
From Discrepancy to Majority

David Eppstein and Daniel S. Hirschberg

Department of Computer Science, University of California, Irvine?

Abstract. We show how to select an item with the majority color from n two-colored items, given
access to the items only through an oracle that returns the discrepancy of subsets of k items. We use
n/b k

2
c+ O(k) queries, improving a previous method by De Marco and Kranakis that used n− k + k2/2

queries. We also prove a lower bound of n/(k− 1)−O(n1/3) on the number of queries needed, improving
a lower bound of bn/kc by De Marco and Kranakis.

1 Introduction

A large body of theoretical computer science research concerns problems of computing a function
using a minimal number of calls to an oracle for another function on small subsets of input values.
Such problems include sorting with a minimum number of comparisons, as well as combinatorial
group testing, in which the goal is to identify the positions of a small set of true values among a
larger number of false values using an oracle that returns the disjunction of an arbitrary subset of
values [5, 6]. Other problems with this flavor include Valiant’s work on computing the majority of
n values by shallow circuits of 3-input majority gates [10] and recent work by the authors using
two-input disjunctions to identify a small number of slackers among a larger number of workers [7].

De Marco and Kranakis [4] provide another interesting class of such problems. Their input
consists of n items, each having one of two colors. The goal is to select an item of the majority
color or, if the input is equally balanced between colors, to report that fact rather than returning
an item. The algorithm may only access the input by counting queries on k-item subsets of the
input. If a subset has b black items and w = k − b white items, then the result of the query is
c = min(b, w), the size of the smaller of the two color classes. Equivalently, one may ask for the
discrepancy d = |b− w| of the query subset; the count can be calculated from the discrepancy or
vice versa via the identity 2c + d = k. The motivating application of De Marco and Kranakis is
in fault diagnosis of distributed systems, which requires a majority of processors to be non-faulty.
Their queries model tests that examine a small number of processors per test in order to determine
whether the fault-free processors are indeed a majority.

The case k = 2 of this problem had been previously studied [1, 2, 9], and optimal bounds are
known [1,9]. De Marco and Kranakis [4] provide more general solutions that apply whenever k is
sufficiently smaller than n. They show that it is possible to find a majority item for even k using
only n − k + k2/2 counting queries,1 and they prove a lower bound of bn/kc on the number of
queries that are necessary for this problem for all k.

The upper bound of De Marco and Kranakis for counting queries is greater than the lower
bound by a factor of k in its leading term. In this work, we reduce this upper bound by a factor
of approximately k/2 to n/bk2c + O(k), matching the lower bound to within a constant factor
independent of k.

De Marco and Kranakis also considered a more powerful type of query, the output model, in
which the answer to a query is a partition of the queried set into two monochromatic subsets (not

? David Eppstein was supported in part by NSF grant CCF-1228639.
1 There is a bug in their method for odd k, in Case 1 of Theorem 4.1, when i = bk/2c.

ar
X

iv
:1

51
2.

06
48

8v
1

 [
cs

.D
S]

 2
1

D
ec

 2
01

5

revealing the colors of each subset). For this problem De Marco and Kranakis provided an upper
bound of d(n − 1)/(k − 1)e queries, and showed that the same bn/kc lower bound for counting
queries applies also to the output model. For odd k, we show that their upper bound is tight by
proving a matching lower bound. For even k, we slightly improve their upper bound and prove a
new lower bound that is within an additive O(n1/3) lower-order term of the upper bound. Our new
lower bounds apply both to counting queries and to the output model, and the n/(k − 1) leading
terms of the new lower bounds improve the n/k leading term of the previously known bound.

Our results can also be interpreted in the framework of discrepancy theory, the study of how
small the discrepancy of the sets in a set system can be made by choosing an appropriate 2-coloring
of the set elements [3]. The first stage in our counting-query algorithm, finding an unbalanced query,
is equivalent to constructing a system of k-element sets with discrepancy > 1, and our results for
this stage provide examples of such unbalanced k-set systems.

1.1 Notational conventions and problem statement

We use the following shorthand notation for sets:

– [m] denotes the set {1, 2, . . . ,m} of the first m positive integers.

– If S is a set, i is an element of S, and j is not an element of S, then Sj
i denotes the set

(S \ {i}) ∪ {j}. That is, we replace i by j in S.

– With the same conventions, if A is a subset of S and B is disjoint from S, then SB
A denotes the

set (S \A) ∪B.

– If S and T are two sets of numbers with |S| ≥ |T |, then S / T is the set formed from S by
removing the |T \ S| largest elements of S \ T and replacing them by the elements of T \ S. The
result is a set with the same size as S that forms a subset of S ∪ T and a superset of T . By
abuse of notation, when t is a number, we write S / t as a shorthand for S / {t}.

To avoid confusion with the equality predicate, we use the notation x := y to indicate that a variable
x of our algorithm should be assigned the new value y.

An instance of the majority problem may be parameterized by two values, n (the number of
input items) and k (the size of queries), with n > k. We may represent an input to the problem by
an n-tuple X of numbers xi (i ∈ [n]) where each xi is a member of the set {0, 1}. The argument to
a query made by a majority-finding algorithm may be represented by a set Q ⊂ [n] with |Q| = k.
Then we may define the results of the input queries count and partition as

count(Q) = min

∑
i∈Q

xi,
∑
i∈Q

(1− xi)


partition(Q) =

{
{i | xi = 0} , {i | xi = 1}

}
.

By extension, we allow these functions to be applied to any set, not necessarily of cardinality k,
with the same definitions.

For odd k it will be convenient to partition the set [n] into two complementary subsets, M
and L. M is the set of indices i whose associated values xi equal the majority value of [k]. (This
may differ from the majority of [n].) Similarly, L is the set of indices i whose associated values xi
equal the minority value in [k].

We say that a query set Q is homogeneous if all of its elements have the same value; that
is, it is homogeneous when count(Q) = 0 and when partition(Q) = {∅, Q}. We say that a query

is inhomogeneous if it is not homogeneous. We say that a query set is balanced if it is equally
partitioned between elements of the two values (or as near to equal as possible when k is odd). That
is, Q is balanced when its discrepancy is at most 1 or when count(Q) = bk/2c. We say that Q is
unbalanced when it is not balanced.

1.2 New results

We prove the following new results.

– A majority element may be found by making n/bk2c+ O(k) count queries. The best previous
bound, by De Marco and Kranakis [4], was n− k + k2/2.

– When n is odd, a majority element may be found by making d(n− 2)/(k − 1)e partition queries.
This improves for some values of k the best previous upper bound, by De Marco and Kranakis [4],
of d(n− 1)/(k − 1)e.

– Determining the majority element requires at least d(n − 1)/(k − 1)e queries, for odd k, and
n/(k − 1) − O(n1/3) queries, for even k, regardless of whether the queries are of type count
or partition. The best previous lower bound for both these query types, by De Marco and
Kranakis [4], was bn/kc.

In addition our methods prove the following discrepancy-theoretic result:

– For even k, there exists a family of at most 2 log2 k + 1 sets, each having k elements, that
cannot be 2-colored to make every set balanced. For odd k, there exists a family of at most
k + 3 log2 k + 4 sets with the same property.

2 Upper bounds for counting

For our new upper bounds for counting we use an algorithm with the following four stages:

1. Find an unbalanced query U .
2. Use U to find a homogeneous query H.
3. Use H to determine count([n]).
4. Based on the value of count([n]), find the result of the majority problem.

We describe these four stages in the following four subsections.

2.1 Finding an unbalanced query

Throughout this section, when a subroutine discovers that a set U is unbalanced, we will abort
the subroutine and its callers, and pass U on to the next stage of the algorithm. To indicate that
this action is not simply returning to the subroutine’s caller, we describe it using the Java-like
pseudocode “throw U”.

For even k, we do not need to find an unbalanced set, as our algorithm for finding a homogeneous
set does not require it. However, the solution below serves as a warmup for the odd-k case. It
maintains a homogeneous subset H of a balanced set B, repeatedly doubling H until it is too large
to be a subset of a balanced set. To double H, we query a set BQ

H ; if it is balanced, then Q and H
have the same composition and the doubled set H ∪Q is homogeneous.

1 2 k

j

(k+3)/2

Fig. 1. Left: the arrows connect pairs of elements swapped into and out of the queries made by star(j). Right: if two
overlapping queries (shown as ellipses) differ in a single element, and are both balanced, then either the two swapped
elements have equal values (top) or they are unequal but both are in the majority for their query (bottom).

Subroutine 1 to find an unbalanced set when k is even:

1. Set B := [k] and H := {1}.
2. Repeat the following steps:

(a) If B is unbalanced, throw B.
(b) Let Q be a set disjoint from B with |Q| = |H|.
(c) If BQ

H is unbalanced, throw BQ
H .

(d) Set H := H ∪Q and then set B := B / H.

Lemma 1. Subroutine 1 always throws an unbalanced set after at most 2 log2 k + 1 queries.

Proof. Throughout the loop, H remains homogeneous, and doubles in size at each iteration. The
loop terminates on or before the iteration for which k/2 < |H| ≤ k, after at most 2 log2 k+ 1 queries,
because substituting such a large homogeneous set into B will always produce an unbalanced set.
Thus, |H| cannot grow larger than k and cause BQ

H to become undefined. ut

For the subroutine to work correctly, we must have n ≥ 3k/2 to ensure that a large enough subset
Q disjoint from B can be chosen in step 2(b).

When k is odd we use a similar idea, doubling the size of a small unbalanced seed set until it
overwhelms the whole set, but the details are more complicated. In the first place, the seed set for
the doubling routine in the even case is always the set {1}, found without any queries, but in the
odd case we choose our seed more carefully to have the form {j, j′} where {j, j′} ⊂ L. To construct
this seed, we choose j and j′ to be arbitrary indexes disjoint from [k] and then verify that they both
belong to L by using the following subroutine:

Subroutine 2 star(j) (for j > k) verifies that j ∈ L or finds an unbalanced set:

1. If [k] is unbalanced, throw [k].
2. For i := 1, 2, . . . (k + 3)/2, if [k]ji is unbalanced, throw [k]ji .

The subroutine name refers to the fact that the pairs (i, j) defining the queries form the edges of a
star graph (Figure 1, left).

Lemma 2. If star(j) terminates without finding an unbalanced set, then j ∈ L.

Proof. There are two different possible ways that the sets [k] and [k]ji queried by the algorithm can
both be balanced (Figure 1, right): either xi = xj (the upper case in the figure), or i ∈M and j ∈ L
(the lower case). The first of these two possibilities, that xi = xj , can happen only for dk/2e choices
of i, for otherwise too many of the members of [k] would be equal to xj (and each other) for [k] to
be balanced. However, star(j) tests a larger number of pairs than that. Therefore, if it tests all of
these pairs and fails to find an unbalanced set, then it must be the case that j ∈ L. ut

We define a set S with even cardinality to be L-heavy if a majority of S belongs to L, and
L-balanced if S is either balanced or L-heavy. Because we assume |S| is even, an L-heavy set must
contain at least 1 + |S|/2 elements of L, and an L-balanced set must contain at least |S|/2 elements
of L.

Lemma 3. The disjoint union of an L-heavy and an L-balanced set is L-heavy.

Proof. If X and Y are disjoint with X containing at least 1+ |X|/2 elements of L and |Y | containing
at least |Y |/2 elements of L, then X ∪Y contains at least 1+ |X|/2+ |Y |/2 = 1+ |X ∪Y |/2 elements
of L. ut

Our algorithm for the odd case of stage 1 depends on the following result, which lets us determine
an L-heavy set of size double that of a previously known L-heavy set using O(1) queries.

Lemma 4. Suppose that S and T are sets disjoint from [k], that S is L-heavy, that |S| = |T | ≤ k,
and that [k], [k] / S, and [k] / T are all balanced. Then T is necessarily L-balanced.

Proof. Let U be the set of the largest |S| elements of [k]; this is the subset of [k] removed to make
way for S in the set [k] / S (Figure 2). For [k] and [k] / S to be balanced, U can have at most one
more member of M than S does; that is, U is L-balanced. Again, for [k] and [k] / T to be balanced,
T must have at least as many members of L as U does; therefore, T is also L-balanced. ut

Based on Lemma 4, we define a second subroutine multiply(P,m) that transforms an L-heavy
set P into a larger L-heavy set of cardinality m|P |. It takes as input an L-heavy set P , where P
has even size and is disjoint from [k], and a positive integer m with m|P | ≤ k. It either finds an
unbalanced set U (aborting the subroutine) or returns as output an L-heavy set of cardinality m|P |.
We assume as a precondition for this subroutine that [k] has already been determined to be balanced.
The subroutine uses the binary representation of m to find its return value in a small number of
doublings.

Subroutine 3 multiply(P,m) (where m and P are as described above) finds an unbalanced set or
returns an L-heavy set disjoint from [k] of size m|P |:

1. If m = 1, return P .
2. If [k] / P is unbalanced, throw [k] / P .
3. Choose Q disjoint from both P and [k] with |Q| = |P |.
4. If [k] / Q is unbalanced, throw [k] / Q.
5. Set R := multiply(P ∪Q, bm/2c).
6. If m is even, return R.
7. Choose S disjoint from R and from [k] with |S| = |P |.
8. If [k] / S is unbalanced, throw [k] / S.
9. Return R ∪ S.

Lemma 5. If multiply(P,m) does not throw an unbalanced set, it returns an L-heavy set of cardi-
nality m|P |. Regardless of whether it throws an unbalanced set or returns an L-heavy set, it performs
at most 3 log2m queries.

Proof. By Lemma 4, if multiply does not find an unbalanced set, then Q and S must both be
L-balanced, and their disjoint union with an L-heavy set is another L-heavy set. Therefore, the
set returned by this subroutine is L-heavy, and (by induction on the number of recursive calls) has
the desired cardinality. The number of levels of recursion (counting only levels that can perform
queries) is blog2mc; at each level it performs either two or three queries, depending on whether m
is even or odd. Therefore, in the worst case, it performs at most 3 log2m queries. ut

[k]:

S:

T:
U

Fig. 2. The sets S (top), T (bottom), and U (middle right), and the query sets [k] (yellow), [k] / S (red), and [k] / T
(blue), used in the proof of Lemma 4.

Putting star and multiply together, we have the following algorithm to find an unbalanced set
when k is odd. It uses star twice to find a two-element L-heavy set Y , then uses multiply to expand
this set to an L-heavy set of k − 1 elements. If this L-heavy set together with one element i ∈ [k]
remains unbalanced, it must be the case that i ∈M . After we identify two members of M , we can
replace them with the two known members of L to obtain an unbalanced set.

Subroutine 4 finds an unbalanced set when k is odd:

1. Call star(k + 1) and star(k + 2), and set Y := {k + 1, k + 2}.
2. Set Z := multiply(Y, (k − 1)/2), an L-heavy set of k − 1 elements.

3. If Z ∪ {1} or Z ∪ {2} is unbalanced, throw the unbalanced set.

4. Throw [k]Y{1,2}.

Lemma 6. Subroutine 4 always throws an unbalanced set after at most k + 3 log2 k + 3 queries.

Proof. The two calls to star (after eliminating the shared query of set [k]) take a total of k + 4
queries. The call to multiply takes at most 3(log2 k−1) queries. The remaining steps of the algorithm
use at most two queries. Therefore, the total number of queries made in this stage of the algorithm
is at most k + 3 log2 k + 3. ut

In order to work, this algorithm needs n to be at least 2k − 1 so that it can find enough elements in
the disjoint sets that it chooses.

For the algorithms in this stage, the sequence of queries made by the algorithm is non-adaptive:
whenever a query finds an unbalanced set, the algorithm terminates, so the sequence of queries
can be found by simulating the algorithm using an oracle that knows nothing about the input and
always returns a balanced result. Eventually, the algorithm will determine that some particular set
is unbalanced without querying it. The sequence of query sets together with the final unqueried and
unbalanced set form a family of k-sets with the property that, no matter how their elements are
colored, at least one set in the family will be unbalanced. This proves the following result:

Theorem 1. When k is even, there exists a family of at most 2 log2 k + 1 sets, each having k
elements, that cannot be 2-colored to make every set in the family be balanced. When k is odd, there
exists a family of at most k + 3 log2 k + 4 sets with the same property.

These bounds are not tight for many values of k. When k = 2 (mod 4), three k-sets with pairwise
intersections of size k/2 cannot all be balanced. And for many odd values of k our bound can be
improved by using optimal addition chains. However, such improvements would make our algorithms
more complex and would affect only a low-order term of our overall analysis.

U:

V:

0 1 0 0 1 0 1 1 1 0 1 0 1 1

Fig. 3. Finding a homogeneous query. Given an unbalanced k-element query U (top, yellow), we find a disjoint set V
of k − 1 elements (bottom), and construct a spanning tree of the complete bipartite graph that has U and V as its
two vertex sets (blue edges). We then query each set U j

i for each spanning tree edge ij and use the result to label
each edge 0 (if xi = xj) or 1 (otherwise). Any two elements of U ∪ V have the same value if and only if the spanning
tree path connecting them has even label sum.

2.2 Finding a homogeneous query

After the previous stage of the algorithm, we have obtained an unbalanced query U . We may also
assume that we know the result of the query count(U), for the algorithm of the previous stage will
either query this number itself or it will find an unbalanced query U for which count(U) can be
determined without making a query. Our algorithm for finding a homogeneous query is based on
the principle that, for any two indices i and j with i ∈ U and j /∈ U , we can test whether xi = xj
in a single additional query, by testing whether count(U j

i) = count(U). If xi = xj then the count
stays the same, clearly. However, with U unbalanced, it is not possible for the two indices to have
different values while preserving the count.

Subroutine 5 to find a homogeneous query:

1. Let V be a set of k − 1 elements disjoint from U .

2. Construct a spanning tree T of the complete bipartite graph Kk,k−1 having U and V as the two
sides of its bipartition.

3. For each edge (i, j) of T , with i ∈ U and j ∈ V , query count(U j
i). Label the edge with the

number 1 if the query value is different from count(U) and instead label the edge with the
number 0 if the two query values are equal.

4. Define two elements of U ∪V to be equivalent when the path connecting them in T has even label
sum, and partition U ∪ V into the two equivalence classes X and Y of the resulting equivalence
relation.

5. Return a subset of k elements from the larger of the two equivalence classes.

The algorithm is illustrated in Figure 3. This stage performs 2k − 2 queries and requires that
n ≥ 2k − 1.

2.3 Finding the count

We next use the known homogeneous query H to compute count([n]).

Subroutine 6 to compute count([n]), given a homogeneous set H:

1. Partition [n] \H into (n− k)/bk2c subsets S1, S2, . . . , each having at most bk2c elements.

2. For each subset Si of the partition, query count(H / Si). Since Si ≤ k/2 and the remaining
elements of H / Si are homogeneous, this query determines the number of elements of Si that
are not the same type as H.

3. Let c be the sum of the query values, and return min(c, n− c).

As well as computing count([n]), the same algorithm can determine whether H is in the majority
(according to whether c or n− c is the minimum) and, if not, find an inhomogeneous query I for
which |H ∩ I| ≥ k/2 (any of the queries with a nonzero query value). The number of queries it needs
is

n− k
bk/2c

≤ n

bk/2c
− 2.

2.4 Finding the majority

After the previous three stages of the algorithm, we have the following information:

– A homogeneous query H.
– The number count([n]).
– Whether the elements of H are in the majority.
– An inhomogeneous query I (if H is not in the majority), with |H ∩ I| ≥ k/2.

If count([n]) = n/2, we report that there is no majority. If H is a subset of the majority, we may
return any element of H as the majority element. In the remaining case, we find an element of I
that is not of the same type as the elements of H, using binary search:

Subroutine 7 uses binary search to find a majority element:

1. Let U := I \H, a set containing an element not the same type as H.
2. Let c := count(I), the number of majority elements in U already determined in stage three of

the algorithm.
3. While |U | > c, do the following steps:

(a) Let V := any subset of b|U |/2c elements of U .
(b) Query count(H / V).
(c) If the result of the query is nonzero, let U := V and let c := the query result. Otherwise, let

U := U \ V and leave c unchanged.
4. Return any element of the remaining set U .

Lemma 7. Subroutine 7 finds a majority element using at most log2 k additional queries.

Proof. By induction, for a given set U , this algorithm uses at most b1 + log2(|U | − 1)c queries. The
worst case occurs when |U | is one plus a power of two and the query result is zero, resulting in a
case of the same type in the next step. Since initially |U | ≤ k/2, it follows that the total number of
queries for this stage of the algorithm is less than log2 k. ut

This bound can be improved by making a more careful choice of the set I to ensure that the initial
values in the algorithm satisfy c > |U |/2, but this improvement is unnecessary for our results.

2.5 Counting analysis

By adding together the numbers of queries made in the four stages of our algorithm we obtain the
following result.

Theorem 2. Let k and n be given integers with n ≥ 2k− 1 and k > 1. Then it is possible to find a
majority element of a set of n 2-colored elements, or to report that there is no majority, using at
most n/bk2c+ 3k + 4 log2 k count queries on subsets of k elements.

In the next section we remove the constraint that n ≥ 2k− 1 by providing substitute algorithms
for the case that k < n < 2k − 1, using O(k) queries.

3 Upper bounds for small n

Our previous algorithm for finding the majority using counting queries requires that n ≥ 2k − 1.
Here we show how to relax that assumption by giving separate algorithms for the remaining possible
values of n, using only O(k) queries. We first consider the case that k + 1 < n < 2k − 1; we will
handle the case that n = k + 1 in a later subsection. Our algorithm for k + 1 < n < 2k − 1 has the
following outline:

1. If k is odd then find an unbalanced query U ; otherwise set U = [k].
2. Use U to determine the result of the majority problem.

We detail these stages in the following two subsections.

3.1 Finding an unbalanced query when k is odd

We begin in a manner similar to what we did for the case in which n ≥ 2k − 1 and k is odd. As we
already observed, the subroutine star(j) used in that case can fail to find an unbalanced set, but if
it does then we know that j ∈ L. As in the earlier algorithm, we use the pseudocode “throw U” to
indicate that the unbalanced set U should be passed to the next stage of the algorithm, terminating
the subroutine and any of its callers.

Subroutine 8 to find an unbalanced query for odd k and any n ≥ k + 2:

1. Call star(k + 1) and star(k + 2) to verify that {k + 1, k + 2} ⊂ L.
2. Let Q := {k + 1, k + 2}.
3. Choose bk/2c disjoint pairs of elements in [k]. For each pair P , if [k]QP is unbalanced, throw [k]QP .
4. Let m := the remaining unpaired element of [k], and let {i, j} be any one of the chosen pairs.
5. If [k]Q{i,m} is unbalanced, throw [k]Q{i,m}.

6. Throw [k]Q{j,m}.

If any one of the sets [k]QP queried by the algorithm is balanced, then P must contain a member
of L. If all bk/2c of these sets are balanced, then (since there are only bk/2c members of L∩ [k] that
can be included in the pairs) each pair must consist of exactly one member of L and one member
of M . The remaining unpaired element m must also belong to M . Therefore, one of the two final
pairs {i,m} or {j,m} must be a subset of M , and replacing it with Q produces an unbalanced tuple.

This procedure works for all n with k + 1 < n < 2k − 1 and requires at most (3k + 3)/2 queries.

3.2 Partitioning the input using an unbalanced query

Our algorithm for completing the problem of finding a majority, given an unbalanced query U
(when k is odd, or an arbitrary query U when k is even) is very similar to Subroutine 5 for finding a
homogeneous set in the case that n is large.

Subroutine 9 to find a majority element from an unbalanced query U :

1. Let V := [k] \ U .
2. Construct a spanning tree T on the complete bipartite graph (U, V, U × V).
3. For each edge (i, j) of T , with i ∈ U and j ∈ V , query count(U j

i) and label the edge with 0 or 1
as in Subroutine 5.

4. Partition U ∪ V into two subsets of vertices such that, within each subset, each pair of vertices
is connected by a path in T with an even label sum.

5. Return the difference in sizes of the two subsets of vertices.

After finding a U with a known value of count(U) (unbalanced in the case that k is odd), this
method uses n− 1 ≤ 2k − 3 additional queries.

3.3 Finding a majority element when n = k + 1

When n = k + 1 there are only n possible queries to make: for each element, there is one query that
omits that element. However, we can find a majority element using even fewer queries. The principle
our algorithm uses is that, unless [n] is equally split, a query that omits a minority element will have
a strictly smaller count than a query that omits a majority element. So to find a majority element,
we need only try enough queries to ensure that a majority element will be one of the omitted ones,
and compare the query values.

Subroutine 10 to find a majority element when n = k + 1:

1. Let q := count([k]).
2. For i := 1, 2, . . . q + 1, let qi = count([k]ni).
3. If all qi = q, return that there is no majority
4. Choose j with qj 6= q.
5. If qj > q then return j.
6. If qj < q then return n.

Since q ≤ k/2 and this algorithm makes q + 2 queries, its worst case number of queries is
(k + 4)/2.

4 Lower bounds

In contrast to our upper bounds for counting queries, our lower bounds are simpler and tighter in
the case that k is odd, so we begin with that case first.

4.1 Odd query size

Our lower bound for odd k uses partition queries, as they are the most powerful and can simulate
count queries: if it is impossible to find the majority using a given number of partition queries, it is
also impossible with the same number of queries of the other types. We prove our lower bound by
an adversary argument: we design an algorithm for answering queries that, unless enough queries
are made, will be able to force the querying algorithm into making a wrong choice of answer to the
majority problem.

At any point during the interaction of the querying algorithm and adversary, we define the query
graph to be a bipartite graph that has the n given set elements on one side of its bipartition and
the queries made so far on the other side of the bipartition. We make each query be adjacent to
the elements in it. As a shorthand, we use the word component to refer to a connected component
of the query graph. The querying algorithm can be assumed to know the results of applying the
partition and count functions to any subset of elements within a single component, as those results
can be inferred from the queries actually performed within the component. Note also that, if any
component C has discrepancy zero, the querying algorithm may safely ignore that component for
the rest of the querying process, as removing its elements from the problem will not change the
majority.

To simplify the task of the adversary, we restrict the querying algorithm to make only reasonable
queries, which we define as queries that never include elements from components with zero discrepancy,
and that (unless the result of the query leaves at most one nonzero-discrepancy component) never
include more than one element from the same pre-query component. It follows from these properties
that the querying algorithm must stop making queries, and choose an output for the majority
problem, if it ever reaches a state where at most one component has nonzero discrepancy.

Lemma 8. Any lower bound for an algorithm that makes only reasonable queries will be valid as a
lower bound for all querying algorithms.

Proof. An arbitrary querying algorithm can be transformed into one that makes only reasonable
queries by skipping any query whose elements belong to one component, removing query elements
that come from zero-discrepancy components or that duplicate the component of another element,
and replacing the removed elements by elements from new components. This modification produces
components that are supersets of the original ones, from which the results of the original queries
can be inferred. ut

By induction, with only reasonable queries for k odd, if more than one component remains,
then all components have odd cardinality and therefore odd discrepancy. We design an adversary
that maintains for each odd component a partition of its elements into two subsets (consistent
with previous answers) that has discrepancy one. If a query produces a single component of even
cardinality, we allow the adversary to choose any partition consistent with previous answers. If a
query merges multiple discrepancy-one components, then (by choosing slightly more than half of the
input components to have a majority that coincides with the majority of the merged component,
and slightly fewer than half of the input components to have a majority that falls into the minority
of the merged component) we can always find a consistent partition with discrepancy one. Therefore,
by induction, the adversary can always achieve the goals stated above.

Lemma 9. If a querying algorithm that makes reasonable queries does not reduce the input to a
single component before producing its output, then the adversary described above can force it to
compute an incorrect answer.

Proof. Unless there is one component, more than one answer to the majority problem is consistent
with the choices already made by the adversary.

In particular, if there are evenly many odd components of discrepancy one, then by choosing the
majorities of all components to be the majority of the whole input, it is possible to cause the whole
input to have a majority. But by choosing half of the components to have a majority of value 0 and
half of the components to have a majority of value 1, it is also possible to cause the whole input
to be evenly split between the two values and have no majority. Thus, regardless of whether the
querying algorithm declares that there is no majority or whether it chooses a majority element, it
can be made to be incorrect.

If there are an odd number of odd components, then a majority always exists. We may achieve
discrepancy one for the whole input set of elements by choosing slightly more than half of the
components to have majority value 1 and slightly fewer than half to have majority value 0; however,
each component can be either on the majority 1 or majority 0 side, so each element can be either in
the majority or in the minority. Regardless of which element the querying algorithm determines to
belong to the majority, it can be made to be incorrect. ut

Theorem 3. When k is odd, any algorithm that always correctly finds the majority of n elements
by making partition or count queries must use at least d(n− 1)/(k − 1)e queries.

Proof. As above, the algorithm can be assumed to make only reasonable partition queries, and must
make enough queries to reduce the query graph to a single component. This graph initially has n
components, and each query reduces the number of components by at most k − 1, from which the
result follows. ut

4.2 Even query size

De Marco and Kranakis showed that the majority problem on n elements may be solved using
d(n−1)/(k−1)e partition queries on subsets of k elements, matched by the lower bound of Theorem 3.
For odd n, this bound may be improved to d(n− 2)/(k − 1)e by applying it only to the first n− 1
elements, and either returning the result (if it is a majority) or the final element (if the first n− 1
elements have no majority). However, this modification to their algorithm can reduce the number of
queries only when k − 1 evenly divides n− 2, which only happens when k is even. Therefore, this
improvement does not contradict Theorem 3. When k = 2 a similar improvement can be continued
recursively by pairing up elements, eliminating balanced pairs, and recursively finding the majority
of a set of representative elements from each pair. The resulting algorithm uses n− b queries, where
b is the number of nonzero bits in the binary representation of n, and a matching lower bound is
known [9]. Again, this does not contradict Theorem 3 because k = 2 is even. These improvements
to the upper bound of De Marco and Kranakis raise the question of whether the majority can be
found with significantly fewer queries whenever k is even. However, we show in this section that the
answer is no. An adversary strategy similar to the odd-k strategy but more complicated than it can
be used to prove a lower bound of n/(k − 1)−O(n1/3) on the number of queries.

For odd k, we proved our lower bound using an adversary that (for reasonable queries) always
chooses a partition of each query that gives the resulting component discrepancy exactly one. For
even k, we do not wish to create components of discrepancy zero (because that would allow the
querying algorithm to eliminate all the elements of the component from future consideration) but,
without creating components of discrepancy zero it is not possible to bound the discrepancy that
may be needed. In particular, if the querying algorithm makes queries that have the structure of a
complete k-ary tree of height h, then the adversary will be forced either to create a component of
discrepancy zero or to use discrepancy values as large as 2h. And it is not always a good strategy
for the adversary to choose a nonzero discrepancy for every query, for in the case that k = 2 and
n = 2h − 1, a complete binary tree strategy against such an adversary can succeed in answering
majority queries with only (n− 1)/2 queries by creating a homogeneous component that is large
enough to overwhelm the remaining unqueried elements.

Instead, we will parameterize our adversary by a threshold value τ , and have it follow the
following strategy for each query. If it is possible to partition the query elements consistently with
previous queries so that the resulting component has discrepancy at most τ , choose the partition
that results in as small a nonzero discrepancy as possible. Otherwise, if this is not possible, choose
a partition that results in discrepancy zero. The ability to follow this strategy is ensured by the
following lemmas. Here, we define the query graph and its components in exactly the same way as
in the odd-k lower bound, and (as in that bound) we assume that all queries are reasonable.

Lemma 10. Suppose that a given reasonable query combines elements from a collection of compo-
nents Ci(i = 1, 2, . . .) that have nonzero discrepancies di. Then it is possible to answer the query
consistently with previous queries, to achieve total discrepancy

∑
σidi for any choice of σi = ±1.

Proof. Let C =
⋃
Ci be the component resulting from the query. If σi = σ1 choose a partition of C

in which the majority elements of Ci are on the same side as the majority elements of C1, and if
σi 6= σ1 choose a partition of C in which the majority elements of Ci are on the opposite side as
the majority elements of C1. Then, answer the query by restricting this partition of C to the query
elements. ut

Lemma 11. Suppose that a given reasonable query combines elements from a collection of com-
ponents Ci that have nonzero discrepancies di, and that at least two of the discrepancies di are

different from each other. Then it is possible to answer the query in such a way that the discrepancy
of the resulting component is nonzero and at most max di.

Proof. Again, let C be the union of the query components; by the previous lemma we may choose
any combination of signs for the discrepancies of these components. We prove the lemma using
induction on the number of components to be combined. We may assume without loss of generality
that d1 = max di. If some two components different from C1 (without loss of generality C2 and
C3) have different discrepancies from each other, then we may combine them with opposite signs
to each other (that is, we choose σ2 6= σ3), effectively replacing them by a single component with
discrepancy |d2 − d3| which is nonzero and different from d1; the result follows by induction. If on
the other hand all discrepancies other than d1 are smaller than d1 and equal to each other, we may
cancel them in pairs (again by choosing values of σi with opposite signs). If this cancellation leaves
no components other than C1, then the discrepancy of C equals d1. If there is a single component C2

left after this cancellation, with discrepancy d2 < d1, then by choosing opposite signs for σ1 and σ2
we may cause the discrepancy of C to equal d1 − d2. ut

Lemma 12. Suppose that a given reasonable query combines elements from a collection of com-
ponents Ci that all have the same nonzero discrepancies d. Then if there are an odd number of
components in the query, it is possible to answer the query in such a way that the discrepancy of the
resulting component is exactly d. If there are an even number of components, it is always possible
to achieve discrepancy zero, and it is also always possible to achieve discrepancy 2d, but it is not
possible to achieve any discrepancy between those two values.

Proof. To achieve discrepancy zero or d, we choose signs σi that are as evenly balanced as possible
between +1 and −1. To achieve discrepancy 2d, we start with a balanced set of signs and then flip
one of them. ut

Combining these lemmas, we have the following description of the adversary’s behavior.

Lemma 13. For any positive even integer τ , it is possible for an adversary to answer reasonable
partition queries in such a way that:

– Each query answer is consistent with the previous answers.
– At all times, each nonzero discrepancy is at most τ .
– Whenever a query results in a nonzero discrepancy d, then either at least one of the components

combined by the query also has discrepancy at least d, or all the pre-query components combined
by the query have discrepancy exactly d/2.

– Whenever a query results in a zero discrepancy, then all the pre-query components combined by
the query have equal discrepancy that is greater than τ/2.

We have the following bound on the sizes of the zero-discrepancy components produced by this
adversary:

Lemma 14. If an adversary follows the strategy described by Lemma 13, and a reasonable query
creates a component with discrepancy d that is not the single remaining component of nonzero
discrepancy, then the number of elements in the component is at least klog2 d = dlog2 k.

Proof. For each query Q of discrepancy d, we can find k earlier component queries of discrepancy
at least d/2, either directly as the ones containing the elements of the component or indirectly as
the set of k earlier queries of the component combined by Q that has discrepancy at least d. By
continuing recursively, we can find a complete k-ary tree of queries, of height log2 d, whose elements
are all combined in query Q. There must be at least one element of Q for each leaf of this tree. ut

Corollary 1. If an adversary follows the strategy described by Lemma 13, and a reasonable query
creates a component with discrepancy zero, then that component must contain Ω(τ log2 k) elements.

To complete the lower bound argument, we must also bound the sizes of the components
remaining whenever a querying algorithm has compiled enough information to correctly determine
the majority.

Lemma 15. If an algorithm for finding the majority makes a sequence of queries that leaves a set
of components with the property that each nonzero component discrepancy is at most half of the
total component discrepancy, then it is impossible for the algorithm to correctly choose a majority
element.

Proof. If one component C1 has exactly half of the remaining discrepancy, then by setting all of the
remaining component’s signs σi equal to each other, it is possible either to make no majority (when
those signs are different from σ1) or a majority (when those signs are equal to σ1). Thus, regardless
of whether the algorithm determines that there is or is not a majority, it may be made incorrect.

If, on the other hand, all components have discrepancy that is less than half of the total, then
any element i can be made to be a majority element. If i belongs to any component (with zero
or nonzero discrepancy), we choose equal signs for all other nonzero-discrepancy components in
order to force a majority to exist, and then choose a sign for the component containing element i
as desired. Thus, regardless of whether the algorithm chooses that no majority exists or chooses a
particular element as a representative of the majority, it can again always be made incorrect. ut

Corollary 2. If an adversary follows the strategy described by Lemma 13, and a querying algorithm
returns its answer after making a sequence of queries that leads to components with total discrepancy
at least 2τ , then the adversary can choose a partition of the elements consistent with its previous
answers that makes the querying algorithm incorrect.

For large values of τ , Corollary 1 implies that the components with zero discrepancy are also
large, and therefore that there cannot be many such components. For small values of τ , Corollary 2
implies that (when a querying algorithm is capable of determining a correct answer) the components
with nonzero discrepancy have a small sum of discrepancies, and therefore that there cannot be
many such components. By choosing a value of τ that balances the numbers of components of both
types, we can force any correct querying algorithm to leave only a small number of components of
either type. To do this, it must make a large number of queries.

Theorem 4. When k is even, any algorithm that always correctly finds the majority of n elements
by making partition or count queries must use at least n/(k − 1)−O(n1/(1+log2 k)) queries.

Proof. We set τ = n1/(1+log2 k), and follow the adversary strategy described above. Then by
Corollary 1 each component with zero discrepancy left at the end of the querying algorithm must have
at least Ω(τ log2 k) vertices, from which it follows that there are at most n/Ω(τ log2 k) = O(n1/(1+log2 k))
such components. By Corollary 2 the total discrepancy of the nonzero components must be less
than 2τ ; since each such component has discrepancy at least one, the number of such components is
also less than 2τ = O(n1/(1+log2 k)).

The query graph initially has n components, and ends with O(n1/(1+log2 k)) components. Each
query reduces the number of components by at most k − 1, from which the result follows. ut

In particular, for k ≥ 4 we need at least n/(k− 1)−O(n1/3) queries. Combining this bound with
the known n−log2 n lower bound for the k = 2 case [9] shows that a lower bound of n/(k−1)−O(n1/3)
is valid for all k.

5 Conclusions

We have provided new bounds for the majority problem, for count and partition queries. For partition
queries with odd query size, our bounds are tight, and for even query size we achieve a matching
leading term in our upper and lower bounds. However, for count queries, our upper and lower bounds
bounds are separated from each other by a factor of two. Reducing this gap remains open.

Recently, Gerbner et al. have given bounds for the majority problem for a different type of query
that returns an element of the majority of a three-tuple [8]. It would be of interest to extend their
results to k-tuples as well.

Our work also raises the discrepancy-theoretic question of how many sets are needed in a family
of k-element sets that cannot be balanced. In this, also, our bounds are not tight and further
improvement would be of interest.

References

1. L. Alonso, E. M. Reingold, and R. Schott. Determining the majority. Inform. Process. Lett. 47(5):253–255, 1993,
doi:10.1016/0020-0190(93)90135-V, MR1245142.

2. L. Alonso, E. M. Reingold, and R. Schott. The average-case complexity of determining the majority. SIAM J.
Comput. 26(1):1–14, 1997, doi:10.1137/S0097539794275914, MR1431242.

3. J. Beck and W. W. L. Chen. Irregularities of distribution. Cambridge Tracts in Mathematics 89. Cambridge
University Press, Cambridge, 2008, MR2488272.

4. G. De Marco and E. Kranakis. Searching for majority with k-tuple queries. Discrete Math. Algorithms Appl.
7(2):1550009, 2015, doi:10.1142/S1793830915500093, MR3349882.

5. D.-Z. Du and F. K. Hwang. Combinatorial Group Testing and its Applications. Ser. Appl. Math. 12. World
Scientific, 2nd edition, 2000, MR1742957.

6. D. Eppstein, M. T. Goodrich, and D. S. Hirschberg. Improved combinatorial group testing algorithms for
real-world problem sizes. SIAM J. Comput. 36(5):1360–1375, 2007, doi:10.1137/050631847, MR2284085.

7. D. Eppstein, M. T. Goodrich, and D. S. Hirschberg. Combinatorial pair testing: distinguishing workers from
slackers. Proc. 13th Int. Symp. Algorithms and Data Structures (WADS 2013), pp. 316–327. Springer, Lecture
Notes in Comput. Sci. 8037, 2013, doi:10.1007/978-3-642-40104-6 28, MR3126368.

8. D. Gerbner, B. Keszegh, D. Pálvölgyi, B. Patkós, M. Vizer, and G. Wiener. Finding a majority ball with
majority answers. Proc. 8th Eur. Conf. Combinatorics, Graph Theory, and Applications (EuroComb 2015),
pp. 345–351. Elsevier, Elect. Notes Discrete Math. 49, 2015, doi:10.1016/j.endm.2015.06.047.

9. M. E. Saks and M. Werman. On computing majority by comparisons. Combinatorica 11(4):383–387, 1991,
doi:10.1007/BF01275672, MR1137770.

10. L. G. Valiant. Short monotone formulae for the majority function. J. Algorithms 5(3):363–366, 1984,
doi:10.1016/0196-6774(84)90016-6, MR756162.

http://dx.doi.org/10.1016/0020-0190(93)90135-V
https://www.ams.org/mathscinet-getitem?mr=1245142
http://dx.doi.org/10.1137/S0097539794275914
https://www.ams.org/mathscinet-getitem?mr=1431242
https://www.ams.org/mathscinet-getitem?mr=2488272
http://dx.doi.org/10.1142/S1793830915500093
https://www.ams.org/mathscinet-getitem?mr=3349882
https://www.ams.org/mathscinet-getitem?mr=1742957
http://dx.doi.org/10.1137/050631847
https://www.ams.org/mathscinet-getitem?mr=2284085
http://dx.doi.org/10.1007/978-3-642-40104-6_28
https://www.ams.org/mathscinet-getitem?mr=3126368
http://dx.doi.org/10.1016/j.endm.2015.06.047
http://dx.doi.org/10.1007/BF01275672
https://www.ams.org/mathscinet-getitem?mr=1137770
http://dx.doi.org/10.1016/0196-6774(84)90016-6
https://www.ams.org/mathscinet-getitem?mr=756162

	From Discrepancy to Majority

