graph for candidates
x, checks H(x), classifies and stores the reductions, and colors as many edges
as possible. A second sweep may be helpful to clear some partial colorings. In
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general, it creates six entries for the SR-reductions at a candidate x and stores
them in the lists GOODe, BADe, and WAITe for each associated blocking red
edge e. Two entries are discarded if there is a blocking black edge. If there
is a CR-reduction at x, then two entries are created and SR-reductions at x
are removed immediately. If, surprisingly, the coloring of G is complete, we are
done. The planar skeleton is 3-connected and has a unique embedding and we
test straightforwardly whether G is optima1 1-planar. In general, there is a
computation by a sequence of steps and each step is a reduction on a presumably
optimal 1-planar graph G = G0 → G1 → . . .→ Gt = XW2k for some k ≥ 3 and
t ≥ 0. The algorithm immediately stops and reports a failure if the conditions
for the application of a reduction are not met or there is a mismatch in the edge
coloring between the graph and a reduction.

The algorithm has access to the lists GOODe, which, internally, are com-
bined to a superlist. The data structure resembles an adjacency list for storing
graphs. Empty sublists are removed. The algorithm renames lists which, inter-
nally, means removing and inserting sublists and takes O(1) time. There is no
preference or restriction for the manipulation of the superlist, which can be or-
ganized as a stack or as a queue or at random. The next reduction is taken from
the neighborhood of the previous one if the superlist is organized as a stack,
and all candidates of a given graph are checked sequentially if there is a queue.
Moreover, one may use CR-reductions with higher priority than SR-reductions,
since they remove four vertices in a step and have only two entries. Anyhow,
there is a linear running time.

Algorithm 1 preserves the following invariant:

Lemma 12. Let G = G0 → G1 → . . . → Gt for some t ≥ 0 be the sequence
of graphs computed by the algorithm on an optimal 1-planar graph G, i.e., a
successful computation. For every i = 1, . . . , t the following holds for Gi and the
lists GOODe, BADe and WAITe:

1. Each graph Gi is optimal 1-planar and Gt = XW2k for some k ≥ 3.

2. For each candidate x of Gi three SR-reductions α1, α2, α3 at x are each
stored in the lists of their associated blocking red edges if x does not belong
to an inner cycle of CC. If there is a blocking black edge, then only two
SR-reductions may be stored; the one with an endvertex of the blocking black
edge as a target may be missing.

3. If x belongs to an inner cycle of CC, then one entry of CR is stored in the
lists of each associated blocking red edge.

4. If α is in GOODe or in in WAITe, then α is not blocked by e.

5. A reduction α is in BADe if and only if α is blocked by e.

6. A reduction α is good if and only if α is in GOODe and in GOODf or
WAITf for the associated blocking red edges e and f and α is not blocked
by a blocking black edge.

7. If there is an entry in the lists of edge e, then BADe is nonempty if and
only if GOODe and WAITe are empty.
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Algorithm 1: OPTIMAL 1-PLANARITY TESTING

Input: A graph G
Output: G is optimal 1-planar or fail
Data: A collection of lists GOODe, BADe and WAITe for some edges e. Each

list contains reductions α = SR(x 7→ x4) or α = CR(u, v, y, z) with
candidates x, u, v, y, z.

1 // Preprocessing
2 if ¬(G has 4n− 8 edges and all vertices have even degree ≥ 6) then return fail

3 // Initialization
4 foreach candidate x of G do call ADD REDUCTIONS

5 // Processing
6 while there is a reduction α accessible via GOODe for some edge e do
7 if α is good then
8 apply α and update G and the coloring
9 remove all reductions at vertex x from the lists GOODe, BADe and

WAITe

10 if α = SR(x 7→ x4) then
11 remove all reductions on x4 from the lists GOODe, BADe and

WAITe

12 remove all lists with e = (x, y)
13 if x3 is a candidate after the SR-reduction then call

ADD REDUCTIONS
14 if x5 is a candidate after the SR-reduction then call

ADD REDUCTIONS
15 for e = (x3, x5) do rename BADe to GOODe

16 for e = (x2, x4) and e = (x6, x4) do rename GOODe and WAITe to
BADe

17 else // α is a CR-reduction with outer cycle (v1, v2, v3, v4)
18 apply α and update G and the coloring
19 for v = v1, v2, v3, v4 do
20 if v is a candidate then call ADD REDUCTIONS

21 for e = (v1, v3) and e = (v2, v4) do rename GOODe and WAITe to
BADe

22 else // an unsuccessful access to a reduction
23 if α = SR(x 7→ v) has a blocking black edge incident to v then remove

α from the lists
24 else move α from GOODe to WAITe

25 if G is an extended wheel graph then return G is optimal 1-planar
26 else return fail
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Algorithm 2: ADD REDUCTIONS

Input: A candidate x and lists GOODe, BADe and WAITe for some edges e
Output: lists GOODe, BADe and WAITe

1 if x belongs to the inner cycle of CC with outer cycle (v1, v2, v3, v3) then
2 for e = (v1, v3) and f = (v2, v4) do
3 if e exists then add CR(x) to BADe and to WAITf

4 else if f exists then add CR(x) to BADf and to WAITe

5 else add CR(x) to GOODe and to GOODf

6 remove all entries with SR-reductions of vertices from the inner cycle of CC
from the lists

7 else // x is a candidate for SR-reductions
8 foreach SR-reduction α at x with associated blocking red edges e and f do
9 if α = SR(x 7→ v) is blocked by e then

10 add α to BADe

11 if α is blocked by f then add α to BADf

12 else add α to WAITf

13 else
14 if α is blocked by f then add α to WAITe and to BADf

15 else add α to GOODe and to GOODf

Proof. The first property is due to Propositions 3 and 4 since the algorithm either
applies a reduction or does not change the graph if there is an unsuccessful access.
Properties 2 and 7 hold for G1 after the initialization, and they are maintained
by each successful reduction Gi → Gi+1 for 1 ≤ i < t. If in the i-th step there
is an unsuccessful access to some reduction α in GOODe, then α is bad and the
red edge e does not exist in Gi. Then α is blocked by a blocking black edge, in
which case α is removed, or by the other associated blocking red edge f , in which
case α is moved from GOODe to WAITe, and the invariant is preserved. ut

Concerning the running time, the critical part is the number of unsuccessful
accesses.

Lemma 13. If G = G0 → G1 → . . . → Gt is a successful computation of
Algorithm 1 on an optimal 1-planar graph G of size n, then there are at most
O(n) unsuccessful accesses.

Proof. Clearly, there are at most n successful reductions. First, there are at most
3n unsuccessful accesses by blocking black edges, since, in total, G1, . . . , Gt have
at most 3n black edges. Graph G has 2n− 4 black edges and each SR-reduction
introduces one black edge.

Suppose, reduction α is accessed via GOODe. Then α is not blocked by e
by Lemma 12. If the access is unsuccessful by the other associated blocking red
edge, then α is moved to WAITe. Suppose that α is accessed a second time via
GOODe. Then α was moved from WAITe to BADe when edge e was inserted
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and from BADe to GOODe when e was removed by another reduction. Hence,
there were two successful reductions in between. As each edge may block two
SR-reductions, the number of unsuccessful reductions by blocking red edges is
bounded from above by the number of successful reductions. In total, there are
at most 4n unsuccessful reductions. ut

In summary, we can state:

Theorem 2. A graph G is optimal 1-planar if and only if Algorithm 1 reduces G
to an extended wheel graph. If G is optimal 1-planar, then a 1-planar embedding
can be computed. The algorithm runs in linear time.

Proof. The correctness follows from Lemma 12. If G is reducible, then every
reduction adds a partial embedding, which ultimately results in the unique em-
bedding of G, otherwise, there is an embedding of an extended wheel graph.
Clearly, the preprocessing and initialization phases take linear time, since each
candidate and its reductions can be checked in constant time. Each successful
reduction decreases the size at least by one and takes O(1) time, and there are
O(n) unsuccessful accesses by Lemma 13. Considering the maximum degree d
of a vertex, it takes O(1) time to test that a graph is not an extended wheel
graph, since d = n − 2 must hold for an optimal 1-planar graph of size n [34].
Finally, the test for XW2k takes O(k) time by Lemma 9. Hence, each phase of
the algorithm runs in linear time. ut

There is an immediate speed-up of the algorithm. If a reduction is accessed,
then it is checked whether the vertex of the reduction is good. Thereby one
considers three possible SR-reductions at a time. Secondly, CR-reductions are
preferred over SR-reductions, since they remove four vertices at a time and
lead to larger extended wheel graphs and a faster termination of the algorithm.
Moreover, one can simplify the algorithm and avoid the bookkeeping in lists if
the graph is 5-connected. Then the SR-reduction is necessary and sufficient [34]
and all updates are local. The situations illustrated in Figs. 12 and 13 cannot
occur.

Lemma 14. There is a separating 4-cycle or a blocking vertex if a reduction is
blocked by a (black or red) blocking edge.

Proof. If SR(x 7→ x4) is blocked by the black edge (x1, x4), then it closes the
4-cycles (x1, x2, x3, x4) and (x1, x6, x5, x4), and these are separating, since they
isolate x from the further black neighbors of x3 and x5, respectively, see Fig. 7.
Accordingly, if there is a red edge (x2, x4) and x3 is not blocking, then there exist
two vertices u and v such that the edge (u, v) crosses (x2, x4). Then (x2, x3, x4, u)
and (x2, x3, x4, v) are separating 4-cycles isolating the further neighbors of x3.

If edge (v1, v3) is blocking for CR with outer cycle (v1, v2, v3, v4), then (v1, v3)
is red, since (v1, v2) and (v2, v3) are black by Lemma 1. There is an edge
(u, v) crossing (v1, v3) if v2 and v4 are not blocking. Then (v1, v, v3, v4) and
(v1, u, v3, v4) are separating 4-cycles. ut
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Schumacher [34] has shown that every 5-connected optimal 1-planar graph
can be reduced to an extended wheel graph using only SR-reductions. Con-
versely, a CR-reduction must be used if there is a separating 4-cycle.

Corollary 3. There is a linear-time algorithm to test whether a graph is a 5-
connected optimal 1-planar graph.

Proof. We restrict Algorithm 1 to use only SR-reductions and it succeeds if and
only if the given graph is a 5-connected optimal 1-planar graph. ut

5 Conclusion and Perspectives

We have added optimal 1-planar graphs to a list of graphs that can be recognized
in linear time. The restriction to optimal graphs is important, since 1-planarity
is NP-hard, in general.

The algorithm shows that graph B17 in Fig. 2 is not optimal 1-planar. The
graph is obtained from graph G17 in Fig. 10(a) by exchanging edges (p, s), (c, h)
and (p, h), (c, s). Consider candidate c in B17. Then H(c) = (2, 3, 4, 4, 4, 5, 6)
violates optimal 1-planarity.

Combinatorial properties of the SR- and CR-reductions have been studied
in [11], where we have shown that every reducible optimal 1-planar graph G can
be reduced to every extended wheel graph XW2k for s ≤ k ≤ t, where s = 3 if
and only if G has a separating 4-cycle and s = 4 if and only if G is 5-connected
and some t < n for graphs of size n. The reductions to the small extended wheel
graphs can also be computed in linear time.

The recognition problem of beyond planar graphs is NP-hard, in general.
It is open, whether there are other classes of optimal graphs with a linear time
recognition, e.g., optimal IC planar graphs with 13

4 n−6 edges where each vertex is
incident to at most one crossing edge [12] or optimal 2-planar graphs with 5n−10
edges, where kites from optimal 1-planar graphs are replaced by pentagons of
K5’s [30].
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