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Abstract. Given two graphs G and H, we say that G contains H as an induced minor if a graph
isomorphic to H can be obtained from G by a sequence of vertex deletions and edge contractions.
We study the complexity of Graph Isomorphism on graphs that exclude a fixed graph as an
induced minor. More precisely, we determine for every graph H that Graph Isomorphism is
polynomial-time solvable on H-induced-minor-free graphs or that it is GI-complete. Additionally,
we classify those graphsH for whichH-induced-minor-free graphs have bounded clique-width. These
two results complement similar dichotomies for graphs that exclude a fixed graph as an induced
subgraph, minor, or subgraph.

1 Introduction

Remaining unresolved, the algorithmic problem Graph Isomorphism persists as a fundamental
graph theoretic challenge which, despite generating ongoing interest, has neither been shown to
be NP-hard nor polynomial-time solvable. It is known that if Graph Isomorphism is NP-hard
then the polynomial hierarchy collapses [32]. Recently, Babai has announced a quasipolynomial-
time algorithm for Graph Isomorphism [1]. The problem asks whether two given graphs are
structurally the same, that is, whether there exists an adjacency and non-adjacency preserving
map from the vertices of one graph to the vertices of the other graph.

Related work. In the absence of a result determining the complexity of the general problem,
considerable effort has been put into classifying the isomorphism problem restricted to graph
classes as being polynomial-time tractable or polynomial-time equivalent to the general problem,
i.e., GI-complete. Most graph classes considered in these efforts are graph classes that are closed
under some basic operations. Operations that are typically considered are edge contraction, vertex
deletion, and edge deletion. A class of graphs closed under all of these operations is said to be
minor closed and can also be described as a class of graphs avoiding a set of forbidden minors. As
shown by Ponomarenko, the Graph Isomorphism problem can be solved in polynomial time
on H-minor free graphs for any fixed graph H [31]. This implies prior results on solvability of
graphs of bounded tree-width, planar graphs, and graphs of bounded genus. The result on minor
closed graph classes was recently extended by Grohe and Marx to H-topological minor free
graphs [17], and Lokshtanov, Pilipczuk, Pilipczuk and Saurabh [24] showed that the problem is
actually fixed-parameter tractable on graphs of bounded tree-width, an important class of minor-
free graphs. When a graph class is only required to be closed under some of the above named
operations, isomorphism on such a graph class can sometimes be polynomial-time solvable and
sometimes be GI-complete. We say that a graph G is H-free if it does not contain the graph
H as an induced subgraph. When forbidding one induced subgraph, it is known that Graph
Isomorphism can be solved in polynomial time on H-free graphs if H is an induced subgraph
? An extended abstract of this paper previously appeared in the proceedings of the 41st International Workshop
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Aid for Young Scientists (B) 25730003, Japan Society for the Promotion of Science.
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of P4 (the path on four vertices) and is GI-complete otherwise (see [4]). For two forbidden induced
subgraphs such a classification into GI-complete and polynomial-time solvable cases turns out
to be more complicated [23,33]. In the case where we consider forbidden subgraphs (i.e., also
allowing edge deletions) there is a complete dichotomy for the computational complexity of
Graph Isomorphism on classes characterized by a finite set of forbidden subgraphs, while there
are intermediate classes defined by infinitely many forbidden subgraphs for which the problem
is neither polynomial-time solvable nor GI-complete [27] (assuming that graph isomorphism is
not polynomial-time solvable). Another related result is the polynomial-time isomorphism test
for graphs of bounded clique-width recently developed [18]. We discuss the relationship to our
results below.

Our results. In this paper we consider graph classes closed under edge contraction and vertex
deletion (but not necessarily under edge deletion). The corresponding graph containment relation
is called induced minor. More precisely, a graph H is an induced minor of a graph G if H can
be obtained from G by repeated vertex deletion and edge contraction. If no induced minor
of G is isomorphic to H, we say that G is H-induced-minor-free. We consider graph classes
characterized by one forbidden induced minor, and on these classes we study the computational
complexity of Graph Isomorphism and whether the value of the parameter clique-width is
bounded by some universal constant cH . The isomorphism problem for such classes was first
considered by Ponomarenko [31] for the case where H is connected. In that paper two choices
for the graph H play a crucial role, namely choosing H to be the gem and choosing H to be
co-(P3∪2K1) (see Figure 1). Forbidding either of these graphs as an induced minor yields a graph
class with an isomorphism problem solvable in polynomial time. However, to show polynomial-
time solvability for the gem, the proof of [31], due to a common misunderstanding concerning
the required preconditions, incorrectly relies on a technique of [20] to reduce the problem to
the 3-connected case (see Subsection 3.2). To clarify the situation, we provide a proof that
avoids this reduction and instead use a reduction of the problem to the 2-connected case for
which we provide a polynomial-time isomorphism test. To extend Ponomarenko’s theorem to the
disconnected case, we provide a reduction structurally different from the ones used previously,
allowing us to treat the case where H consists of a cycle with an added isolated vertex. Overall
we extend Ponomarenko’s results to obtain the following theorem.

gem co-(P3 ∪ 2K1)

Fig. 1. The graphs gen and co-(P3 ∪ 2K1).

Theorem 1.1. Let H be a graph. The Graph Isomorphism problem on H-induced-minor-free
graphs is polynomial-time solvable if H is complete or an induced subgraph of co-(P3 ∪ 2K1) or
the gem, and is GI-complete otherwise.

Our proofs rely on structural descriptions that also allow us to determine exactly which
classes characterized by one forbidden induced minor have bounded clique-width.
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Theorem 1.2. Let H be a graph. The clique-width of the H-induced-minor-free graphs is bounded
if and only if H is an induced subgraph of co-(P3 ∪ 2K1) or the gem.

Note that these two graphs play important roles also in a recent independent paper by Błasiok
et al. [2].

As mentioned before, it was recently shown that Graph Isomorphism is polynomial-time
solvable for graphs of bounded clique-width [18]. The proof of this theorem relies on the structure
theory of connectivity functions, tangles and, the computational group theory developed in the
context of graph isomorphism. For the various classes we consider, our algorithms do not rely
on such machineries. In fact, we give structural descriptions of the graphs and, consequently,
showing that the clique-width is bounded essentially amounts to the same arguments as those
required to develop polynomial-time isomorphism algorithms. Note however that, by the the-
orems above, some classes for which we develop polynomial-time isomorphism algorithms have
unbounded clique-width. Of course in general, it is not difficult to see that there are graph classes
with unbounded clique-width on which Graph Isomorphism is polynomial-time solvable. For
example, planar graphs [20], interval graphs [26], and permutation graphs [5] are such graph
classes [16].

Also note thatH-free graphs have bounded clique-width if and onlyH is an induced subgraph
of P4 [11] and that H-minor-free graphs have bounded clique-width if and only if H is planar [21].
Recently, Dabrowski and Paulusma gave a dichotomy for the clique-width of bipartite H-free
graphs [10], and initiated the study of clique-width on graphs that forbid two graphs as induced
subgraphs [11].

Structure of the paper. We first summarize well-known observations about induced-minor-free
graphs, isomorphism and clique-width (Section 2). We then consider classes that are characterized
by one forbidden induced minor on at most five vertices (Section 3). Finally we show that the
observations of Sections 2 and 3 resolve all cases with forbidden induced minors on at least six
vertices (Section 4). In this paper all graphs that are considered are finite.

Notation. For a graph G we denote by V (G) and E(G) the set of vertices and edges, respectively.
The neighborhood NG(v) of a vertex v ∈ V (G) is the set of vertices adjacent to v. We omit the
index G if apparent from context. For a subset of the vertices M ⊆ V (G) we denote by G[M ]
the subgraph of G induced by M . The set N(M) is the set of vertices in V (G) \M that have a
neighbor inM . We write G−M for the graph G[V (G)−M ] and G for the edge complement of G.
A connected graph is 2-connected if it has at least three vertices and it remains connected after
deleting any single vertex. For two graphs G1 and G2 with V (G1) ∩ V (G2) = ∅, we denote by
G1 ∪G2 their disjoint union (V (G1)∪ V (G2), E(G1)∪E(G2)). For example, the graph K3 ∪K1

consists of a triangle and an isolated vertex.

2 Basic observations

In this section, we summarize a few well-known basic observations about clique-width and graph
classes closed under induced minors.

2.1 Clique-width

In [9], Courcelle and Olariu introduced the clique-width of graphs as a way of measuring the
complexity of minimal separators in a graph. Similarly to graphs of bounded tree-width, it has
been shown that a large class of problems can be solved efficiently on graphs of bounded clique-
width [8]. It was only recently shown that Graph Isomorphism is polynomial-time solvable for
graphs of bounded clique-width [18].
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For any given graph G, the clique-width of G, denoted by cw(G), is defined as the minimum
number of labels needed to construct G by means of the following 4 operations: (i) creation of a
new vertex v with label i; (ii) forming the disjoint union of two labeled graphs G1 and G2; (iii)
joining by an edge every vertex labeled i to every vertex labeled j, where i 6= j; (iv) renaming
label i to label j. In the remainder of the paper, we will use the following well-known observations
to derive upper bounds or lower bounds on the value of clique-width of H-induced-minor-free
graphs. See e.g., [19] for an overview of clique-width.

Theorem 2.1 ([9]). For every graph G, cw(G) ≤ 2 · cw(G) holds.

Theorem 2.2 ([25]). Let G be a graph and S a subset of the vertices of G. We have cw(G−S) ≤
cw(G) ≤ 2|S|(cw(G− S) + 1)− 1.

Let G be a graph and u a vertex of G. The local complementation of G at u is the graph
obtained from G by replacing the subgraph induced by the neighbors of u with its edge comple-
ment. The following observation follows from the well-known facts that for any graph G, we have
rw(G) ≤ cw(G) ≤ 2rw(G)+1−1 (see [30]), where rw denotes the rank-width, and that rank-width
remains constant under local complementations [29].

Observation 2.3 Let G and G′ be two graphs such that G′ can be obtained from G by a sequence
of local complementations, then cw(G) ≤ 2cw(G′)+1 − 1.

Theorem 2.4 ([7]). Let G and G′ be two graphs such that G′ can be obtained from G by
a sequence of edge subdivisions, i.e., replacing edges with paths of length 2. Then cw(G) ≤
2cw(G′)+1 − 1.

Theorem 2.5 ([3,25]). Let G be a graph and B the set of its 2-connected components. It holds
that cw(G) ≤ t+ 2, where t = maxB∈B{cw(B)}.

Finally, note that for any graph G, the clique-width of G is at most 3 ·2tw(G)−1, where tw(G)
denotes the tree-width of G [6].

2.2 Some tractable cases

Lemma 2.6. If H is a complete graph, then Graph Isomorphism for H-induced-minor-free
graphs can be solved in polynomial time.

Proof. For any graph H, Graph Isomorphism for the H-minor-free graphs can be solved in
polynomial time [31]. Since a graph has a complete graph H as an induced minor if and only if
it has H as a minor, the lemma follows. ut

Lemma 2.7. Let H be a complete graph Kk. The H-induced-minor-free graphs have bounded
clique-width if and only if k ≤ 4.

Proof. If k ≤ 4, then every Kk-induced-minor-free graph has tree-width at most 2. Thus it has
bounded clique-width [6,9]. If k > 4, the set of Kk-induced-minor-free graphs includes all planar
graphs. Therefore the clique-width is unbounded (see [21]). ut

Note that the lemma above is used to prove Theorem 1.2, but K4 is not explicitly mentioned
in the statement, due to the fact that K4 is an induced subgraph of co-(P3 ∪ 2K1).

Lemma 2.8. If H is an induced subgraph of P4 then Graph Isomorphism for H-induced-
minor-free graphs can be solved in linear time.
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Proof. If H is an induced subgraph of P4, then Graph Isomorphism can be solved in linear
time on H-free graphs (see [4, §2.7]). Since any induced subgraph of P4 is a linear forest, a
graph has H as an induced minor if and only if it has H as an induced subgraph. Therefore an
H-induced-minor-free graph is H-free, and thus the lemma follows. ut

It is well known that P4-free graphs are exactly the graphs of clique-width at most 2 (see
[21]).

2.3 Some intractable cases

A split partition (C, I) of a graph G is a partition of V (G) into a clique C and an independent
set I. A split graph is a graph admitting a split partition. We say a split graph is of restricted split
type if it has a split partition (C, I) such that each vertex in I has at most two neighbors in C.
Note that a non-complete split graph of restricted split type has minimum degree at most 2. A
graph is co-bipartite if its vertex set can be partitioned into two cliques. The classes of co-bipartite
graphs and restricted split graphs are closed under vertex deletions and edge contractions, and
thus under induced minors. As also argued in [31] and [23], the standard graph-isomorphism
reductions to split graphs and co-bipartite graphs4 explained in [4] imply the following lemma.

Lemma 2.9. If H is not of restricted split type or H is not co-bipartite, then Graph Isomor-
phism for the H-induced-minor-free graphs is GI-complete.

The reductions used in the lemma can be achieved by performing edge subdivisions and subgraph
complementation. Subgraph complementation is the operation of complementing the edges of
an induced subgraph. The clique-width of graphs in a class obtained by applying subgraph
complementation a constant number of times is bounded if and only if it is bounded for graphs
in the original class [21]. Together with Theorem 2.4, this implies that restricted split graphs and
co-bipartite graphs obtained by the reductions from general graphs have unbounded clique-width.

Corollary 2.10. If H is not of restricted split type or H is not co-bipartite, then the H-induced-
minor-free graphs have unbounded clique-width.

3 Graphs on at most five vertices

In this section we study graph classes characterized by a forbidden induced minor H that has at
most five vertices. In addition to the two graphs gem and co-(P3∪2K1), the graph K3∪K1 plays
an important role here. That is, all GI-complete and unbounded clique-with cases that cannot
be handled by Lemmas 2.9 and 2.10 can be handled by considering K3 ∪K1. In the following,
we first study the important graphs and then reduce the remaining cases to the important cases.

3.1 The graph K3 ∪ K1

We show that Graph Isomorphism is GI-complete on graphs that do not contain K3 ∪K1 as
an induced minor. Additionally, we show that these graphs have unbounded clique-width.

Theorem 3.1. The Graph Isomorphism problem is GI-complete on graphs that do not contain
K3 ∪K1 as an induced minor.
4 First subdivide all edges, and then complement the color class corresponding to the original vertices (for split
graphs of restricted type) or complement both color classes (for co-bipartite graphs).
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Proof. We give a polynomial-time reduction from Graph Isomorphism on graphs of minimum
degree at least 3, which is known to be GI-complete [4]. Our reduction works as follows. Given
two graphs G and H of minimum degree at least 3, we create two new graphs G′ and H ′ by
subdividing every edge three times, i.e., we replace every edge with a path of length 4. From these
graphs G′ andH ′, we now create two new graphs G′′ andH ′′ by applying a local complementation
at each vertex of G′ and H ′ of degree at least 3, i.e., we turn the neighborhood of every such
vertex into a clique. From the construction, it can readily be seen that G is isomorphic to H if
and only if G′′ is isomorphic to H ′′. We now consider the complement graphs G′′ and H ′′, which
are isomorphic if and only if G′′ and H ′′ are isomorphic. The graphs G′′ and H ′′ can be obtained
from G and H in polynomial time.

To conclude the proof, it suffices to show that G′′ and H ′′ do not contain K3 ∪ K1 as an
induced minor. Observe first that a graph J does not contain K3 ∪K1 as an induced minor if
and only if for every vertex u ∈ V (J), the graph J − NJ [u] is a forest. We claim that G′′ and
H ′′ satisfy this condition. We only give the proof for G′′, since it is identical to that of H ′′.
First, let us observe that the vertex set of G′′ can be partitioned into three sets S, T , and U ,
such that the vertices in S = V (G) are simplicial, the vertices in T are adjacent to exactly one
vertex of S, and the vertices of U have exactly two neighbors, both of which lie in T . Let us first
consider the case where u is a vertex of S. Since u is simplicial in G′′, its non-neighbors in G′′
are all pairwise non-adjacent, so G′′ − NG′′ [u] has no edge. Now, assume that u is a vertex of
T . Observe that exactly one neighbor x of u in G′′ lies in U , and all its other neighbors lie in
either S or T . Moreover, since u is adjacent to a unique vertex v of S, its neighbors in T are also
adjacent to v and hence form a clique in G′′. This implies that G′′ − NG′′ [u] is a star centered
at x. Finally, assume that u is a vertex of U . Since u has exactly two non-neighbors in G′′, it
immediately follows that the non-neighbors of u in G′′ induce a forest, thus completing the proof
of the claim. ut

Theorem 3.2. The class of graphs that do not contain K3 ∪K1 as an induced minor does not
have bounded clique-width.

Proof. Assume for contradiction that there exists a constant c ≥ 2 such that every graph that
does not contain K3∪K1 as an induced minor has clique-width at most c. Let G be a graph and
let G′′ be the graph constructed from G in the proof of Theorem 3.1. Observe that, as noted in
the proof of Theorem 3.1, G′′ can be obtained from G by a sequence of edge subdivisions and
local complementations. By applying Observation 2.3 and Theorem 2.4, we conclude that the
clique-width of G is bounded by a function of the clique-width of G′′. Together with Theorem 2.1,
this implies that the clique-width of G is bounded by a function of the clique-width of G′′. By
choosing G such that its clique-width is sufficiently large, we find that G′′ has clique-width at
least c+ 1 and is (K3 ∪K1)-induced-minor-free, a contradiction. ut

3.2 The gem

We now consider the class of graphs that do not contain the gem as an induced minor (see Fig. 1).
In [31] this class is also considered, however, there is an issue with the proof for the fact that
the isomorphism problem of graphs in this class is polynomial-time solvable. More precisely, a
common misunderstanding of how the reduction to 3-connected components by Hopcroft and
Tarjan [20] is to be applied has happened. Indeed, the techniques of Hopcroft and Tarjan do not
show that graph isomorphism in a graph class C polynomial-time reduces to graph isomorphism
of 3-connected components in C, even if C is induced minor closed. If this were the case then
the class of split graphs of restricted type would be polynomial-time solvable since the only
3-connected graphs of this type are complete graphs. Additionally to C being induced minor
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closed, for the techniques to be applicable it is necessary to solve the edge-colored isomorphism
problem for 3-connected graphs in C. However, edge-colored isomorphism is already GI-complete
on complete graphs.

We now provide a proof that isomorphism of graphs not containing the gem as an induced
minor is polynomial-time solvable without alluding to 3-connectivity. For this we first need to
extend the structural considerations for such graphs performed in [31] for 3-connected graphs to
2-connected graphs.

Let C be a subset of the vertices of G. We say a vertex v in a vertex set M ⊆ V (G) \ C has
exclusive attachment with respect to C among the vertices of M if N(v)∩C 6= ∅ but there is no
vertex v′ ∈M \ {v} with (N(v) ∩ C) ∩ (N(v′) ∩ C) 6= ∅. That is, no other vertex of M shares a
neighbor in C with v.

Lemma 3.3. Let G be a 2-connected gem-induced-minor-free graph. Suppose C ⊆ V (G) induces
a 2-connected subgraph of G andM is the vertices of a component of G−C such that N(M)∩C 6=
C. If v ∈M is a vertex with |N(v) ∩ C| = 1 then v has exclusive attachment.

Proof. Let v be a vertex in M that is adjacent to a vertex c1 ∈ C but not to any other vertex
of C. We argue that in this case v is the only vertex in M adjacent to c1. Suppose otherwise
that v′ is a second vertex in M adjacent to c1. Since G is 2-connected there is a path P from v′

to C that does not use c1. If v′ is adjacent to some other vertex of C then we can ensure that P
does not contain v. If v′ is also only adjacent to c1 and no other vertex of C then v and v′ are
interchangeable. By possibly swapping v and v′, we can thus assume without loss of generality
that there is a path P from v′ to C that contains neither v nor c1. Since M induces a connected
component of G−C there is a path P ′ in G[M ] from v to v′. Consider a shortest path P̂ starting
from v that uses only vertices of (V (P ) ∪ V (P ′) ∪C) \ {c1} and contains exactly two vertices of
C. Such a path exists since we can walk from v to v′, then walk to C without passing c1 and
then walk to a vertex in C \ N(M) without using c1 due to 2-connectivity of C. Let c2 and c3
be the vertices of C on P̂ .

We claim that there is a vertex w in V (P̂ ) \ C different from v that can be reached from c1
without using any other vertex of P̂ . Indeed, since c1 is the only neighbor of v on C, there must
be some vertex in V (P̂ ) \C other than v. Since c1 is adjacent to v′ and all vertices of P and P ′

not on C other than v can be reached from v′ without using v or vertices from C there must be
some vertex in P̂ \ C that is reachable from v′ (possibly v′ itself if v′ ∈ P̂ ) and thus reachable
from c1.

The path P̂ contains the set S = {v, w, c2, c3} of four distinct vertices (here w may or may
not be v′). We claim that from c1 we can reach any vertex of S without traversing another vertex
of P̂ . Indeed, c1 is adjacent to v. Furthermore c1, c2 and c3 are three vertices in the 2-connected
subgraph G[C] but no other vertex of P̂ is in C and from c1 we can reach w since w was chosen
this way. This demonstrates the existence of a gem as an induced minor, yielding a contradiction.

ut

Lemma 3.4. Let G be a 2-connected gem-induced-minor-free graph. Suppose C ⊆ V (G) induces
a 2-connected subgraph of G and M is the vertices of a component of G−C with N(M)∩C 6= C
and |N(M) ∩ C| ≤ 3. If there is no vertex x in M with |N(x) ∩ C| = 1 then every vertex of M
has a neighbor in C, and G[M ] is a P4-free graph.

Proof. If there is no vertex x in M with |N(x) ∩ C| = 1 then, since |N(M) ∩ C| ≤ 3, every pair
of vertices in M with neighbors in C has a common neighbor in C. We show that every vertex
in M has a neighbor in C. Suppose there is a vertex u in M of distance 2 from C. Let v be a
neighbor of u at distance 1 from C. Since G is 2-connected, there is a second vertex v′ in M at
distance 1 from C such that there is a path in G[M ] from u to v′ not using v. The vertex v′
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shares a neighbor c with v. Consider the graph G′ obtained by contracting {v, c} and let c′ denote
the vertex obtained from the contraction and C ′ denote the set (C \ {c}) ∪ c′. Let P be a path
from u to v′ in G′ − C ′. Observe that G′[C ′ ∪ V (P )] is 2-connected. This can be seen from the
fact that G′[C ′] is a spanning supergraph of G[C], i.e., it can be obtained from G[C] by adding
edges, and that the endpoints of P , i.e., u and v′, have at least two distinct neighbors in C ′. The
vertex u has exactly one neighbor in C ′, namely c′, but v′ also has c′ as a neighbor. By using
Lemma 3.3, we obtain a contradiction to the assumption that G does not contain a gem as an
induced minor. We conclude that no vertex in M is of distance at least 2 from C, which implies
that every vertex in M has a neighbor in C. If G[M ] contains an induced subgraph isomorphic
to P4, we can contract C to a single vertex and obtain a gem as an induced minor of G, again a
contradiction. Therefore, we obtain that G[M ] is P4-free, which completes the proof. ut

We call a vertex of a 2-connected graph G a branching vertex if it has degree at least 3.

Lemma 3.5. Let G be a 2-connected gem-induced-minor-free graph that contains the path P4 as
an induced subgraph. Then at least one of the following two options holds:

– G has an induced path H such that at most two of its inner vertices are branching vertices
of G and G− V (H) is disconnected, or

– G has an induced cycle H containing at most three branching vertices of G such that for every
connected component of G− V (H) its vertex set M satisfies N(M) ∩H 6= H.

Proof. Let K be an induced subgraph of G that is isomorphic to P4. Suppose that v1, v2, v3, v4
are the vertices of the path encountered in that order. If G−V (K) is disconnected, we are in the
first case and there is nothing to show. Thus, assume there is a unique component of G− V (K)
induced by M . Since G is 2-connected, v1 and v4 must each have a neighbor in M . Since G is
gem-induced-minor-free, we may therefore assume that some inner vertex of K, say v2, does not
have a neighbor in M . Since G is 2-connected, there must be a path from v1 to v3 avoiding v2.
Let P be such a path of shortest length. If P contains less than two inner vertices that are
branching vertices then we can add v2 to P and obtain a cycle with the desired properties.
Otherwise P contains a subpath P ′ with exactly two inner vertices that are branching vertices.
In this case G − V (P ′) is disconnected since otherwise contracting G − V (P ′) would yield the
forbidden induced minor. We choose H to be P ′ and obtain a path with the desired properties.

ut

Let G be a graph with induced subgraphs H and K. We say that G is sutured from H
and K along V ⊆ V (H) and V ′ ⊆ V (K) if G is obtained in the following way. First we require
that |V | = |V ′|. We also require that V (H)∩V (K) = V ∩V ′. The graph G must then be formed
from the (not necessarily disjoint) union (V (H) ∪ V (K), E(H) ∪ E(K)) of H and K in the
following way. We add edges that form a perfect matching between vertices in V \V ′ and V ′ \V .
Finally we may subdivide the edges in the matching an arbitrary number of times, see Figure 2.

Lemma 3.6. Let G be a 2-connected gem-induced-minor-free graph. There exists an induced
subgraph H of G which is isomorphic to either a path or a cycle, contains at most 4 branching
vertices, and such that for every component of G − H its vertex set M satisfies the following:
the graph G[M ∪ V (H)] is sutured from H and some graph K along V and V ′ such that K − V ′
is P4-free and |V ′| ≤ 4.

Proof. If G is P4-free then the lemma follows by choosing H to be the empty graph. We thus
assume that G contains an induced P4. We distinguish the two cases that appear in Lemma 3.5.

Suppose first that there is a graph H that is a path with at most two inner branching vertices
such that G−V (H) is disconnected. Let M be the vertices of a connected component of G−H.

8



H K

V V ′

Fig. 2. A suture of two graphs H and K.

Due to the forbidden induced minor |N(M) ∩ V (H)| ≤ 3. Since there is a second component
of G − H and G is 2-connected there is a cycle in G − M induced by a vertex set C such
that N(M)∩C 6= C. Let M̂ be the set of vertices obtained from M by adding to M all vertices
of V (H)\C that lie on a subpath in H whose endpoints are both in N(M)∩V (H). By applying
Lemma 3.3, we conclude that every vertex v ∈ M̂ that is attached to only one vertex h ∈ C has
exclusive attachment. Now, by repeatedly contracting the edges (v, h) of exclusive attachment
we end up with either no vertices in M̂ anymore, or all vertices in M̂ have at least two neighbors
in C. Due to Lemma 3.4 we conclude that the graph induced by the vertices remaining in M̂
is P4-free. This gives us a suture of H[V (H)∩C] with a P4-free graph, by increasing H[V (H)∩C]
to H we obtain a suture of H with a P4-free graph.

The second case appearing in Lemma 3.5 is similar. If C induces a cycle with at most 3
branching vertices such that for every component of G−C its vertex setM satisfies N(M)∩C 6=
C, then again by Lemma 3.3 we conclude that vertices in M̂ that are attached to only one vertex
have exclusive attachment. Repeatedly contracting the exclusive attachment edges and finally
applying Lemma 3.4 we obtain a graph that is P4-free.

This shows that G[M ∪ V (H)] is a suture of H with a graph K such that K − V ′ is P4-free.
Since H has at most four branching vertices, there are at most four points of attachment. ut
Theorem 3.7. The Graph Isomorphism problem can be solved in polynomial time on gem-
induced-minor-free graphs.

Proof. It is folklore that graph isomorphism in a hereditary graph class C reduces to isomorphism
of vertex-colored 2-connected graphs in C (see for example [12] or [28]). We thus assume that
the input graphs are colored and 2-connected. If G is such a 2-connected graph, we search for
an induced subgraph H that satisfies the assumptions of Lemma 3.6, that is, H is a path or a
cycle with at most 4 branching vertices such that for every component of G − H with vertex
set M we know that G[M ∪ V (H)] is a suture of H with a graph K along sets V and V ′ such
that K − V ′ is P4-free and |V ′| ≤ 4. Each H is determined by the branching vertices, the leaves
(if H is a path) and choices of the paths of non-branching vertices connecting such vertices. Note
that there are only a linear number of such paths between a pair of vertices as the paths are
internally disjoint.

Now suppose G1 and G2 are 2-connected input graphs to the isomorphism problem. Since
there are only polynomially many possible choices for H, we can find an induced graph H1 in G1

with said properties and test for every H2 in G2 whether there is an isomorphism that maps H1

to H2. To do so we iterate over all isomorphisms ϕ from H1 to H2, there are only polynomially
many, and check whether such an isomorphism extends to an isomorphism from G1 to G2. To
check whether such an isomorphism extends, it suffices to know which componentM1 of G1−H1

can be mapped isomorphically to which component M2 of G2 −H2 such that the isomorphism
can be extended to an isomorphism from G1[V (H1)∪V (M1)] to G2[V (H2)∪V (M2)] such that H1

is mapped to H2 in agreement with ϕ.
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Note that the mapping ϕ determines how vertices with exclusive attachment in H1 must be
mapped. Letting A1 be the set of vertices in M1 with exclusive attachment in V (H1), we then
know where the vertices in A1 must be mapped if ϕ can be extended to an isomorphism fromM1

toM2. Considering in turn the vertices of exclusive attachment in V (H1)∪A1 we obtain a set A2

of vertices for the images of which there is again only one possible option. Repeating this process
we obtain a sequence of sets A1, . . . , At such that there are no vertices in M1 − (A1 ∪ . . . ∪ At)
that have exclusive attachment. (The set A1∪ . . .∪At contains the set V ′\V if V ′ is the set along
which M1 is sutured to H1.) We are left with M1 − (A1 ∪ . . . ∪At), a part of M1 that is P4-free
and adjacent to at most four vertices in V (H1) ∪A1 ∪ . . . ∪At whose images have already been
determined.

The isomorphism problem for vertex-colored P4-free graphs is solvable in polynomial time
(see [33]) and thus the problem for graphs obtained from P4-free graphs by adding a bounded
number of vertices can be solved in polynomial time ([22, Theorem 1]). Using this algorithm the
theorem follows. ut

Theorem 3.8. If H is an induced subgraph of the gem, then the H-induced-minor-free graphs
have bounded clique-width.

Proof. Let G be a gem-induced-minor-free graph. Due to Theorem 2.5, it suffices to show that
the 2-connected components of G have bounded clique-width. By Lemma 3.6, there is an induced
subgraph H of G that is a path or a cycle with at most four branching vertices such that for
every component of G−V (H) induced byM we know that G[M ∪V (H)] is a suture of H with a
graph K such that K−V ′ is P4-free, where V ′ are the attachments in K and |V ′| ≤ 4. Therefore,
each component of G − H can be obtained from a disjoint union of a P4-free graph and some
paths by adding at most four vertices, and there is a set S of at most four vertices of H, the
branching vertices, such that each connected component of G−S is either a connected component
of G − H, or an induced path. Therefore, each 2-connected component of G can be obtained
from a graph of bounded clique-width by adding at most 4 vertices. By using Theorem 2.2, we
obtain that each 2-connected component of G has bounded clique-width. ut

3.3 The graph co-(P3 ∪ 2K1)

In the following we will analyze the graphs that do not contain an induced minor isomorphic
to co-(P3 ∪ 2K1), the graph obtained from K5 by removing two incident edges. While it has
already been shown in [31] that isomorphism for such graphs reduces to isomorphism of graphs
not containing the gem (and is thus polynomially solvable), we provide a refinement of the proof
in [31] for this. We do this to obtain a finer structural description of these graphs, allowing us
to also bound the clique-width in the graph class.

Suppose G is a co-(P3 ∪ 2K1)-induced-minor-free graph. If G does not have a Kt minor for
some fixed t then G is in particular in the minor closed graph class of Kt-minor free graphs, and,
as described in the introduction, the isomorphism problem can be solved in polynomial time for
such graphs. Our strategy is thus to find a Kt minor and use this to analyze the structure of G.
In general, of course, there is no constant bound on the number of vertices required to form a Kt

minor. However in a co-(P3∪2K1)-induced-minor-free graph there is such a bound. We call a Kt

minor compact if every bag has at most two vertices.

Lemma 3.9. If a co-(P3 ∪ 2K1)-induced-minor-free graph G has a Kt minor for t ≥ 5 then G
has a compact Kt minor.

Proof. Let vertex sets M1, . . . ,Mt be the bags of a Kt minor in G such that Mi are inclusion
minimal with respect to forming a Kt minor. That is, removing a vertex from one of the Mi
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yields a minor different from Kt. We analyze the structure of the minor. We say a vertex v is
adjacent to a bag Mj if there exists a vertex v′ ∈Mj that is adjacent to v.

For a vertex v ∈ Mi define Mdeg(v) = |{Mj | j 6= i,N(v) ∩Mj 6= ∅}| to be the number of
bags different from Mi adjacent to v. Using several steps we will show that Mdeg(v) ≥ t − 2
for all v ∈ M1 ∪M2 ∪ · · · ∪Mt. We first argue that if Mdeg(v) > 1 then Mdeg(v) ≥ t − 2.
Indeed, if Mdeg(v) > 1 then consider the minor obtained by removing all vertices from Mi

different from v. If Mdeg(v) < t − 2 we can choose two bags which have vertices adjacent to v
and two bags which do not have such vertices. Using these bags and the vertex v we obtain
the forbidden induced minor co-(P3 ∪ 2K1). We call vertices with Mdeg(v) = 0 inner vertices,
those with Mdeg(v) = 1 low degree vertices and we call vertices with Mdeg(v) ≥ t−2 high degree
vertices. Next we argue that there are at most two high degree vertices in each bag. First, observe
that if Mi contains a vertex v such that Mdeg(v) = t− 1, then v is the only vertex in Mi and we
are done. Therefore we may assume that every vertex v in Mi satisfies Mdeg(v) ≤ t− 2. Now, if
Mi contains a high degree vertex, then we can pick two vertices v, v′ in Mi, such that v is a high
degree vertex, v′ is adjacent to the bag that v is not adjacent to, and there is a path from v to v′

in Mi that does not contain any other high degree vertex. Since every bag different from Mi is
adjacent to v or v′, removing all vertices different from v and v′ and not lying on the path yields
a Kt minor. Since the bags M1, . . . ,Mt were chosen to be minimal, we conclude that there are
at most two high degree vertices in each bag.

We further argue that there is no low degree vertex in Mi. Indeed, if there is at least one low
degree vertex in Mi, we can choose a low degree vertex v ∈Mi and a vertex v′ ∈Mi adjacent to
a bag Mj with j 6= i such that v is not adjacent to Mj and such that there exists a path in Mi

of inner vertices connecting v and v′. We remove all vertices in Mi different from v and v′ and
not on said path connecting them. We then move the vertex v′ from Mi to Mj . We obtain the
induced minor co-(K1,t−3 ∪ 2K1), which contains co-(P3 ∪ 2K1) since t ≥ 5.

Finally we argue that there are no inner vertices. Indeed, by minimality we can assume that
every inner vertex v lies on a path between two high degree vertices v1 and v2, say. We again
remove all vertices different from v1 and v2 not on the path. We then move v1 to an adjacent
bag Mj and v2 to an adjacent bag Mj′ such that j 6= j′. This is possible since the vertices have
high degree. Again we obtain a forbidden induced minor co-(K1,t−3 ∪ 2K1) as above.

Since there are only high degree vertices and since each bag can only contain two such vertices,
the minimal minor is compact. ut
Lemma 3.10. If G is a 2-connected co-(P3 ∪ 2K1) induced-minor-free graph and M is a com-
pact Kt minor with t ≥ 5 then G− V (M) is (K2 ∪K1)-free.

Proof. Assume that there is a 2-connected graphG that does not fulfill the lemma. LetM1, . . . ,Mt

be the bags of the compact minorM . Without loss of generality we choose the bags to be minimal
with respect to inclusion. Let v be a vertex in G− V (M). We argue that v is adjacent to all but
at most one of the bags (in the terminology of the previous proof v is of high degree).

Suppose there are two bags in which v does not have neighbors. Since G is 2-connected,
there are two vertex disjoint paths that start in v and end in distinct vertices of M . We choose
these paths to be shortest among all possible choices, so if v has neighbors in Mi, we pick
the corresponding paths. Also, if v has neighbors in distinct bags Mi and Mj , then pick the
corresponding paths. If these paths end in different bags Mj and Mk of M then we obtain the
forbidden induced minor by moving all vertices of each path into the bag in which the path ends
and removing all other vertices of G − V (M) besides v. If the paths end in the same bag Mi

of M we do the same operation by considering the minor M ′ = M −Mi and extending each
path by one vertex. For this, note that if u and u′ are the vertices of Mi then we can choose Mj

adjacent to u with j 6= i and Mk adjacent to u′ with j 6= i and j 6= k. Since t ≥ 5 we still obtain
the desired forbidden induced minor.
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Suppose now that the vertices a, b, c induce the subgraph K2∪K1 in G−V (M). Since t ≥ 5,
there are bags Mi and Mj such that each vertex in {a, b, c} is adjacent to M1 and to M2. This
implies that the family of bags {a}, {b}, {c},Mi,Mj induces the forbidden minor. This shows
that G− V (M) is (K2 ∪K1)-free. ut

Corollary 3.11. If a 2-connected co-(P3 ∪ 2K1)-induced-minor-free graph G has a K8 minor
then G is (K2 ∪K1)-free.

Proof. Assume that G has a K8 minor. Suppose G has an induced subgraph H isomorphic
to K2 ∪K1. Since H has only 3 vertices, G− V (H) has a K8−3 = K5 minor. By Lemma 3.9 the
graph G− V (H) has a compact K5 minor K. Thus by Lemma 3.10 the graph G− V (K), which
contains H, is (K2 ∪K1)-free, yielding a contradiction. ut

Since the gem is 2-connected, and thus every occurrence of a gem as an induced minor must
occur within a 2-connected component of a graph, the corollary is a refinement of Ponomarenko’s
result [31] that says that if a co-(P3∪2K1)-induced-minor-free graph G has a K218+4-minor then
it does not contain a gem as an induced minor.

Theorem 3.12. The Graph isomorphism problem for co-(P3 ∪ 2K1)-induced-minor-free graphs
can be solved in polynomial time.

Proof. As mentioned in the proof of Theorem 3.7, graph isomorphism in a hereditary graph class C
reduces to isomorphism of vertex-colored 2-connected graphs in C (see for example [12] or [28]).
We thus assume that the input graphs are colored and 2-connected. Also graph isomorphism
is polynomial-time solvable for colored graphs in non-trivial minor free graph classes [31] so we
can assume that both input graphs contain a K8 minor. By the previous corollary we conclude
that the input graphs are (K2 ∪K1)-free. Since isomorphism of colored cographs is solvable in
polynomial time, we obtain the theorem. ut

To show that the co-(P3 ∪ 2K1)-induced-minor-free graphs have bounded clique-width, we
need the following fact, which was indirectly proven by van ’t Hof et al. in the proof of Theorem 9
in [34].

Theorem 3.13. For any graph F and for any planar graph H, there exists a constant cF,H such
that an F -minor-free graph of tree-width at least cF,H has H as an induced minor.

Proof. Let cF be a constant such that every F -minor-free graph of tree-width at least cF · k2
has Γk as an induced minor, where Γk is a planar graph of tree-width at least k [15]. Let bH
be a constant such that every planar graph of tree-width at least bH contains H as an induced
minor [14]. Let G be an F -minor-free graph of tree-width at least cF ·b2H . By the definition of cF ,
G has ΓbH as an induced minor. Now by the definition of bH , ΓbH has H as an induced minor.
Thus G has H as an induced minor. ut

Theorem 3.14. If H is an induced subgraph of co-(P3 ∪ 2K1), then the H-induced-minor-free
graphs have bounded clique-width.

Proof. Due to Theorem 2.5, it suffices to show that the 2-connected components of G have
bounded clique-width. Let G be a 2-connected co-(P3 ∪ 2K1)-induced-minor-free graph.

First, assume that G contains K8 as a minor. As a consequence of Corollary 3.11, G is (K2 ∪
K1)-free and therefore a cograph, implying that G has clique-width at most 2.

Next, assume that G is K8-minor-free. Since co-(P3 ∪ 2K1) is planar, there is a constant c
such that if a graph is K8-minor-free and has tree-width at least c, it contains co-(P3 ∪ 2K1) as
an induced minor, due to Theorem 3.13. Thus G has tree-width at most c. ut
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3.4 The remaining graphs on at most five vertices

Now we study the remaining small graphs of at most five vertices. We show that every case here
can be reduced to some case we have already solved.

Lemma 3.15. Let H be a non-complete graph on five vertices. If H is neither co-(P3 ∪ 2K1)
nor the gem, then Graph Isomorphism for H-induced-minor-free graphs is GI-complete.

Proof. By Lemma 2.9 and Theorem 3.1, we may assume that H is co-bipartite, a split graph
of restricted split type, and (K3 ∪ K1)-free. Let K be a maximum clique of H. Observe that
|K| ∈ {3, 4}.

We first consider the case where |K| = 4. Let (C, I) be a restricted split partition of H. Since
every vertex in I has degree at most 2, it holds that K ⊆ C. This implies that C = K and
|I| = 1. Since H is (K3 ∪ K1)-free, the vertex in I has at least two neighbors in C. Thus the
vertex in I has degree exactly two. Now it holds that H = co-(P3 ∪ 2K1). (See Fig. 1.)

Next we consider the case where |K| = 3. Let (C, I) be a restricted split partition of H. Since
H is co-bipartite, we have |C| = 3 and |I| = 2. Since H is (K3∪K1)-free, each vertex in I has at
least one neighbor in C. Since H is co-bipartite, we can also assume that each vertex in C has
at least one neighbor in I. On the other hand, since the maximum size of a clique in H is 3, no
vertex in I has three neighbors in C. Therefore, the two vertices in I have either both degree 2
or one of them is of degree 1 and the other of degree 2. In the former case H is the gem, and in
the latter case, H is the kite, which contains K3 ∪K1. (See Fig. 3.) ut

C I C I

gem kite

Fig. 3. The graphs gem and kite and split partitions of these graphs.

Lemma 3.16. Let H be a graph on at most four vertices. The Graph Isomorphism problem
for H-induced-minor-free graphs is polynomial-time solvable if H is an induced subgraph of either
co-(P3 ∪ 2K1) or P4. Otherwise, it is GI-complete.

Proof. By Lemma 2.9, we may assume that H is co-bipartite and split, since otherwise the
problem is GI-complete and H is not an induced subgraph of co-(P3 ∪ 2K1) or P4. There are 11
non-isomorphic graphs on four vertices [13]. It is easy to check that only five of them, depicted
in Fig. 4, are co-bipartite and split. One of the five is K3 ∪K1 and the others are P4 and three
induced subgraphs of co-(P3 ∪ 2K1). For graphs on at most three vertices, we can easily check
that all co-bipartite split graphs are induced subgraphs of co-(P3 ∪ 2K1). By Lemma 2.8 and
Theorems 3.1 and 3.12, the lemma follows. ut

The two lemmas above together imply the following theorem.

Theorem 3.17. Let H be a non-complete graph on at most five vertices. Then Graph Isomor-
phism for H-induced-minor-free graphs is polynomial-time solvable if H is an induced subgraph
of co-(P3 ∪ 2K1) or the gem; otherwise, it is GI-complete.
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K3 ∪K1 P4 K4diamondpaw

Fig. 4. Co-bipartite split graphs on four vertices.

The reductions we used above in order to show GI-completeness preserve the property that
the clique-width is unbounded (see Subsection 2.3). Thus we have the following corollary.

Corollary 3.18. Let H be a non-complete graph on at most five vertices. Then the H-induced-
minor-free graphs have bounded clique-width if and only if H is an induced subgraph of co-
(P3 ∪ 2K1) or the gem.

4 Non-complete graphs on at least six vertices

In this section, we show that if H is not a complete graph and has at least six vertices, then
Graph Isomorphism for the H-induced-minor-free graphs is GI-complete.

Lemma 4.1. If H is non-complete and contains a clique of size 5, then Graph Isomorphism
for H-induced-minor-free graphs is GI-complete.

Proof. Let K be a clique of size 5 in H. By Theorem 3.1, we may assume that H does not
have K3 ∪ K1 as an induced subgraph. This implies that each vertex of H has at least three
neighbors in K, and thus δ(H) ≥ 3. Since H is non-complete, in any split partition (C, I) of H,
the independent set I is non-empty. These two facts together imply that H is not of restricted
split type. Therefore, by Lemma 2.9, the lemma follows. ut
Theorem 4.2. If H is a non-complete graph on at least six vertices, then Graph Isomorphism
for H-induced-minor-free graphs is GI-complete.

Proof. By Lemma 2.9, we may assume that H is co-bipartite and of restricted split type. By
Lemma 4.1, we may also assume that H has no clique of size 5. A split graph with seven or
more vertices has a clique of size 5 or an independent set of size 3. Thus we may assume that
|V (H)| = 6.

Observe that H has a clique K of size 4, since otherwise it contains an independent set of
size 3. Let (C, I) be a restricted split partition of H. Since every vertex in I has degree at most
2, it holds that K ⊆ C. Observe that no vertex in V (H) \K can be in C, since H has no clique
of size 5. This implies that I = V (H) \K and C = K. Note that |I| = 2 and |C| = 4.

Since H has no independent set of size 3, every vertex in C has a neighbor in I. On the other
hand the vertices in I have degree at most 2. Therefore, H is the graph obtained from K4 by
adding two vertices of degree 2 so that the new vertices have no common neighbor. (See Fig. 5.)
Because H contains K3 ∪K1, the theorem follows by Theorem 3.1. ut

Fig. 5. The graph co-H.
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Since the reductions that we used above in order to show GI-completeness preserve the
property that the clique-width is unbounded (see Subsection 2.3), we have the following corollary.

Corollary 4.3. If H is a non-complete graph on at least six vertices, then H-induced-minor-free
graphs have unbounded clique-width.
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