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Abstract

The linear induced matching width (LMIM-width) of a graph is a
width parameter defined by using the notion of branch-decompositions
of a set function on ternary trees. In this paper we study output-
polynomial enumeration algorithms on graphs of bounded LMIM-width
and graphs of bounded local LMIM-width. In particular, we show that
all 1-minimal and all 1-maximal pσ, ρq-dominating sets, and hence all
minimal dominating sets, of graphs of bounded LMIM-width can be
enumerated with polynomial (linear) delay using polynomial space.
Furthermore, we show that all minimal dominating sets of a unit square
graph can be enumerated in incremental polynomial time.

1 Introduction

Enumeration is at the heart of computer science and combinatorics. Enu-
meration algorithms for graphs and hypergraphs typically deal with listing
all vertex subsets or edge subsets satisfying a given property. As the size of
the output is often exponential in the size of the input, it is customary to
measure the running time of enumeration algorithms in the size of the input
plus the size of the output. If the running time of an algorithm is bounded
by a polynomial in the size of the input plus the size of the output, then the
algorithm is called output-polynomial. A large number of such algorithms
have been given over the last 30 years; many of them solving problems on
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graphs and hypergraphs [9, 10, 11, 14, 20, 21, 22, 24]. It is also possible
to show that certain enumeration problems have no output-polynomial time
algorithm unless P=NP [20, 21, 22].

Recently Kanté et al. showed that the famous longstanding open question
whether there is an output-polynomial algorithm to enumerate all minimal
transversals of a hypergraph, is equivalent to the question whether there is
an output-polynomial algorithm to enumerate all minimal dominating sets
of a graph [15]. Although the main question remains open, a large number
of results have been obtained on graph classes. Output-polynomial algo-
rithms to enumerate all minimal dominating sets exist for graphs of bounded
treewidth and of bounded clique-width [8], interval graphs [9], strongly
chordal graphs [9], planar graphs [11], degenerate graphs [11], split graphs
[15], path graphs [16], permutation graphs [17], line graphs [12, 16, 19],
chordal bipartite graphs [13], chordal graphs [18] and graphs of girth at least
7 [12].

In this paper, we extend the above results to graphs of bounded linear
maximum induced matching width. Using the notion of branch-decomposi-
tions of a set function on ternary trees introduced by Robertson and Sey-
mour, the notion of maximum induced matching width (MIM-width) was
introduced by Vatshelle [26]. The linear maximum induced matching width
(LMIM-width) of a graph is the linearized variant of the MIM-width like
path-width is the linearized version of tree-width. (For definitions, see Sec-
tion 2.) Belmonte and Vatshelle showed that several important graph classes,
among them interval, circular-arc and permutation graphs, have bounded
LMIM-width [3]. Polynomial-time algorithms solving optimization problems
on such graph classes have been studied in [6, 26].

In this paper, we study two ways of using bounded LMIM-width in
enumeration algorithms. In Section 3 we study the enumeration problem
corresponding to an extended and colored version of the well-known pσ, ρq-
domination problem, asking to enumerate all 1-minimal and all 1-maximal
Red pσ, ρq-dominating sets. This includes the enumeration of all minimal
(total) dominating sets on graphs of bounded LMIM-width. We establish as
our main result an enumeration algorithm with linear delay and polynomial
space for this problem. Our algorithm uses the enumeration (and counting)
of paths in directed acyclic graphs. In Section 4 we study the enumeration
of all minimal dominating sets in unit square graphs. We first show that
such graphs have bounded local LMIM-width. An hereditary graph class G

has bounded local LMIM-width if there is a function f : N Ñ N such that
the LMIM-width of every graph G in G is bounded by fpdiamq where diam

is the diameter of G. The notion of bounded local width has been studied
for several width notions and in particular in the area of Bidimensionality
[1, 2]. Then we show how to adapt the so-called flipping method developed
by Golovach et al. [12] to enumerate all minimal dominating sets of a unit
square graph in incremental polynomial time.
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2 Definitions and preliminaries

Graphs. The power set of a set V is denoted by 2V . For two sets A and
B we let AzB be the set tx P A | x R Bu, and if X is a subset of a ground
set V , we let sX be the set V zX. We often write x to denote the singleton
set txu. We denote by N the set of positive or null integers, and let N˚ be
Nzt0u.

A graph G is a pair pV pGq, EpGqq with V pGq its set of vertices and
EpGq its set of edges. An edge between two vertices x and y is denoted
by xy (respectively yx). The subgraph of G induced by a subset X of its
vertex set is denoted by GrXs, and we write GzX to denote the induced
subgraph GrV pGqzXs. For F Ď EpGq, we denote by G ´ F the subgraph
pV pGq, EpGqzF q. The set of vertices that is adjacent to x is denoted by
NGpxq, and we let NGrxs be the set NGpxq Y txu. For U Ď V pGq, NGrU s “
YvPUNGrvs and NGpUq “ NGrU szU . For a vertex x and a positive integer
r, N r

Grxs denotes the set of vertices at distance at most r from x. Clearly,
N1

Grxs “ NGrxs. For two disjoint subsets A and B of V pGq, let GrA,Bs
denote the graph with vertex set A Y B and the edge set tuv P EpGq | u P
A, v P Bu. Clearly, GrA,Bs is a bipartite graph and tA,Bu is its bipartition.
Recall that a set of edges M is an induced matching if end-vertices of distinct
edges of M are different and not adjacent. We denote by mimGpA,Bq the
size of a maximum induced matching in GrA,Bs.

Let G be a graph, and let Red,Blue Ď V pGq such that Red Y Blue “
V pGq. We refer to the vertices of Red as the red vertices, the vertices of
Blue as the blue vertices, and we say that G together with given sets Red

and Blue is a colored graph. For simplicity, whenever we say that G is a
colored graph, it is assumed that the sets Red and Blue are given. Notice
that Red and Blue not necessarily disjoint. In particular, it can happen
that Red “ Blue “ V pGq; a non-colored graph G can be seen as a colored
graph with Red “ Blue “ V pGq. We deal with colored graphs because our
algorithm for unit-square graphs requires as a subroutine an algorithm that
takes as input a colored graph and enumerates all minimal subsets of red
vertices that dominate the blue vertices.

A graph G is an (axis-parallel) unit square graph if it is an intersection
graph of squares in the plane with their sides parallel to the coordinate
axis. These graphs also are known as the graphs of cubicity 2. We use
the following equivalent definition, see e.g. [7], in which each vertex v of
G is represented by a point in R2. A graph G is a unit square graph if
there is a function f : V pGq Ñ R2 such that two vertices u, v P V pGq are
adjacent in G if and only if }fpuq ´ fpvq}8 ă 1, where the norm }}8 is
the L8 norm. For a vertex v P V pGq, we let xf pvq and yf pvq denote the x

and y-coordinate of fpvq respectively. We say that the point pxf pvq, yf pvqq
represents v. The function f is called a realization of the unit square graph.
It is straightforward to see that for any unit square graph G, there is its
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realization f : V pGq Ñ Q2. We always assume that a unit square graph is
given with its realization. It is NP-hard to recognize unit square graphs [5].
We refer to the survey of Brandstädt, Le and Spinrad [4] for the definitions
of all other graph classes mentioned in our paper.

Enumeration. Let D be a family of subsets of the vertex set of a given
graph G on n vertices and m edges. An enumeration algorithm for D lists
the elements of D without repetitions. The running time of an enumeration
algorithm A is said to be output polynomial if there is a polynomial ppx, yq
such that all the elements of D are listed in time bounded by pppn`mq, |D|q.
Assume now that D1, . . . ,Dℓ are the elements of D enumerated in the order in
which they are generated by A. Let us denote by T pA, iq the time A requires
until it outputs Di, also T pA, ℓ ` 1q is the time required by A until it stops.
Let delaypA, 1q “ T pA, 1q and delaypA, iq “ T pA, iq ´ T pA, i ´ 1q. The
delay of A is maxtdelaypA, iqu. Algorithm A runs in incremental polynomial
time if there is a polynomial ppx, iq such that delaypA, iq ď ppn ` m, iq.
Furthermore A is a polynomial delay algorithm if there is a polynomial ppxq
such that the delay of A is at most ppn ` mq. Finally A is a linear delay
algorithm if delaypA, 1q is bounded by a polynomial in n`m and delaypA, iq
is bounded by a linear function in n ` m.

Linear maximum induced matching width. The notion of the maxi-
mum induced matching width was introduced by Vatshelle [26] (see also [3]).
We will give the definition in terms of colored graphs and restrict ourselves
to the case of linear maximum induced matching width. Let G be a col-
ored n-vertex graph with n ě 2 and let x1, . . . , xn be a linear ordering
of its vertex set. For each 1 ď i ď n, we let Ai “ tx1, x2, . . . xiu and
sAi “ txi`1, xi`2, . . . xnu. The maximum induced matching width (MIM-
width for short) of x1, . . . , xn is

max
1ďiďn´1

maxtmimGpAi X Red, sAi X Blueq,mimGpAi X Blue, sAi X Redqu.

Notice that if Red “ Blue “ V pGq, i.e., if G is an uncolored graph, the
MIM-width of x1, . . . , xn is maxtmimGpAi, Aiq|i P rn ´ 1su. Consequently,
The linear maximum induced matching width (LMIM-width) of G, denoted
by lmimwpGq, is the minimum value of the MIM-width taken over all linear
orderings of G.

Belmonte and Vatshelle [3] proved that several important graph classes
have bounded linear maximum induced matching width.

Theorem 1. For each of the following graph classes: interval graphs, per-
mutation graphs, circular-arc graphs, circular permutation graphs, trapezoid
graphs, convex graphs, and for fixed k, k-polygon graphs, Dilworth-k graphs
and complements of k-degenerate graphs, there is a constant c such that
lmimwpGq ď c for any graph G from the class. Moreover, the correspond-
ing linear ordering of the vertices of MIM-width at most c can be found in
polynomial time.
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For example, the LMIM-width of an interval graph is 1 and the LMIM-
width of a circular-arc and of a permutation graph is at most 2. Before
continuing, let us show that if a graph class G has LMIM-width c, then the
graph class G1 obtained from the graphs in G by partitioning their vertex set
into Blue and Red also has LMIM-width c.

Proposition 2. If a colored graph G1 is obtained from a non-colored graph
G, then lmimwpG1q ď lmimwpGq.

Proof. Let A Ă V pGq. For the colored graph G1, maxtmimG1 pA,Aq ď
mimG1pAXRed, AXBlueq,mimG1pAXBlue, AXRedqu. Because mimG1pAX
Red, AXBlueq “ mimGpAXRed, AXBlueq ď mimGpA,Aq and mimG1pAX
Blue, AXRedq “ mimGpAXBlue, AXRedq ď mimGpA,Aq, mimG1pA,Aq ď
mimGpA,Aq and the claim follows.

We say that a graph class G has locally bounded LMIM-width if there
is a function f : N Ñ N such that for any G P G and every u P V pGq,
lmimwpGrN r

Grussq ď fprq for all r P N.

pσ, ρq-domination. The pσ, ρq-dominating set notion was introduced by
Telle and Proskurowski [25] as a generalization of dominating sets. In-
deed, many NP-hard domination type problems such as the problems d-
Dominating Set, Independent Dominating Set and Total Dominating Set
are special cases of the pσ, ρq-Dominating Set Problem. See [6, Table 1] for
more examples. For technical reasons, we introduce Red pσ, ρq-domination.
Let σ and ρ be subsets of N. Throughout this paper it is assumed that σ

and ρ are finite or co-finite. Notice that it can happen that σ is finite and ρ

is co-finite and vice versa. We say that a subset D of V pGq pσ, ρq-dominates
a vertex u if

|NGpuq X D| P

#
σ if u P D,

ρ if u R D.

It is said that D pσ, ρq-dominates U Ď V pGq if D pσ, ρq-dominates every
vertex of U .

Let G be a colored graph. A set of vertices D Ď Red is a Red pσ, ρq-
dominating set if D pσ, ρq-dominates Blue. If Red “ Blue “ V pGq, then a
Red pσ, ρq-dominating set is a pσ, ρq-dominating set.

Notice that if σ “ N and ρ “ N˚, then a set D Ď V pGq pσ, ρq-dominates
a vertex u if u P D or u is adjacent to a vertex of D, i.e., the notion of pσ, ρq-
domination coincides with the classical domination in this case. Whenever
we consider this case, we simply write that a set D dominates a vertex or
set and D is a (Red) dominating set omitting pσ, ρq.

A Red pσ, ρq-dominating set D of a graph G is said minimal if for any
proper subset D1 Ă D, D1 is not a Red pσ, ρq-dominating set, and we say
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that D is 1-minimal if for each vertex x in D, Dzx is not a Red pσ, ρq-
dominating set. Respectively, a Red pσ, ρq-dominating set D is maximal if
for any D1 such that D Ă D1 Ď Red, D1 is not a Red pσ, ρq-dominating
set and D is 1-maximal if for each vertex x in RedzD, D Y txu is not a
Red pσ, ρq-dominating set. Clearly, every minimal or maximal Red pσ, ρq-
dominating set is 1-minimal or 1-maximal, respectively, but not the other
way around because the converse is not true for arbitrary σ and ρ. Observe
however that every (Red) 1-minimal (total) dominating set is also a (Red)
minimal (total) dominating set. In Section 3 we enumerate only 1-minimal
and 1-maximal Red pσ, ρq-dominating sets.

Because our aim is to enumerate 1-minimal or 1-maximal Red pσ, ρq-do-
minating sets, we need some certificate that a considered set is 1-minimal or
1-maximal respectively. Let D be a Red pσ, ρq-dominating set of a colored
graph G. For a vertex u P D, we say that the vertex v P Blue is its certifying
vertex (or a certificate) if v is not pσ, ρq-dominated by Dztuu, i.e.,

|NGpvq X pDztuuq| R

#
σ if v P pDztuuq X Blue,

ρ if v P BluezpDztuuq.

Respectively, for a vertex u P RedzD, the vertex v P Blue is its certifying
vertex (or a certificate) if v is not pσ, ρq-dominated by D Y tuu.

Notice that because D is a Red pσ, ρq-dominating set, if v is a certificate
for u, then v P NGrus. Observe also that a vertex can be a certificate for
many vertices and it can be a certificate for itself. Notice that in the case
of the classical domination, certificates are usually called privates because
a vertex is always a certificate for exactly one vertex, including itself. It is
straightforward to show the following.

Lemma 3. A set D Ď Red is a 1-minimal Red pσ, ρq-dominating set of a
colored graph G if and only if each vertex u P D has a certificate. Further-
more, D is a 1-maximal Red pσ, ρq-dominating set of G if and only if each
vertex u P RedzD has a certificate.

3 Enumerations for graphs of bounded LMIM-width

In this section we prove the following.

Theorem 4. Let pσ, ρq be a pair of finite or co-finite subsets of N and let
c be a positive integer. For a colored graph G given with a linear ordering
of V pGq of MIM-width at most c, one can count in time bounded by Opncq,
and enumerate with linear delay, all 1-minimal (or 1-maximal) Red pσ, ρq-
dominating sets of G.

As a corollary of Theorems 1 and 4, and Proposition 2 we have the
following.
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Corollary 5. Let pσ, ρq be a pair of finite or co-finite subsets of N. Then,
for every colored graph G in one of the following graph classes, we can count
in polynomial time, and enumerate with linear delay all 1-minimal (or 1-
maximal) Red pσ, ρq-dominating sets of G: interval graphs, permutation
graphs, circular-arc graphs, circular permutation graphs, trapezoid graphs,
convex graphs, and for fixed k, k-polygon graphs, Dilworth-k graphs and com-
plements of k-degenerate graphs.

The following corollary improves some known results in the enumeration
of minimal transversals of some geometric hypergraphs (see e.g. [23]).

Corollary 6. For every hypergraph H being an interval hypergraph or a
circular-arc hypergraph one can count in polynomial time, and enumerate
with linear delay, all minimal transversals of H.

Proof. For any of the considered hypergraphs, its incidence graph is a sub-
graph of an interval or a circular-arc graph. If we color the vertices of
the hypergraph in Red and the hyperedges in Blue, then X is a minimal
transversal in the hypergraph if and only if it is a Red pN,N˚q-dominating
set.

The remaining part of the section is devoted to the proof of Theorem
4. In Section 3.1 we give some technical definitions and lemmas that are
important for the definition of the DAG whose maximal paths correspond
to the desired sets. In Section 3.2 we define the DAG whose maximal paths
correspond to the 1-minimal Red pσ, ρq-dominating sets and then show that
it can be constructed in polynomial time. We also recall how to count in
polynomial time, and enumerate with linear delay the maximal paths of a
DAG. We then explain in Section 3.3 how the construction of Section 3.2
can be rewritten for 1-maximal Red pσ, ρq-dominating sets.

3.1 Technical Definitions

First because σ and ρ can be infinite, we need a finite way to check if a
vertex is pσ, ρq-dominated. Let dpNq “ 0. For every finite set µ Ď N,
let dpµq :“ 1 ` maxta | a P µu, and for every co-finite set µ Ď N, let
dpµq :“ 1`maxta | a P Nzµu. For finite or co-finite subsets σ and ρ of N, we
let dpσ, ρq :“ maxpdpσq, dpρqq. Given a subset D of Red, we can check if D
is a Red pσ, ρq-dominating set by computing |D X NGpxq| up to dpσ, ρq for
each vertex x in Blue [6]. We need the following properties of certificates.

Lemma 7. Let D be a Red pσ, ρq-dominating set of colored graph G. If v
is a certificate for u P D, then v “ u or v is a certificate for all vertices
of NGpvq X D. If v is a certificate for u P D X Red, then v “ u or v is a
certificate for all vertices of NGpvq X D X Red.

7



Proof. Let v ‰ u be a certificate for u P D and let D1 :“ Dztuu. If v P D1

and |NGpvq X D1| R σ, then for any w P NGpvq X D, |NGpvq X pDztwuq| “
|NGpvqXD1| R σ. If v R D1 and |NGpvqXD1| R ρ, then for any w P NGpvqXD,
|NGpvq X pDztwuq| “ |NGpvq X D1| R ρ. The second claim can be proved by
similar arguments.

We define σ˚ :“ σzρ and ρ˚ :“ ρzσ. Let also σ´ :“ ti P σ | i ´ 1 R σu,
ρ´ :“ ti P ρ | i´1 R ρu, σ` :“ ti P σ | i`1 R σu and ρ` :“ ti P ρ | i`1 R ρu.
By the definitions, we have the following property.

Lemma 8. The sets σ˚, ρ˚, σ´, ρ´, σ`, ρ` are finite or co-finite. Also,
dpσ˚, ρ˚q ď dpσ, ρq, dpσ´, ρ´q ď dpσ, ρq ` 1 and dpσ`, ρ`q ď dpσ, ρq ` 1.

By the definition of certificates, we have the next easy lemma.

Lemma 9. Let D be a Red pσ, ρq-dominating set of a colored graph G and
let u P Red and v P Blue be distinct vertices of G. If u P D, then v is a
certificate for u if and only if

|NGpvq X D| P

#
σ´ if v P D

ρ´ if v R D.

If u R D, then v is a certificate for u if and only if

|NGpvq X D| P

#
σ` if v P D

ρ` if v R D.

A blue vertex v P D is a certificate for itself if and only if |NGpvq X D| P
σ˚. A red vertex v R D is a certificate for itself if and only if it is blue and
|NGpvq X D| P ρ˚.

Let d P N and let A be a subset of the vertex set of a colored graph G.
Two red subsets X and Y of A are d-neighbor equivalent w.r.t. A, denoted
by X ”d

A Y , if for all x P sA X Blue we have

minpd, |X X NGpxq|q “ minpd, |Y X NGpxq|q.

It is not hard to check that ”d
A is an equivalence relation and et us

denote by necp”d
Aq the number of equivalence classes of ”d

A. Belmonte and
Vatshelle [3] proved the following lemma restated in our setting.

Lemma 10 ([3]). Let d P N and let A be a subset of the vertex set of a colored
graph G such that mimGpA X Red, sA X Blueq ď k. Then necp”d

Aq ď nd¨k.

The next lemma is used to bound the number of information we have
to store at each node of the DAG, which will consequently imply, combined
with Lemma 10, that the size of the DAG is polynomial in the size of G.

Lemma 11 ([3]). Let G be a colored graph and let A be a subset of V pGq.
Then, mimGpA X Red, sA X Blueq ď k if and only if for every blue subset
S of sA there is C Ď S such that NpCq X pA X Redq “ NpSq X pA X Redq
and |C| ď k.
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3.2 Constructing the DAG for 1-minimal sets

Throughout this section we let pσ, ρq be a fixed pair of finite or co-finite
subsets of N and we let G be a fixed n-vertex colored graph with n ě 2. Let
also x1, . . . , xn be a fixed linear ordering of the vertex set of G such that
the MIM-width of x1, . . . , xn is bounded by a constant c. Furthermore, for
all i P t1, 2, . . . , nu, we let Ai “ tx1, x2, . . . xiu and Ai “ txi`1, xi`2, . . . xnu.
We furthermore let d “ dpσ, ρq.

We will follow the same idea as in [6] where a minimum (or a max-
imum) pσ, ρq-dominating set is computed, and we need for that to recall
some definitions and lemmas (restated in our setting) proved in [6]. For ev-
ery i P t1, . . . , nu and every subset X of Ai X Red, we denote by repdAi

pXq
the lexicographically smallest set R Ď Ai X Red such that |R| is minimised
and R ”d

Ai
X. Notice that it can happen that R “ H.

Lemma 12 ([6]). For every i P t1, . . . , nu, one can compute a list LRi

containing all representatives w.r.t. ”d
Ai

in time Opnecp”d
Ai

q ¨ logpnecp”d
Ai

qq¨n2q. One can also compute a data structure that given a set X Ď AiXRed

in time Oplogpnecp”d
Ai

qq ¨ |X| ¨ nq allows us to find a pointer to repdAi
pXq in

LRi. Similar statements hold for the list LRsi containing all representatives
w.r.t. ”d

ĎAi
.

We will define a DAG, denoted by DAGpGq, the maximal paths of which
correspond exactly to the 1-minimal Red pσ, ρq-dominating sets of G.

For 1 ď j ď n and C Ď Aj X Blue (or C Ď sAj X Blue) we denote by
SGjpCq (or by GGjpCq) the set X obtained from C if we we initially set
X “ C and recursively apply the following rule: let x be the greatest (or
smallest) vertex in X such that NpXztxuqXp sAjXRedq “ NpXqXp sAjXRedq
(or NpXztxuq X pAj X Redq “ NpXq X pAj X Redq) and set X “ Xztxu.
Notice that SGjpCq and GGjpCq are both uniquely determined, and both
have sizes bounded by c from Lemma 11. Observe also that if C Ď AjXBlue

(or C Ď sAj XBlue), then SGℓpC Y txℓuq “ SGℓpSGjpCq Y txℓuq for all ℓ ą j

(or GGℓpC Y txℓuq “ GGℓpGGjpCq Y txℓuq for all ℓ ď j). The constructors
SGj and GGj are used to canonically choose certificates in order to avoid
redundancies.

Let 1 ď j ă n and let pRj , R
1
j , Cj , C

1
jq P LRjˆLRj̄ˆ2AjXBlueˆ2

sAjXBlue

and pRj`1, R
1
j`1

, Cj`1, C
1
j`1

q P LRj`1 ˆ LRĚj`1
ˆ 2Aj`1XBlue ˆ 2

sAj`1XBlue.
There is an ε-arc-1 from pRj, R

1
j , Cj , C

1
jq to pRj`1, R

1
j`1

, Cj`1, C
1
j`1

q if

(1.1) Rj ”d
Aj`1

Rj`1 and R1
j ”d

sAj
R1

j`1
, and

(1.2) if (xj`1 R Blue or (xj`1 P Blue and |Npxj`1q X pRj Y R1
j`1

q| P ρ and
|Npxj`1q X pRj Y R1

j`1
q| R ρ´)) then (Cj`1 “ SGj`1pCjq and C 1

j “
GGjpC 1

j`1
q), otherwise we should have (|Npxj`1q X pRj Y R1

j`1
q| P ρ´)

and
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(1.2.a) if Npxj`1qXp sAj`1XRedq ‰ H, then Cj`1 “ SGj`1pCj Ytxj`1uq,
else Cj`1 “ SGj`1pCjq, and

(1.2.b) if Npxj`1q X pAj X Redq ‰ H, then C 1
j “ GGjpC 1

j`1
Y txj`1uq,

else C 1
j “ GGjpC 1

j`1
q.

There is an ε-arc-2 from pRj , R
1
j, Cj , C

1
jq to pRj`1, R

1
j`1

, Cj`1, C
1
j`1

q if

(2.1) Rj`1 ”d
Aj`1

pRj Y txj`1uq, R1
j ”d

sAj
pR1

j`1
Y txj`1uq, xj`1 P Red,

(|Npxj`1q X pRj Y R1
j`1

q| P σ if xj`1 P Blue), and

(2.2) if (xj`1 R Blue or (xj`1 P Blue and |Npxj`1q X pRj Y R1
j`1

q| R σ´)),
then (Cj`1 “ SGj`1pCjq and C 1

j “ GGjpC 1
j`1

q), otherwise we should
have (|Npxj`1q X pRj Y R1

j`1
q| P σ´) and

(2.2.a) if Npxj`1qXp sAj`1XRedq ‰ H, then Cj`1 “ SGj`1pCj Ytxj`1uq,
else Cj`1 “ SGj`1pCjq, and

(2.2.b) if Npxj`1q X pAj X Redq ‰ H, then C 1
j “ GGjpC 1

j`1
Y txj`1uq,

else C 1
j “ GGjpC 1

j`1
q, and

(2.3) either (Npxj`1q X pCj YC 1
j`1

q ‰ H) or (pxj`1 P Blue and |Npxj`1q X
pRj Y R1

j`1
q| P σ˚).

The nodes of DAGpGq. pR,R1, C,C 1, iq P LRiˆLRīˆ2AiXBlueˆ2
sAiXBlueˆ

rns is a node of DAGpGq whenever xi P Red, C “ SGipCq and C 1 “ GGipC
1q.

We call i the index of pR,R1, C,C 1, iq. Finally s “ pH,H,H,H, 0q is the
source node and t “ pH,H,H,H, n ` 1q is the terminal node of DAGpGq.

The arcs of DAGpGq. There is an arc from the node pR0, R
1
0
, C0, C

1
0
, jq

to the node pRp, R
1
p, Cp, C

1
p, j ` pq with 1 ď j ă j ` p ď n if there exist

tuples pR1, R
1
1
, C1, C

1
1
q, . . . , pRp´1, R

1
p´1

, Cp´1, C
1
p´1

q such that (1) for each

1 ď i ď p´1, pRi, R
1
i, Ci, C

1
iq P LRj`iˆLRĚj`iˆ2Aj`iXBlueˆ2

sAj`iXBlue and
there is an ε-arc-1 from pRi´1, R

1
i´1

, Ci´1, C
1
i´1

q to pRi, R
1
i, Ci, C

1
iq, and (2)

there is an ε-arc-2 from pRp´1, R
1
p´1

, Cp´1, C
1
p´1

q to pRp, R
1
p, Cp, C

1
pq.

There is an arc from the source node to a node pR,R1, C,C 1, jq if (S “

tx P pAj X Blueqztxju | Npxq X p sAj X Redq ‰ H and |Npxq X ptxju Y R1q| P ρ´u)

(S1) txju ”d
Aj

R and ptxju Y R1q pσ, ρq-dominates Aj X Blue,

(S2) if (xj P Blue and |NpxjqXR1| P σ´) then C “ SGjpSYtxjuq, otherwise
C “ SGjpSq, and

(S3) either (Npxjq X pC 1 Y Cq ‰ H) or (xj P Blue and |Npxjq X R1| P σ˚).

There is an arc from a node pR,R1, C,C 1, jq to the terminal node if
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(T1) |Npxq X R| P ρ for each x P sAj`1 X Blue, and

(T2) C 1 “ GGjptx P sAj X Blue | Npxq X pAj X Redq ‰ H and |Npxq X R| P
ρ´uq.

Lemma 13. DAGpGq is a DAG and can be constructed in time Opnc¨dq.

Proof. An arc is always oriented from a node pR,R1, C,C 1, jq to pR̂, R̂1, Ĉ, Ĉ 1, j`
pq with p ě 1. Therefore, we cannot create circuits, i.e., DAGpGq is a DAG.

For each index 1 ď i ď n and each node pR,R1, C,C 1, iq of index i we
know by [3, Lemma 1] that |C|, |C 1| ď c. Hence, the number of nodes of
DAGpGq of index i is Opnc¨dq since necp”d

Ai
q ď nd¨c by Lemma 10. Now,

constructing the arcs from the source node can be done in Opnc¨dq time since
it suffices to check for each node pR,R1, C,C 1, jq if conditions (S1)-(S3) are
satisfied, which can be done trivially in polynomial time with the help of
Lemma 12. Similarly, since the conditions (T1) and (T2) can be checked in
polynomial time, the incoming arcs to the terminal node can be constructed
in Opnc¨dq time.

Now, to construct an arc from pR0, R
1
0
, C0, C

1
0
, jq to pRp, R

1
p, Cp, C

1
p, j`pq

we do as follows. For 0 ď i ď p ´ 1 we let Fi be a queue and we put
pR0, R

1
0
, C0, C

1
0
q in F0. Now, for 1 ď i ď p ´ 1, pull pRi´1, R

1
i´1

, Ci´1, C
1
i´1

q
from Fi´1, and for each pR,R1, C,C 1q with R P LRj`i, R1 P LR ¯j`i, C Ď
Aj`i X Blue, C 1 Ď sAj`i X Blue with |C|, |C 1| ď c such that there is an ε-
arc-1 from pRi´1, R

1
i´1

, Ci´1, C
1
i´1

q to pR,R1, C,C 1q, then put pR,R1, C,C 1q
in Fi. Now, by the definition of an arc in DAGpGq there is an arc from
pR0, R

1
0
, C0, C

1
0
, jq to pRp, R

1
p, Cp, C

1
p, j ` pq if and only if there is one

pRp´1, R
1
p´1

, Cp´1, C
1
p´1

q in Fp´1 such that there is an ε-arc-2 from
pRp´1, R

1
p´1

, Cp´1, C
1
p´1

q to pRp, R
1
p, Cp, C

1
p, j ` pq. Now, the size of each Fi

is bounded by Opnc¨dq, and since the conditions of ε-arc-1 and ε-arc-2 can
be checked in Opnc¨dq time with the help of Lemma 12, we can check if there
is an arc between two nodes in time Opnc¨dq.

We now prove that there is a one-to-one correspondence between the
maximal paths of G and the 1-minimal Red pσ, ρq-dominating sets of G. If
P “ ps, v1, v2, . . . , vp, tq is a path in DAGpGq, then the trace of P , denoted
by tracepP q, is defined as txj1 , xj2 , . . . , xjpu where for all i P t1, 2, . . . , pu, ji
is the index of the node vi.

The following two lemmas are implied by the definition of the d-neighbor
equivalence and Lemma 8.

Lemma 14. Let pµ, µ1q P tpσ, ρq, pσ˚, ρ˚q, pσ´, ρ´q, pσ`, ρ`qu. Let also i P
t1, . . . , nu, and X Ď Ai X Red and Y, Y 1 Ď Ai X Red. If Y 1 ”d

Ai
Y then

X Y Y pµ, µ1q-dominates Ai X Blue if and only if X Y Y 1 pµ, µ1q-dominates
Ai X Blue. Symmetrically, if X,X 1 Ď Ai X Red and Y Ď Ai X Red, and
X 1 ”d

Ai
X, then X Y Y pµ, µ1q-dominates sAi X Blue if and only if X 1 Y Y

pµ, µ1q-dominates sAi X Blue.

11



Lemma 15. Let pµ, µ1q P tpσ, ρq, pσ˚, ρ˚q, pσ´, ρ´q, pσ`, ρ`qu, i P t1, . . . , nu
and let Z Ď Red. Let also X Ď Ai´1 X Red and Y Ď ĎAi X Red. If
X ”d

Ai´1
pZ X Ai´1q and Y ”d

Ai
pZ X Aiq, then Z pµ, µ1q-dominates txiu if

and only if pX Y Y Y pZ X txiuq pµ, µ1q-dominates txiu.

The next lemma shows that two maximal paths in DAGpGq give rise to
two different 1-minimal Red pσ, ρq-dominating sets.

Lemma 16. If there is a path P “ ps, v1, . . . , vk, tq in DAGpGq, then
tracepP q is a 1-minimal Red pσ, ρq-dominating set of G. Moreover, tracepP q ‰
tracepP 1q for any other path P 1 “ ps, v1

1
, . . . , v1

k, tq in DAGpGq.

Proof. Let P “ ps, v1, . . . , vk, tq and tracepP q “ txj1 , . . . , xjku. We will first
prove by induction that for each 1 ď i ď k, the set Di “ txj1 , . . . , xjiu
satisfies the following properties (with vi “ pRji , R

1
ji
, Cji , C

1
ji
, jiq)

(i) Rji P LRji , R
1
ji

P LRj̄i
;

(ii) Di ”d
Aji

Rji ,

(iii) Di Y R1
ji

pσ, ρq-dominates Aji X Blue;

(iv) Each u P Di is either adjacent to a vertex from C 1
ji
, or has a certificate

in Aji X Blue.

(v) Cji “ SGjipSiq, where Si is the set of vertices in Aji X Blue that are
certificates and have a neighbor in sAji X Red;

By the definition of a node in DAGpGq, the property (i) is true for all
1 ď i ď k. So, let us prove the properties (ii)-(v). By the definition of the
arcs from the source node, we can easily check that the properties (ii)-(v)
are all verified for i “ 1. So, let us assume now that they are true for all
i ă ℓ ď k and let us prove it for ℓ.

If there is an arc from vℓ´1 to vℓ, then there should exist pRs, R
1
s, Cs, C

1
sq

for jℓ´1`1 ď s ď jℓ´1 such that there is an ε-arc-1 from pRs´1, R
1
s´1

, Cs´1, C
1
s´1

q
to pRs, R

1
s, Cs, C

1
sq for each jℓ´1 ` 1 ď s ď jℓ ´ 1, and there is an ε-arc-2

from pRjℓ´1, R
1
jℓ´1

, Cjℓ´1, C
1
jℓ´1

q to pRjℓ , R
1
jℓ
, Cjℓ , C

1
jℓ

q. By the conditions
(1.1) and (2.1) we can conclude that Djℓ ”d

Ajℓ
Rjℓ because Djℓ´1

”d
As

Rs for

all jℓ´1 ` 1 ď s ď jℓ ´ 1 by the condition (1.1) and Rjℓ ”d
Ajℓ

pRjℓ´1 Y txjℓuq

by the condition (2.1).
Because R1

s ”d
sAs´1

R1
s´1

for each jℓ´1 ` 1 ď s ď jℓ ´ 1 by (1.1) and

R1
jℓ´1

”d
sAjℓ´1

R1
jℓ

Ytxjℓu by (2.1) we can conclude with inductive hypothesis,

Lemmas 14 and 15, and the conditions (1.2) and (2.1) that for each jℓ´1`1 ď
s ď jℓ whenever xs P Blue it is pσ, ρq-dominated by Djℓ Y R1

jℓ
, thus proving

(iii).
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In order to check (iv) and (v), we let Ds “ Djℓ´1
for each jℓ´1 ` 1 ď

s ď jℓ ´ 1. Then, for each jℓ´1 ` 1 ď s ď jℓ, the following easy facts can be
derived from Lemmas 14 and 15, the definition of the d-neighbor equivalence
and the fact that Ds X R1

s “ H.

1. For each v P sAs X Blue, we have pDs Y R1
sq pσ´, ρ´q-dominates tvu if

and only if pRs Y R1
sq pσ´, ρ´q-dominates tvu; and |Npvq X Ds| ‰ 0 if

and only if |Npvq X Rs| ‰ 0.

2. For each v P As´1 X Blue, we have pDs Y R1
sq pσ´, ρ´q-dominates tvu

if and only if pDs´1 Y R1
s´1

q pσ´, ρ´q-dominates tvu;

3. pDs YR1
sq pσ´, ρ´q-dominates txsu if and only if pRs´1YR1

sq pσ´, ρ´q-
dominates txsu.

4. Each u P Ds´1 either has a certificate in As w.r.t. Ds or is adjacent
to a vertex from C 1

s. Indeed, either it has by induction a certificate
v from As´1 w.r.t. Ds´1 and by (2) and Lemma 9 the vertex v is
still a certificate for u w.r.t. Ds, or u is adjacent to some vertex in
C 1
s´1

and then by induction and the conditions (1.2) and (2.2) either
it is adjacent to some vertex in C 1

s or it is adjacent to xs which is
pσ´, ρ´q-dominated by Ds Y R1

s following fact 3.

From the facts 1. and 2. we can conclude that pDs Y R1
sq pσ´, ρ´q-

dominates Cs for all jℓ´1`1 ď s ď jℓ. Hence, pDjℓ YR1
jℓ

q pσ´, ρ´q-dominates
Cjℓ . Moreover, from the fact 4. we know that each u P Djℓ´1

is either
adjacent to a vertex in C 1

jℓ
or has a certificate w.r.t. Djℓ in Ajℓ X Blue. In

order to prove that (iv) is satisfied it remains then to check that xjℓ has a
certificate in Ajℓ XBlue or has a neighbor in C 1

ℓ. But this is guaranteed with
the existence of the arc vℓ´1 to vℓ by the conditions (1.2.a), (2.2.a), (2.3),
and the properties (iv)-(v) by inductive hypothesis.

In order to check the condition (v) it is sufficient to notice that whenever
xs is pσ´, ρ´q-dominated by pDs Y R1

sq for each jℓ´1 ` 1 ď s ď jℓ, by the
condition (1.2.a) and (2.2.a) Cs “ SGspCs´1 Y xsq, and this guarantees by
inductive hypothesis, the fact 2. and Lemma 9 that Cs is exactly SGspSsq
where Ss is the set of vertices in As X Blue that are certificates and have a
neighbor in sAs.

To end the proof we need to prove that whenever tracepP q “ tracepP 1q for
any other path P 1 from the source node to the terminal node, then P “ P 1.
For that we prove by induction that C 1

ji
“ GGjipS

1
iq where S1

i is the set of
vertices in sAji XBlue that are pσ´, ρ´q-dominated by Dji YR1

ji
and have a

neighbor in AjiXRed. By the condition (T2) in the definition of an arc to the
terminal node this is satisfied by C 1

jk
. So, if we assume that C 1

ji
“ GGjipS

1
iq

for all ℓ ă i ď k, then as for the condition (v) the inductive hypothesis, the
fact 2. and Lemma 9 guarantees that C 1

jℓ
is exactly GGjℓpS

1
ℓq.
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So now for each i the sets Cji and C 1
ji

are uniquely determined by
tracepP q, which means that whenever tracepP q “ tracepP 1q because ”d

A is an
equivalence relation we should conclude that P “ P 1.

The following lemma tells that to every 1-minimal Red pσ, ρq-dominating
set corresponds a maximal path in DAGpGq.

Lemma 17. If G has a 1-minimal Red pσ, ρq-dominating set D, then there
is a path P “ ps, v1, v2, . . . , vk, tq in DAGpGq such that D “ tracepP q.

Proof. Let D “ txj1 , . . . , xjku such that j1 ă j2 ă ¨ ¨ ¨ ă jk. For each
i P t1, . . . , ku, we let Di “ txj1 , . . . , xjiu. Let also Rji P LRji be such that
Rji ”d

Aji
Di, and let R1

ji
P LRj̄i

be such that R1
ji

”d
sAji

pD X sAjiq. For each i

we let Cji “ SGjipSiq where Si is the set of vertices in Aji X Blue that are
certificates and have a neighbor in sAji XRed and similarly let C 1

ji
“ GGjipS

1
iq

where S1
i is the set of vertices in sAji X Blue that are certificates and have

a neighbor in Aji X Red. Hence, vi “ pRji , R
1
ji
, Cji , C

1
ji
, jiq is a node of

DAGpGq for each 1 ď i ď k.
We first observe that there is an arc from the source node s to v1. Indeed,

by the definition of Rji , R
1
ji
, we have that txj1u ”d

Aj1
Rj1 and txj1u Y R1

j1

pσ, ρq-dominates Aj1 , and by the choices of Cji and C 1
ji

the condition (S2)
is satisfied and since xj1 has a certificate w.r.t. D, the condition (S3) is
satisfied. For similar reasons one can prove that there is an arc from vk to
the terminal node t.

We now claim that there is an arc from vi to vi`1 for 1 ď i ă k. For each
ji ă s ă ji`1, we let pRs, R

1
s, Cs, C

1
sq be such that Rs ”d

As
Rs´1, R1

s ”d
sAs´1

R1
s´1

, and Rji`1
”d

Aji`1

Rji`1´1 Y txji`1
u and R1

ji`1´1
”d

sAji`1´1

R1
ji`1

Y

txji`1
u. It is straightforward to prove by induction on ji`1 ´ ji that there

exists an ε-arc-1 from pRs´1, R
1
s´1

, Cs´1, C
1
s´1

q to pRs, R
1
s, Cs, C

1
sq for each

ji ă s ă ji`1 and there is an ε-arc-2 from pRji`1´1, R
1
ji`1´1

, Cji`1´1, C
1
ji`1´1

q
to pRji`1

, R1
ji`1

, Cji`1
, C 1

ji`1
q.

By Lemmas 16 and 17 we can state the following.

Proposition 18. Let P be the set of paths in DAGpGq from the source
node to the terminal node. The mapping which associates with every P P P

tracepP q is a one-to-one correspondence with the set of 1-minimal Red pσ, ρq-
dominating sets.

By Proposition 18 it suffices to count and enumerate the traces of the
maximal paths in DAGpGq. We will now explain how to count and then use
the counting to enumerate the traces of these paths in DAGpGq. We start
from a topological ordering of DAGpGq, say s “ v1, v2, . . . , vm “ t. Since
DAGpGq is a DAG, any arc is of the form pvi, vjq with i ă j. The counting
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will follow this topological ordering. We initially set Nppvq “ ´1 for all
nodes v ‰ t and we set Nppvmq “ 1. For each j ă m we let

Nppvjq “
ÿ

pvj ,vℓqPEpDAGpGqq
Nppvℓq‰´1

Nppvℓq.

Fact 19. One can compute the values of Nppvjq for all j P t1, 2, . . . ,mu in
time Opnc¨dq.

Proof. By induction on j. By definition Nppvq can be computed in time
Op1q for all v that have exactly one outgoing arc, which enters t. For every
j ă m, in order to compute Nppvjq we first set a counter nb to 0, and add
Nppvℓq to nb whenever pvj , vℓq P EpDAGpGqq and Nppvℓq ‰ ´1. We finally
set Nppvjq to nb. The correctness of the computation of Nppvjq follows
from the definition. Since the degree of a node is bounded by Opnc¨dq, we
can update nb in time Opnc¨dq. Now since the number of nodes and of arcs
is bounded by Opnc¨dq, we obtain the claimed running time.

For 1 ď j ď m, we let Sj “ tP | P is a path starting at vj and ending at
tu. One can prove easily by induction the following.

Lemma 20. Sj “
Ţ

pvj ,vℓqPEpDAGpGqq
Nppvℓq‰´1

tvj ` P | P P Sℓu for each 1 ď j ď m.

The following follows directly from the definition of Nppvjq and Lemma
20.

Lemma 21. |Sj | “ Nppvjq for each 1 ď j ď m.

Theorem 22. One can count the number of 1-minimal Red pσ, ρq-dominating
sets of a given graph G in time Opnc¨dq.

Proof. We first construct the DAG DAGpGq and by Lemma 13 this can be
done in time Opnc¨dq. By Proposition 18 the mapping which associates with
every path P P S1 its trace tracepP q is a one-to-one correspondence between
S1 and all the 1-minimal Red pσ, ρq-dominating set in G. So, it is enough
to determine the size of S1. By Lemma 21, |S1| “ Nppsq and since by Fact
19 we can compute in time Opnc¨dq all the values Nppvjq for all 1 ď j ď m,
we conclude that one can compute in time Opnc¨dq the number of 1-minimal
Red pσ, ρq-dominating sets in G.

We now turn to the enumeration of the 1-minimal Red pσ, ρq-dominating
sets. For each node v in DAGpGq of index j we denote by vertpvq the vertex
xj of G. The algorithm is depicted in Figures 1 and 2. The algorithm consists
in enumerating the paths in S1 in a Depth-First Search manner.
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Algorithm EnumMinDompDAGpGqq
1. Remove all nodes v such that Nppvq “ ´1

2. for each ps, viq P EpDAGpGqq
3. EnumPathpDAGpGq, tvertpviqu, viq
4. end for

Figure 1: The enumeration of 1-minimal Red pσ, ρq-dominating sets

Algorithm EnumPathpDAGpGq, S Ď V pGq, viq
1. if vi “ t, then output S and stop

2. for each pvi, vjq P EpDAGpGqq
3. EnumPathpDAGpGq, S Y tvertpvjqu, vjq
4. end for

Figure 2: The enumeration of Si

Theorem 23. We can enumerate all the 1-minimal Red pσ, ρq-dominating
sets of a given graph G with linear delay and with polynomial space.

Proof. First notice that after removing all the nodes v such that Nppvq “ ´1,
every remaining node is in a path from the source node to the terminal node.
Now, it is easy to prove by induction using Lemmas 20 and 21 that the
algorithm EnumPathpDAGpGq, S, viq uses Opnc¨dq space and enumerates the
set tS Y P | P P Siu, the delay between two consecutive outputs P1 and
P2 bounded by Op|P2zP1|q. In fact if before calling EnumPath we order the
out-neighbors of each node following their distances to the terminal node
and uses this ordering in the recursive calls we guarantee that the time
between the output of P and the next output Q is bounded by Op|Q|q.
Therefore, the algorithm EnumMinDompDAGpGqq enumerates, with same
delay as EnumPath the set of 1-minimal Red pσ, ρq-dominating sets and uses
Opnc¨dq space.

3.3 Maximal sets

We now explain how to construct the DAG DAGMpGq so that the max-
imal paths from the source node to the terminal node corresponds to the
1-maximal Red pσ, ρq-dominating sets, and conversely each 1-maximal Red

pσ, ρq-dominating set corresponds to such a path. The difference with the
case of 1-minimal pσ, ρq-dominating set is that now we have to ensure that
xj has a certificate when xj is not included in a partial solution.
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The nodes of DAGMpGq. pR,R1, C,C 1, iq P LRi ˆ LRī ˆ 2AiXBlue ˆ
2

sAiXBlue ˆ rns is a node of DAGMpGq whenever xi P Red, C “ SGipCq
and C 1 “ GGipC

1q. We call i the index of pR,R1, C,C 1, iq. Finally s “
pH,H,H,H, 0q is the source node and t “ pH,H,H,H, n ` 1q is the ter-
minal node of DAGpGq.

The arcs of DAGpGq There is an arc from pR0, R
1
0
, C0, C

1
0
, jq to pRP , R

1
p, Cp, C

1
p, j`

pq with j ă j`p ď n if there exist pR1, R
1
1
, C1, C

1
1
q, . . . , pRp´1, R

1
p´1

, Cp´1, C
1
p´1

q

such that pRi, R
1
i, Ci, C

1
iq P LRj`i ˆ LR ¯j`i ˆ 2Aj`iXBlue ˆ 2

sAj`iXBlue for all
1 ď i ď p ´ 1, and

(A1) for each 0 ď i ď p ´ 2,

(1.1) Ri ”d
Aj`i`1

Ri`1 and R1
i ”d

sAj`i“1

R1
i`1

, and

(1.2) if (xj`i`1 R Blue or (xj`i`1 P Blue and |Npxj`i`1q X pRi Y
R1

i`1
q| P ρ and |Npxj`i`1q X pRi Y R1

i`1
q| R ρ`)) then (Ci`1 “

SGj`i`1pCiq and C 1
i “ GGj`ipC

1
i`1

q), otherwise we should have
(|Npxj`i`1q X pRi Y R1

i`1
q| P ρ`) and

(1.2.a) if Npxj`i`1qXp sAj`i`1XRedq ‰ H, then Ci`1 “ SGj`i`1pCiY
txj`i`1uq, else Ci`1 “ SGj`i`1pCiq, and

(1.2.b) if Npxj`i`1q X pAj`i X Redq ‰ H, then C 1
i “ GGj`ipC

1
i`1

Y
txj`i`1uq, else C 1

i “ GGj`ipC
1
j`i`1

q.

(1.3) if xj`i`1 P Red, then either (Npxj`i`1q X pCi Y C 1
i`1

q ‰ H) or
(pxj`i`1 P Blue and |Npxj`i`1q X pRi Y R1

i`1
q| P ρ˚).

(A2) Rp ”d
Aj`p

pRp´1 Y txj`puq, R1
p´1

”d
Aj`p´1

pR1
p Y txj`puq, xj`p P Red,

and

(2.1) if xj`p P Blue, then |Npxj`pq X pRp´1 Y R1
pq| P σ,

(2.2) if (xj`p R Blue or (xj`p P Blue and |Npxj`pq X pRp´1 Y R1
pq| R

σ`)), then (Cp “ SGppCp´1q and C 1
p´1

“ GGp´1pC 1
pq), otherwise

we should have (|Npxj`pq X pRp´1 Y R1
pq| P σ`) and

(2.2.a) if Npxj`pqXp sApXRedq ‰ H, then Cp “ SGppCp´1Ytxj`puq,
else Cp “ SGppCp´1q, and

(2.2.b) if Npxj`pq X pAp´1 X Redq ‰ H, then C 1
p´1

“ GGp´1pC 1
p Y

txj`puq, else C 1
p´1

“ GGp´1pC 1
pq.

We now define arcs from the source node. There is an arc from the source
node to a node pR,R1, C,C 1, jq if (S “ tx P pAj X Blueqztxju | Npxq X p sAj X

Redq ‰ H and |Npxq X ptxju Y R1q| P ρ`u)

(S1) txju ”d
Aj

R and ptxju Y R1q pσ, ρq-dominates Aj X Blue,
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(S2) if (xj P Blue and |NpxjqXR1| P σ`) then C “ SGjpSYtxjuq, otherwise
C “ SGjpSq, and

(S3) for each red vertex x P Ajztxju, either (Npxq X pC 1 Y Cq ‰ H) or
(x P Blue and |Npxq X pR1 Y Rq| P ρ˚).

We finally define the arcs to the terminal node. There is an arc from a
node pR,R1, C,C 1, jq to the terminal node if

(T1) |Npxq X pR Y R1q| P ρ for each x P sAj`1 X Blue, and

(T2) C 1 “ GGjptx P sAj X Blue | Npxq X pAj X Redq ‰ H and |Npxq X R| P
ρ`uq,

(T3) for each red vertex in sAj , then Npxq X pC Y C 1q ‰ H or (|Npxq X pR Y
R1q| P ρ˚ if x P Blue).

DAGMpGq is clearly a DAG, and as for DAGpGq one can construct it
in time Opnc¨dq. Similarly, one can observe that if P :“ ps, v1, . . . , vk, tq is
a maximal path from the source node to the terminal node, then if we let
Di :“ txj1 , . . . , xjiu with vi :“ pRji , R

1
ji
, Cji , C

1
ji
, jiqq, then

(i) Rji P LRji , R
1
ji

P LRj̄i
;

(ii) Di ”d
Aji

Rji ,

(iii) Di Y R1
ji

pσ, ρq-dominates Aji X Blue;

(iv) Each u P AjizDi is either adjacent to a vertex from C 1
ji
, or has a

certificate in Aji X Blue.

(v) Cji “ SGjipSiq, where Si is the set of vertices in Aji X Blue that are
certificates and have a neighbor in sAji X Red;

(vi) C 1
ji

“ GGjipS
1
iq where S1

i is the set of vertices in sAji X Blue that are
certificates and have a neighbor in Aji X Red.

Hence, we can prove counterparts to Lemmas 16 and 17 and deduce the
following theorem from Section 3.2.

Theorem 24. The set of 1-maximal Red pσ, ρq-dominating sets in G can be
enumerated with linear delay and with polynomial space. We can moreover
count in time Opnc¨dq the number of 1-maximal Red pσ, ρq-dominating sets
in G.
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4 Enumeration of minimal dominating sets for unit

square graphs

In this section we prove that all minimal dominating sets of a unit square
graph can be enumerated in incremental polynomial time. In Section 4.1 we
show that the class of unit square graphs has locally bounded LMIM-width.
In Section 4.2 we use this property and Theorem 4, to obtain an enumeration
algorithm for minimal dominating sets. To do it, we use the flipping method
proposed by Golovach, Heggernes, Kratsch and Villanger in [12].

4.1 Local LMIM-width of unit square graphs

First, we introduce some additional notations. For x, y P R such that x ď y,
rx, ys “ tz P R | x ď z ď yu. Let G be a unit square graph and suppose that
f : V pGq Ñ Q2 is a realization of G. (See Section 2 for more details on the
point model of unit square graphs used in our paper.) For a vertex v P V pGq,
fracpvq “ xf pxq ´ txf pvqu is the fractional part of the x-coordinate of the
point representing v.

Lemma 25. Let G be a unit square graph with a realization f such that for
every v P V pGq the point fpvq belongs to r1, ws ˆ r1, hs, where h,w P N. If
for x P r1, ws, A “ tv P V pGq | xf “ xu is a non-empty proper subset of
V pGq, then mimGpA,Aq ď h.

Proof. Let M be a maximum induced matching in GrA, sAs. Denote by MA

the set of end-vertices of the edges of M in A and let MB be the set of
end-vertices of the matching in sA. As all the vertices of MA have the same
x-coordinate, and each vertex of MB is adjacent to some vertex in MA, a
vertex u P MA is adjacent to a vertex v P MB only if |yf puq ´ yfpvq| ă 1.
Denote by a1, . . . , ak and b1, . . . , bk the vertices of MA and MB respectively
and assume that they are ordered by the increase of their y-coordinates.

We claim that aibi P M for i P t1, . . . , ku. To obtain a contradiction,
suppose that there is ai that is not adjacent to bi and choose the minimum
index i for which it holds. Then aibj P M and bias P M for some j, s ą i.
If bi is adjacent to as but not ai, we must have |yf pbiq ´ yf paiq| ě 1 and
|yf pbiq ´ yf pasq| ă 1. Since yf pasq ě yf paiq, yf pbiq ě yf paiq ` 1. But
as yf pbjq ě yf pbiq ě yf paiq ` 1, bj and ai cannot be adjacent after all; a
contradiction.

Now we show that yf paiq ě yf pbi´1q ` 1 and yf pbiq ě yf pai´1q ` 1

for i P t2, . . . , ku. Because ai´1bi´1 P M , |yf pai´1q ´ yf pbi´1q| ă 1. As
ai´1bi, aibi´1 R EpGq, |yf pai´1q ´ yf pbiq| ě 1 and |yf paiq ´ yf pbi´1q| ě 1.
We have that yf paiq ě yf pbi´1q ` 1 and yf pbiq ě yf pai´1q ` 1, because
yf paiq ě yf pai´1q and yf pbiq ě yf pbi´1q.

Next, we claim that yf paiq, yf pbiq ě i. Clearly, yf pa1q, yf pb1q ě 1. Be-
cause yf paiq ě yf pbi´1q ` 1 and yf pbiq ě yf pai´1q ` 1 for i P t2, . . . , ku, we
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have that claim holds for all i P t1, . . . , ku by induction.
Because k ď yf pakq ď h, we conclude that mimGpA, sAq “ k ď h.

Lemma 26. Let G be a unit square graph with a realization f such that for
every v P V pGq the point fpvq belongs to r1, wsˆr1, hs, where h,w P N. Then
lmimwpGq ď 2hw. Moreover, a linear ordering of vertices of MIM-width at
most 2hw can be constructed in polynomial time.

Proof. Let v1, . . . , vn be the vertices of G ordered by increasing frac-value,
i.e., fracpviq ď fracpvjq if i ď j. We show that this is an ordering of MIM-
width at most 2hw.

For contradiction, assume that for some i P t1, . . . , n´1u, mimGpA, sAq ě
2hw ` 1 where A “ tv1, . . . , viu, i.e., the graph GrA, sAs has an induced
matching M of size 2hw ` 1. Let V pMq denote the set of the end-vertices
of the edges of M . By the pigeonhole principle, for some positive integer
p ď w there are at least 2h ` 1 vertices v P V pMq X A so that txf pvqu “ p.
Denote this subset of A X V pMq by CA, and denote by CB the vertices of
V pMqzA adjacent to CA. Let t “ maxtfracpvq | v P Au, and observe that
tv | fracpvq ă tu Ă A and tv | fracpvq ą tu X A “ H. We now partition
CA into two parts Căt

A “ tv P CA | fracpvq ă tu and C“t
A “ tv P CA |

fracpvq “ tu and argue that neither of these parts can be of size more than
h, contradicting that |CA| ě 2h ` 1.

We first show that |C“t
A | ď h. For each v P C“t

A , txf pvqu “ p and
fracpvq “ t. Hence, xf pvq “ p ` t for all v P C“t

A . By Lemma 25, the size of
the maximum induced matching in GrC“t

A , CBs is at most h and this implies
that |C“t

A | ď h.
To show that also |Căt

A | ď h, we will show that for the sake of the induced
matching, all the x-coordinates of the vertices v of Căt

A might as well have
fracpvq “ 0, and therefore we can apply Lemma 25.

Let v P Căt
A . Then we construct a new vertex v1 represented by the

point ptxf pvqu, yf pvqq. We will now show that v1 is adjacent to a vertex
u P CB if and only if v is adjacent to u. As the y-coordinates of v and v1

are the same, we only need to prove that |xf pvq ´ xf puq| ă 1 if and only if
|txf pvqu ´ xf puq| ă 1.

Suppose that v is adjacent to u but v1 is not. Because xf pvq ě txf pvqu, we
have that txf pvqu ` 1 ě xf puq ą xf pvq ` 1. However, that means fracpuq ď
fracpvq ă t, which implies that u P A contradicting u P CB. Similarly,
suppose v1 is adjacent to u but v is not. Now txf pvqu´1 ă xf puq ď xf pvq´1,
which again implies that fracpuq ď fracpvq ă t, contradicting that u is in
CB .

Consider S “ tv1 | v P Căt
A u, where each v1 is represented by the point

ptxf pvqu, yf pvqq “ pp, yf pvqq. Because each v1 P S is adjacent to u P CB if
and only if v is adjacent to u, by Lemma 25, |Căt

A | “ |S| ď h.
It remains to show that the ordering of V pGq can be constructed in

polynomial time. Clearly, the ordering can be done in time Opn log nq if we
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assume that we can compute fracpvq and compare the frac-values of two
vertices in time Op1q. Otherwise, if the table of the values f : V pGq Ñ Q2 is
given in the input, we still can produce the ordering in polynomial time.

Now we are ready to show that the class of unit square graphs has locally
bounded LMIM-width.

Theorem 27. For a unit square graph G, u P V pGq and a positive integer
r, lmimwpGrN r

Grussq “ Opr2q. Moreover, if a realization f : V pGq Ñ Q2 of
G is given, then a linear ordering of the vertices of MIM-width Opr2q can be
constructed in polynomial time.

Proof. Let f be a realization of G. Without loss of generality we may assume
that mintxf pvq | v P N r

Grusu “ mintyf pvq | v P N r
Grusu “ 1. Otherwise, we

can shift the points representing vertices. For any v P N r
Grus, |xf puq ´

xf pvq| ď r and |yf puq ´ yf pvq| ď r. We obtain that fpvq P r1, 2r ` 1s ˆ
r1, 2r`1s. By Lemma 26, lmimwpGrN r

Grussq “ Opr2q and the corresponding
ordering of the vertices can be constructed in polynomial time.

4.2 Enumeration by flipping for graphs of locally bounded

LMIM-width

We use a variant of the flipping method proposed by Golovach, Heggernes,
Kratsch and Villanger in [12]. Given a minimal dominating set D˚, the flip-
ping operation replaces an isolated vertex of GrD˚s with its neighbor outside
of D˚, and, if necessary, adds or deletes some vertices to obtain new minimal
dominating sets D, such that GrDs has more edges compared to GrD˚s. The
enumeration algorithm starts with enumerating all maximal independent sets
of the input graph G using the algorithm of Johnson, Papadimitriou, and
Yannakakis [14], which gives the initial minimal dominating sets. Then the
flipping operation is applied to every appropriate minimal dominating set
found, to find new minimal dominating sets inducing subgraphs with more
edges.

Let G be a graph. Let also D Ď V pGq. For u P D, CDrus “ tv P V pGq |
v P NGruszNGrDztvusu and CDpuq “ tv P V pGq | v P NGpuqzNGrDztvusu “
CDrusztuu. Observe that if D is a minimal dominating set, then CDpuq is
the set of certificates for a vertex u P D.

Let us describe the variant of the flipping operation from [12], that we
use. Let G be the input graph; we fix an (arbitrary) order of its vertices:
v1, . . . , vn. Suppose that D1 is a dominating set of G. We say that the
minimal dominating set D is obtained from D1 by greedy removal of ver-
tices (with respect to order v1, . . . , vn) if we initially let D “ D1, and then
recursively apply the following rule: If D is not minimal, then find a vertex
vi with the smallest index i such that Dztviu is a dominating set in G, and
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set D “ Dztviu. Clearly, when we apply this rule, we never remove ver-
tices of D1 that have certificates. Whenever greedy removal of vertices of a
dominating set is performed, it is done with respect to this ordering.

Let D be a minimal dominating set of G such that GrDs has at least
one edge uw. Then the vertex u P D is dominated by the vertex w P D.
Therefore, CDrus “ CDpuq ‰ H. Let X be an non-empty inclusion-maximal
independent set such that X Ď CDpuq. Consider the set D1 “ pDztuuq YX.
Notice that D1 is a dominating set in G, since all vertices of CDpuq are
dominated by X by the maximality of X and u is dominated by w, but D1

is not necessarily minimal, because it can happen that X dominates all the
certificates of some vertex of Dztuu. We apply greedy removal of vertices to
D1 to obtain a minimal dominating set. Let Z be the set of vertices that are
removed by this to ensure minimality. Observe that X X Z “ H and u R Z

by the definition of these sets; in fact there is no edge between a vertex of
X and a vertex of Z. Finally, let D˚ “ ppDztuuq Y XqzZ.

It is important to notice that |EpGrD˚sq| ă |EpGrDsq|. Indeed, to
construct D˚, we remove the endpoint u of the edge uw P EpGrDsq and,
therefore, reduce the number of edges. Then we add X but these vertices
form an independent set in G and, because they are certificates for u with
respect to D, they are not adjacent to any vertex of Dztuu. Therefore,
|EpGrD˚sq| ď |EpGrD1sq| ă |EpGrDsq|.

The flipping operation is exactly the reverse of how we generated D˚

from D; i.e., it replaces a non-empty independent set X in GrD˚s such that
X Ď GrD˚sXNGpuq for a vertex u R D˚ with their neighbor u in G to obtain
D. In particular, we are interested in all minimal dominating sets D that can
be generated from D˚ in this way. Given D and D˚ as defined above, we say
that D˚ is a parent of D with respect to flipping u and X. We say that D˚ is a
parent of D if there is a vertex u P V pGq and an independent set X Ď NGpuq
such that D˚ is a parent with respect to flipping u and X. It is important
to note that each minimal dominating set D such that EpGrDsq ‰ H has
a unique parent with respect to flipping of any u P D X NGrDztuus and
a maximal independent set X Ď CDpuq, as Z is lexicographically first sets
selected by a greedy algorithm. Similarly, we say that D is a child of D˚

(with respect to flipping u and X) if D˚ is the parent of D (with respect to
flipping u and X).

The proof of the following lemma is implicit in [12].

Lemma 28 ([12]). Suppose that for a graph G, all independent sets X Ď
NGpuq for a vertex u can be enumerated in polynomial time. Suppose also
that there is an enumeration algorithm A that, given a minimal dominating
set D˚ of a graph G such that GrD˚s has an isolated vertex, a vertex u P
V pGqzD˚ and a non-empty independent set X of GrD˚s such that X Ď
D˚XNGpuq, generates with polynomial delay a family of minimal dominating
sets D with the property that D contains all minimal dominating sets D
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that are children of D˚ with respect to flipping u and X. Then all minimal
dominating sets of G can be enumerated in incremental polynomial time.

To obtain our main result, we will show that there is indeed an algorithm
as algorithm A described in the statement of Lemma 28 when the input graph
G is a unit square graph. We show that we can construct A by reduction
to the enumeration of minimal Red dominating set in an auxiliary colored
induced subgraph of GrN3

Gruss. Let D˚ be a minimal dominating set of a
graph G such that GrD˚s has an isolated vertex. Let also u P V pGqzD˚ and
X is a non-empty independent set of GrD˚s such that X Ď D˚ X NGpuq.
Consider the set D1 “ pDzXq Y tuu. Denote by Blue the set of vertices that
are not dominated by D1. Notice that Blue Ď NGpXqzNGrus. Therefore,
Blue Ď N2

Grus. Let Red “ NGpBlueqzNGrXs. Clearly, Red Ď N3

Grus. We
construct the colored graph H “ GrRed Y Blues. Let A1 be an algorithm
that enumerates minimal Red dominating sets in H. Assume that if Blue “
H, then A1 returns H as the unique Red dominating set. We construct A

as follows.

Step 1. If A1 returns an empty list of sets, then A returns an empty list as
well.

Step 2. For each Red dominating set R of H, consider D2 “ D1 Y R and
construct a minimal dominating set D from D2 by greedy removal.

Lemma 29. If A1 lists all minimal Red dominating sets with polynomial
delay, then A generates with polynomial delay a family of minimal dominat-
ing sets D with the property that D contains all minimal dominating sets D

that are children of D˚ with respect to flipping u and X.

Proof. First, we show that A produces pairwise distinct minimal dominating
sets of G. Let R be a Red dominating set of H. The set D1 “ pDzXq Y tuu
dominates all vertices of G except the vertices of Blue. Since R dominates
Blue, D2 is a dominating set of G and, therefore, D˚ obtained from D2 by
the greedy removal is a minimal dominating set. To see that all generated
sets are distinct, observe that every vertex of R has its certificate in B.
Therefore, the greedy removal never deletes vertices of R. Since all sets R

generated by A1 are pairwise distinct, the claim follows.
Let D be a child of D˚ with respect to flipping u and X. Then D “

ppD˚ Y tuuqzXq Y Z. Recall that u R Z, X X Z “ H and the vertices of Z
are not adjacent to the vertices of X by the definition of X and Z. Hence,
Z XBlue “ H. Because D is minimal, each vertex of Z has a certificate. As
only the vertices of Blue are not dominated by pD˚ YtuuqzX, each vertex of
Z has its certificate in Blue. It remains to observe that Z dominates Blue,
to see that Z is a minimal Red dominating set of H. Because A1 generates
all minimal Red dominating sets, we have that D P D.
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Now we are ready to prove the main result of the section.

Theorem 30. For a unit square graph G given with its realization f , all
minimal dominating sets of G can be enumerated in incremental polynomial
time.

Proof. It is straightforward to observe that for a vertex u of a unit square
graph G, any independent set X Ď NGpuq has at most 4 vertices. Hence, all
independent sets X Ď NGpuq for a vertex u can be enumerated in polynomial
time. By combining Theorems 4 and 27, and Lemmas 28 and 29, we obtain
the claim.
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