
Stabbing circles for sets of segments in the plane?1

Mercè Claverol1, Elena Khramtcova2, Evanthia Papadopoulou2,2

Maria Saumell3, and Carlos Seara13

1 Universitat Politècnica de Catalunya, Spain.4
2 Faculty of Informatics, Università della Svizzera italiana (USI), Lugano, Switzerland.5

3 Department of Mathematics and European Centre of Excellence NTIS,6

University of West Bohemia, Czech Republic.7

Abstract. Stabbing a set S of n segments in the plane by a line is a well-known8

problem. In this paper we consider the variation where the stabbing object is a cir-9

cle instead of a line. We show that the problem is tightly connected to two cluster10

Voronoi diagrams, in particular, the Hausdorff and the farthest-color Voronoi dia-11

gram. Based on these diagrams, we provide a method to compute a representation12

of all the combinatorially different stabbing circles for S, and the stabbing circles13

with maximum and minimum radius. We give conditions under which our method14

is fast. These conditions are satisfied if the segments in S are parallel, resulting in15

a O(n log2 n) time and O(n) space algorithm. We also observe that the stabbing16

circle problem for S can be solved in worst-case optimal O(n2) time and space17

by reducing the problem to computing the stabbing planes for a set of segments18

in 3D. Finally we show that the problem of computing the stabbing circle of min-19

imum radius for a set of n parallel segments of equal length has an Ω(n logn)20

lower bound.21

1 Introduction22

Let S be a set of n line segments (segments for short) in the plane. We say that a region23

R ⊆ R2 is a stabbing region for S if exactly one endpoint of each segment of S lies24

in the exterior of R. The boundary of R (also known as a stabber for S) intersects all25

the segments in S and separates/classifies their endpoints into two classes, depending26

on whether or not they lie in the exterior of R. Two stabbing regions R1 and R2 for S27

are combinatorially different if they classify the endpoints of S differently.28

A natural problem is to determine the existence and compute (when possible) a rep-29

resentation of all combinatorially different stabbing regions for S. We are interested in30

stabbing regions whose boundary has constant complexity. Perhaps the simplest such31

region is a halfplane bounded by a line that intersects or stabs all the segments. Edels-32

brunner et al. [15] presented an optimal Θ(n log n) time algorithm to compute a repre-33

sentation of all the O(n) combinatorially different stabbing lines for S. An Ω(n log n)34

lower bound for the decision problem was later presented by Avis et al. [6]. For parallel35

segments the problem can be solved in O(n) time by linear programming. If no stab-36

bing halfplane for S exists, it is natural to ask for other types of stabbers. Computing37

? A preliminary version of this paper appeared in Proc. 12th Latin American Theoretical Infor-
matics Symposium (LATIN’16), pp. 290–305.

all the combinatorially different stabbing wedges (regions defined by the intersection38

of two halfplanes) can be carried out in O(n3 log n) time and O(n2) space [11]. The39

same question can be answered in O(n log n) time and O(n) space for isothetic stab-40

bing strips, quadrants and 3-sided rectangles; and in O(n2 log n) time and O(n2) space41

for isothetic stabbing rectangles [12].42

In this paper, we focus on the stabbing circle problem, formulated as follows. Let43

S be a set of n segments in the plane in general position (segments have 2n distinct44

endpoints, no three endpoints are collinear, and no four of them are cocircular). A circle45

c is a stabbing circle for S if exactly one endpoint of each segment in S is contained in46

the exterior of the closed disk (region) induced by c; see Figure 1. The stabbing circle47

problem for S consists of (1) answering whether a stabbing circle for S exists; (2)48

reporting a representation (for the centers) of all the combinatorially different stabbing49

circles for S; and (3) finding stabbing circles with minimum and maximum radius. Note50

that stabbing circles of minimum radius do not always exist. On the contrary, there are51

cases in which any stabbing circle can be shrunk by decreasing its radius or moving its52

center, however, the “limit” circle is not stabbing anymore. In such cases, our task is53

to find this “limit” circle. The same may happen with the stabbing circles of maximum54

radius; refer to Lemma 21 for the details. We remark that this can happen even if the55

general position assumptions used in this paper are fulfilled. Note also that our stabbing56

criterion uses only the segment endpoints, thus, S can be seen as a set of pairs of points,57

where a segment is simply a convenient representation for such a pair.58

Fig. 1. Left: Segment set with a stabbing circle. Right: Segment set with no stabbing circle.

Other works with similar criteria are as follows: Rappaport [25] considers the prob-59

lem of computing the stabbing simple polygon of minimum perimeter for a set S of gen-60

eral segments, where a simple polygon stabs S if at least one point (which is not neces-61

sarily an endpoint) of each segment is in the polygon; this minimum stabbing polygon62

is always a convex polygon. Dı́az-Báñez et al. [14] focus on computing the stabbing63

simple polygons of minimum perimeter or area with a distinct criterion, specifically,64

that at least one endpoint of each segment is required to be in the polygon. Keeping the65

same criterion and replacing simple polygons by disks leads to the so-called pairs of66

points L2 1-center problem, studied by Arkin et al. [3]; the goal of the problem is to67

determine a minimum-radius disk that contains at least one endpoint of each segment.68

Finally, Arkin et al. [2] consider, given a collection of compact sets, whether there exists69

a convex bodyR whose boundary intersects every set in the collection. They show that,70

for segment sets, deciding the existence of a convex stabber is NP-hard.71

Our results. First, we point out a connection between the stabbing circle problem and72

two cluster Voronoi diagrams: the Hausdorff and the farthest-color Voronoi diagram.73

This connection is interesting in its own right and it forms the base of our method to74

solve the stabbing circle problem. For a family of clusters (sets) of points, the Hausdorff75

Voronoi diagram (HVD) is a subdivision of the plane into regions such that every point76

within one region has the same nearest cluster, where the distance between a point77

p ∈ R2 and a cluster C is the maximum distance between p and all points in C. The78

farthest-color Voronoi diagram (FCVD) is the reverse: it reveals the farthest cluster79

for every point in a region, according to the minimum distance between a point and a80

cluster. Both diagrams have quadratic structural complexity in the worst case [1,16,19].81

However, for some classes of input sites the diagrams are linear and can be constructed82

efficiently, see e.g. [8,23] for the HVD. Here, clusters are the pairs of segment endpoints,83

and S is a family of such pairs of points.84

Our central object is FCVD*(S), defined as the locus of points whose farthest-color85

neighbor (i.e., their owner in the farthest-color Voronoi diagram) is closer than their86

nearest cluster (i.e., their owner in the Hausdorff Voronoi diagram). We observe that87

any point p ∈ R2 that is the center of a stabbing circle for S lies in the interior of88

FCVD*(S). The points in the interior of FCVD*(S) that are not centers of stabbing89

circles for S are separators among centers of combinatorially different stabbing circles.90

Thus, FCVD*(S) provides all the information that is relevant to stabbing circles:91

whether such circles exist, a list of all combinatorially different stabbing circles, and the92

stabbing circles with minimum and maximum radius. We identify sufficient conditions93

for efficient algorithms to construct FCVD*(S), and thus, to solve the stabbing circle94

problem. These conditions are: (1) the Hausdorff Voronoi diagram and the farthest-95

color Voronoi diagram have linear structural complexity and can be constructed fast;96

(2) the edges of the Hausdorff Voronoi diagram are not “spoiled” many times, where by97

“spoiling” an edge e we mean a technical condition necessary to cause e ∩ FCVD*(S)98

to be disconnected. If the segments in S are parallel, conditions (1) and (2) are satisfied,99

and we obtain that the stabbing circle problem for S can be solved in O(n log2 n) time100

and O(n) space. As a byproduct, we establish that the farthest-color Voronoi diagram101

for such a set S has structural complexity O(n) and can be constructed in O(n log n)102

time and O(n) space, which was not previously known. In addition, we show that the103

problem of computing the stabbing circle of minimum radius for a set of n parallel104

segments of equal length has an Ω(n log n) lower bound.105

Summary. In Section 2 we give the necessary definitions; in addition, we observe106

that, using a known technique, the stabbing circle problem for arbitrary segments107

can be solved in O(n2) time and space. In Section 3 we show the connection of108

FCVD*(S) with the problem, and we give useful properties of HVD(S), FCVD(S),109

and FCVD*(S). In Section 4 we present an algorithm to compute FCVD*(S). In Sec-110

tion 5, we show that the stabbing circle problem for parallel segments can be solved111

in O(n log2 n) time and O(n) space. A lower bound for the problem of computing a112

stabbing circle of minimum radius for parallel segments of equal length is shown in113

Section 6. Finally, in Section 7, we summarize and propose questions for future work.114

2 Preliminaries and Definitions115

In what follows, xx′ denotes either a pair of points or a segment as convenient. For a116

pair x, y of points in the plane, let d(x, y) denote the Euclidean distance between them,117

and let bis(x, y) denote the perpendicular bisector of the segment xy. For a region118

f ⊂ R2, we denote its boundary as ∂f , and its closure as f .119

Definition 1. [16,23] The Hausdorff Voronoi diagram of S is a partitioning of R2 into120

regions defined as follows:121

hreg(aa′) = {p ∈ R2 | ∀bb′ ∈ S \ {aa′} : max{d(p, a), d(p, a′)} < max{d(p, b), d(p, b′)}};
hreg(a) = {p ∈ hreg(aa′) | d(p, a) > d(p, a′)}.

Note that hreg(a) and hreg(a′) are subregions of hreg(aa′) (see Figure 2a). Note
as well, that hreg(aa′) may have several connected components. Let HVD(S) denote
the graph structure of the Hausdorff Voronoi diagram of S:

HVD(S) = R2 \
⋃

aa′∈S
(hreg(a) ∪ hreg(a′)).

An edge of HVD(S) is called pure if it separates the regions of two distinct seg-122

ments, and it is called internal if it separates the subregions of the same segment. A123

vertex of HVD(S) is called pure if it is incident to three pure edges, and it is called124

mixed if it is incident to an internal edge. The pure vertices are defined by three distinct125

sites, and the mixed vertices by two distinct sites.4126

Definition 2. [1,19] The farthest-color Voronoi diagram is a partitioning of R2 into
regions defined as follows:

fcreg(aa′) = {p ∈ R2 | ∀bb′ ∈ S \ {aa′} : min{d(p, a), d(p, a′)} > min{d(p, b), d(p, b′)}};
fcreg(a) = {p ∈ fcreg(aa′) | d(p, a) < d(p, a′)}.

The graph structure of this diagram is denoted as FCVD(S):

FCVD(S) = R2 \
⋃

aa′∈S
(fcreg(a) ∪ fcreg(a′)).

Similarly to the case of HVD(S), fcreg(a) and fcreg(a′) are subregions of127

fcreg(aa′), and fcreg(aa′) may have several components. The edges and vertices of128

FCVD(S) are characterized as pure or internal, and pure or mixed, analogously to129

those of HVD(S) (see Figure 2b).130

Let hreg(·) and fcreg(·) denote the closures of the respective regions.131

When the segments in S are pairwise disjoint, the structural complexity of HVD(S)132

isO(n) [16]. This particular case of pairwise disjoint segments has not been studied for133

FCVD(S). For arbitrary segments, the complexity of both diagrams is O(n2) [1,22].134

4 Any vertex of HVD(S) has degree three by the general position assumption that no four end-
points of segments in S are cocircular.

(a′)

(b′)

(c)

(c′)

(a)

a

a′

b

b′

c

c′

(b)

(a)

(a′)

(a)

(b)

(c′)

(c)

a

a′

b

b′

c

c′
(b′)

(b)

Fig. 2. (a) HVD(S), (b) FCVD(S). Pure and internal edges are represented in solid and dashed,
respectively. The gray letters in parentheses label the respective regions.

Definition 3. Given a point p, the Hausdorff disk of p, denoted Dh(p), is the closed135

disk with center at p and radius d(p, a), where p ∈ hreg(a). The radius of Dh(p) is136

called the Hausdorff radius of p, and is denoted as rh(p). The farthest-color diskDf (p)137

and the farthest-color radius rf (p) of p are defined analogously.138

The following lemma reveals the connection between the stabbing circle problem139

and the two cluster Voronoi diagrams, HVD(S) and FCVD(S).140

Lemma 1. Given a point p, there exists a stabbing circle centered at p if and only if141

rf (p) < rh(p).142

Proof. Let c be a circle centered at p with radius r, and letD be the closed disk induced
by c. Recall that c is a stabbing circle if and only if (1) each segment in S has an endpoint
outside D; and (2) each segment in S has an endpoint in D. Condition (1) is equivalent
to r < rh(p). Condition (2) is equivalent to rf (p) ≤ r. The claim follows. ut

Now we are ready to define FCVD*(S), which is the closure of the locus of the143

centers of all stabbing circles for S.144

Definition 4. The FCVD*(S) is the locus of points in R2 for which the farthest-color145

radius is less than or equal to the Hausdorff radius, i.e., FCVD*(S) = {p ∈ R2 :146

rf (p) ≤ rh(p)}.147

For any point on the boundary of FCVD*(S), its Hausdorff radius equals its farthest-148

color radius. Note that this equality also holds for some points in the interior of149

FCVD*(S). Any point p in the interior of FCVD*(S) such that rh(p) = rf (p) lies on150

an internal edge of both HVD(S) and FCVD(S), which separates centers of stabbing151

circles of two combinatorially different types, refer to Section 3.2 for more details.152

By applying the transformation of Edelsbrunner and Seidel [18], both HVD(S) and153

FCVD(S) can be viewed as envelopes of wedges in 3D: Lift up the pairs of endpoints154

of the segments in S onto the unit paraboloid U , and join the lifted endpoints obtaining155

a set S′ of segments in 3D. Each lifted endpoint a is mapped to a hyperplane tangent156

to U at point a. Thus, a segment in S is transformed to a pair of planes in 3D. The157

lower (resp., upper) envelope of such a pair forms a lower and (resp., upper) wedge, re-158

spectively. Then HVD(S) and FCVD(S) correspond to the upper envelope of all lower159

wedges, and to the lower envelope of all upper wedges, respectively. This transfor-160

mation is explicitly given for HVD(S) in Edelsbrunner et al. [16]. Thus, FCVD*(S)161

corresponds to the locus of points below HVD(S) and above FCVD(S).162

The locus of points between two surfaces, defined by the above construction, is163

shown to be a representation of all combinatorially different stabbing planes for S′ (if164

one exists) [16]. Further, the authors show that this locus is a set of O(n2) convex cells165

in 3D with O(n2) total complexity, and can be computed in O(n2) time and space.166

We observe that a stabbing circle for S can be transformed into a stabbing plane for167

S′ and vice versa.168

We obtain the following result which, to the best of our knowledge, has not been169

explicitly stated anywhere before:170

Theorem 1. The stabbing circle problem for a set S of n arbitrary segments can be171

solved in O(n2) time and space.172

Claverol [10] showed that a set S of segments might have Θ(n2) combinatorially173

different stabbing circles; see Figure 3. In the construction, each pair {ai, aj} of points174

in the upper arc defines a stabbing circle that leaves the endpoints in the upper arc175

between ai and aj outside the circle. Hence, the Θ(n2) stabbing circles defined in this176

way are combinatorially different. We remark that it is possible to perform a small177

perturbation so that the general position assumptions are satisfied.178

aj ai

a′i a′j

Fig. 3. A set withΘ(n2) combinatorially different stabbing circles, and the stabbing circle defined
by {ai, aj}.

3 Properties of HVD(S), FCVD(S), and FCVD*(S)179

In this section we investigate structural properties of the geometric structures involved180

in the stabbing circle problem. First, in Section 3.1, we list basic properties of the Haus-181

dorff and the farthest-color Voronoi diagrams. These are later used to derive structural182

properties of FCVD*(S) and the correctness of our solution to the stabbing circle prob-183

lem. The structure of the Hausdorff Voronoi diagram is well known, see e.g., [16,22,23];184

however, this is not the case for the farthest-color diagram. We use Section 3.1 to derive185

some useful properties for FCVD(S). Then, in Section 3.2 we investigate the structure186

of FCVD*(S), and we characterize its faces and their complexity, linking them to fea-187

tures of HVD(S) and FCVD(S). We show that every face of FCVD*(S) corresponds188

to a unique combinatorially distinct solution of the stabbing circle problem. Finally, in189

Section 3.3, we complete the structural complexity analysis of FCVD*(S) and count190

its faces. The properties derived in this section are later used in Section 4 to obtain our191

algorithm that computes all the combinatorially distinct stabbing circles for S.192

3.1 Properties of HVD(S) and FCVD(S)193

We list some structural properties of the Hausdorff and the farthest-color Voronoi di-194

agrams, which are used by our algorithms. First, a visibility property of both dia-195

grams is summarized in the following lemma. For HVD(S), this property follows di-196

rectly from [22, Property 2] (item (a)). We prove an equivalent property for FCVD(S)197

(item (b)). Items (a),(b) are illustrated in Figure 4a,b respectively.198

Lemma 2. Consider hreg(a) and fcreg(a), where aa′ ∈ S and |S| > 1.199

(a) For a point p in hreg(a), the segment ap intersects ∂hreg(a) exactly once and the200

intersection point lies on an internal edge of HVD(S). For a point q on an internal201

edge of ∂hreg(a), the segment aq does not intersect hreg(a).202

(b) For a point p in fcreg(a), the segment ap intersects ∂fcreg(a) exactly once and the203

intersection point lies on a pure edge of FCVD(S). For a point q on a pure edge of204

∂fcreg(a), the segment aq does not intersect fcreg(a).205

(a′)

(b′)

(c)

(c′)

(a)

a

a′

b

b′

c

c′

(b)

p

q

(a)

(a′)

(a)

(b)

(c′)

(c)

a

a′

b

b′

c

c′
(b′) p

q

(b)

Fig. 4. Illustration for the statement of Lemma 2 based on the diagrams from Figure 2: line seg-
ments ap and aq are shown in red dash-dotted lines.

Proof. We only prove item (b). If |S| > 1, a /∈ fcreg(a), thus, ap intersects ∂fcreg(a)206

at least once. Suppose ap intersects ∂fcreg(a) more than once, and let x and y be the207

first two intersection points that are encountered when moving from p to a. Points x and208

y are on ∂fcreg(a) and the segment xy is outside fcreg(a). Thus, Df (x) and Df (y)209

contain at least one endpoint of every segment in S, their boundary passes through a,210

and a′ is outside both disks. Let w be a point on xy and let D(w) be the closed disk211

centered at w whose boundary passes through a. Since the distance of any point on the212

line through x, y from a increases as we move away from a, Df (y) ⊂ D(w) ⊂ Df (x).213

But then D(w) must contain all points in Df (y), a′ 6∈ D(w), and a ∈ ∂D(w). Thus,214

D(w) = Df (w); hence, w ∈ fcreg(a). We obtain a contradiction.215

The second claim in item (b) follows directly from the first one by considering a
point p ∈ fcreg(a) that is infinitesimally close to q. ut

Figure 2 illustrates a Hausdorff and a farthest-color Voronoi diagram. Every compo-216

nent of a Hausdorff region hreg(aa′) contains exactly one internal edge [22, Property 3]217

(see the dashed lines in Figure 2a). In the following lemmas we show properties of a218

similar nature for FCVD(S).219

Lemma 3. Any bounded face of fcreg(aa′) contains an internal edge. (See the faces of220

region fcreg(bb′) in Figure 2b.)221

Proof. Let f be a bounded face of fcreg(aa′). Suppose for the sake of contradiction
that f contains no internal edge. Then f is a face of fcreg(a), for an endpoint a of aa′,
such that ∂f consists solely of pure edges. Let p be a point in f and consider the ray r
from a through p. Let q be the first intersection point between r and ∂f , as we move on
r starting at p away from a (such point exists because f is bounded). Since f consists
solely of pure edges, q is a point on a pure edge and pq ∈ f , yielding a contradiction to
the last claim of Lemma 2b. ut

Lemma 4. For any face of fcreg(a), the portion of its boundary that is formed by pure222

edges is connected. (See the solid lines in Figure 2b.)223

Proof. Suppose |S| > 1 as otherwise the claim holds trivially. Let f be a face of
fcreg(a). Clearly, any internal edge on ∂f is a portion of bis(a, a′). Since |S| > 1,
a 6∈ fcreg(a), but a lies in the same halfplane induced by bis(a, a′) as fcreg(a). This
implies that a lies in a region of the plane bounded by bis(a, a′) and one of the con-
nected components of pure edges of ∂f (such regions are shown with tiling patterns in
Figure 5). If ∂f contained more than one such connected components of pure edges,
then any point x on any additional component would violate Lemma 2b. See Figure 5.

ut

The following property of FCVD(S) is only used in Section 5.224

Lemma 5. FCVD(S) has O(n) unbounded faces.225

Proof. We observe that each unbounded face of FCVD(S) corresponds exactly to one
face of the farthest-segment Voronoi diagram of S, FsVD(S). To make the correspon-
dence one-to-one we remove the internal unbounded edges of FCVD(S) and merge the
incident faces of fcreg(a) and fcreg(a′), for every aa′ ∈ S, into one face of fcreg(aa′).
Then a face f in FCVD(S) is unbounded in a direction φ if and only if a face f ′ in
FsVD(S) is unbounded in the same direction φ. See [24] for the properties of the faces

a

x

fcreg(a)

bis(a, a′)

a x
fcreg(a)

bis(a, a′)

Fig. 5. Illustration for Lemma 4: two variants of an impossible situation.

of FsVD(S) at infinity, which are identical to those of FCVD(S). The total number
of faces in FsVD(S) is O(n) [4], thus, the same holds for the unbounded faces of
FCVD(S). Note that a component of fcreg(aa′) can contain at most two unbounded
portions of bis(a, a′), thus, having removed the internal unbounded edges of FCVD(S)
has no effect on the derived bound. ut

3.2 Properties of FCVD*(S)226

In this section, we characterize the boundary of FCVD*(S), its connected components227

(for brevity, components), and its faces. We observe that the faces of FCVD*(S) are228

in one-to-one correspondence with the combinatorially different solutions for the stab-229

bing circle problem for S. We characterize the faces of FCVD*(S) according to their230

intersection with HVD(S) and FCVD(S), and this characterization forms the basis of231

our algorithm to compute FCVD*(S) (and thus to solve the stabbing circle problem)232

presented in Section 4.233

We proceed with describing the boundary of the components of FCVD*(S). Notice234

that a component is unbounded in a direction φ if and only if there exists a stabbing line235

for S that is orthogonal to φ.236

a

a′

b

c

c′

fc-vertex

mixed vertex

pure edge of HVD(S)
pure edge of FCV D(S)

internal edge

b′
faces of FCV D∗(S)

Fig. 6. FCVD*(S) where S is the set of segments {aa′, bb′, cc′} from Figure 2.

We first observe that the vertices of ∂FCVD*(S) are all incident to edges of237

HVD(S) or FCVD(S). Indeed, any vertex of ∂FCVD*(S) is caused by switching the238

region of either HVD(S) or of FCVD(S) (in a traversal of ∂FCVD*(S)), which hap-239

pens exactly when ∂FCVD*(S) meets an edge of one of the diagrams. Thus we dis-240

tinguish three types of vertices of ∂FCVD*(S): (1) vertices incident to pure edges of241

HVD(S), called h-vertices; (2) vertices incident to pure edges of FCVD(S), called242

fc-vertices; and (3) vertices incident to internal edges of either diagram, called mixed243

vertices. See Figure 6 that illustrates faces of FCVD*(S) and vertices of ∂FCVD*(S).244

Notice that h-vertices and fc-vertices belong to the interior of corresponding pure edges.245

Moreover, the boundary of FCVD*(S) intersects these pure edges transversally, thus246

each h- or fc- vertex is adjacent to a portion of a pure edge of, respectively, HVD(S) or247

FCVD(S) within FCVD*(S).248

The following lemma implies that each mixed vertex of ∂FCVD*(S) is a mixed249

vertex of either HVD(S) or FCVD(S), hence, the name for such vertices. Moreover,250

this lemma and its corollary lead to the definition of a face of FCVD*(S), which will251

then be treated as an atomic piece of FCVD*(S).252

Lemma 6. Point p ∈ bis(a, a′) is in FCVD*(S) if and only if p lies on an internal253

edge of both HVD(S) and FCVD(S). If p is on ∂FCVD*(S), then p is a mixed vertex254

of either HVD(S) or FCVD(S).255

Proof. Since p ∈ bis(a, a′), either both a, a′ are outsideDh(p) or they lie on its bound-256

ary. Symmetrically, either both a, a′ are in the interior of Df (p) or on its boundary.257

Suppose p ∈ FCVD*(S). Then Df (p) ⊆ Dh(p). By the above argument, Df (p) =258

Dh(p) and both a, a′ lie on the boundary of this disk. Therefore, rh(p) = rf (p) =259

pa = pa′, and the claim follows.260

Suppose that p lies on an internal edge of both HVD(S) and FCVD(S) that sep-261

arates the respective regions of a and of a′. Since p lies on such edge of HVD(S),262

rh(p) = pa, and since p lies on such edge of FCVD(S), rf (p) = pa. Thus rh(p) =263

rf (p), hence, p ∈ FCVD*(S).264

Now we prove the second part of the statement. Since p ∈ bis(a, a′) is on
∂FCVD*(S), Dh(p) = Df (p), and the boundary of this disk passes through a, a′.
It is easy to see that this boundary also passes through an endpoint c of some segment
cc′ ∈ S (otherwise, the center of this disk could move in any direction while still being
in FCVD*(S), contradicting the fact that p ∈ ∂FCVD*(S)). If the other endpoint c′ of
cc′ is inside this disk, then p is a mixed vertex of HVD(S), and if it is outside, p is a
mixed vertex of FCVD(S). ut

Corollary 1. No mixed vertex of HVD(S) or FCVD(S) may lie in the interior of265

FCVD*(S).266

Proof. Suppose p is a mixed vertex of HVD(S) such that p ∈ FCVD*(S). Let e denote
the internal edge of HVD(S) incident to p; e is a portion of bis(a, a′), for some aa′ ∈ S.
Since p is a vertex of e, there is a point p′ on bis(a, a′) infinitesimally close to p such
that p′ does not belong to e. Observe that rh(p′) < p′a, and both a, a′ are outside the
Hausdorff disk of p′. This implies that p′ is not in FCVD*(S), and therefore p is not in
the interior of FCVD*(S). A similar argument (with rf (p′) > p′a) proves the case of p
being a mixed vertex of FCVD(S). ut

A component of FCVD*(S) may (or may not) contain internal edges that partition267

the component into disjoint open faces. An internal edge of FCVD*(S) is the common268

portion of one internal edge of HVD(S) and one such edge of FCVD(S) within a269

component of FCVD*(S). A component of FCVD*(S) that contains internal edges is270

called a multiple-face component as it consists of more than one face. A component that271

contains no internal edges is called single-face component and its interior is a single272

face of FCVD*(S). To compute FCVD*(S) we need to identify its components. In273

the following we show that internal edges of FCVD*(S) are always incident to mixed274

vertices of either HVD(S) or FCVD(S), and thus, the multiple-face components of275

FCVD*(S) can be easily identified. We distinguish the single-face components in two276

types: those that contain a vertex of HVD(S) or FCVD(S); and those that contain no277

such vertex, which are of a special form (see Lemma 11). Identifying the latter type of278

single-face components poses a major difficulty to our algorithm.279

The following lemma shows that the faces of FCVD*(S) correspond exactly to com-280

binatorially different stabbing circles. Thus, each single-face component reveals exactly281

one combinatorially distinct solution for the stabbing circle problem; the multiple-face282

components reveal a number of such solutions, exactly one for each of their faces.283

p

q
w

c2

c1

c3

(a)

p

q
w

c2

c1

c3

(b)

Fig. 7. Illustration for the proof of Lemma 7.

Lemma 7. Two stabbing circles are combinatorially different if and only if their centers284

lie in different faces of FCVD*(S).285

Proof. Let c1 and c2 be two combinatorially different stabbing circles, and let respec-286

tively p and q be their centers. There is a segment aa′ ∈ S such that a is enclosed in287

c1, and a′ is enclosed in c2. Observe that p and q lie in different halfplanes with respect288

to bis(a, a′). If p and q were in the same face f of FCVD*(S), then there would be a289

path π connecting p and q such that π lies entirely in f . Since p and q are separated by290

bis(a, a′), path π would need to cross bis(a, a′) at a point t. However, point t cannot291

lie inside f due to Lemma 6, which would derive a contradiction.292

Next, suppose that the stabbing circles c1 and c2 are combinatorially equivalent. Let
w be a point on the segment pq. We show that w is the center of a stabbing circle c3 that
is combinatorially equivalent to c1 and c2. Indeed, if c1 and c2 intersect in two points,
then let c3 be the circle centered at w and passing through these two intersection points;
see Figure 7a. If c2 is enclosed in c1, let c3 be the minimum circle centered at w and

enclosing c2; see Figure 7b. Let D1, D2 and D3 be the disks corresponding to c1, c2
and c3 respectively. Observe that D1 ∩ D2 ⊂ D3 and

(
(R2 \D1) ∩ (R2 \D2)

)
⊂

(R2 \ D3). Thus all the endpoints of segments in S that are enclosed in c1 and c2 are
also enclosed in c3, and the ones that lie outside of c1 and c2 also lie outside of c3. This
implies that c3 is a stabbing circle that is combinatorially the same as c1 and c2. By
Lemma 1, rf (w) < rh(w), and thus w is in the interior of FCVD*(S) and does not
lie on an internal edge of it. This implies that the closed segment pq lies in one face of
FCVD*(S). ut

The second part of the above proof implies that, for any pair of points p, q within293

one face f of FCVD*(S), the segment pq lies in f . This proves the following property:294

Corollary 2. The faces of FCVD*(S) are convex.295

FCVD*(S) has the following visibility property, which is used in the proofs of296

subsequent lemmas in this section.297

a

p
q

Dh(p)

Dh(q)

b
b′

(a)

a

p′
q′

Df (p
′)

Df (q
′)

(b)

Fig. 8. Illustration for the proof of Lemma 8.

Lemma 8. (a) Let p be a point outside FCVD*(S), and let aa′ be a segment in S such298

that p ∈ hreg(a). Then the entire segment (pa ∩ hreg(a)) is outside FCVD*(S).299

(b) Let p′ be a point in FCVD*(S), and let aa′ be a segment in S such that p′ ∈300

fcreg(a). Then the entire segment (p′a ∩ fcreg(a)) is in FCVD*(S).301

Proof. By Lemma 2, (pa ∩ hreg(a)) and (p′a ∩ fcreg(a)) are segments.302

(a) Let q be a point on pa ∩ hreg(a); see Figure 8a. Clearly, Dh(q) ⊆ Dh(p).303

Since p 6∈ FCVD*(S), it follows that rf (p) > rh(p) and, in consequence, there exists304

a segment bb′ ∈ S such that b, b′ 6∈ Dh(p). Since Dh(q) ⊆ Dh(p), points b and b′ are305

also outside Dh(q). Thus, q 6∈ FCVD*(S).306

(b) Let q′ be a point in p′a ∩ fcreg(a); see Figure 8b. Since p′ ∈ FCVD*(S), we
have that rf (p′) ≤ rh(p

′) and thus each segment from S has at least one endpoint
outside Df (p

′) or on its boundary. Since Df (q
′) ⊂ Df (p

′), the same holds for Df (q
′).

Thus, Df (q
′) ⊂ Dh(q

′), that is, q′ ∈ FCVD*(S). ut
The following two lemmas analyze the intersection of a face of FCVD*(S)307

with HVD(S) and FCVD(S). In particular, we characterize connectedness and non-308

emptiness of such intersections. These are properties that enable us to efficiently iden-309

tify the faces of FCVD*(S).310

a

p

y

a

p

x

yz

x

z

f

e

h

HVD(S) ∩ f

(a) (b)

Fig. 9. A face f of FCVD*(S) in an impossible situation where f ∩ HVD(S) is disconnected.
Two variants with respect to the internal edge e: (a) e is outside f ; (b) e is on ∂f .

Lemma 9. For a face f of FCVD*(S), both f ∩HVD(S) and f ∩ FCVD(S) are con-311

nected.312

Proof. Suppose for the sake of contradiction that f ∩HVD(S) is disconnected, see Fig-313

ure 9. Then there is a face h of hreg(a) such that f∩∂h has at least two connected com-314

ponents. By [22, Property 3], ∂h contains exactly one internal edge e, e ⊆ bis(a, a′).315

By the definition of a face of FCVD*(S), e cannot intersect the interior of f ; it can only316

border f or it must be outside f , see Figure 9a and b.317

Consider the first connected component of f ∩ ∂h that follows e in a counterclock-318

wise traversal of ∂h. Let the endpoints of this component be called x and y (in the order319

of the traversal), see Figure 9. Let z be the first point of f encountered as we continue320

traversing ∂h counterclockwise beyond y. That is, z is a point in another connected321

component of f ∩ ∂h. Consider the portions of ∂f and ∂h respectively from point y322

to point z. The portion of ∂f from y to z is inside h. The portion of ∂h from y to z323

consists solely of pure edges. Thus a point p in this portion of ∂h infinitesimally close324

to y is outside FCVD*(S). Then by Lemma 8a pa ∩ h is outside of FCVD*(S). By325

Lemma 2a, the segment pa intersects ∂hreg(a) once and the intersection point lies on326

e. Thus, (pa ∩ h) ∩ f is not empty. We obtain a contradiction.327

The proof for f∩FCVD(S) is similar. In particular, if f∩FCVD(S) is disconnected,
then f∩∂h is disconnected, for a face h of fcreg(a). Similarly to the above, by Lemma 4
and Lemma 2b, there is a point p on a pure edge on ∂fcreg(a) such that p 6∈ FCVD*(S),
and the supporting line of the segment pa intersects f inside fcreg(a). Let p′ be a point
in this intersection. Then point p ∈ p′a, p ∈ fcreg(a) and p 6∈ FCVD*(S), which
contradicts Lemma 8b. ut

Lemma 10. Let f be a bounded face of FCVD*(S). (a) At least one of f ∩ HVD(S)328

and f ∩ FCVD(S) must be non-empty. (b) If one of f ∩ HVD(S) or f ∩ FCVD(S) is329

empty, then f belongs to a component of FCVD*(S) with multiple faces.330

Proof. To prove item (a), recall that any vertex on the boundary of a component of331

FCVD*(S) is incident to an edge of HVD(S) or of FCVD(S) within that component.332

a

p

f

(a)

fp′

a
(b)

Fig. 10. Illustration for the proof of Lemma 10. An impossible situation where a face f of
FCVD*(S) (shaded) is such that (a) HVD(S) ∩ f is empty; (b) FCVD(S) ∩ f is empty.

Recall also that a face of FCVD*(S) is an open region that does not include internal333

edges of the diagrams, but can be incident to portions of them. Therefore any h- or fc-334

vertex on the boundary of a face of FCVD*(S) is incident to a pure edge of respectively335

HVD(S) or FCVD(S) within this face. For the mixed vertices on the boundary of the336

face it might not hold, since the internal edges incident to them lie on the bounday of337

the face of FCVD*(S) by definition.338

Suppose for the sake of contradiction that f∩HVD(S) = ∅ and f ∩ FCVD(S) = ∅.339

Then all the vertices of FCVD*(S) on the boundary of f are mixed vertices. Since f is340

bounded and non-empty, the number of vertices on ∂f is at least four. All these mixed341

vertices cannot lie on the bisector of the same segment in S because f is convex (see342

Corollary 2). Therefore f is incident to a segment of the internal edges of at least two343

regions of HVD(S). Let points s, t be respectively a point in the first segment and a344

point in the second one. Points s and t belong to the Hausdorff Voronoi regions of two345

different segments, thus the open segment st crosses at least one pure edge of HVD(S).346

Since f is convex, the entire open segment st is contained in f , and thus f ∩ HVD(S)347

is not empty. We arrive to a contradiction.348

Now we prove item (b). Suppose for the sake of contradiction that f is bounded, f∩349

HVD(S) is empty, and f is a single-face component of FCVD*(S). Since f ∩HVD(S)350

is empty, f is entirely contained in hreg(a) for an endpoint a of some segment aa′ ∈ S.351

Since segments in S do not share endpoints, no pure edge of HVD(S) can overlap with352

an edge of ∂FCVD*(S) (they can only intersect in one point). Then there is a point353

p ∈ hreg(a) \ f such that pa intersects f and p 6∈ FCVD*(S) (see Figure 10a). But by354

Lemma 8a, since p 6∈ FCVD*(S) the entire segment (pa ∩ hreg(a)) must be outside355

FCVD*(S). We obtain a contradiction.356

The symmetric statement about f ∩ FCVD(S) can be shown as follows. Suppose
that f ⊂ fcreg(a), see Figure 10b. Similarly to the above, edges of ∂f and ∂fcreg(a)
do not overlap. Pick a point p′ ∈ f . By Lemma 8b, the entire segment p′a ∩ fcreg(a)
lies in f . Recall that a 6∈ fcreg(a) (since segments in S do not share endpoints), and
thus f must intersect FCVD(S). We obtain a contradiction. ut

Finally, in the next lemma, we explore a special type of single-face components of357

FCVD*(S): the ones that contain no vertices of HVD(S) or FCVD(S). The faces that358

correspond to bounded components of this type create the main difficulty in computing359

FCVD*(S).360

ef
eh

fc-vertex

h-vertex

c

t t

(a) (b)

Fig. 11. Illustration for the proof of Lemma 11. A bounded component c of FCVD*(S) that does
not contain a vertex of HVD(S) or of FCVD(S): (a) an impossible situation; (b) the only possible
situation.

Lemma 11. Let c be a component of FCVD*(S) that contains no vertex of HVD(S) or361

FCVD(S). If c is bounded, then c contains exactly one intersection of two pure edges362

(one of HVD(S) and one of FCVD(S)), and ∂c is a quadrilateral. If c is unbounded,363

then c contains an unbounded portion of a pure edge of either HVD(S) or FCVD(S).364

Proof. Since c does not contain any mixed vertex of HVD(S) or FCVD(S), by365

Lemma 6, c does not intersect any internal edge of the diagrams. Thus ∂c may only366

contain h- and fc-vertices (no mixed vertices). Further, the interior of c is a single face367

f of FCVD*(S) (f = c).368

Suppose first that c is bounded. Lemmas 9 and 10 imply that f ∩ HVD(S) is, re-369

spectively, connected and non-empty. Together with the fact that f contains no vertices370

of HVD(S), this implies that f ∩ HVD(S) is an (open) line segment, whose endpoints371

are two h-vertices on ∂c. By the analogous argument for f ∩ FCVD(S), ∂c has exactly372

two fc-vertices. Therefore ∂c = ∂f is a quadrilateral. See Figure 11b.373

Let eh and ef denote respectively the open line segments f ∩ HVD(S) and f ∩374

FCVD(S); see Figure 11. Let t be the point of intersection between the supporting375

lines of eh and ef (the case where these lines are parallel is similar). We will show that376

t ∈ f . Note that it is impossible that an h-vertex is followed by the other h-vertex on ∂c377

(see Figure 11a), as it would imply that eh and ef lie entirely on ∂c, thus f ∩ HVD(S)378

would be empty (as well as f ∩ FCVD(S)), what contradicts Lemma 10. Thus the379

different type of vertices interleave on ∂f (see Figure 11b), which implies that t ∈ f .380

This completes the proof of the first statement.381

Now suppose that c is unbounded. Note that ∂c consists of at least two edges, and
c is convex (see Corollary 2). Thus there are two unbounded edges on ∂c that have
different supporting lines. Denote these edges as e and g. If c contained no unbounded
portions of pure edges of HVD(S) or FCVD(S), then both e and g would be contained
in hreg(a) and in fcreg(b), for some endpoints a and b of segments in S. But then both
e and g must be portions of bis(a, b). We obtain a contradiction. ut

We have explored different types of components of FCVD*(S), and we saw that a382

component may or may not be comprised of multiple faces, may or may not contain383

a vertex of HVD(S) or FCVD(S), and it may or may not be bounded. The cumu-384

lative complexity of all components that contain multiple faces, or contain a vertex385

of HVD(S) or FCVD(S), or are unbounded, is O(|HVD(S)| + |FCVD(S)|) (see the386

proof of Theorem 2 in Section 3.3). However, the bounded single-face components that387

do not contain a vertex of HVD(S) or FCVD(S) (i.e., the quadrilateral components of388

Lemma 11) do not fall under this bound. We bound their number in the next section.389

Identifying these components poses the main challenge to our algorithm in Section 4.390

3.3 Complexity of FCVD*(S)391

With some abuse of notation, we denote by |HVD(S)|, |FCVD(S)| and |FCVD*(S)|392

respectively the number of edges of HVD(S), FCVD(S), and ∂FCVD*(S). We aim to393

connect |FCVD*(S)| with |HVD(S)| and |FCVD(S)|.394

We classify the segments in S with respect to a portion of a fixed pure edge of395

HVD(S). Let e be a connected portion of pure edge of HVD(S) that separates hreg(a)396

and hreg(b), for two segments aa′, bb′ ∈ S. In particular, e ⊆ bis(a, b). For the rest of397

this section, it is convenient to perform a rotation of the coordinate system so that e is398

horizontal. Let u and respectively v be the left and right endpoints of e.399

If u is a mixed vertex of HVD(S), we redefine u as a point on e infinitesimally to the400

right, so that u is in the boundary of only hreg(a) and hreg(b). We proceed analogously401

with v.402

The Hausdorff disks Dh(u) and Dh(v) have a, b on the boundary, they contain aa′,403

bb′, and they do not contain any other segment of S. The same holds for the Hausdorff404

disk of any point of e. Hence, every segment cc′ ∈ S \ {aa′, bb′} can be classified as405

follows (see Figure 12, left):406

– cc′ is of type out if both c and c′ are outside Dh(u) ∪Dh(v);407

– cc′ is of type in if either c or c′ is contained inDh(u)∩Dh(v) and the other endpoint408

is outside Dh(u) ∪Dh(v);409

– cc′ is of type left if either c or c′ is contained in Dh(u) \ Dh(v) and the other410

endpoint is outside Dh(u) ∪Dh(v);411

– cc′ is of type right if either c or c′ is contained in Dh(v) \ Dh(u) and the other412

endpoint is outside Dh(u) ∪Dh(v);413

– cc′ is of type middle if either c or c′ is contained in Dh(u) \ Dh(v) and the other414

endpoint is contained in Dh(v) \Dh(u).415

For any point p ∈ e, we use p` and pr to denote two points in e infinitesimally close416

to p and lying to the left and right of p, respectively. Additionally, let Me
bis denote the417

set of segments cc′ ∈ S of type middle for edge e such that e intersects an internal418

edge of FCVD(S) separating fcreg(c) from fcreg(c′). Notice that this internal edge is419

a portion of bis(c, c′). We also set me
bis = |Me

bis|.420

Let mbis denote the total number of pairs formed by a pure edge e of HVD(S) and421

a segment cc′ ∈ S such that cc′ ∈Me
bis.422

Lemma 12. Let e be a portion of a pure edge of HVD(S). The number of faces of423

FCVD*(S) intersected by e is at most 1 +me
bis.424

Proof. Let e′ be the left-most portion (if any) of the interior of e contained in425

FCVD*(S), and let w be its right endpoint. Since w ∈ FCVD*(S), each segment426

u v

a

b

Dh(v)

Dh(u)

c c′

Dh(w)

u v

a

b
Dh(v)

Dh(u)

w t

Dh(t)

Fig. 12. Left: From top to bottom, the types of the dotted segments are middle, left, in, right, and
out. Right: Illustration for the proof of Lemma 12.

from S has at least one endpoint inside Dh(w). Let cc′ be a segment in S such that427

wr ∈ fcreg(c). Since wr /∈ FCVD*(S), both c and c′ are outside Dh(wr). This implies428

that one of c or c′ (say, c) lies in the portion of the boundary of Dh(w) contained in429

Dh(u), and the other endpoint lies outside Dh(w) (see Figure 12, right). Consequently,430

for any point t in wrv, Dh(t) does not contain c. Suppose that there are more portions431

of e contained in FCVD*(S), and let e′′ be the left-most one. Then, for any point t in432

e′′, Dh(t) contains c′ but not c. In particular, c′ lies in Dh(v) \Dh(u) and cc′ is of type433

middle for e. Hence, bis(c, c′) intersects e at a point q leaving e′ to its left and e′′ to434

its right. If q lies on an internal edge of FCVD(S) separating fcreg(c) from fcreg(c′),435

then cc′ ∈Me
bis and we assign e′′ to cc′.436

Otherwise, q lies in fcreg(d), for some dd′ ∈ S \ {aa′, bb′, cc′}. Since wr ∈437

fcreg(c), the segment wrq crosses at least one edge of FCVD(S). We start travers-438

ing the segment wrv starting from wr. Suppose that we leave fcreg(c) and we enter439

fcreg(f), for some ff ′ ∈ S. Notice that this happens before we reach e′′. Since w ∈440

FCVD*(S), wr /∈ FCVD*(S) and f 6= c′, the point f does not lie in Dh(u) ∩Dh(v),441

Dh(v) \Dh(u) or outside Dh(u) ∪Dh(v). Hence, it lies in Dh(u) \Dh(v). Further-442

more, since e′′ ⊆ FCVD*(S), ff ′ is of type middle and, for any point t in e′′, Dh(t)443

contains f ′. Hence, bis(f, f ′) intersects e at a point q′ leaving e′ to its left and e′′ to its444

right. If q′ lies on an internal edge of FCVD(S) separating fcreg(f) from fcreg(f ′),445

then ff ′ ∈Me
bis and we assign e′′ to ff ′. Otherwise, we continue traversing wrv. The446

left endpoint of e′′ is in the farthest-color region of a point in Dh(v) \ Dh(u). Thus,447

as we traverse wrv and simultaneously FCVD(S), at some point we cross an edge of448

FCVD(S) separating the farthest-color region of a point in Dh(u) \ Dh(v) from the449

farthest-color region of a point in Dh(v) \Dh(u). This is only possible when this edge450

is an internal edge of FCVD(S) separating the regions of two endpoints of a segment451

of type middle. We assign ee′ to this segment in Me
bis.452

Next, we select the right endpoint of e′′ and perform the same analysis. By repeating
the same argument until we reach v, we obtain an assignment of the portions of the
interior of e contained in FCVD*(S) (except for e′) to segments in Me

bis. Furthermore,
in this assignment no segment is charged more than one portion. This completes the
proof of the lemma. ut

Theorem 2. Let S be a set of n segments in the plane in general position. Then453

|FCVD*(S)| = O(|HVD(S)|+ |FCVD(S)|+mbis).454

Proof. Consider a face f of FCVD*(S). By Lemma 9, f ∩ HVD(S) is a connected455

graph. Each vertex of this graph (if any) has degree three, since it is a vertex of HVD(S).456

By Euler’s formula the number of h-vertices on ∂f isO(H+1), whereH is the number457

of vertices of HVD(S) inside f . Analogously, the number of fc-vertices on ∂f isO(F+458

1), where F is the number of vertices of FCVD(S) inside f .459

Any vertex on ∂f that is neither an h-vertex nor an fc-vertex is a mixed vertex of460

HVD(S) or of FCVD(S). Clearly, each pure vertex of HVD(S) and of FCVD(S) lies461

in at most one face of FCVD*(S), and each mixed vertex of one of these diagrams lies462

on the boundary of exactly two faces of FCVD*(S). Thus the total complexity of the463

boundary of all components of FCVD*(S) that contain at least one vertex of HVD(S)464

or of FCVD(S) is O(HVD(S) + FCVD(S)).465

What remains is to bound the number of components of FCVD*(S) that do not466

contain a vertex of HVD(S) or of FCVD(S). We consider separately the unbounded467

and the bounded components of this type. The total number of unbounded ones is468

O(|HVD(S)| + |FCVD(S)|): By Lemma 11, each such unbounded component con-469

tains an unbounded portion of an edge of HVD(S) or FCVD(S), and clearly one edge470

can correspond to at most one component. By Lemma 11, each bounded component of471

FCVD*(S) with no vertex of HVD(S) or FCVD(S) intersects exactly one pure edge472

of HVD(S), and this intersection is connected. Thus the number of such components of473

FCVD*(S) can be upper-bounded by the total number of intersections of all pure edges474

of HVD(S) with FCVD*(S). By Lemma 12, this is O(|HVD(S)|+mbis).475

Summing up the total complexity of the boundary for all types of components of
FCVD*(S) implies the claim. ut

4 Computing FCVD*(S)476

Recall from Section 3.2 that any unbounded component of FCVD*(S) corresponds477

to a stabbing line for S. All the stabbing lines and the corresponding components of478

FCVD*(S) can be found in O(n log n) time [15]. From now on we assume that S has479

no stabbing line, and therefore all components and faces of FCVD*(S) are bounded.480

4.1 General algorithm481

By Lemmas 6, 10 and 11, any bounded face f of FCVD*(S) has at least one of the482

following properties: (1) f is incident to a mixed vertex of HVD(S) or FCVD(S), (2) f483

contains a pure vertex of HVD(S) or FCVD(S), or (3) f contains exactly one segment484

of a pure edge of both HVD(S) and FCVD(S). Our algorithm, described in Figure 13,485

has three parts. The first part (Steps 1–7) computes the faces of property (1). The second486

part (Steps 8–12) computes the faces of property (2) that have not been computed so487

far. After that the faces that satisfy only property (3) are left, and they are computed in488

Steps 13–14.489

We next make some remarks about the first two parts of the algorithm in Figure 13.490

'

&

$

%

Algorithm COMPUTING FCVD∗(S)
1. compute HVD(S) and FCVD(S);
2. for each non-marked mixed vertex v of HVD(S) or FCVD(S) do
3. if v ∈ ∂FCVD*(S) then
4. for each face f of FCVD*(S) incident to v;
5. if f has not been visited yet then
6. trace ∂f starting from v;
7. mark all vertices of HVD(S) and FCVD(S) in f ;
8. for each non-marked pure vertex u of HVD(S) or FCVD(S) do
9. if u ∈ FCVD*(S) then
10. let f be the face of FCVD*(S) that contains u;
11. find a point on ∂f and trace ∂f ;
12. mark all vertices of HVD(S) and FCVD(S) in f ;
13. for each segment e of a pure edge of HVD(S) that is outside the com-

puted faces of FCVD*(S) do
14. compute all faces of FCVD*(S) that intersect e;

Fig. 13. Algorithm to compute FCVD*(S).

Steps 3 and 9 are simple, after HVD(S) and FCVD(S) are computed and prepro-491

cessed for point location queries. For example, if v is a vertex of say HVD(S), we first492

locate v in FCVD(S). Once we obtain a segment aa′ ∈ S such that v ∈ fcreg(aa′), we493

can compare the Hausdorff and farthest-color radii of v in constant time.494

The loop in Step 4 performs exactly two iterations, since each mixed vertex on495

∂FCVD*(S) has exactly two incident faces of FCVD*(S) (see Section 3.2).496

In Step 11, given a point u inside face f , we proceed as follows to find a point on497

∂f . We first locate u in both HVD(S) and FCVD(S). Then we trace in both diagrams498

the vertical ray originating at u, until we reach the boundary of f . To perform this499

efficiently, we preprocess HVD(S) and FCVD(S) for ray-shooting queries.500

The third part of the algorithm (Steps 13–14) is discussed in Section 4.2, its correct-501

ness in Section 4.3, and its time complexity in Section 4.4 (specifically, see Theorem 3).502

4.2 Searching in a pure edge of HVD(S)503

In this section, we present an algorithm to compute all faces of FCVD*(S) intersected504

by a given portion of a pure edge of HVD(S).505

Due to the assumption that S does not have any stabbing line, all faces of FCVD*(S)506

we are searching for are bounded. Thus, the input portion of a pure edge of HVD(S) is507

assumed to be a line segment. The algorithm is given as a pseudocode in Figure 15.508

Without loss of generality, we assume that the input segment e = uv is horizontal,509

and that u is to the left of v. The algorithm assumes that, if e is shrunk infinitesimally510

from both sides (see Step 1), the resulting segment urv` has both endpoints outside511

FCVD*(S). To proceed with the description of the algorithm, we need to introduce512

some notation. For convenience, we assume that the segment uv is already shrunk.513

Let e = uv be a line segment on a pure edge of HVD(S) separating hreg(a) and514

hreg(b), such that u and v are outside FCVD*(S). Additionally, if the segment ab in-515

tersects the interior of e, this intersection divides e into two portions, which we process516

separately. Note that neither u nor v are mixed vertices of HVD(S) (since uv is the517

result of shrinking a portion of a pure edge of HVD(S) from both sides).518

We classify the segments in S \ {aa′, bb′} with respect to uv as segments of types519

left, right, middle, in, out, as in Section 3.3 (see Figure 12). Using this classification, for520

any point w in e, we define type(w) as a set containing one element per each cc′ ∈ S521

such that w ∈ fcreg(cc′). The elements of type(w) are defined as follows: Let cc′ be522

a segment in S such that w ∈ fcreg(cc′). If cc′ is not of type middle, then we add the523

type of cc′ to type(w). If cc′ is of type middle, then either c or c′ (say, c) is contained524

in Dh(u) \ Dh(v), and the other endpoint (c′) is contained in Dh(v) \ Dh(u). We525

further differentiate the classification middle as follows: If w lies on bis(c, c′), then526

mm ∈ type(w). Otherwise, if w ∈ fcreg(c), then ml ∈ type(w); if w ∈ fcreg(c′),527

then mr ∈ type(w). When we need to specify cc′, we do as follows: Imagine that528

w ∈ fcreg(cc′) and cc′ is of type in. Then we say in ∈ type(w) caused by cc′.529

Further, we use l̃ to denote types left and ml, and we use r̃ to denote right and mr.530

Definition 5. A point w in e is a changing point if {r̃, l̃} ⊆ type(w) (see Figure 14).531

u v

a

b Dh(v)

Dh(u)

w

Df (w)

Fig. 14. w is a changing point (not in FCVD*(S)).

A changing point might or might not be in FCVD*(S). Note that a changing pointw532

is an intersection point between a pure edge of HVD(S) and a pure edge of FCVD(S).533

Intuitively, atw the point giving the farthest-color radius changes from being inDh(v)\534

Dh(u) to being inDh(u)\Dh(v), i.e., r̃ ∈ type(w`) and l̃ ∈ type(wr) (see Figure 14).535

Then we have the following.536

Lemma 13. (a) If e intersects a face of FCVD*(S) in a segment e′, then there exists a537

point w in e′ such that in ∈ type(w) or w is a changing point. (b) If there is a point538

w ∈ e such that out ∈ type(w), then e does not intersect FCVD*(S). (c) If there is a539

point w ∈ e such that in ∈ type(w), then w ∈ FCVD*(S).540

Proof. Even though item (a) is the base of the algorithm SEARCH IN e, it is actually541

not needed to prove its correctness, given in Lemma 16, because Lemma 16, together542

with Lemmas 14 and 15, in a way reproves item (a). Therefore, we omit the proof of543

this item.544

(b) Let e = uv, and let cc′ be a segment in S that causes out in type(w). Then both545

c and c′ are outside Dh(u) ∪Dh(v). For any point x ∈ e, Dh(x) ⊂ Dh(u) ∪Dh(v),546

thus both c and c′ are outside Dh(x), and therefore x 6∈ FCVD*(S). This implies that547

e ∩ FCVD*(S) = ∅.548

(c) If in ∈ type(w), then there is a segment cc′ ∈ S such that w ∈ fcreg(cc′) and
one of the endpoints of cc′ is in Dh(u) ∩Dh(v). This endpoint is the closest one to w
among c, c′. Thus it is on the boundary ofDf (w), andDf (w) ⊂ Dh(w), which implies
the claim. ut

Thus, it is enough to examine the changing points of e, and the points w such that549

in ∈ type(w). To find such points, we use the find-change query subroutine, defined550

next. When dealing with a subsegment ts of e, or a pair (t, s) of points in e, we write551

the left-most point first.552

Definition 6 (Find-change query). The input of the query is a pair (t, s) of points in553

e, such that type(t) contains r̃ but not l̃, and type(s) contains l̃ but not r̃. The query554

returns a point w in the segment ts such that one of the following holds: (i) w is a555

changing point; (ii) in ∈ type(w); (iii) out ∈ type(w).556

For the sake of clarity, we defer the proof that the find-change query is well-defined,557

as well as the proof of correctness of the remaining pieces of the algorithm, to the next558

subsection.559

'

&

$

%

Algorithm SEARCH IN e = uv
1. uv←urv`; (∗ shrink the segment uv infinitesimally ∗)
2. if r̃ is the only element in type(u) and l̃ is the only element in type(v)

then
3. perform a find-change query on (u, v);
4. let w be the point returned by the query;
5. if out ∈ type(w) then
6. return;
7. if w ∈ FCVD*(S) then
8. trace ∂f , where f is the face of FCVD*(S) that contains w;
9. let q, q′ be the points of ∂f ∩ uv, where q is to the left of q′;
10. else (∗ w is a changing point in uv and w /∈ FCVD*(S) ∗)
11. let q, q′ both be w;
12. SEARCH IN uq;
13. SEARCH IN q′v;
14. return;
15. else return;

Fig. 15. Algorithm to compute all faces of FCVD*(S) intersected by e = uv.

We are now ready to describe our algorithm SEARCH IN e, which computes all the560

faces of FCVD*(S) intersected by e. The algorithm is illustrated in Figure 15; it uses561

the characterization from Lemma 13. At any time, the algorithm processes a subseg-562

ment of e. It first shrinks e infinitesimally to ensure that its endpoints do not belong to563

FCVD*(S) (Step 1). Then (in Step 2) it performs a check that allows to eliminate some564

execution paths, when it is guaranteed that e does not intersect FCVD*(S). If the check565

is passed, the search continues as follows. It performs a find-change query on uv that566

returns a point w (Steps 3–4). If out ∈ type(w), the algorithm stops (Step 6), since it is567

guaranteed that e∩FCVD*(S) = ∅ by Lemma 13b. Otherwise, the algorithm proceeds.568

In case w is in FCVD*(S), the face containing w is traced (Step 8). In both cases (w is569

in FCVD*(S) or not), the algorithm calls itself recursively for two disjoint subsegments570

uq and q′v of e (Steps 12–13). Initially, the algorithm is called for e = uv.571

We remark that the faces of FCVD*(S) intersecting e are not found in a left-to-right572

or any other “natural” order, as the find-change query finds some point of the desired573

property. This is the reason why, after finding a changing point w ∈ e, the algorithm574

continues searching on both sides of w. We remark as well that, at every recursive call575

of the algorithm, the function type(·) is re-defined according to the extremes of the576

segment on which the procedure is called. Therefore, for a point x ∈ e, the value of577

type(x) may change as the algorithm proceeds. Below we will refer to it as “type(x)578

with respect to e”, except for the cases when there is no ambiguity.579

4.3 Correctness580

We now prove that the algorithm presented in Sections 4.1 and 4.2 is correct. First we581

show that Find-change query is well-defined:582

Lemma 14. If the pair (t, s) satisfies the conditions of the input of Find-change583

query, then there exists a point w in the segment ts such that w is a changing point,584

in ∈ type(w), or out ∈ type(w).585

Proof. Suppose for the sake of contradiction that there is no such point w. Recall that586

there are five generic types for the points of e, namely {in, out, l̃, r̃,mm}. Since the587

lemma is not fulfilled, segment ts can be partitioned into open subsegments of points588

whose only type is either r̃ or l̃, and two consecutive such subsegments are separated by589

a point, whose type contains mm (the leftmost and the rightmost subsegment includes590

one border point t and s respectively, so they are half-open). Therefore, when traveling591

along ts from left to right, we encounter two consecutive subsegments of ts such that592

the only type of points in the first one is r̃, and the only type in the second one is ˜̀. Let593

w′ be the point that separates these two subsegments; mm ∈ type(w′). We next argue594

that in this situation w′ is a changing point, which will yield a contradiction.595

Suppose that mm with multiplicity one is the only element in type(w′) (due to
our assumption that no four endpoints of segments in S are cocircular, mm cannot
be in type(w′) with multiplicity greater than one). Let cc′ be the segment in S such
that mm ∈ type(w′) caused by cc′. We assume without loss of generality that c′ is
contained in Dh(u) \ Dh(v), and c in Dh(v) \ Dh(u). Then w′ ∈ fcreg(cc′) and the
farthest-color disk Df (w

′) has on the boundary c, c′, and no other endpoint of any
segment in S. Consequently, w′` ∈ fcreg(c′). This implies that type(w′`) = {ml},
which contradicts the fact that the subsegment to the left of w′ has only type r̃. Thus,

there is another element in type(w′) apart from mm, and this element can only be r̃.
Arguing analogously with w′r, we find that l̃ ∈ type(w′). We conclude that w′ is a
changing point, and arrive to a contradiction. ut

The following lemma refers to Step 2 of the algorithm SEARCH IN e:596

Lemma 15. Let e = uv, where u, v /∈ FCVD*(S). If there is an element x in597

type(u) such that x 6= r̃ or there is an element y in type(v) such that y 6= l̃, then598

uv ∩ FCVD*(S) = ∅.5599

Proof. Recall that, if a point w belongs to FCVD*(S), then Dh(w) contains at least
one endpoint of every segment in S. Since u /∈ FCVD*(S), each segment cc′ ∈ S
such that u ∈ fcreg(cc′) has both endpoints outside Dh(u). Therefore in /∈ type(u),
l̃ /∈ type(u), and mm /∈ type(u). Analogously, since v /∈ FCVD*(S), we have that
in /∈ type(v), r̃ /∈ type(v), and mm /∈ type(v). On the other hand, by Lemma 13b if
out belongs to type(u) or to type(v), then uv ∩ FCVD*(S) = ∅. ut

The following lemma proves that the algorithm SEARCH IN e is correct:600

Lemma 16. The algorithm SEARCH IN e computes all faces of FCVD*(S) intersected601

by e.602

Proof. Let e = uv. Segment uv satisfies the input condition of the algorithm: If uv603

is shrunk infinitesimally from both sides, its endpoints are outside FCVD*(S). This604

follows from Steps 13–14 of the algorithm COMPUTING FCVD*(S).605

The condition checked in Step 2 of the algorithm is justified by Lemma 15: If the606

condition is not satisfied, then uv ∩ FCVD*(S) = ∅ and we can safely stop the search607

at Step 15. Otherwise, the input conditions of the find-change query are satisfied.608

By Lemma 14, the find-change query is well-defined, and there are three possible609

outputs when we perform it on (u, v). If the query returns a point w such that out ∈610

type(w), then e ∩ FCVD*(S) = ∅ due to Lemma 13b. In this case, the algorithm stops611

(see Steps 5–6). Otherwise, a face of FCVD*(S) containing w is traced if and only if612

w ∈ FCVD*(S).613

The algorithm is called recursively for two subsegments of uv, which are uq and614

q′v (Steps 12–13). We now show that each of these subsegments satisfies the input615

condition of the algorithm. Indeed, points ur and v` are outside FCVD*(S) because uv616

was satisfying this condition in the first place. Points q and q′ are determined in Step 9 or617

Step 11, depending on the condition in Step 7. In particular, if the condition is satisfied,618

i.e., w lies in a face f of FCVD*(S), then e ∩ f is a line segment (see Lemma 11).619

In this case, Step 9 is executed, and it assigns to q and q′ the left and right endpoints620

of the segment e ∩ f , respectively. This implies that q` and q′r are outside FCVD*(S).621

Otherwise, Step 11 assigns both q, q′ to w and, since w is not in FCVD*(S), neither are622

w`, wr.623

In Theorem 3, we analyze the running time of the algorithm, and in particular we
prove that the algorithm terminates. ut

5 Note that it is not always possible to shrink uv infinitesimally so that type(u) and type(v)
consist of one element each. In particular, this is not possible when uv lies on an edge of
FCVD(S), and this situation does not contradict our general position assumption.

4.4 Running time624

Below we analyze the time complexity of the algorithm to compute FCVD*(S), and625

thus the time complexity to solve the stabbing circle problem.626

We start with the following result concerning the find-change query.627

Lemma 17. A find-change query can be performed in O(log2 n) time.628

Proof. For a pair (t, s) of points, we perform the find-change query as follows. We use629

a point-location data structure for FCVD(S), such that the point location for a query630

point q is performed by a sequence of O(log n) atomic questions of the form “is q631

above or below (respectively, to the left or right of) a line `?” (e.g., the data structure by632

Edelsbrunner et al. [17], or the one by Kirkpatrick [20]). Notice that, in our case, instead633

of a fixed point q, we only have a pair (t, s) such that the segment ts contains a sought634

point (a changing point, a point whose type contains in or a point whose type contains635

out). An atomic question is processed as follows. If ts ∩ ` = ∅, the answer is the same636

for any point in ts, and we continue with the pair (t, s). Otherwise, let point p be ts∩ `.637

First, the standard point location for p in FCVD(S) gives us type(p). If r̃ ∈ type(p)638

and l̃ 6∈ type(p), we continue with the pair (p, s). Symmetrically, if l̃ ∈ type(p) and639

r̃ 6∈ type(p), we continue with the pair (t, p). If type(p) = {mm}, then we continue640

with either (p, s) or (t, p), because they both satisfy the input condition of the query.641

Otherwise, we stop the procedure, and return p. Clearly, this happens in one of the642

following cases: (i) {l̃, r̃} ⊆ type(p); (ii) in ∈ type(p); or (iii) out ∈ type(p).643

Answering one atomic question within the procedure takes O(log n) time, and the
whole find-change query takes O(log2 n) time.
A similar idea of simulating a point location for an unknown point is used in
Cheong et al. [9], and in Cheilaris et al. [8, Section 7]. ut

u
u′

v′ v

(a)

u′v′

u′′ v′′

a

b

(b)

Fig. 16. Illustration for the proof of Lemma 18.

Lemma 18. Let e be a segment on a pure edge of HVD(S), and cc′ be a segment in S.644

(a) If cc′ is of type middle for a segment e′ ⊂ e, then cc′ is of type middle for e.645

(b) Let e′, e′′ be two disjoint subsegments of e. Then cc′ is of type middle for at most646

one of e′, e′′.647

Proof. Let e = uv, e′ = u′v′, and e′′ = u′′v′′.648

(a) If cc′ is of type middle for e′, then one of its endpoint is in Dh(u
′) \ Dh(v

′) and649

the other one is in Dh(v
′) \Dh(u

′) (see the two gray areas in Figure 16a). These650

areas are contained inDh(u)\Dh(v) andDh(v)\Dh(u), respectively (shown with651

tiling pattern in Figure 16a).652

(b) Suppose cc′ is of type middle for both e′ and e′′. One of the endpoints of cc′ lies653

in Dh(u
′) \Dh(v

′) and the other one in Dh(v
′) \Dh(u

′). Analogously, one of its654

endpoints lies in Dh(u
′′) \ Dh(v

′′) and the other one in Dh(v
′′) \ Dh(u

′′). But655

these four areas are disjoint, see shaded and tiled areas in Figure 16b (note that the656

endpoints a, b of two segments in S such that e ⊂ bis(a, b) belong to neither of657

these four areas since all the disks Dh(·) are closed). We arrive to a contradiction.658

ut

We now prove that the running time of SEARCH IN e is related to the number of659

segments of S of type middle for e, denoted by me.660

Lemma 19. Let e be a segment on a pure edge of HVD(S), such that the algorithm661

SEARCH IN is called for e. Then number of recursive calls performed by the algorithm662

SEARCH IN e is O(1 +me).663

Proof. Let e = uv; assume without loss of generality that e is horizontal and u is its left664

endpoint. Consider the recursion tree of the algorithm SEARCH IN e. Observe that this665

tree is a proper binary tree (each call of the algorithm causes either zero or two recursive666

calls). Thus the total number of its nodes is linear in the number of its intermediate667

nodes. Therefore, it remains to prove that the number of intermediate nodes of the668

recursion tree of SEARCH IN e is O(1 +me).669

We will charge each intermediate node of the recursion tree to an endpoint of some670

segment of type middle for e, and each such endpoint will be charged at most once.671

Our charging scheme is symmetric: the nodes that are left children of their parents are672

charged to right endpoints, and vice versa. Thus we will discuss the charging scheme673

for the former case (left children) only. We base on the fact that for each segment of674

type middle for e there is at most one moment during the course of the algorithm when675

this segment becomes of type left. Formally, for any segment cc′ ∈ S that is of type676

middle for e, there is at most one node N in the recursion tree of the algorithm, such677

that for the subsegment of e that corresponds to N , cc′ is of type middle, and for the678

subsegment of e that corresponds to the left child of N , cc′ is of type left. This is easy679

to see from the following simple observations. First, if cc′ has stopped being middle680

for the left child of N , then cc′ stops being middle for the right child of N as well (it681

becomes of type right). Further, if there were two such nodes N and to N ′ for which682

the above property would hold, then N and N ′ would belong to one root-to-leaf path in683

the recursion tree (otherwise, the subsegments of e corresponding to N and N ′ would684

be disjoint, and due to Lemma 18b cc′ could not be of type middle for both of them).685

Suppose that N is an ancestor of N ′. On one root-to-leaf path, the segment on which686

the algorithm is called only shrinks and never expands, and thus by Lemma 18a after687

cc′ has stopped being middle it never can be middle again (in particular, it cannot be688

middle for the segment corresponding to N ′). We charge the left child of such node N689

to the right endpoint of cc′. We proceed with the technical details.690

Consider a non-leaf nodeN of the recursion tree; let u′v′ be the subsegment of e that691

corresponds to node N . Since N is not a leaf, the algorithm has found a point w ∈ u′v′692

such that either (1) w 6∈ FCVD*(S), w is a changing point, and out 6∈ type(w), or (2)693

w ∈ FCVD*(S). We consider these two cases separately.694

v′

Dh(v
′)

Dh(u
′)

u′ w

(a)

v′

Dh(v
′)

Dh(u
′)

u′ w

(b)

Fig. 17. Illustration for the proof of Lemma 19: the case when w 6∈ FCVD*(S) (case 1). Disks
Dh(u

′), Dh(v
′) (gray lines), Dh(w) (black solid lines); Df (w) (black dashed lines). (a) right ∈

type(w) caused by cc′: two possibilities for the segment cc′ (bold line segment): w ∈ fcreg(c′)
(above), and w ∈ fcreg(c) (below). (b) mr ∈ type(w) caused by cc′: a placement of cc′ (bold
line segment).

Case 1: w 6∈ FCVD*(S), w is a changing point, and out 6∈ type(w) (see Figure 17).695

The two children of the node N are the recursive calls for u′w and for wv′ respectively,696

and we will consider only the former one (the left child ofN). Let cc′ be the segment in697

S that causes type r̃ for w with respect to u′v′; and let c′ be the endpoint of cc′ such that698

c′ ∈ Dh(v
′)\Dh(u

′). There are two possibilities: cc′ causes type right, or it causes type699

mr (both types are defined with respect to u′v′); see respectively Figures 17a and 17b. In700

the former case, the call of the algorithm for u′w corresponds to a leaf of the recursion701

tree: indeed, out ∈ type(w`) with respect to u′rw` caused by cc′ (see Figure 17a), and702

the algorithm will stop at Line 2. Thus no charging is needed for the left child of node703

N in this case. Figure 17a shows two possible placements of cc′, for both of which the704

argument holds.705

v′

Dh(v
′)

Dh(u
′)

u′ wqq`

Fig. 18. Illustration for the proof of Lemma 19, the case when w ∈ FCVD*(S) (case 2). Disks
Dh(u

′), Dh(v
′) (gray lines), Dh(q) = Df (q) (black dashed lines); Dh(q`) (black solid lines).

Two possibilities for the segment cc′ (bold line segment).

Consider the latter case, i.e., when cc′ causes type mr with respect to u′v′. Observe706

that this may only happen when w ∈ fcreg(c′): otherwise, cc′ would by definition707

cause type ml or mm, rather than mr. This implies that cc′ is of type left for u′rw`, see708

Figure 17b. We charge the call of the algorithm for segment u′w (i.e., the left child of709

node N) to the endpoint c′ of cc′.710

Case 2: w ∈ FCVD*(S) (see Figure 18). The left child of node N in the recursion
tree is the call of the algorithm for subsegment u′q of u′v′, where q is the first point
of the boundary of FCVD*(S) that is encountered when traversing e from w in the left
direction. Since q ∈ FCVD*(S), each segment in S has at least one endpoint inside
Dh(q). Let cc′ be a segment in S such that q` ∈ fcreg(cc′); specifically let c′ be the
endpoint of cc′ such that q` ∈ fcreg(c′). Since q belongs to the boundary of FCVD*(S),
q` /∈ FCVD*(S), and thus both c and c′ are outside Dh(q`). This implies that c′ lies
in the portion of the boundary of Dh(q) contained in Dh(v

′), and c lies outside Dh(q)
(see Figure 18). Now, there are again two possibilities: cc′ is of type right for u′v′, or
cc′ is of type middle for u′v′. In the former case, cc′ is of type out for u′rq`, thus the call
of the algorithm on u′q is a leaf in the recursion tree, and no charging is needed for the
left child of node N . Otherwise, i.e. if cc′ is of type middle for u′v′, cc′ is of type left
for u′rq`, and we charge the call of the algorithm on u′q (the left child of node N) to c′.

ut
The next lemma allows to bound the total time of all executions of Step 11 of COM-711

PUTING FCVD*(S):712

Lemma 20. Let f1, f2, . . . , fk be the faces of FCVD*(S). The total number of edges of713

HVD(S) and FCVD(S) intersected by these faces is O(k+ |HVD(S)|+ |FCVD(S)|).714

Proof. Let I denote the total sum
∑k

i=1 I(fi), where I(fi) denotes the number of edges
of HVD(S) and FCVD(S) that are intersected by fi. We need to show that I = O(k +
|HVD(S)|+ |FCVD(S)|). By Lemma 9, for each face fi, fi ∩HVD(S) is a connected
component. Such connected component can be either (1) a portion of a single edge of
HVD(S); or (2) a component containing portions of at least two edges. Depending on
this, we call face fi a type-1 face, or a type-2 face respectively. Let t be the number of
type-1 faces, and r be the number of type-2 faces; then t + r = k. Clearly, all type-1
faces contribute t to the total sum I . Further, one edge of HVD(S) intersects at most
two type-2 faces. Thus all type-2 faces contribute at most 2 ∗ |HVD(S)| to I . Since
t ≤ k, HVD(S) contributes at most k+2 ∗ |HVD(S)| to I . By an analogous argument,
FCVD(S) contributes at most k + 2 ∗ |FCVD(S)| to I . The claim follows. ut

We are finally ready to prove the main theorem of this section.715

Let m denote the number of pairs formed by a segment aa′ ∈ S and a pure edge716

e of HVD(S) such that aa′ is of type middle for e. That is, m is the total sum of me717

for all pure edges e of HVD(S). Let THVD(S) and TFCVD(S) denote the time to compute718

HVD(S) and FCVD(S), respectively. Let Tq denote the time to answer the find-change719

query. In this paper, Tq is O(log2 n).720

Theorem 3. Let S be a set of n segments in the plane in general position.721

Then, FCVD*(S) can be computed in time O(THVD(S) + TFCVD(S) + (|HVD(S)| +722

|FCVD(S)|+m)(log n+ Tq)).723

Proof. Computing HVD(S) and FCVD(S) (Step 1 of COMPUTING FCVD*(S)) re-724

quires time THVD(S) + TFCVD(S).725

After computing the diagrams, in time O(|HVD(S)| log n) and726

O(|FCVD(S)| log n) we can preprocess them to answer point-location queries in727

O(log n) time [17,20]. Then Steps 3 and 9 of the algorithm require logarithmic time728

(see Section 4.1).729

We also preprocess HVD(S) and FCVD(S) to answer ray-shooting queries in730

O(log n) time. The preprocessing can be done in time O(|HVD(S)| log n) and731

O(|FCVD(S)| log n), respectively [7]. After such preprocessing, Step 11 requires732

O((1+I(f)) log n) time, where I(f) is the number of edges of HVD(S) and FCVD(S)733

intersected by f (see Section 4.1 for more details on Step 11). By Lemma 20, the total734

time spent for Step 11 is O((|HVD(S)|+ |FCVD(S)|+ |FCVD*(S)|) log n).735

After a point on ∂f is known, ∂f can be traced in HVD(S) and FCVD(S). Thus the736

total time required for tracing the boundary of all the faces of FCVD*(S) (in Steps 6737

and 11 of COMPUTING FCVD*(S), and Step 8 of SEARCH IN e) is O((|HVD(S)| +738

|FCVD(S)|+ |FCVD*(S)|) log n).739

Therefore, the total time complexity of Steps 2–12 of COMPUTING FCVD*(S) is740

O((|HVD(S)|+ |FCVD(S)|+ |FCVD*(S)|) log n).741

The third loop (Steps 13–14) of COMPUTING FCVD*(S) performs O(|HVD(S)|+742

|FCVD(S)|) iterations. Indeed, the number of faces computed in Steps 2–12 is743

O(|HVD(S)| + |FCVD(S)|), and each face has connected intersection with HVD(S)744

by Lemma 9.745

In Step 14, SEARCH IN e is called. By Lemma 19, the total number of recursive calls
caused by SEARCH IN e = uv is O(1 +me). Summing up me for all pieces e of edges

of HVD(S) on which the procedure is called results in O(m) due to Lemma 18b. Since
any face of FCVD*(S) computed by SEARCH IN e intersects only one edge of HVD(S)
and one edge of FCVD(S) and its boundary has constant complexity (see Lemma 11),
Step 8 requires constant time. Therefore, one execution of SEARCH IN e, except for the
recursive calls, is dominated by the find-change query, and thus requiresO(log2 n) time
(see Lemma 17). Thus the total time required by SEARCH IN e is O((1 +me) log

2 n).
This globally amounts toO((|HVD(S)|+|FCVD(S)|+m) log2 n) time for Steps 13–14
of COMPUTING FCVD*(S). More precisely, this time isO((|HVD(S)|+|FCVD(S)|+
m)(Tq + log n)). ut

a

b

(a) (b) (c)

(d) (e)

Fig. 19. All possibilities for the stabbing circles of minimum and maximum radius.

The next lemma shows how to find the largest and smallest stabbing circles, once746

FCVD*(S) is known. We observe that, in some cases, the stabbing circle of minimum747

radius does not exist, because any stabbing circle can be shrunk by decreasing its radius748

or slightly moving its center. Moreover, the “limit” circle is not stabbing because the749

closed disk induced by the circle contains both endpoints of a segment in S (see Case 1c750

of the proof of Lemma 21 below and Figure 19c). Similarly, it is easy to see that the751

stabbing circle of maximum radius never exists, since any stabbing circle can be slightly752

enlarged, but the “limit” circle is not stabbing (see Case 2 of the proof of Lemma 21753

and Figure 19d,e). In these cases, even though these circles are not stabbing, to simplify754

the notation we call these “limit” circles the stabbing circles with infimum or supremum755

radius.756

Lemma 21. After computing FCVD*(S), the stabbing circles of minimum (or infi-757

mum) and supremum radius can be determined in time O((|FCVD*(S)|+ |HVD(S)|+758

|FCVD(S)|) log n).759

Proof. We list all the possibilities for such circles below; see Figure 19.760

Given a segment aa′ and a circle c, we call “red” the endpoint of aa′ which is closer761

to the center of c, and we call “blue” the other endpoint (ties are broken arbitrarily).762

Notice that, if c is stabbing, then the red endpoint of aa′ lies inside the closed disk763

induced by c, and the blue endpoint lies outside. Standard geometric arguments show764

the following.765

1. The stabbing circle of minimum or infimum radius is a circle passing through:766

(a) Two red points that are diametrically opposite. In this case the center of the767

circle is at the intersection point between an edge of FCVD(S) separating two768

regions fcreg(a) and fcreg(b) (for some aa′, bb′ ∈ S), and the segment con-769

necting a to b, see Figure 19a. This is a stabbing circle of minimum radius.770

(b) Three red points. The center is at a vertex of FCVD(S). This is also a stabbing771

circle of minimum radius.772

(c) Two red points and one blue point. The center is on the boundary of773

FCVD*(S). This is a stabbing circle of infimum radius.774

2. The stabbing circle of supremum radius is a circle passing through:775

(a) Three blue points. In this case the center of the circle is at a vertex of HVD(S).776

(b) Two blue points and one red point. The center is on the boundary of777

FCVD*(S).778

The stabbing circles with minimum (or infimum) and supremum radius can thus
be found by checking the vertices of HVD(S) or FCVD(S) lying in FCVD*(S), the
edges of FCVD(S) intersecting FCVD*(S), and the boundary of FCVD*(S). Since in
all cases the radius of the corresponding circle can be computed in O(log n) time, the
claim follows. ut

As a conclusion, we put together the above results and connect them with the stab-779

bing circle problem as stated in Section 1. By Lemma 7, distinct faces of FCVD*(S)780

correspond to combinatorially different stabbing circles. Thus, the above results yield781

the following:782

Corollary 3. Let S be a set of n segments in the plane in general position. All the783

combinatorially different stabbing circles for S, and the ones with minimum and maxi-784

mum radius, can be computed in O(THVD(S)+TFCVD(S)+(|HVD(S)|+ |FCVD(S)|+785

m) log2 n) time.786

5 Parallel Segments787

Let S be a set of parallel segments. The goal of this section is to prove the following788

theorem.789

Theorem 4. The stabbing circle problem for a set S of n parallel segments in general790

position can be solved in O(n log2 n) time and O(n) space.791

We remark that the O(log2 n) factor in the time complexity of Theorem 4 is con-792

tributed by the find-change query. If this query can be answered in O(log n) time then793

the stabbing circle problem for n parallel segments can be solved in O(n log n) time.794

We prove Theorem 4 using Theorem 3 and Corollary 3. Since the segments in S795

are parallel, they must by pairwise disjoint, and thus HVD(S) is an instance of ab-796

stract Voronoi diagrams; hence, |HVD(S)| is O(n) and THVD(S) is O(n log n) [21]. In797

Section 5.1 we show that |FCVD(S)| is also O(n) and TFCVD(S) is O(n log n). In Sec-798

tion 5.2 we show that m = O(n). Thus, the algorithm of Section 4 for this particular799

case has time complexity O(n(log n+ Tq)), and since Tq is O(log2 n) (see Lemma 17)800

we derive Theorem 4.801

5.1 The farthest-color Voronoi diagram for a set of parallel segments802

Lemma 22. If all segments in S are parallel, then for each aa′ ∈ S, bis(a, a′) con-803

tributes at most one internal edge to FCVD(S).804

Proof. Suppose for the sake of contradiction that there are two internal edges e and e′

in FCVD(S) which are portions of bis(a, a′). Assume without loss of generality that
the segments in S are vertical, thus, bis(a, a′) is horizontal, and e is to the left of e′.
Let v, v′ ∈ bis(a, a′) be the mixed vertices that are respectively the right endpoint
of e and the left endpoint of e′. The farthest-color disk Df (v) contains an endpoint
of every segments in S, and ∂Df (v) passes through points a, a′ and an endpoint b of
some segment bb′ ∈ S. Observe that bb′ is to the left of aa′, and bb′∩Df (v) = {b} (see
Figure 20 (left), where fcreg(aa′) is shown shaded, and bis(a, a′) is shown dashed).
Since v′ is to the right of v, the closed disk centered at v′ with radius d(v′, a) does not
contain b nor b′, thus, v′ 6∈ fcreg(aa′). We obtain a contradiction. ut

a

a′
b

v v′

Df (v)

Df (v
′)

p q

a

a′

b

b′

`

Df (p)

Df (q)

Fig. 20. Left: Illustration for the proof of Lemma 22. Right: Illustration for the proof of
Lemma 24.

Lemma 23. If all segments in S are parallel, the structural complexity of FCVD(S) is805

O(n).806

Proof. By Lemma 5, the number of unbounded faces of FCVD(S) is O(n). Since all
segments in S are parallel, by Lemma 22, the number of all internal edges in FCVD(S)
is at most n. By Lemma 3, every bounded face of FCVD(S) has an internal edge on
its boundary, thus there are at most 2n bounded faces in FCVD(S). Thus, FCVD(S) is
a planar graph with O(n) faces whose vertices have degree three. By Euler’s formula,
|FCVD(S)| = O(n). ut

Lemma 24. If all segments in S are parallel, then FCVD(S) can be computed in807

O(n log n) time.808

Proof. Assume without loss of generality that the segments in S are vertical. We use the809

divide-and-conquer technique: We divide S by a vertical line into two halves, Sleft and810

Sright, and recursively compute FCVD(Sleft) and FCVD(Sright). Below we prove811

that the merge curve between FCVD(Sleft) and FCVD(Sright) is y-monotone. Such a812

y-monotone merge curve can be constructed inO(n) time by standard arguments on the813

divide-and-conquer construction of Voronoi diagrams, see e.g., [5]. The claim follows.814

Suppose for the sake of contradiction, that the merge curve is not y-monotone, that
is, there are two points p, q on the merge curve with the same y-coordinate. Since p
and q lie on the merge curve, the farthest-color radius of p with respect to Sleft equals
the farthest-color radius of p with respect to Sright, and the same holds for q. Let ` be
the horizontal line through p and q. We redefine p and q as the left-most and second
left-most points on ` that lie on the merge curve, respectively. In FCVD(S), the point
at minus infinity on ` lies in the farthest-color region of a segment from Sright. Thus p
lies on the boundary between fcreg(aa′) (to the left of p) and fcreg(bb′) (to the right of
p) such that aa′ ∈ Sright and bb′ ∈ Sleft; see Figure 20 (right). Then the farthest-color
disk Df (q) intersects or touches bb′, and touches a segment cc′ ∈ Sright. But in this
case cc′ is outside the farthest-color disk of p. We obtain a contradiction. ut

5.2 Segments of type middle for a set of parallel segments815

The key result of this subsection is the following:816

Lemma 25. A segment gg′ ∈ S is of type middle for at most one pure edge of HVD(S).817

We first prove an easy property of the segments of type middle:818

Lemma 26. Suppose that all segments in S are vertical. Let e be a pure edge of819

HVD(S) in the boundary of hreg(a) and hreg(b), for two segments aa′, bb′ ∈ S. Sup-820

pose that segment gg′ ∈ S is of type middle for e. Then:821

(a) x(a) 6= x(b).822

(b) min{x(a), x(b)} < x(g) < max{x(a), x(b)}.823

Proof. To prove (a), we suppose for the sake of contradiction that x(a) = x(b). Then824

e is horizontal. Let u and respectively v be the left and right endpoints of e. Since the825

segment gg′ is of type middle, it has one endpoint to the left of the line x = x(a), in826

Dh(u) \ Dh(v), and the other endpoint to the right of the line x = x(a), in Dh(v) \827

Dh(u) (see Figure 21, left). This contradicts the fact that gg′ is vertical.828

To prove (b), we suppose without loss of generality that x(a) < x(b). Then e is not829

horizontal, and we denote by u and respectively v the top and bottom endpoints of e.830

For any disk D, we can divide its boundary ∂D into the left-most point of ∂D, the831

open circular arc containing the upper half portion of ∂D (called top chain), the right-832

most point of ∂D, and the open circular arc containing the lower half portion of ∂D833

(called bottom chain). Since aa′ is vertical and Dh(u) contains both a and a′, a is not834

the left-most or right-most point of ∂Dh(u). Suppose that a belongs to the top chain835

of ∂Dh(u). Then we deduce that y(a′) < y(a). Since Dh(v) also contains both a and836

a′, we get that a belongs to the top chain of ∂Dh(v). So a belongs to the top (resp.,837

bottom) chain of ∂Dh(u) if and only if a belongs to the top (resp., bottom) chain of838

∂Dh(v). The same argument applies to b.839

Now there are several possibilities, depending on a and b being in the top or bottom
chains of ∂Dh(u) and ∂Dh(v). The arguments for all cases are similar, so we only
explain the case where a and b belong to the top chains of ∂Dh(u) and ∂Dh(v). In this
case, u and v lie in the portion of bis(a, b) below the lines y = y(a) and y = y(b) (and
recall that y(u) > y(v)) (see Figure 21, center). Either g or g′ lies in Dh(u) \Dh(v),
so in particular in the portion of Dh(u) above the segment ab. Since a and b belong to
the top chain of ∂Dh(u), this portion lies between the lines x = x(a) and x = x(b).
Thus we obtain x(a) < x(g) < x(b). ut

a

b

u v

Dh(u)

Dh(v)

Dh(u)

a

b

u

bis(a, b)
a

g′

g

e1

b
Dh(u1)

Dh(v1)

Fig. 21. Left: Case where x(a) = x(b). Center: Either g or g′ lies in a portion of Dh(u) between
the lines x = x(a) and x = x(b). Right: The segment gg′ is of type middle for e1.

We are now ready to prove Lemma 25.840

Proof (of Lemma 25). We assume that all segments in S are vertical. We proceed by841

contradiction. So let us assume that the segment gg′ is of type middle for two pure edges842

of HVD(S), namely e1 and e2. Let e1 be in the boundary of hreg(a) and hreg(b), for843

two segments aa′, bb′ ∈ S (see Figure 21, right). Analogously, e2 is in the boundary of844

hreg(c) and hreg(d), for two segments cc′, dd′ ∈ S. By Lemma 26a, x(a) 6= x(b) and845

x(c) 6= x(d). Without loss of generality, we suppose that x(a) < x(b) and x(c) < x(d).846

We also assume that y(g) < y(g′).847

Consider the disk having a, b and g on the boundary; this disk corresponds to a disk848

Dh(w1), for some point w1 on the edge e1. Analogously, the disk having c, d and g on849

the boundary corresponds to a disk Dh(w2), for some point w2 on e2.850

Since, by Lemma 26b, x(a) < x(g) < x(b), the line x = x(g) intersects ∂Dh(w1)851

twice. One of these intersection points is g, and we next show that the second intersec-852

tion point, called t1, is above g. Since the line through a and b leaves g and g′ on op-853

posite sides, and since x(a) < x(g) < x(b), the segment ab intersects the segment gg′.854

The intersection point lies above g and, by convexity, it is contained in Dh(w1). This855

implies that g is in the bottom chain of ∂Dh(w1) and, consequently, t1 is above g (see856

Figure 22, left). Analogously, the second intersection point t2 between ∂Dh(w2) and857

x = x(g) also lies above g. Without loss of generality, we assume that y(t1) ≥ y(t2).858

We divide the rest of the argument into several cases.859

g

t1

t2

Dh(w1)
Dh(w2)c

c′d′

g

Dh(w1)

Dh(w2)

a

d′

t1

t2

d

a′

g

t1

t2

Dh(w1)

Dh(w2)

d

Fig. 22. Left: Case where the four segments are distinct and the second intersection point between
∂Dh(w1) and ∂Dh(w2) is to the left of x = x(g). Middle: Case where the four segments are
distinct and the second intersection point between ∂Dh(w1) and ∂Dh(w2) is to the right of
x = x(g). Right: Case where a = c′.

We start by considering the case where the four segments aa′, bb′, cc′, and dd′ are860

distinct. Because w1 is in the boundary of hreg(a) and hreg(b) and the four segments861

are distinct, Dh(w1) contains at most one of {c, c′} and at most one of {d, d′}. Anal-862

ogously, Dh(w2) contains at most one of {a, a′} and at most one of {b, b′}. Conse-863

quently, none of Dh(w1), Dh(w2) contains the other, and ∂Dh(w1) and ∂Dh(w2) in-864

tersect at g and at a second point. If this second point lies to the left of the line x = x(g),865

then the portion of Dh(w2) to the right of x = x(g) is contained in Dh(w1) (see Fig-866

ure 22, left). Consequently, dd′ is in Dh(w1), yielding a contradiction. If the second in-867

tersection point between ∂Dh(w1) and ∂Dh(w2) lies to the right of the line x = x(g),868

then cc′ is in Dh(w1) (see Figure 22, center). If the intersection point lies on x = x(g),869

then y(t1) = y(t2), and we obtain that Dh(w1) contains cc′ or dd′.870

Let us look at the remaining cases. Since x(a) < x(g) < x(b) and x(c) < x(g) <871

x(d), the intervals (x(a), x(b)) and (x(c), x(d)) have non-empty intersection. This im-872

plies that aa′ 6= dd′ and bb′ 6= cc′ (and obviously aa′ 6= bb′ and cc′ 6= dd′). Therefore,873

the two remaining cases are aa′ = cc′ and bb′ = dd′. We divide the first one into two874

subcases, namely, a = c and a = c′.875

If a = c, the second intersection point between ∂Dh(w1) and ∂Dh(w2) is a, which876

lies to the left of the line x = x(g). If bb′ 6= dd′, then dd′ is contained in Dh(w1),877

yielding a contradiction. If bb′ = dd′, then, since b lies on ∂Dh(w1) and d lies on878

∂Dh(w2), we have that b 6= d. But then b = d′ lies on the portion of ∂Dh(w1) to the879

right of x = x(g), that is, outside Dh(w2), yielding a contradiction.880

If a = c′, due to the assumption that y(t1) ≥ y(t2), we have that a is in the bottom881

chain of ∂Dh(w1) and a′ = c is in the top chain of ∂Dh(w2) (see Figure 22, right).882

Then the second intersection point between ∂Dh(w1) and ∂Dh(w2) lies to the left of883

x = x(a), and we also have that dd′ is in Dh(w1) (if bb′ 6= dd′) or that d′ is outside884

Dh(w2) (if bb′ = dd′).885

In the last case, bb′ = dd′. This case is symmetric to the previous one, and it also
yields a contradiction. ut

6 Lower Bound886

Below we prove a lower bound for computing a stabbing circle of minimum radius for887

sets of segments which are parallel and have equal length.888

Theorem 5. The problem of computing a stabbing circle of minimum radius for a set889

of n parallel segments of equal length has an Ω(n log n) lower bound in the algebraic890

decision tree model.891

Proof. The reduction, very similar to that of Theorem 6 in [3], is from MAXGAP(X).892

In our version, the inputX consists of a set of n integers x1, . . . , xn, and MAXGAP(X)893

is the problem of finding the maximum difference between consecutive elements of X .894

Without loss of generality, we may assume minX = 1. Let x′1 < x′2 < · · · < x′n895

be the sorting of the elements of X . Then x′1 = 1, and let M = x′n. We construct a set896

S of parallel segments of equal length as follows: For every xi ∈ X , we add a segment897

connecting point (xi, 0) to (−(M + 1) + xi, 0). Additionally, we add two segments898

aa′ and bb′ such that a = (−1/2, 0), a′ = (−(M + 1) − 1/2, 0), b = (1/2, 0), and899

b′ = ((M + 1) + 1/2, 0).900

Any stabbing circle for S of minimum radius contains a, b in its interior. Thus901

the possibilities for such a stabbing circle are: If the associated disk contains902

a, b, (x′1, 0), . . . , (x
′
n, 0), or (−(M + 1) + x′1, 0), . . . , (−(M + 1) + x′n, 0), a, b, then903

it has diameter M + 1/2. If it contains (−(M + 1) + x′i+1, 0), . . . , (−(M + 1) +904

x′n, 0), a, b, (x
′
1, 0), . . . , (x

′
i, 0) for i < n, then it has diameter M + 1 − (x′i+1 − xi).905

Since MAXGAP(X) ≥ 1, the stabbing circles of minimum radius belong to the last906

family. Thus MAXGAP(X) is equivalent to finding the stabbing circle for S of mini-907

mum radius.908

The set S does not satisfy all the assumptions of this paper, since all endpoints are
collinear. We construct a set S′ obtained from S by translating every segment vertically
by distinct values of at most ε = 1/10. Since ε is small compared to the difference
between distinct values of diameters of different stabbing circles for S (which is at least
1/2), a minimum stabbing circle for S′ corresponds to a minimum stabbing circle for
S which is combinatorially “the same”. This proves that the lower bound also holds for
the more restricted sets of segments considered in this paper. ut

7 Conclusions and Future Work909

The connection between the stabbing circle problem and the cluster Voronoi diagrams910

allows to solve the stabbing circle problem in an efficient way under certain conditions911

on S. In fact, this connection is a good tool for studying the stabbing circle problem912

for segment sets of particular types. So our goal is “to understand” the time and space913

complexities depending on the kind of segment sets we work with. In this paper, we914

have shown that our method allows to solve the stabbing circle problem in o(n2) time915

(that is, faster than in the general case) when all segments are parallel. The further open916

question is to investigate other segment sets for which this is also the case.917

A very recent short abstract [13] is a preliminary step in this direction. We consider918

a set S of n disjoint segments that correspond to edges of the Delaunay triangulation of919

some fixed point set, and we show that the stabbing circle problem for S can be solved920

in O(n log n) time and O(n) space in two cases: (i) all segments in S are parallel; (ii)921

all segments in S have equal length. It remains as an open problem whether the stabbing922

circle problem for such a set S (not necessarily satisfying (i) or (ii)) can be solved in923

subquadratic time. Another case for which it might be possible to achieve near-linear924

time is that of a set of pairwise-disjoint segments which are vertical or horizontal, or925

which are aligned to a given (constant) set of directions.926

In a different vein, it would be interesting to find a way to charge the time and space927

complexities required to solve the stabbing circle problem directly to the complexity of928

FCVD*(S), rather than to the number of segments of type middle for S.929

Further, the find-change query in this paper is implemented in a straight forward930

way. It is an open problem whether this query could be handled more efficiently, in say931

O(log n) time. If this question was answered in the affirmative, the time complexity of932

our algorithms would improve by a logarithmic factor.933

Finally, deriving a lower bound for the decision version of the stabbing circle prob-934

lem remains open.935

Acknowledgments. M. C. and C. S. were supported by projects MTM2015-63791-R936

(MINECO/FEDER) and Gen.Cat. DGR2014SGR46. E. K. and E. P. were supported by projects937

SNF 20GG21-134355, under the ESF EUROCORES program EuroGIGA/VORONOI, and SNF938

200021E-154387. M. S. was supported by project LO1506 of the Czech Ministry of Education,939

Youth and Sports, and by project NEXLIZ CZ.1.07/2.3.00/30.0038, co-financed by the European940

Social Fund and the state budget of the Czech Republic.941

References942

1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán,943

V.: The farthest color Voronoi diagram and related problems. In: 17th European Workshop944

on Comput. Geom. (EuroCG’01). pp. 113–116 (2001), Tech. Rep. 002 2006, Univ. Bonn945

2. Arkin, E.M., Dieckmann, C., Knauer, C., Mitchell, J.S., Polishchuk, V., Schlipf, L., Yang,946

S.: Convex transversals. Comput. Geom. 47(2), 224–239 (2014)947

3. Arkin, E.M., Dı́az-Báñez, J.M., Hurtado, F., Kumar, P., Mitchell, J.S.B., Palop, B., Pérez-948

Lantero, P., Saumell, M., Silveira, R.I.: Bichromatic 2-center of pairs of points. Comput.949

Geom. 48(2), 94–107 (2015)950

4. Aurenhammer, F., Drysdale, R., Krasser, H.: Farthest line segment Voronoi diagrams. In-951

form. Process. Lett. 100, 220–225 (2006)952

5. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations.953

World Scientific (2013)954

6. Avis, D., Robert, J., Wenger, R.: Lower bounds for line stabbing. Inform. Process. Lett. 33(2),955

59–62 (1989)956

7. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Hershberger, J., Sharir, M.,957

Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1),958

54–68 (1994)959

8. Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E.: A randomized incremental960

algorithm for the Hausdorff Voronoi diagram of non-crossing clusters. Algorithmica (2016),961

DOI 10.1007/s00453-016-0118-y962

9. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na,963

H.: Farthest-polygon Voronoi diagrams. Comput. Geom. 44(4), 234–247 (2011)964

10. Claverol, M.: Problemas geométricos en morfologı́a computacional. Ph.D. thesis, Universitat965

Politècnica de Catalunya (2004)966

11. Claverol, M., Garijo, D., Grima, C.I., Márquez, A., Seara, C.: Stabbers of line segments in967

the plane. Comput. Geom. 44(5), 303–318 (2011)968

12. Claverol, M., Garijo, D., Korman, M., Seara, C., Silveira, R.I.: Stabbing segments with rec-969

tilinear objects. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp.970

53–64. Springer (2015)971

13. Claverol, M., Khramtcova, E., Papadopoulou, E., Saumell, M., Seara, C.: Stabbing circles972

for some sets of Delaunay segments. In: 32th European Workshop on Comput. Geom. (Eu-973

roCG’16). pp. 139–143 (2016)974

14. Dı́az-Báñez, J.M., Korman, M., Pérez-Lantero, P., Pilz, A., Seara, C., Silveira, R.I.: New975

results on stabbing segments with a polygon. Comput. Geom. 48(1), 14–29 (2015)976

15. Edelsbrunner, H., Maurer, H., Preparata, F., Rosenberg, A., Welzl, E., Wood, D.: Stabbing977

line segments. BIT 22(3), 274–281 (1982)978

16. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions:979

algorithms and applications. Discrete Comput. Geom. 4, 311–336 (1989)980

17. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision.981

SIAM J. Comput. 15(2), 317–340 (1986)982

18. Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete Comput. Geom.983

1(1), 25–44 (1986)984

19. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its985

applications. Discrete Comput. Geom. 9(1), 267–291 (1993)986

20. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35987

(1983)988

21. Klein, R.: Concrete and Abstract Voronoi Diagrams, Lecture Notes in Computer Science,989

vol. 400. Springer-Verlag (1989)990

22. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects: a divide991

and conquer approach. Internat. J. Comput. Geom. Appl. 14(6), 421–452 (2004)992

23. Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorith-993

mica 40(2), 63–82 (2004)994

24. Papadopoulou, E., Dey, S.K.: On the farthest line-segment Voronoi diagram. Internat. J.995

Comput. Geom. Appl. 23(06), 443–459 (2013)996

25. Rappaport, D.: Minimum polygon transversals of line segments. Internat. J. Comput. Geom.997

Appl. 5(3), 243–256 (1995)998

