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I/O-Efficient Similarity Join⋆
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Abstract. We present an I/O-efficient algorithm for computing sim-
ilarity joins based on locality-sensitive hashing (LSH). In contrast to
the filtering methods commonly suggested our method has provable sub-
quadratic dependency on the data size. Further, in contrast to straightfor-
ward implementations of known LSH-based algorithms on external mem-
ory, our approach is able to take significant advantage of the available
internal memory: Whereas the time complexity of classical algorithms
includes a factor of Nρ, where ρ is a parameter of the LSH used, the I/O
complexity of our algorithm merely includes a factor (N/M)ρ, where N
is the data size and M is the size of internal memory. Our algorithm is
randomized and outputs the correct result with high probability. It is a
simple, recursive, cache-oblivious procedure, and we believe that it will
be useful also in other computational settings such as parallel computa-
tion.

Keywords: Similarity join; locality sensitive hashing; cache aware; cache obliv-
ious;

1 Introduction

The ability to handle noisy or imprecise data is becoming increasingly important
in computing. In database settings this kind of capability is often achieved using
similarity join primitives that replace equality predicates with a condition on
similarity. To make this more precise consider a space U and a distance func-
tion d : U × U → R. The similarity join of sets R,S ⊆ U is the following:
Given a radius r, compute the set R ⊲⊳≤r S = {(x, y) ∈ R × S | d(x, y) ≤ r}.
This problem occurs in numerous applications, such as web deduplication [3, 13,
19], document clustering [4], data cleaning [2, 6]. As such applications arise in
large-scale datasets, the problem of scaling up similarity join for different metric
distances is getting more important and more challenging.

Many known similarity join techniques (e.g., prefix filtering [2, 6], positional
filtering [19], inverted index-based filtering [3]) are based on filtering techniques
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that often, but not always, succeed in reducing computational costs. If we let
N = |R|+ |S| these techniques generally require Ω(N2) comparisons for worst-
case data. Another approach is locality-sensitive hashing (LSH) where candidate
output pairs are generated using collisions of carefully chosen hash functions.
The LSH is defined as follows.

Definition 1. Fix a distance function d : U × U → R. For positive reals
r, c, p1, p2, and p1 > p2, c > 1, a family of functions H is (r, cr, p1, p2)-sensitive
if for uniformly chosen h ∈ H and all x, y ∈ U:

– If d(x, y) ≤ r then Pr [h(x) = h(y)] ≥ p1;
– If d(x, y) ≥ cr then Pr [h(x) = h(y)] ≤ p2.

We say that H is monotonic if Pr [h(x) = h(y)] is a non-increasing function of
the distance function d(x, y). We also say that H uses space s if a function h ∈ H
can be stored and evaluated using space s.

LSH is able to break the N2 barrier in cases where for some constant c > 1
the number of pairs in R ⊲⊳≤cr S is not too large. In other words, there should
not be too many pairs that have distance within a factor c of the threshold, the
reason being that such pairs are likely to become candidates, yet considering
them does not contribute to the output. For notational simplicity, we will talk
about far pairs at distance greater than cr (those that should not be reported),
near pairs at distance at most r (those that should be reported), and c-near
pairs at distance between r and cr (those that should not be reported but the
LSH provides no collision guarantees).

Our contribution. In this paper we study I/O-efficient similarity join meth-
ods based on LSH. That is, we are interested in minimizing the number of I/O
operations where a block of B points from U is transferred between an external
memory and an internal memory with capacity for M points from U. Our main
result is the first cache-oblivious algorithm for similarity join that has provably
sub-quadratic dependency on the data size N and at the same time inverse
polynomial dependency onM . In essence, where previous methods have an over-
head factor of either N/M or (N/B)ρ we obtain an overhead of (N/M)ρ, where
0 < ρ < 1 is a parameter of the LSH employed, strictly improving both. We
show:

Theorem 1. Consider R,S ⊆ U, let N = |R| + |S|, assume 18 logN + 3B ≤
M < N and that there exists a monotonic (r, cr, p1, p2)-sensitive family of func-
tions with respect to distance measure d, using space B and with p2 < p1 < 1/2.
Let ρ = log p1/ log p2. Then there exists a cache-oblivious randomized algorithm
computing R ⊲⊳≤r S (w.r.t. d) with probability 1−O (1/N) using

Õ





(

N

M

)ρ




N

B
+

|R ⊲⊳
≤r
S|

MB



+

|R ⊲⊳
≤cr

S|

MB



 I/Os.1

1 The Õ (·)-notation hides polylog(N) factors.
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We conjecture that the bound in Theorem 1 is close to the best possible for the
class of “signature based” algorithms that work by generating a set of LSH values
(from a black-box and monotonic family) and checking all pairs that collide. Our
conjecture is based on an informal argument, given in full in Section 4. We
describe a worst-case input, where it seems significant advances are required to
beat Theorem 1 asymptotically. Further, we observe that for M = N our bound
coincides with the optimal bound of reading the input, and when M = 1 our
bound coincides with the bounds of the best known internal memory algorithms.

It is worth noting that whereas most methods in the literature focus on a
single (or a few) distance measure, our method works for an arbitrary space
and distance measure that allows LSH, e.g., Hamming, Manhattan (ℓ1), Eu-
clidean (ℓ2), Jaccard, and angular metric distances. Since our approach makes
use of LSH as a black box, the problem of reporting the complete join result
with certainty would require major advances in LSH methods (see [16, 17] for
recent progress in this direction).

A primary technical hurdle in the paper is that we cannot use any kind of
strong concentration bounds on the number of points having a particular value,
since hash values of an LSH family may be correlated by definition. Another hur-
dle is duplicate elimination in the output stemming from pairs having multiple
LSH collisions. However, in the context of I/O-efficient algorithms it is natural
to not require the listing of all near pairs, but rather we simply require that
the algorithm enumerates all such near pairs. More precisely, the algorithm calls
for each near pair (x, y) a function emit(x, y). This is a natural assumption in
external memory since it reduces the I/O complexity. In addition, it is desired
in many applications where join results are intermediate results pipelined to a
subsequent computation, and are not required to be stored on external memory.
Our upper bound can be easily adapted to list all instances by increasing the
I/O complexity of an unavoidable additive term of Θ (|R ⊲⊳≤r S|/B) I/Os.

Organization. The organization of the paper is as follows. In Section 2,
we briefly review related work. Section 3 describes our algorithms including a
warm-up cache-aware approach and the main results, a cache-oblivious solution,
its analysis, and a randomized approach to remove duplicates. Section 4 provides
some discussions on our algorithms with some real datasets. Section 5 concludes
the paper.

2 Related Work

In this section, we briefly review LSH, the computational I/O model, and some
state-of-the-art similarity join techniques.

Locality-sensitive hashing (LSH). LSH was originally introduced by In-
dyk and Motwani [14] for similarity search problems in high dimensional data.
This technique obtains a sublinear (i.e., O (Nρ)) time complexity by increasing
the gap of collision probability between near points and far points using the LSH
family as defined in Definition 1. The gap of collision probability is polynomial,
with an exponent of ρ = log p1/ log p2 dependent on c.
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It is worth noting that the standard LSHs for metric distances, including
Hamming [14], ℓ1 [7], ℓ2 [1, 7], Jaccard [4] and angular distances [5] are mono-
tonic. These common LSHs are space-efficient, and use space comparable to that
required to store a point, except the LSH of [1] which requires space No(1). We
do not explicitly require the hash values themselves to be particularly small.
However, using universal hashing we can always map to small bit strings while
introducing no new collisions with high probability. Thus we assume that B hash
values fit in one memory block.

Computational I/O model. We study algorithms for similarity join in the
external memory model, which has been widely adopted in the literature (see, e.g.,
the survey by Vitter [18]). The external memory model consists of an internal
memory of M words and an external memory of unbounded size. The processor
can only access data stored in the internal memory and move data between the
two memories in blocks of size B. For simplicity we will here measure block and
internal memory size in units of points from U, such that they can contain B
points and M points, respectively.

The I/O complexity of any algorithm is defined as the number of input/output
blocks moved between the two memories by the algorithm. The cache-aware ap-
proach makes explicit use of the parameters M and B to achieve its I/O com-
plexity, whereas the cache-oblivious one [9] does not explicitly use any model
parameters. The latter approach is desirable as it implies optimality on all levels
of the memory hierarchy and does not require parameter tuning when executed
on different physical machines. Note that the cache-oblivious model assumes
that the internal memory is ideal in the sense that it has an optimal cache-
replacement policy. Such cache-replacement policy can evict the block that is
used furthest in the future, and can place a block anywhere in the cache (full
associativity).

Similarity join techniques. We review some state-of-the-art of similarity
join techniques most closely related to our work.

– Index-based similarity join. A popular approach is to make use of index-
ing techniques to build a data structure for one relation, and then perform
queries using the points of the other relation. The indexes typically perform
some kind of filtering to reduce the number of points that a given query point
is compared to (see, e.g., [3, 6, 10]). Indexing can be space consuming, in par-
ticular for LSH, but in the context of similarity join this is not a big concern
since we have many queries, and thus can afford to construct each hash table
“on the fly”. On the other hand, it is clear that index-based similarity join
techniques will not be able to take significant advantage of internal memory
when N ≫ M . Indeed, the query complexity stated in [10] is O ((N/B)ρ)
I/Os. Thus the I/O complexity of using indexing for similarity join will be
high.

– Sorting-based. The indexing technique of [10] can be adapted to compute
similarity joins more efficiently by using the fact that many points are being
looked up in the hash tables. This means that all lookups can be done in
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a batched fashion using sorting. This results in a dependency on N that is
Õ
(

(N/B)1+ρ
)

I/Os, where ρ ∈ (0; 1) is a parameter of the LSH family.
– Generic joins. When N is close to M the I/O-complexity can be improved

by using general join operators optimized for this case. It is easy to see
that when N/M is an integer, a nested loop join requires N2/(MB) I/Os.
Our cache-oblivious algorithm will make use of the following result on cache-
oblivious nested loop joins:

Theorem 2. (He and Luo [12]) Given a similarity join condition, the join
of relations R and S can be computed by a cache-oblivious algorithm in

O
( |R|+ |S|

B
+

|R||S|
MB

)

I/Os.

This number of I/Os suffices to generate the result in memory, but may not
suffice to write it to disk.

We note that a similarity join can be part of a multi-way join involving
more than two relations. For the class of acyclic joins, where the variables
compared in join conditions can be organized in a tree structure, one can
initially apply a full reducer [20] that removes tuples that will not be part of
the output. This efficiently reduces any acyclic join to a sequence of binary
joins. Handling cyclic joins is much harder (see e.g. [15]) and outside the
scope of this paper.

3 Our Algorithms

In this section we describe our I/O efficient algorithms. We start in Section 3.1
with a warm-up cache-aware algorithm. It uses an LSH family where the value
of the collision probability is set to be a function of the internal memory size.
Section 3.2 presents our main result, a recursive and cache-oblivious algorithm,
which uses the LSH with a black-box approach and does not make any assump-
tion on the value of collision probability. Section 3.3 describes the analysis and
Section 3.4 shows how to reduce the expected number of times of emitting near
pairs.

3.1 Cache-aware algorithm: ASimJoin

We will now describe a simple cache-aware algorithm called ASimJoin, which
achieves the worst case I/O bounds as stated in Theorem 1. ASimJoin relies on
an (r, cr, p′1, p

′
2)-sensitive family H′ of hash functions with the following proper-

ties: p′2 ≤ M/N and p′1 ≥ (M/N)ρ, for a suitable value 0 < ρ < 1. Given an
arbitrary monotonic (r, cr, p1, p2)-sensitive family H, the family H′ can be built
by concatenating ⌈logp2

(M/N)⌉ hash functions from H. For simplicity, we as-
sume that logp2

(M/N) is an integer and thus the probabilities p′1 and p′2 can be
exactly obtained. Nevertheless, the algorithm and its analysis can be extended
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Algorithm ASimJoin(R,S): R,S are the input sets.

1 Repeat 3 log (N) times
2 Associate to each point in R and S a counter initially set to 0;
3 Repeat L = 2/p′1 times
4 Choose h′

i ∈ H′ uniformly at random;
5 Use h′

i to partition (in-place) R and S in buckets Rv, Sv of points with
the hash value v;

6 For each hash value v generated in the previous step
7 /* For simplicity we assume that |Rv | ≤ |Sv| */
8 Split Rv and Sv into chunks Ri,v and Si,v of size at most M/2;
9 For every chunk Ri,v of Rv

10 Load in memory Ri,v ;
11 For every chunk Si,v of Sv do
12 Load in memory Si,v;
13 Compute Ri,v × Si,v and emit all near pairs. For each far

pair, increment the associated counters by 1;
14 Remove from Si,v and Ri,v all points with the associated

counter larger than 8LM , and write Si,v back to external
memory;

15 Write Ri,v back to external memory;

to the general case by increasing the I/O complexity by a factor at most p−1
1 in

the worst case; in practical scenarios, this factor is a small constant [4, 7, 10].

ASimJoin assumes that each point in R and S is associated with a counter
initially set to 0. This counter can be thought as an additional dimension of
the point which hash functions and comparisons do not take into account. The
algorithm repeats L = 2/p′1 times the following procedure. A hash function
is randomly drawn from the (r, cr, p′1, p

′
2)-sensitive family, and it is used for

partitioning the sets R and S into buckets of points with the same hash value.
We let Rv and Sv denote the buckets respectively containing points of R and
S with the same hash value v. Then, the algorithm iterates through every hash
value and, for each hash value v, it uses a double nested loop for generating all
pairs of points in Rv × Sv. The double nested loop loads consecutive chunks of
Rv and Sv of size at most M/2: the outer loop runs on the smaller set (say Rv),
while the inner one runs on the larger one (say Sv). For each pair (x, y), the
algorithm emits the pair if d(x, y) ≤ r, increases by 1 counters associated with
x and y if d(x, y) > cr, or ignores the pair if r < d(x, y) ≤ cr. Every time the
counter of a point exceeds 8LM , the point is considered to be far away from
all points and will be removed from the bucket. Chunks will be moved back
in memory when they are no more needed. The entire ASimJoin algorithm is
repeated 3 logN times to find all near pairs with high probability. The following
theorem shows the I/O bounds of the cache-aware approach.

Theorem 3. Consider R,S ⊆ U and let N = |R| + |S| be sufficiently large.
Assume there exists a monotonic (r, cr, p′1, p

′
2)-sensitive family of functions with
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respect to distance measure d with p′1 = (M/N)ρ and p′2 = M/N , for a suitable
value 0 < ρ < 1. With probability 1− 1/N , the ASimJoin algorithm enumerates
all near pairs using

Õ





(

N

M

)ρ




N

B
+

|R ⊲⊳
≤r
S|

MB



+

|R ⊲⊳
≤cr

S|

MB



 I/Os.

Proof. We observe that the I/O cost of Steps 4-5, that is of partitioning sets
R and S according to a hash function h′i, is L · sort(N) = Õ

(

(N
M )ρ · N

B

)

for

L ≤ ( N
M )ρ repetitions2.

We now consider the I/O cost of an iteration of the loop in Step 6 for a given
hash value v. When the size of one bucket (say Rv) is smaller than M/2, we are
able to load the whole Rv into the internal memory and then load consecutive
blocks of Sv to execute join operations. Hence, the I/O cost of this step is at
most (|Rv| + |Sv|)/B. The total I/O cost of the 3L log (N) iterations of Step 6
among all possible hash values where at least one bucket has size smaller than
M/2 is at most L · N

B = 2(N
M )ρ · N

B I/Os.

The I/O cost of Step 6 when both buckets Rv and Sv are larger than M/2
is 2|Rv||Sv|/(BM). This means that the amortized cost of each pair in Rv × Sv

is 2/(BM). Therefore the amortized I/O cost of all iterations of Step 6, when
there are no bucket size less than M/2, can be upper bounded by multiplying
the total number of generated pairs by 2/(BM). Based on this observation, we
classify and enumerate generated pairs into three groups: near pairs, c-near pairs
and far pairs. We denote by Cn, Ccn and Cf the respective size of each group,
and upper bound these quantities to derive the proof.

1. Number of near pairs. By definition, LSH gives a lower bound on the prob-
ability of collision of near pairs. It may happen that the collision probabil-
ity of near pairs is 1. Thus, two near points might collide in all L repeti-
tions of Step 3 and in all 3 log (N) repetitions of Step 1. This means that
Cn ≤ 3L log (N)|R ⊲⊳≤r S|. Note that this bound is a deterministic worst
case bound.

2. Number of c-near pairs. Any c-near pair from R ⊲⊳≤cr S appears in a bucket
with probability at most p′1 due to monotonicity of our LSH family. Since we
have L = 2/p′1 repetitions, each c-near pair collides at most 2 in expectation.
In other words, the expected number of c-near pair collisions among L rep-
etitions is at most 2|R ⊲⊳≤cr S|. By using the Chernoff bound [8, Exercise
1.1] with 3 log (N) independent L repetitions (in Step 1), we have

Pr [Ccn ≥ 6 log (N)|R ⊲⊳≤cr S|] ≤ 1/N2,

Pr [Ccn ≤ 6 log (N)|R ⊲⊳≤cr S|] ≥ 1− 1/N2.

2 We let sort(N) = O
(

(N/B) logM/B(N/B)
)

be shorthand for the I/O complexity

[18] of sorting N points.
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3. Number of far pairs. If x ∈ R ∪ S is far away from all points, the expected
number of collisions of x in L hash table (including duplicates) is at most
8LM , since then the point is removed by Step 14. Hence the total number
of examined far pairs is Cf ≤ 24NLM log (N).

Therefore, by summing the number of near pairs Cn, c-near pairs Ccn, and far
pairs Cf , and multiplying these quantities by the amortized I/O complexity
2/(BM), we upper bound the I/O cost of all iterations of Step 6, when there
are no buckets of size less than M/2, is

Õ
((

N

M

)ρ(
N

B
+

|R ⊲⊳≤r S|
BM

)

+
|R ⊲⊳≤cr S|

BM

)

,

with probability at least 1− 1/N2. By summing all the previous bounds, we get
the claimed I/O bound with high probability.

We now analyze the probability to enumerate all near pairs. Consider one
iteration of Step 1. A near pair is not emitted if at least one of the following
events happen:

1. The two points do not collide in the same bucket in each of the L iterations
of Step 3. This happens with probability (1− p′1)

L = (1− p′1)
2/p′

1 ≤ 1/e2.

2. One of the two points is removed by Step 14 because it collides with more
than 8LM far points. By the Markov’s inequality and since there are at most
N far points, the probability that x collides with at least 8LM points in the
L iterations is at most 1/8. Then, this event happens with probability at
most 1/4.

Therefore, a near pair does not collide in one iteration of Step 1 with probability
at most 1/e2 + 1/4 < 1/2 and never collides in the 3 logN iterations with prob-
ability at most (1/2)3 logN = 1/N3. Then, by an union bound, it follows that
all near pairs (there are at most N2 of them) collide with probability at least
1− 1/N and the theorem follows. ⊓⊔

As already mentioned in the introduction, a near pair (x, y) can be emitted
many times during the algorithm since points x and y can be hashed on the
same value in p(x, y)L rounds of Step 3, where p(x, y) ≥ p′1 denotes the actual
collision probability. A simple approach for avoiding duplicates is the following:
for each near pair found during the i-th iteration of Step 3, the pair is emitted
only if the two points did not collide by all hash functions used in the previous
i−1 rounds. The check starts from the hash function used in the previous round
and backtracks until a collision is found or there are no more hash functions.
This approach increases the worst case complexity by a factor L. Section 3.4
shows a more efficient randomized algorithm that reduces the number of replica
per near pair to a constant. This technique also applies to the cache-oblivious
algorithm described in the next section.
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Algorithm OSimJoin(R,S, ψ): R,S are the input sets, and ψ is the re-
cursion depth.

1 If |R| > |S|, then swap (the references to) the sets such that |R| ≤ |S|;
2 If ψ = Ψ or |R| ≤ 1, then compute R ⊲⊳≤r S using the algorithm of Theorem 2

and return;
3 Pick a random sample S′ of 18∆ points from S (or all points if |S| < 18∆);
4 Compute R′ containing all points of R that have distance smaller than cr to at

least half points in S′;
5 Compute R′ ⊲⊳≤r S using the algorithm of Theorem 2;
6 Repeat L = 1/p1 times
7 Choose h ∈ H uniformly at random;
8 Use h to partition (in-place) R\R′ and S in buckets Rv , Sv of points with

hash value v;
9 For each v where Rv and Sv are nonempty, recursively call

OSimJoin (Rv, Sv, ψ + 1);

3.2 Cache-oblivious algorithm: OSimJoin

The above cache-aware algorithm uses an (r, cr, p′1, p
′
2)-sensitive family of func-

tions H′, with p′1 ∼ (M/N)ρ and p′2 ∼ M/N , for partitioning the initial sets
into smaller buckets, which are then efficiently processed in the internal memory
using the nested loop algorithm. If we know the internal memory size M , this
LSH family can be constructed by concatenating ⌈logp2

(M/N)⌉ hash functions
from any given primitive (r, cr, p1, p2)-sensitive family H. Without knowingM in
the cache-oblivious setting, such family cannot be built. Therefore, we propose
OSimJoin, a cache-oblivious algorithm that efficiently computes the similarity
join without knowing the internal memory size M and the block length B.

OSimJoin uses as a black-box a given monotonic (r, cr, p1, p2)-sensitive fam-
ily H.3 The value of p1 and p2 can be considered constant in a practical scenario.
As common in cache-oblivious settings, we use a recursive approach for splitting
the problem into smaller and smaller subproblems that at some point will fit
the internal memory, although this point is not known in the algorithm. We first
give a high level description of the cache-oblivious algorithm and an intuitive
explanation. We then provide a more detailed description and analysis.

OSimJoin receives in input the two sets R and S of similarity join, and a
parameter ψ denoting the depth in the recursion tree (initially, ψ = 0) that is
used for recognizing the base case. Let |R| ≤ |S|, N = |R| + |S|, and denote
with ∆ = logN and Ψ = ⌈log1/p2

N⌉ two global values that are kept invariant in
the recursive levels and computed using the initial input size N . For simplicity
we assume that 1/p1 and 1/p2 are integers, and further assume without loss of
generality that the initial size N is a power of two. Note that, if 1/p1 is not an

3 The monotonicity requirement can be relaxed to the following: Pr [h(x) = h(y)] ≥
Pr [h(x′) = h(y′)] for every two pairs (x, y) and (x′, y′) where d(x, y) ≤ r and
d(x′, y′) > r. A monotonic LSH family clearly satisfies this assumption.
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integer, the last iteration in Step 6 can be performed with a random variable
L ∈ {⌊1/p1⌋, ⌈1/p1⌉} such that E [L] = 1/p1.

OSimJoin works as follows. If the problem is currently at the recursive level
Ψ = ⌈log1/p2

N⌉ or |R| ≤ 1, the recursion ends and the problem is solved using
the cache-oblivious nested loop described in Theorem 2. Otherwise, the following
operations are executed. By exploiting sampling, the algorithm identifies a subset
R′ of R containing (almost) all points that are near or c-near to a constant
fraction of points in S (Steps 3 – 4). Then we compute R′ ⊲⊳≤r S using the cache-
oblivious nested-loop of Theorem 2 and remove points in R′ from R (Step 5).
Subsequently, the algorithm repeats L = 1/p1 times the following operations:
a hash function is extracted from the (r, cr, p1, p2)-sensitive family and used
for partitioning R and S into buckets, denoted with Rv and Sv with any hash
value v (Steps 7 – 8); then, the join Rv ⊲⊳≤r Sv is computed recursively by
OSimJoin(Step 9).

The explanation of our approach is the following. By recursively partitioning
input points with hash functions from H, the algorithm decreases the probability
of collision between two far points. In particular, the collision probability of
a far pair is pi2 at the i-th recursive level. On the other hand, by repeating
the partitioning 1/p1 times in each level, the algorithm guarantees that a near
pair is enumerated with constant probability since the probability that a near
pair collide is pi1 at the i-th recursive level. It deserves to be noticed that the
collision probability of far and near pairs at the recursive level log1/p2

(N/M)
is Θ (M/N) and Θ ((M/N)ρ), respectively, which are asymptotically equivalent
to the values in the cache-aware algorithm. In other words, the partitioning of
points at this level is equivalent to the one in the cache-aware algorithm with
collision probability for a far pair p′2 = M/N . Finally, we observe that, when a
point in R becomes close to many points in S, it is more efficient to detect and
remove it, instead of propagating it down to the base cases. This is due to the
fact that the collision probability of very near pairs is always large (close to 1)
and the algorithm is not able to split them into subproblems that fit in memory.

3.3 I/O Complexity and Correctness of OSimJoin

Analysis of I/O Complexity. We will bound the expected number of I/Os
of the algorithm rather than the worst case. This can be converted to an high
probability bound by running logN parallel instances of our algorithm (without
loss of generality we assume that the optimal cache replacement splits the cache
into M/ logN parts that are assigned to each instance). The total execution
stops when the first parallel instance terminates, which with probability at least
1 − 1/N is within a logarithmic factor of the expected I/O bound (logarithmic
factors are absorbed in the Õ-notation).

For notational simplicity, in this section we let R and S denote the initial
input sets and let R̃ and S̃ denote the subsets given in input to a particular
recursive subproblem (note that, due to Step 1, R̃ can denote a subset of R but
also of S; similarly for S̃). We also let S̃′ denote the sampling of S̃ in Step 3, and
with R̃′ the subset of R̃ computed in Step 4. Lemma 1 says that two properties
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of the choice of random sample in Step 3 are almost certain, and the proof
relies on Chernoff bounds on the choice of S̃′. In the remainder of the paper, we
assume that Lemma 1 holds and refer to this event as A holding with probability
1−O (1/N).

Lemma 1. With probability at least 1 − O (1/N) over the random choices in
Step 3, the following bounds hold for every subproblem OSimJoin(R̃, S̃, ψ):

|R̃′ ⊲⊳
≤cr

S̃| > |R̃′||S̃|
6

, (1)

|(R̃\R̃′) ⊲⊳
>cr

S̃| > |R̃\R̃′||S̃|
6

. (2)

Proof. Let x ∈ R̃ be a point which is c-near to at most one sixth of the points
in S̃, i.e., |x ⊲⊳≤crS̃| ≤ |S̃|/6. The point x enters R̃′ if there are at least 9∆ c-

near points in S̃′ and this happens, for a Chernoff bound [8, Theorem 1.1], with

probability at most 1/N4. Each point of R∪S appears in at most 2
∑i=Ψ−1

i=0 Li <
2LΨ < 2N2 subproblems and there are at most N points in R ∪ S. Therefore,
with probability 1 − 2N3N−4 = 1 − 2N−1, we have that in every subproblem
OSimJoin(R̃, S̃, ψ) no point with at most |S̃|/6 c-near points in S̃ is in R̃′. Hence
each point in R̃ has at least |S̃|/6 c-near points in S̃, and the bound in Equation 1
follows.

We can similarly show that, with probability 1 − 2N3N−4 = 1 − 2N−1, we
have that in every subproblem OSimJoin(R̃, S̃, ψ) all points with at least 5|S̃|/6
c-near points in S̃ are in R̃′. Then, each point in R̃\R̃′ has |S̃|/6 far points in S̃
and Equation 2 follows. ⊓⊔

To analyze the number of I/Os for subproblems of size more than M we
bound the cost in terms of different types of collisions of pairs in R×S that end
up in the same subproblem of the recursion. We say that (x, y) is in a particular
subproblem OSimJoin(R̃, S̃, ψ) if (x, y) ∈ (R̃ × S̃) ∪ (S̃ × R̃). Observe that a
pair (x, y) is in a subproblem if and only if x and y have colliding hash values
on every step of the call path from the initial invocation of OSimJoin.

Definition 2. Given Q ⊆ R × S let Ci (Q) be the number of times a pair in Q
is in a call to OSimJoin at the i-th level of recursion. We also let Ci,k (Q), with
0 ≤ k ≤ logM , denote the number of times a pair in Q is in a call to OSimJoin

at the i-th level of recursion where the smallest input set has size in [2k, 2k+1) if
0 ≤ k < logM , and in [M,+∞) if k = logM . The count is over all pairs and
with multiplicity, so if (x, y) is in several subproblems at the i-th level, all these
are counted.

Next we bound the I/O complexity of OSimJoin in terms of Ci (R ⊲⊳≤cr S)
and Ci,k (R ⊲⊳>cr S), for any 0 ≤ i < Ψ . We will later upper bound the expected
size of these quantities in Lemma 3 and then get the claim of Theorem 1.

11



Lemma 2. Let ℓ = ⌈log1/p2
(N/M)⌉ and M ≥ 18 logN + 3B. Given that A

holds, the I/O complexity of OSimJoin(R,S, 0) is

Õ









NLℓ

B
+

ℓ
∑

i=0

Ci

(

R ⊲⊳
≤cr

S

)

MB
+

Ψ−1
∑

i=ℓ

logM
∑

k=0

Ci,k

(

R ⊲⊳
>cr

S

)

L

B2k









Proof. To ease the analysis we assume that no more than 1/3 of internal memory
is used to store blocks containing elements of R and S, respectively. Since the
cache-oblivious model assumes an optimal cache replacement policy this cannot
decrease the I/O complexity. Also, internal memory space used for other things
than data (input and output buffers, the recursion stack of size at most Ψ) is
less than M/3 by our assumption that M ≥ 18 logn + 3B. As a consequence,
we have that the number of I/Os for solving a subproblem OSimJoin (R̃, S̃, ·)
where |R̃| ≤ M/3 and |S̃| ≤ M/3 is O

(

(|R̃|+ |S̃|)/B
)

, including all recursive

calls. This is because there is space M/3 dedicated to both input sets and only
I/Os for reading the input are required. By charging the cost of such subproblems
to the writing of the inputs in the parent problem, we can focus on subproblems
where the largest set (i.e., S̃) has size more thanM/3. We notice that the cost of
Steps 3–4 is dominated by other costs by our assumption that the set S̃′ fits in
internal memory, which implies that it suffices to scan data once to implement
these steps. This cost is clearly negligible with respect to the remaining steps
and thus we ignore them.

We first provide an upper bound on the I/O complexity required by all
subproblems at a recursive level above ℓ. Let OSimJoin (R̃, S̃, i) be a recursive
call at the i-th recursive level, for 0 ≤ i ≤ ℓ. The I/O cost of the nested loop join

in Step 5 in OSimJoin (R̃, S̃, i) is O
(

|S̃|/B + |R̃′||S̃|/(MB)
)

by Theorem 2.

We can ignore the O
(

|S̃|/B
)

term since it is asymptotically negligible with

respect to the cost of each iteration of Step 6, which is upper bounded later. By
Equation 1, we have that R̃′ ⊲⊳≤cr S̃ contains more than |R̃′||S̃|/6 pairs, and thus

the cost of Step 5 in OSimJoin(R̃, S̃, i) is O
(

|R̃′ ⊲⊳≤cr S̃|/(MB)
)

. This means

that we can bound the total I/O cost of all executions of Step 5 at level i of the
recursion with O (Ci (R ⊲⊳≤cr S) /(MB)) since each near pair (x, y) appears in
Ci((x, y)) subproblems at level i.

The second major part of the I/O complexity is the cost of preparing recursive
calls inOSimJoin(R̃, S̃, i) (i.e., Steps 7–8). In fact, in each iteration of Step 6, the

I/O cost is Õ
(

(|R̃|+ |S̃|)/B
)

, which includes the cost of hashing and of sorting

to form buckets. Since each point of R̃ and S̃ is replicated in L subproblems in
Step 6, we have that each point of the initial sets R and S is replicated Li+1

times at level i. Since the average cost per entry is Õ (1/B), we have that the
total cost for preparing recursive calls at level i is Õ

(

NLi+1/B
)

. By summing
the above terms, we have that the total I/O complexity of all subproblems in
the i-th recursive level is upper bounded by:

12



Õ









Ci

(

R ⊲⊳
≤cr

S

)

MB
+
NLi+1

B









. (3)

We now focus our analysis to bound the I/O complexity required by all
subproblems at a recursive level below ℓ. Let again OSimJoin(R̃, S̃, i) be a
recursive call at the i-th recursive level, for ℓ ≤ i ≤ Ψ . We observe that (part
of) the cost of a subproblem at level i ≥ ℓ can be upper bounded by a suitable
function of collisions among far points in OSimJoin (R̃, S̃, i). More specifically,
consider an iteration of Step 6 in a subproblem at level i. Then, the cost for
preparing the recursive calls and for performing Step 5 in each subproblem (at
level i+ 1) generated during the iteration, can be upper bounded as

Õ
(

|R̃\R̃′|+ |S̃|
B

+
|(R̃\R̃′) ⊲⊳≤cr S̃|

BM

)

,

since each near pair in (R̃\R̃′) ⊲⊳≤cr S̃ is found in Step 5 in at most one
subproblem at level i + 1 generated during the iteration. Since we have that
|(R̃\R̃′) ⊲⊳≤cr S̃| ≤ |R̃\R̃′||S̃|, we easily get that the above bound can be rewrit-

ten as Õ
(

|R̃\R̃′||S̃|/(Bmin{M, |R̃\R̃′|})
)

. We observe that this bound holds

even when i = Ψ − 1: in this case the cost includes all I/Os required for solving
the subproblems at level Ψ called in the iteration and which are solved using the
nested loop in Theorem 2 (see Step 2). By Lemma 1, we have that the above
quantity can be upper bounded with the number of far collisions between R̃ and

S̃, getting Õ
(

(|R̃\R̃′ ⊲⊳>cr S̃|)/(Bmin{M, |R̃\R̃′|})
)

.

Recall that Ci,k (Q) denotes the number of times a pair in Q is in a call to
OSimJoin at the i-th level of recursion where the smallest input set has size in
[2k, 2k+1) if 0 ≤ k < logM , and in [M,+∞) if k = logM . Then, the total cost
for preparing the recursive calls in Steps 7–8 in all subproblems at level i and
for performing Step 5 in all subproblems at level (i+ 1) is:4

Õ
(

logM
∑

k=0

Ci,k (R ⊲⊳>cr S)L

B2k

)

. (4)

The L factor in the above bound follows since far collisions at level i are used
for amortizing the cost of Step 5 for each one of the L iterations of Step 6.

To get the total I/O complexity of the algorithm we sum the I/O complexity
required by each recursive level. We bound the cost of each level as follows: for
a level i < ℓ we use the bound in Equation 3; for a level i > ℓ we use the bound

4 We note that the true input size of a subproblem is |R̃| and not |R̃\R̃′|. However,
the expected value of Ci,k (R ⊲⊳>cr S) is computed assuming the worst case where
there are no close pairs an thus R̃′ = ∅.
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in Equation 4; for level i = ℓ, we use the bound given in Equation 4 to which we
add the first term in Equation 3 since the cost of Step 5 at level ℓ is not included
in Equation 4 (note that the addition of Equations 3 and 4 gives a weak upper
bound for level ℓ). The lemma follows. ⊓⊔

We will now analyze the expected sizes of the terms in Lemma 2. Clearly
each pair from R × S is in the top level call, so the number of collisions is
|R||S| < N2. But in lower levels we show that the expected number of times
that a pair collides either decreases or increases geometrically, depending on
whether the collision probability is smaller or larger than p1 (or equivalently,
depending on whether the distance is greater or smaller than the radius r). The
lemma follows by expressing the number of collisions of the pairs at the i-th
recursive level as a Galton-Watson branching process [11].

Lemma 3. Given that A holds, for each 0 ≤ i ≤ Ψ we have

1. E

[

Ci

(

R ⊲⊳
>cr

S

)]

≤ |R ⊲⊳
>cr

S| (p2/p1)i;

2. E

[

Ci

(

R ⊲⊳
>r,≤cr

S

)]

≤ |R ⊲⊳
>r,≤cr

S| ;

3. E

[

Ci

(

R ⊲⊳
≤r
S

)]

≤ |R ⊲⊳
≤r
S|Li;

4. E

[

Ci,k

(

R ⊲⊳
>cr

S

)]

≤ N2k+1 (p2/p1)
i, for any 0 ≤ k < logM .

Proof. Let x ∈ R and y ∈ S. We are interested in upper bounding the number
of collisions of the pair at the i-th recursive level. We envision the problem as
branching process (more specifically a GaltonWatson process, see e.g. [11]) where
the expected number of children (i.e., recursive calls that preserve a particular
collision) is Pr [h(x) = h(y)] /p1 for random h ∈ H. It is a standard fact from this
theory that the expected population size at generation i (i.e., number of times
(x, y) is in a problem at recursive level i) is (Pr [h(x) = h(y)] /p1)

i [11, Theorem
5.1]. If d(x, y) > cr, we have that Pr [h(x) = h(y)] ≤ p2 and each far pair appears
at most (p2/p1)

i times in expectation at level i, from which follows Equation 1.
Moreover, since the probability of collisions is monotonic in the distance, we
have that Pr [h(x) = h(y)] ≤ 1 if d(x, y) ≤ r, and Pr [h(x) = h(y)] ≤ p1 if r <
d(x, y) ≤ cr, from which follow Equations 2 and 3.

In order to get the last bound we observe that each entry of R and S is
replicated Li = p−i

1 times at level i. Thus, we have that N2k+1Li is the total
maximum number of far collisions in subproblems at level i where the small-
est input set has size in [2k, 2k+1). Each one of these collisions survives up to
level i with probability pi2, and thus the expected number of these collisions is
N2k+1(p1/p2)

i. ⊓⊔

We are now ready to prove the I/O complexity of OSimJoin as claimed
in Theorem 1. By the linearity of expectation and Lemma 2, we get that the
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expected I/O complexity of OSimJoin is

Õ









NLℓ

B
+

ℓ
∑

i=0

E

[

Ci

(

R ⊲⊳
≤cr

S

)]

MB
+

Ψ−1
∑

i=ℓ

logM
∑

k=0

E

[

Ci,k

(

R ⊲⊳
>cr

S

)]

L

B2k









,

where ℓ = ⌈log1/p2
(N/M)⌉. Note that Ci,logM (R ⊲⊳>cr S) ≤ Ci (R ⊲⊳>cr S) we

have |R ⊲⊳>cr S| ≤ N2 and Ci (R ⊲⊳≤cr S) = Ci (R ⊲⊳≤r S) + Ci (R ⊲⊳>r,≤cr S).
By plugging in the bounds on the expected number of collisions given in Lemma 3,
we get the claimed result.

Analysis of Correctness. The following lemma shows that OSimJoin outputs
with probability 1−O (1/N) all near pairs, as claimed in Theorem 1.

Lemma 4. Let R,S ⊆ U and |R| + |S| = N . Executing O
(

log3/2N
)

indepen-

dent repetitions of OSimJoin(R,S,0) outputs R ⊲⊳≤r S with probability at least
1−O (1/N).

Proof. We now argue that a pair (x, y) with d(x, y) ≤ r is output with probability
Ω(1/

√
logN). Let Xi = Ci((x, y)) be the number of subproblems at the level

i containing (x, y). By applying Galton-Watson branching process, we get that
E [Xi] = (Pr [h(x) = h(y)] /p1)

i. If Pr [h(x) = h(y)] /p1 > 1 then in fact there
is positive constant probability that (x, y) survives indefinitely, i.e., does not go
extinct [11]. Since at every branch of the recursion we eventually compare points
that collide under all hash functions on the path from the root call, this implies
that (x, y) is reported with a positive constant probability.

In the critical case where Pr [h(x) = h(y)] /p1 = 1 we need to consider the
variance of Xi, which by [11, Theorem 5.1] is equal to iσ2, where σ2 is the
variance of the number of children (hash collisions in recursive calls). If 1/p1
is integer, the number of children in our branching process follows a binomial
distribution with mean 1. This implies that σ2 < 1. Also in the case where 1/p1
is not integer, it is easy to see that the variance is bounded by 2. That is, we
have Var (Xi) ≤ 2i, which by Chebychev’s inequality means that for some integer
j∗ = 2

√
i+O (1):

∞
∑

j=j∗

Pr [Xi ≥ j] ≤
∞
∑

j=j∗

Var (Xi) /j
2 ≤ 1/2 .

Since we have E [Xi] =
∑∞

j=1 Pr [Xi ≥ j] = 1 then
∑j∗−1

j=1 Pr [Xi ≥ j] > 1/2,
and since Pr [Xi ≥ j] is non-increasing with j this implies that Pr [Xi ≥ 1] ≥
1/(2j∗) = Ω

(

1/
√
i
)

. Furthermore, the recursion depth O (logN) implies the

probability that a near pair is found isΩ
(

1/
√
logN

)

. Thus, by repeatingO
(

log3/2N
)

times we can make the error probability O
(

1/N3
)

for a particular pair and
O (1/N) for the entire output by applying the union bound.
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3.4 Removing duplicates

Given two near points x and y, the definition of LSH requires their collision
probability p(x, y) = Pr [h(x) = h(y)] ≥ p1. If p(x, y) ≫ p1, our OSimJoin

algorithm can emit (x, y) many times. As an example suppose that the algorithm
ends in one recursive call: then, the pair (x, y) is expected to be in the same
bucket for p(x, y)L iterations of Step 6 and thus it is emitted p(x, y)L ≫ 1
times in expectation. Moreover, if the pair is not emitted in the first recursive
level, the expected number of emitted pairs increases as (p(x, y)L)i since the
pair (x, y) is contained in (p(x, y)L)i subproblems at the i-th recursive level. A
simple solution requires to store all emitted near pairs on the external memory,
and then using a cache-oblivious sorting algorithm [9] for removing repetitions.

However, this approach requires Õ
(

κ
|R⊲⊳≤r

S|

B

)

I/Os, where κ is the expected

average replication of each emitted pair, which can dominate the complexity
of OSimJoin. A similar issue appears in the cache-aware algorithm ASimJoin

as well: a near pair is emitted at most L′ = (N/M)ρ times since there is no
recursion and the partitioning of the two input sets is repeated only L′ times.

If the collision probability Pr [h(x) = h(y)] can be explicitly computed in
O (1) time and no I/Os for each pair (x, y), it is possible to emit each near
pair once in expectation without storing near pairs on the external memory. We
note that the collision probability can be computed for many metrics, including
Hamming [14], ℓ1 and ℓ2 [7], Jaccard [4], and angular [5] distances. For the
cache-oblivious algorithm, the approach is the following: for each near pair (x, y)
that is found at the i-th recursive level, with i ≥ 0, the pair is emitted with
probability 1/(p(x, y)L)i; otherwise, we ignore it. For the cache-aware algorithm,
the idea is the same but a near pair is emitted with probability 1/(p(x, y)L′) with
L′ = (N/M)ρ.

Theorem 4. The above approaches guarantee that each near pair is emitted
with constant probability in both ASimJoin and OSimJoin.

Proof. The claim easily follows for the cache-aware algorithm: indeed the two
points of a near pair (x, y) have the same hash value in p(x, y)L (in expectation)
of the L′ = (N/M)ρ repetitions of Step 3. Therefore, by emitting the pair with
probability 1/(p(x, y)L) we get the claim.

We now focus on the cache-oblivious algorithm, where the claim requires
a more articulated proof. Given a near pair (x, y), let Gi and Hi be random
variables denoting respectively the number of subproblems at level i containing
the pair (x, y), and the number of subproblems at level i where (x, y) is not
found by the cache-oblivious nested loop join algorithm in Theorem 2. Let also
Ki be a random variable denoting the actual number of times the pair (x, y) is
emitted at level i. We have followings properties:

1. E [Ki|Gi, Hi] = (Gi −Hi)/(p(x, y)L)
i since a near pair is emitted with prob-

ability 1/(p(x, y)L)i only in those subproblems where the pair is found by
the join algorithm.
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2. E [Gi] = (p(x, y)L)i since a near pair is in the same bucket with probability
p(x, y)i (it follows from the previous analysis based on standard branching).

3. G0 = 1 since each pair exists at the beginning of the algorithm.

4. HΨ = 0 since each pair surviving up to the last recursive level is found by
the nested loop join algorithm.

We are interested in upper bounding E

[

∑Ψ
i=0Ki

]

by induction that

E

[

l
∑

i=0

Ki

]

= 1− E [Hl]

(p(x, y)L)l
,

for any 0 ≤ l ≤ Ψ . For l = 0 (i.e., the first call to OSimJoin) and note that
E [G0] = G0 = 1, the equality is verified since

E [K0] = E [E [K0|G0, H0]] = E [G0 −H0] = 1− E [H0] .

We now consider a generic level l > 0. Since a pair propagates in a lower
recursive level with probability p(x, y), we have

E [Gl] = E [E [Gl|Hl−1]] = p(x, y)LE [Hl−1] .

Thus,

E [Kl] = E [E [Kl|Gl, Hl]] = E

[

Gl −Hl

(p(x, y)L)l

]

=
E [Hℓ−1]

(p(x, y)L)l−1
− E [Hℓ]

(p(x, y)L)l
.

By exploiting the inductive hypothesis, we get

E

[

l
∑

i=0

Ki

]

= E [Kl] + E

[

l−1
∑

i=0

Ki

]

= 1− E [Hl]

(p(x, y)L)l
.

Since HΨ = 0, we have E

[

∑Ψ
i=0Ki

]

= 1 and the claim follows. ⊓⊔

We observe that the proposed approach is equivalent to use an LSH where
p(x, y) = p1 for each near pair. Finally, we remark that this approach does not
avoid replica of the same near pair when the algorithm is repeated for increasing
the collision probability of near pairs. Thus, the probability of emitting a pair is

at least Ω
(

1/
√
Ψ
)

as shown in the second part of Section 3.3 and O
(

log3/2N
)

repetitions of OSimJoin suffices to find all pairs with high probability (however,

the expected number of replica of a given near pair becomes O
(

log3/2N
)

, even

with the proposed approach).
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4 Discussion

We will argue informally that our I/O complexity of Theorem 1 is close to the
optimal. For simple arguments, we split the I/O complexity of our algorithms in
two parts:

T1 =

(

N

M

)ρ




N

B
+

|R ⊲⊳
≤r
S|

MB



 ,

T2 =

|R ⊲⊳
≤cr

S|

MB
.

We now argue that T1 I/Os are necessary. First, notice that we need O (N/B)
I/Os per hash function for transferring data between memories, computing and
writing hash values to disk to find collisions. Second, since each I/O brings at
most B points in order to compute the distance with M points residing in the
internal memory, we need N/B I/Os to examine MN pairs. This means that
when the collision probability of far pairs p2 ≤M/N and the number of collisions
of far pairs is at mostMN in expectation, we only need O (N/B) I/Os to detect
such far pairs. Now we consider the case where there areΩ

(

N2
)

pairs at distance
cr. Due to the monotonicity of LSH family, the collision probability for each such
pair must be O (M/N) to ensure that O (N/B) I/Os suffices to examine such
pairs. In turn, this means that the collision probability for near pairs within
distance r must be at most O ((M/N)ρ). So we need Ω ((N/M)ρ) repetitions
(different hash functions) to expect at least one collision for any near pair.

Then, a worst-case data set can be given so that we might need to examine, for
each of the Ω ((N/M)ρ) hash functions, a constant fraction the pairs in R ⊲⊳≤r S
whose collision probability is constant. For example, this can happen if R and
S include two clusters of very near points. One could speculate that some pairs
could be marked as “finished” during computation such that we do not have to
compute their distances again. However, it seems hard to make this idea work
for an arbitrary distance measure where there may be very little structure for
the output set, hence the O (|R ⊲⊳≤r S|/(MB)) additional I/Os per repetition
is needed.

In order to argue that the term T2 is needed, we consider the case where all
pairs in R ⊲⊳≤cr S have distance r + ε for a value ε small enough to make the
collision probability of pair at distance r+ ε indistinguishable from the collision
probability of pair at distance r. Then every pair in R ⊲⊳≤cr S must be brought
into the internal memory to ensure the correct result, which requires T2 I/Os.
This holds for any algorithm enumerating or listing the near pairs. Therefore,
there does not exist an algorithm that beats the quadratic dependency on N
for such worst-case input sets, unless the distribution of the input is known
beforehand. However, when |R ⊲⊳≤cr S| is subquadratic regarding N , a potential
approach to achieve subquadratic dependency in expectation for similarity join
problem is filtering invalid pairs based on their distances — currently LSH-based
method is the only way to do this.
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Fig. 1. The cumulative distributions of pairwise similarities and pairwise distances on
samples of 10,000 points from Enron Email and MNIST datasets. We note that values
decrease on the x-axis of Figure 1.a, while they increase in Figure 1.b.

Note that when M = N our I/O cost is O (N/B) as we would expect, since
just reading the input is optimal. At the other extreme, when B = M = 1
our bound matches the time complexity of internal memory techniques. When
|R ⊲⊳≤cr S| are bounded by MN then our algorithm achieves subquadratic
dependency onN/M . Such an assumption is realistic in some real-world datasets
as shown in the experimental evaluation section.

To complement the above discussion we will evaluate our complexity by com-
puting explicit constants and then evaluating the total number of I/Os spent
by analyzing real datasets. Performing these “simulated experiments” has the
advantage over real experiments that we are not impacted by any properties of
a physical machine. We again split the I/O complexity of our algorithms in two
parts:

T1 =

(

N

M

)ρ




N

B
+

|R ⊲⊳
≤r
S|

MB





T2 =

|R ⊲⊳
≤cr

S|

MB

and carry out experiments to demonstrate that the first term T1 often dominates
the second term T2 in real datasets. In particular, we depict the cumulative
distribution function (cdf) in log-log scale of all pairwise distances (i.e., ℓ1, ℓ2)
and all pairwise similarities (i.e., Jaccard and cosine) on two commonly used
datasets: Enron Email5 and MNIST6, as shown in Figure 1. Since the Enron
data set does not have a fixed data size per point, we consider a version of the
data set where the dimension has been reduced such that each vector has a fixed
size.

5 https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
6 http://yann.lecun.com/exdb/mnist/
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Data set Metric r cr ρ
|R⊲⊳

≤r

S|

N

|R ⊲⊳
≤cr

S|

N
Standard LSH Nested loop ASimJoin

Enron Jaccard 0.5 0.1 0.30 1.8 · 103 16 · 103 > 7.5 · 109 I/Os 8 · 109 I/Os 3.2 · 109 I/Os

Enron Cosine 0.7 0.2 0.51 1.6 · 103 16 · 103 > 212 · 109 I/Os 8 · 109 I/Os 6.6 · 109 I/Os

MNIST L1 3000 6000 0.50 1.8 42 > 29 · 106 I/Os 60 · 106 I/Os 12 · 106 I/Os

Fig. 2. A comparison of I/O cost for similarity joins on the standard LSH, nested loop
and ASimJoin algorithms.

Figure 1.a shows an inverse polynomial relationship with a small exponent
m between similarity threshold s and the number of pairwise similarities greater
than s. The degree of the polynomial is particularly low when s > 0.5. This set-
ting s > 0.5 is commonly used in many applications for both Jaccard and cosine
similarities [2, 3, 19]. Similarly, Figure 1.b also shows a monomial relationship
between the distance threshold r and the number of pairwise distances smaller
than r. In turn, this means that the number of c-near pairs |R ⊲⊳≤cr S| is not
much greater than cm|R ⊲⊳≤r S|. In other words, the second term T2 is often
much smaller than the first term T1.

Finally, for the same data sets and metrics, we simulated the cache-aware
algorithm with explicit constants and examined the I/Os cost to compare with
a standard nested loop method (Section 2) and a lower bound on the standard
LSH method (Section 2). We set the cache sizeM = N/1000, which is reasonable
for judging a number of cache misses since the size ratio between CPU caches
and RAM is in that order of magnitude. In general such setting allows us to
investigate what happens when the data size is much larger than fast memory.
For simplicity we use B = 1 since all methods contain a multiplicative factor
1/B on the I/O complexity. The values of ρ were computed using good LSH
families for the specific metric and parameters r and c. These parameters are
picked according to Figure 1 such that the number of c-near pairs are only an
order of magnitude larger than the number of near pairs.

The I/O complexity used for nested loop join is 2N +N2/MB (here we as-
sume both sets have size N) and the complexity for the standard LSH approach
is lower bounded by sort

(

N1+ρ
)

. This complexity is a lower bound on the stan-
dard sorting based approaches as it lacks the additional cost that depends on
how LSH distributes the points. Since M = N/1000 we can bound the log-factor
of the sorting complexity and use sort (N) ≤ 8N since 2N points read and writ-
ten twice. The I/O complexity of our approach is stated in Theorem 3. The
computed I/O-values in Figure 2 show that the complexity of our algorithm is
lower than that of all instances examined. Nested loop suffers from quadratic
dependency on N , while the standard LSH bounds lack the dependency on M .
Overall the I/O cost indicates that our cache-aware algorithm is practical on the
examined data sets.
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5 Conclusion

In this paper we examine the problem of computing the similarity join of two
relations in an external memory setting. Our new cache-aware algorithm of Sec-
tion 3.1 and cache-oblivious algorithm of Section 3.2 improve upon current state
of the art by around a factor of (M/B)ρ I/Os unless the number of c-near pairs
is huge (more than NM). We believe this is the first cache-oblivious algorithm
for similarity join, and more importantly the first subquadratic algorithm whose
I/O performance improves significantly when the size of internal memory grows.

It would be interesting to investigate if our cache-oblivious approach is also
practical — this might require adjusting parameters such as L. Our I/O bound
is probably not easy to improve significantly, but interesting open problems
are to remove the error probability of the algorithm and to improve the implicit
dependence on dimension in B andM . Note that our work assumes for simplicity
that the unit ofM and B is number of points, but in general we may get tighter
bounds by taking into account the gap between the space required to store a point
and the space for hash values. Also, the result in this paper is made with general
spaces in mind and it is an interesting direction to examine if the dependence
on dimension could be made explicit and improved in specific spaces.
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